


Mobile ad-hoc networks: a new stochastic second-order
cone programming approach

F. Maggioni1, E. Allevi2, M.I. Bertocchi1, and F. A. Potra3

Abstract. We study the semidefinite stochastic location-aided routing (SLAR) model de-
scribed in Ariyawansa and Zhu (2006) [2] and in Zhu, Zhang, and Patel (2007) [16]. We
propose a modification of their model to exploit the stochasticity inherent in the destina-
tion node movements. We formulate the problem as a two-stage stochastic second-order cone
programming (SSOCP), see Alizadeh and Goldfarb (2003) [1], where the first-stage decision
variables include both the position of the destination node and its distance from the sender
node. Destination node movements are represented by ellipsoid scenarios defined in a neigh-
borhood of the starting position and generated by uniform and normal disturbances. The
MOSEK solver (under GAMS environment) allows to solve problems with a large number
of scenarios (say 20250) versus the DSDP (under MATLAB framework) solver, see Benson,
Ye and Zhang (2000) [4], adapted to stochastic programming framework with 500 scenarios.
Stability results for the optimal first-stage solutions and for the optimal function value are
obtained.

1 Introduction

Wireless mobile hosts, characterized by communicating each other in absence of a fixed in-
frastructure, have become an important tool of our daily life. The Mobile Ad hoc NETworks
(MANET), based on wireless mobile nodes, and the related routing protocols have been stud-
ied extensively in the last 15 years, see Ko and Vaidya (2000) [10] and the references therein,
and Vyas (2000) [15]. Routing protocols usually differ on the assumptions governing to search
for a new route. To decrease the overhead of route discovery, Ko and Vaidya (2000) [10],
suggest a special approach based on the use of local information. Their algorithm, known as
Location-aided Routing (LAR) protocol, tries to reduce the number of nodes to whom the
requested route is propagated by use of local information given, for example, by the Global
Positioning System (GPS). The main concepts behind the algorithm are the expected zone
and the requested zone. The first is the region that the sender node S expects to contain
the destination node D in the elapsed time t1 from the original position of the two nodes,
and the second is the region defined by the sender node to include the destination node. The
route being requested spreads over only if a neibourgh node belongs to the requested zone. A
protocol that makes use of the requested zone should consider to start with a large requested
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zone. On the other hand, the requested zone is expected to include the expected zone and this
suggests that one may first try to identify the expected zone. This is the approach proposed
by Ariyawansa and Zhu (2006) [2] who formulated the expected zone identification problem of
the as a stochastic two-stage model in which the first decision variables include the radius of
the expected region which can be further influenced by the realization of random movements
(different scenarios represented by random ellipsoids). Their model is a particular two-stage
stochastic model because not all second-stage variables are scenario dependent (the enlarged
radius represents the worst case containing all the possible random movements).

In Zhu, Zhang and Patel (2007) [16], this approach has been formulated as a stochastic
semidefinite programming model and it has been solved for a limited number of scenarios. In
the same paper Zhu, Zhang and Patel estimate the solution sensitivity to alternative scenarios
probability structure and cost coefficients in the decision problem. The performance measure
used by Zhu, Zhang and Patel is the percentage savings defined as (r2

2−r2
1)/r

2
2 where r1 and r2

are respectively the radius of the first expected zone and the radius of the enlarged expected
zone. In such a model, the radius of the enlarged expected zone includes all the possible
realizations of the random movements.

We extend this model on two important aspects:

• we look for various second-stage circles, each of them covering a realization of the random
movements (an ellipsoid); this allows a better representation of reality using the second-
stage variables as a recourse action on the first-stage ones;

• we successfully transform the stochastic semidefinite programming model in a second-
order cone programming model allowing for a substantial reduction in time execution.

Section 2 of our paper is devoted to introduction of notations for stochastic semidefinite
programming and second-order cone programming. Section 3 describes the formulation of
SLAR protocol for mobile ad hoc network problems as a stochastic two-stage semidefinite
programming problem. Section 4 contains the formulation of SLAR protocol as stochastic
two-stage second order cone programming problem. In Section 5 we describe the strategies
used for scenarios generation and finally, Section 6 contains the results of experiments and
their validation.

2 Basic facts and notation

Semidefinite programming problems define a class of optimization problems that have been
studied extensively during the past 15 years. Semidefinite programming is naturally related
to linear programming, and both are based on deterministic coefficient matrices. Semidefinite
programming is primarly concerned with the selection with a symmetric matrix to minimize
a linear function subject to linear constraints. The matrix is constrained throughout to be
positive semidefinite. Deterministic semidefinite programming (DSDP) generalizes determin-
istic linear programming (DLP). DLP has nonnegative decision variables while the decision
variable in DSDP is a positive semidefinite matrix.
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We use the following notation: ℜn×n for the vector space of real n × n matrices, lower case
boldface letters x, c etc. for column vectors, and uppercase letters A, X etc. for matrices.
Subscripted vectors such as xi represent the ith block of x. The jth component of the vectors
x and xi are indicated by xj and xij respectively. We use 0 and 1 for the zero vector and
vectors of all ones, respectively, and 0 and I for the zero and identity matrices.

A deterministic linear programming problem (DLP) in primal standard form is

min
x∈ℜn

cTx

subject to Ax = b, (1)

x ≥ 0

and its dual

max
y∈ℜm

bTy

subject to ATy ≤ c, (2)

where A ∈ ℜm×n, b ∈ ℜm and c ∈ ℜn constitute given data, and x ∈ ℜn is the primal variable
and y ∈ ℜm is the dual variable.
Let ℜn×n

s denotes the vector space of real n × n symmetric matrices, for A,B ∈ ℜn×n
s we write

A � 0 (A ≻ 0) to mean that A is positive semidefinite (positive definite) and A � B (A ≻ B)
to mean that A − B � 0 (A − B ≻ 0). For A,B ∈ ℜn×n we denote by A • B the Frobenius
inner product between A and B: A • B = trace(AT B).
A DSDP in primal standard form is

min
X∈ℜ

n×n
s

C • X

subject to Ai • X = bi, i = 1, 2, . . . ,m (3)

X � 0

where Ai ∈ ℜn×n
s for i = 1, 2, . . . ,m, b ∈ ℜm and C ∈ ℜn×n

s are given and X ∈ ℜn×n
s is the

variable.

A DSDP in dual standard form is

max
y∈ℜm

bTy

subject to
m

∑

i=1

yiAi � C (4)
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where Ai ∈ ℜn×n
s for i = 1, 2, . . . ,m, b ∈ ℜm and C ∈ ℜn×n

s are given data, and y ∈ ℜm

is the dual vector. Notice that it is always possible to convert a problem in form (4) to an
equivalent problem in form (4) and vice versa.
Stochastic programming was introduced in the 1950s as a paradigm for dealing with uncer-
tainty in the data related to linear programming. Ariyawansa and Zhu (2006), [2] introduced
stochastic semidefinite programs as a paradigm for dealing with uncertainty in data related
to semidefinite programs.
We recall the structure of a two stage stochastic linear programming problem with recourse
(SLPs): a SLPs in primal standard form is

min
x∈Rn1

cTx + E [Q(x, ω)]

subject to Ax = b (5)

x ≥ 0

where x ∈ Rn1 is the first-stage decision variable, c ∈ Rn1 is a given vector, frequently called
cost vector, b ∈ Rm1 an other given vector, A ∈ ℜm1×n1 , c, b and A are deterministic data.
Q(x, ω) is the minimum of the problem

min
y(ω)∈Rn2

q(ω)T
y

subject to T (ω)x + W (ω)y = h(ω) (6)

y ≥ 0

and
E [Q(x, ω)] =

∫

Ω
Q(x, ω)P (dω) (7)

where y(ω) ∈ Rn2 is the second-stage decision vector, q ∈ Rn2 , T (ω) ∈ ℜm2×n1 is the technol-
ogy matrix, W (ω) ∈ ℜm2×n2 is the recourse matrix, h ∈ Rm2 and ω ∈ Ω is a random outcome
with a known probability distribution P .
The stochastic semidefinite programming problem with recourse (SSDP) in standard primal
form, introduced by Ariyawansa and Zhu (2006) [2], is given by

min
X∈R

n1×n1
s

C • X + E [Q(X,ω)]

subject to Ai • X = bi, i = 1, 2, . . . ,m1 (8)

X � 0

where X ∈ Rn1×n1

s is the first-stage decision variable, C ∈ Rn1×n1

s is a given matrix, b ∈ Rm1

another given vector, A ∈ Rn1×n1

s , c, b and A are deterministic data. Q(X,ω) is the minimum
of the second stage problem

4



min
Y (ω)∈R

n2×n2
s

Q(ω) • Y

subject to Ti(ω) • X + Wi(ω) • Y = hi(ω) i = 1, 2, . . . ,m2 (9)

Y � 0

and
E [Q(X,ω)] =

∫

Ω
Q(X,ω)P (dω) (10)

where Y (ω) ∈ Rn2×n2

s is the second-stage decision vector, Q ∈ Rn2×n2

s , Ti(ω) ∈ Rn1×n1

s ,
Wi(ω) ∈ ℜn2×n2

s , h ∈ Rm2 and ω ∈ Ω is a random outcome with known probability distribution
P , whose realizations will affect the coefficient matrices of the problem.

A special case of semidefinite programming (SDP) is given by second-order cone program-
ming (SOCP). SOCP problems consist in convex optimization problems in which a linear
function is minimized over the intersection of an affine set and the product of second-order
(Lorentz) cones:

Kn := {x = (x0; x̄) ∈ ℜn : x0 ≥ ‖x̄‖} , (11)

where ‖·‖ refers to the standard Euclidean norm and n the dimension of Kn (see Alizadeh
and Goldfarb, (2003) [1]) .
A second-order cone can be embedded in the cone of positive semidefinite matrices since
a second-order cone constraint is equivalent to a linear matrix inequality according to the
following relation:

Arw(x) :=

(

x0 −x̄T

−x̄ x0I

)

� 0 ⇔ x0 ≥ ‖x̄‖ . (12)

In fact Arw(x) � 0 if and only if either x = 0, or x0 > 0 and it holds true the Shur
Complement x0 − x̄T (x0I)−1x̄ ≥ 0 .
Notice that the computational effort per iteration required by interior point methods to solve
SOCP problems is less of that required to solve SDP’s problems of similar size and structure.
In fact the number of iterations to decrease the duality gap to a constant fraction of itself
using the primal dual method, is bounded above by O(

√
N), where N is the number of second-

order constraints, for the SOCP algorithm, and by O(
√

∑N

i=1 ni), where ni is the dimension

of each second-order cone constraint i = 1, . . . , N , for the SDP algorithm (see Nesterov and
Nemirovsky (1994) [11]). Furthermore, each iteration is much faster: in the SOCP algorithm
is O(n2

∑N

i=1 ni) and in the SDP O(n2
∑N

i=1 n2
i ) where n is the dimension of the optimization

variable x.
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3 Stochastic semidefinite program for modeling networks

with moving nodes

In this section we recall the semidefinite stochastic location-aided routing (SLAR) model de-
scribed in Ariyawansa and Zhu (2006) [3] and we propose a new version with a modified second
stage. The semidefinite stochastic location-aided routing (SLAR) model can be summarized
as follows: a sender node S needs to find a route to a destination node D through broadcasting
a route request to its neighbours. Once D receives the signal (and this should happen within
a time-out interval t1, otherwise the route request has to be restarted), it will respond by
reversing the path followed by the request just received. We assume S static and D moving
at a random speed. Notice that the communication is successful when the reply message is
sent back to the source node.
Consider an origin node S that needs to find a route to another destination node D where:

• The source node S knows the location l, l ∈ ℜn of the destination node D at time t0 and
viceversa the node D knows node S location ar the same time. We suppose S positioned
at the origin 0 and analyze the problem in relative terms;

• The nodes in the network are uniformly distributed;

• The node D moves at a random speed v(ω1), which depends on an underlying outcome
ω1 in an event space Ω1 with known probability distribution P1;

• The node D moves towards a (normalized) random direction d(ω2), which depends on
an underlying outcome ω2 in an event space Ω2 with a known probability distribution
P2;

• P1 and P2 are both discrete;

• Let
{(

v(k),d(k)
)

: k=1, . . . , K ′
}

be the possible realizations of the speed, direction couple
(v(ω1),d(ω2)) with probability pk := P

(

(v (ω1) ,d (ω2))=
(

vk,dk
))

, k=1, . . . , K ′ ;

• At time t1 > t0 the node D will be at location l + (t1 − t0)v
(k)d(k) with probability pk;

• The K ellipsoids

Ek = {u ∈ ℜn : uT Hku + 2gk
Tu + νk ≤ 0}, k = 1, 2, . . . , K (13)

are the realizations of the random ellipsoid Ẽ = {u ∈ ℜn : uT H̃u + 2g̃Tu + ν̃ ≤ 0},
where H̃ ∈ ℜn×n

s , H̃k ≻ 0, g̃(ω) ∈ ℜn and ν̃(ω) ∈ ℜ, for k = 1, . . . , K are random
data depending on the outcome ω, and Hk ∈ ℜn×n

s , Hk ≻ 0, gk ∈ ℜn and νk ∈ ℜ for
k = 1, 2, . . . , K;

• At time t1 the node D is in Ek with probability pk for k = 1, 2, . . . , K.
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Given the location of D at time t0, to determine the new location of D at time t1 Ariyawansa
and Zhu use the following procedure:

Stage 1 Pick a disk C
C = {u ∈ ℜn : uTu − 2ũTu + γ ≤ 0} (14)

with center in ũ and radius
√

ũT ũ − γ which contains the disk C0 centered in l with
radius v(t1 − t0), where v is the minimum speed the node D is supposed to move.

Stage 2 If happens that node D is in C, no further action is needed; otherwise D is in Ek for
some k, thus we pick a new disk C∗

C∗ = {u ∈ ℜn : uTu − 2ũTu + γ̃ ≤ 0} (15)

with center in ũ and radius
√

ũT ũ − γ̃ which contains the ellipsoids Ek for each k =
1, 2, . . . , K.

On the other hand, to take advantage of the problem two stage formulation, we propose a
second stage action as a recourse decision contingent on the realized scenario. A new circle is
in this way generated conditionally on the realized ellipsoid. We suggest the following modified
Stage 2:

Stage 2m For each scenario k = 1, . . . , K, if happens that node D is in C, no further action is
needed; otherwise D is in Ek and we pick a new disk C∗

k

C∗

k = {u ∈ ℜn : uTu − 2ũTu + γ̃k ≤ 0} (16)

with center in ũ and radius
√

ũT ũ − γ̃k which contains the ellipsoid Ek. To be consistent
with practical requirements, we fix an upper bound on the difference γ − γ̃k.
In this way we are sure that at the cost of enlarging the radius we can pick up the new
position of D.

The decision variables are given by:

x = [d1, d2, ũ, γ, τ ]T , (17)

y = [z, γ̃ , δ]T , (18)

where x is the first stage decision variable with components

• d1: is an upper bound on the distance between the center of the disk

C = {u ∈ ℜn : uTu − 2ũTu + γ ≤ 0}

and the source node (S = 0);

• d2: is an upper bound on square of the radius of the disk C;
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• ũ ∈ ℜn: is the center of disk C;

• γ: is a coefficient in the equation of disk C;

• τ : is a nonnegative parameter (see Vandenberghe and Boyed (1996), [14]; Sun and
Freund (2004) [13]).

and y is the second stage decision vector whose components are

• z ∈ ℜK : is the vector of the upper bounds at each scenario k on the distance between
the coefficients γ and γ̃k respectively in C and C∗

k ;

• γ̃ ∈ ℜK : is the vector of the coefficients γ̃k of the second stage circles C∗
k , k = 1, . . . , K.

• δ ∈ ℜK : is a vector of nonnegative parameters (see Vandenberghe and Boyed (1996)
[14]; Sun and Freund (2004), [13]).

The unit cost vectors are given by:

c = [c̃, α,0, 0, 0]T , (19)

q = [β,0,0]T , (20)

where c̃ denotes the cost per unit of the Euclidean distance between the center of the disk C
and the source node, α > 0 is the cost per unit of the square of the radius of C, and β > 0
is the cost per unit increase of the square of the radius after the realization of the random
ellipsoids. Then our modified SLAR model is given by

min
x∈ℜn+4

cTx + E [Q(x, ω)]

subject to

(

I −ũ

−ũT γ

)

� τ

(

I − l

− lT ‖l‖2 − (t1 − t0)
2v2

)

,

0 ≤ τ , (21)

0 �
(

d1I ũ

ũT d1

)

,

0 �
(

I ũ

ũT d2 + γ

)

,
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where Q(x, ω) is the minimum of the problem

min
y∈ℜ3n

qTy

subject to

(

I −ũ

−ũT γ̃k

)

� δk

(

Hk gk

gk
T vk

)

, k = 1, . . . , K , (22)

0 ≤ δk , k = 1, . . . , K ,

0 ≤ γ − γ̃k ≤ zk , k = 1, . . . , K .

On the contrary of the Ariyawansa and Zhu (2006) [2] formulation, according to our Stage
2m, every scenario indexed by k ∈ K is weighed for its probability pk. In our formulation
the second stage variable z ∈ ℜK associated to the non-zero cost q depends by the scenarios
considered, while in [2] the corresponding second stage variable appears with probability 1.

4 Stochastic Second-order cone model for SLAR

From a computational point of view, the effort per iteration required by interior-point method
to solve SOCP problems is lower than the one required to solve SDP’s of similar size and
structure. The aim of this section is to formulate the semidefinite stochastic location-aided
routing (SLAR) problem presented in the previous section as a stochastic second-order cone
SSOCP problem. We rewrite each semidefinite constraint as a second order cone one. We
start with the constraint

(

I −ũ

−ũT γ

)

� τ

(

I − l

−lT ‖ l‖2 − (t1 − t0)
2v2

)

, (23)

which represents the condition of inclusion of the disk C0 in the first stage disk C, is equivalent
to

0 �
(

τI − I −τ l + ũ

−τ lT + ũT τ ‖ l‖2 − τ (t1 − t0)
2 v2 − γ

)

(24)

and it holds if and only if, by Schur Complements, τI − I > 0, i.e. τ > 1 (or if τ = 1,
−τ lT + ũT = 0 ), and

τ ‖ l‖2 − τ (t1 − t0)
2 v2 − γ −

(

−τ lT + ũT
)

(τI − I)−1 (−τ l + ũ) ≥ 0 , (25)

or equivalently

(

τ ‖ l‖2 − τ (t1 − t0)
2 v2 − γ

) (

τ − 1) − (−τ lT + ũT
)

(−τ l + ũ) ≥ 0 , (26)

that is

τ ‖ l‖2 − τ (t1 − t0)
2 v2 − γ −

n
∑

j=1

(−τ lj + ũj)
2

(τ − 1)
≥ 0 . (27)
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If we define r = (r1, . . . , rn), where rj =
(−τ lj + ũj)

2

(τ − 1)
for all j such that τ > 1 and rj = 0

otherwise (see Alizadeh and Goldfarb (2003), [1]), then (27) is equivalent to

τ ‖ l‖2 − τ (t1 − t0)
2 v2 − 1T r ≥ γ . (28)

Since we are minimizing the radius of the circle C,
√

ũT ũ − γ, we can relax the definition of
rj replacing it by (τ lj − ũj)

2 ≤ rj (τ − 1), j = 1, . . . , n. Combining all the above constraints,
(23) is equivalent to the following formulation involving only linear and restricted hyperbolic
first-stage constraints:

(τ lj − ũj)
2 ≤ rj (τ − 1) , j = 1, . . . , n , (29)

γ ≤ τ ‖ l‖2 − τ (t1 − t0)
2 v2 − 1T r , (30)

τ ≥ 1 . (31)

Notice that the restricted hyperbolic constraint (29) is equivalent to the following n 3-
dimensional second-order cone inequalities:

∥

∥

∥

∥

(

2 (τ lj − ũj)
rj − τ + 1

)∥

∥

∥

∥

≤ rj + τ − 1⇔





rj + τ − 1
2 (τ lj − ũj)
rj − τ + 1



∈K3 , j = 1, . . . , n; (32)

and each of the linear constraints (30) and (31) are 1-dimensional second-order cone con-
straints.

On the other hand

0 �
(

d1I −ũ

−ũT d1

)

⇔ d1 ≥
√

ũT ũ ⇔
(

d1

ũ

)

∈ Kn+1 , (33)

and

0 �
(

I −ũ

−ũT d2 + γ

)

⇔ d2 + γ ≥ ũT ũ ⇔
(√

d2 + γ
ũ

)

∈ Kn+1 ; (34)

the second stage constraint

(

I −ũ

−ũT γ̃k

)

� δk

(

Hk gk

gk
T vk

)

, k = 1, . . . , K , (35)

which represents the condition of inclusion, at each scenario k, of the ellipsoid into the disk
C∗

k , is equivalent to

Mk :=

(

δkHk − I δkgk + ũ

δkg
T
k + ũT δkvk − γ̃k

)

� 0 , k = 1, . . . , K . (36)
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Following Alizadeh and Goldfarb (2003), [1], let Hk = QkΛkQ
T
k be the spectral decomposition

of Hk, Λk = Diag (λk1; . . . ; λkn) and hk = QT
k (δkgk + ũ), for k = 1, . . . , K. Then

M̄k :=

(

QT
k 0

0 1

)

Mk

(

Qk 0

0 1

)

=

(

δkΛk − I hk

hT
k δkvk − γ̃k

)

� 0 , (37)

for k = 1 . . . , K, and Mk � 0 if and only if M̄k � 0. It holds if and only if δk ≥ 1
λmin(Λk)

, i.e.
δkλkj − 1 ≥ 0 ∀ k, j, hkj = 0 if δkλkj − 1 = 0 and the Shur complement of the columns and
rows of M̄i that are not zero

δkvk − γ̃k −
∑

δkλkj>1

h2
kj

δkλkj − 1
≥ 0 . (38)

If we define sk = (sk1; . . . ; skn), where skj =
h2

kj

δkλkj−1
, for all j such that δkλkj > 1 and skj = 0,

otherwise, then (38) is equivalent to

γ̃k ≤ δkvk − 1T sk . (39)

Since we are minimizing the radius of the circle C∗
k ,

√

ũT ũ − γ̃k, we can relax the definition
of skj replacing it by h2

kj ≤ skj (δkλkj − 1), k = 1, . . . , K, j = 1, . . . , n. Combining all of
the above constraints (35) is equivalent to the following formulation involving only linear and
restricted hyperbolic second-stage constraints:

hk = QT
k (δkgk + ũ) , k = 1, . . . , K , (40)

h2
kj ≤ skj (δkλkj − 1) , k = 1, . . . , K, j = 1, . . . , n , (41)

γ̃k ≤ δkvk − 1T sk , k = 1, . . . , K, (42)

δk ≥ 1

λmin (Λk)
, k = 1, . . . , K . (43)

Notice that the linear constraint (40) is equivalent to 2nK 1-dimensional second-order cone
inequalities given by

QT
k (δkgk + ũ) − hk ≥ 0 , k = 1, . . . , K , (44)

−QT
k (δkgk + ũ) + hk ≥ 0 , k = 1, . . . , K ; (45)

the restricted hyperbolic constraint (41) is equivalent to the following nK 3-dimensional
second-order cone inequalities:

∥

∥

∥

∥

(

2hkj

skj − δkλkj + 1

)∥

∥

∥

∥

≤ skj+δkλkj−1⇔





skj + δkλkj − 1
2hkj

skj − δkλkj + 1



∈K3 , k = 1, . . . K, j = 1, . . . , n,

(46)
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and each of the linear constraints (42) and (43) are K 1-dimensional second-order cone con-
straints. In conclusion the SLAR model (22) and (23) can be formulate as a stochastic second-
order cone SSOCP problem with two (n+1)-dimensional second-order cone constraints (see
eqs. (33), (34)), n(K +1) 3-dimensional second-order cone constraints (see eqs. (32) and (46))
and with all the other constraints linear, in the following way:

min
x∈ℜn+4

cTx + E [Q(x, ω)]

subject to





rj + τ − 1
2 (τ lj − ũj)
rj − τ + 1



∈K3 , j = 1, . . . , n ,

γ ≤ τ ‖ l‖2 − τ (t1 − t0)
2 v2 − 1T r , (47)

1 ≤ τ ,
(

d1

ũ

)

∈ Kn+1 ,

(√
d2 + γ
ũ

)

∈ Kn+1 ,

where Q(x, ω) is the minimum of the problem

min
y∈ℜ3n

qTy

subject to





skj + δkλkj − 1
2hkj

skj − δkλkj + 1



∈K3 , k = 1, . . . K, j = 1, . . . , n ,

hk = QT
k (δkgk + ũ) , k = 1, . . . , K ,

γ̃k ≤ δkvk − 1T sk , k = 1, . . . , K , (48)

δk ≥ 1

λmin (Λk)
, k = 1, . . . , K ,

0 ≤ δk , k = 1, . . . , K ,

0 ≤ γ − γ̃k ≤ zk , k = 1, . . . , K ,

or equivalently, by denoting by pk the probability of scenario k:

min
x∈ℜn+4, y∈ℜ3n

cTx +
K

∑

k=1

pkq
Ty

subject to





rj + τ − 1
2 (τ lj − ũj)
rj − τ + 1



∈K3 , j = 1, . . . , n ,

γ ≤ τ ‖ l‖2 − τ (t1 − t0)
2 v2 − 1T r ,

12



1 ≤ τ ,
(

d1

ũ

)

∈ Kn+1 ,

(√
d2 + γ
ũ

)

∈ Kn+1 , (49)





skj + δkλkj − 1
2hkj

skj − δkλkj + 1



∈K3 , k = 1, . . . K, j = 1, . . . , n ,

hk = QT
k (δkgk + ũ) , k = 1, . . . , K ,

γ̃k ≤ δkvk − 1T sk , k = 1, . . . , K ,

δk ≥ 1

λmin (Λk)
, k = 1, . . . , K ,

0 ≤ δk , k = 1, . . . , K ,

0 ≤ γ − γ̃k ≤ zk , k = 1, . . . , K .

We observe that in the implementation the constraint

(√
d2 + γ
ũ

)

∈ Kn+1 , (50)

has been treated as a rotated quadratic cone (or hyperbolic constraint)

Kn+2 =

{

u ∈ ℜn+2 : 2u1u2 ≥
n+2
∑

j=3

u2
j , u1, u2 ≥ 0

}

(51)

with u2 = d2 + γ, uj = xj−2, j = 3, . . . , n + 2 intersected with the hyperplane u1 = 1/2.
By unraveling each second order constraint, the model (49) can be formulated also in the
following equivalent way:

min
x∈ℜn+4, y∈ℜ3n

cTx +
K

∑

k=1

pkq
Ty

subject to
(

τ ‖ l‖2 − τ (t1 − t0)
2 v2 − γ

)

(τ − 1) ≥ ‖τ l + ũ‖2 ,

τ ≥ 1 ,

d2
1 ≥ ‖ũ‖2 ,

d2 + γ ≥ ‖ũ‖2 , (52)

(skj + δkλkj − 1)2 ≥
∥

∥

∥

∥

(

2hkj

skj − δkλkj + 1

)∥

∥

∥

∥

2

,
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hk = QT
k (δkgk + ũ) , k = 1, . . . , K ,

γ̃ ≤ δkvk − 1T sk , k = 1, . . . , K ,

δk ≥ 1

λmin (Λk)
, k = 1, . . . , K ,

δk ≥ 0 , k = 1, . . . , K ,

γ − γ̃k ≥ 0 , k = 1, . . . , K ,

γ − γ̃k ≤ zk , k = 1, . . . , K ,

d1 ≥ 0 ,

d2 ≥ 0 .

5 Ellipsoid scenario generation

In this section we consider the generation of random ellipsoids

Ek = {u ∈ ℜn : uT Hku + 2gk
Tu + νk ≤ 0}, k = 1, 2, . . . , K . (53)

The computational experiment is limited to the case n = 2, of real ellipses in the plane ℜ2.
The algebraic equation for a second-order curve is of the type:

e11u
2
1 + 2e12u1u2 + e22u

2
2 + 2e13u1 + 2e23u2 + e33 = 0 , (54)

or equivalently, in matricial notation

(

u1 u2

)

(

e11 e12

e12 e22

) (

u1

u2

)

+ 2
(

e13 e23

)

(

u1

u2

)

+ e33 = 0

For an ellipse, the coefficients of the simmetrix matrix E associated to eq. (54):

E =





e11 e12 e13

e12 e22 e23

e13 e23 e33



 ,

have to satisfy the following conditions on the sign of the invariants (see e.g. Ilyin and Poznyak
(1981), [7]):

I2 =

∣

∣

∣

∣

e11 e12

e12 e22

∣

∣

∣

∣

> 0 , I3 =

∣

∣

∣

∣

∣

∣

e11 e12 e13

e12 e22 e23

e13 e23 e33

∣

∣

∣

∣

∣

∣

< 0 . (55)

We note that for each scenario k the coefficients H, g and ν of eq. (53) correspond to

H =

(

e11 e12

e12 e22

)

, g =
(

e13 e23

)

, ν = e33 ,
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and in order to satisfy the condition H ≻ 0 we have to consider also

e11 > 0 . (56)

The center O, u0 = (u0
1, u

0
2) of the second-order curve (54) is obtained as solution of the

following system:
{

e11u
0
1 + e12u

0
2 + e13 = 0 ,

e12u
0
1 + e22u

0
2 + e23 = 0 ,

(57)

the angle ϕ between the u1-axis and the main axis of the conic is such that

cot 2ϕ =
e11 − e12

2e12

, (58)

or equivalently is given by

ϕ = (
π

4
− 1

2
arctan(

e11 − e12

2e12

)) , (59)

and the semiaxes su1
and su2

of the ellipse are equal to






















su1
=

√

−I3

I2

(

e12 sin 2ϕ + 1
2
(e11 − e22) cos 2ϕ + 1

2
(e11 + e22)

) ,

su2
=

√

−I3

I2

(

−e12 sin 2ϕ − 1
2
(e11 − e22) cos 2ϕ + 1

2
(e11 + e22)

) .

(60)

Thus the parametric equation of the ellipse is given by
{

u1 = su1
cos ϕ cos ϑ − su2

sin ϕ sin ϑ + u0
1 , ϑ ∈ [0, 2π] ,

u2 = su1
sin ϕ cos ϑ + su2

cos ϕ sin ϑ + u0
2 , ϑ ∈ [0, 2π] .

(61)

Another equivalent formulation of an ellipse can be expressed as function of the center u0

and of the semiaxes su1
and su2

as follow:
∥

∥Q−1
(

u − u0
)∥

∥

2 ≤ 1 , (62)

where Q = K−1Q̄K , with the matrix of rotation K given by

K =

(

cos ϕ sin ϕ
− sin ϕ cos ϕ

)

, (63)

and

Q̄ =

(

su1
0

0 su2

)

. (64)

It is easy to show that the equation (53) is obtained from (62) by taking

H = Q−2 , g = −u0T
Q−2 , ν = x0T

Q−2u0 − 1 . (65)

The random ellipsoids Ek k = 1, . . . , K are generated in the following way:
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• the coordinates
(

u0,k
1 , u0,k

2

)

of center Ok, k = 1, . . . , K are respectively extracted by

an uniform distribution in the interval
(√

8 − 1, 1 +
√

8
)

and by a normal distribution
N (0, 0.5)

• the semiaxis sk
u1

k = 1, . . . , K is extracted by a normal distribution N (2, 1);

• the semiaxis sk
u2

k = 1, . . . , K is extracted by a normal distribution N (1, 0.5);

• the angle ϕk k = 1, . . . , K is extracted by an uniform distribution in the interval
[

0,
π

2

]

.

Furthermore, Ek are generated by imposing upper and lower bounds on the u2−coordinate of
the centre Ok and on the length of the main semiaxis sk

u1
and sk

u2
according to the following

conditions:






u0,min
2 ≤ u0,k

2 ≤ u0,max
2 , ∀ k = 1, . . . , K ,

smin
u1

< sk
u1

≤ smax
u1

, ∀ k = 1, . . . , K ,
smin

u1
< sk

u2
≤ smax

u2
, ∀ k = 1, . . . , K .

(66)

The way we have chosen for generating the ellipsoids, corresponds to a typical real situation
in which people are moving along preferred directions (different motorways), identified by the
length of main semiaxis sk

u1
and the size of the angle ϕk, with the possibility to exit from

the motorway for short distances (length of the second semiaxis sk
u2

). The center position Ok

represents how far one can move from the original starting position.

6 Numerical results

In this section we present numerical results obtained for the semidefinite stochastic location-
aided routing (SLAR) problem presented in section 3. The SLAR model is compared in terms
of performance with respect to the stochastic second order cone model SSOCP presented in
section 4. The simulation is based on the scenarios randomly generated under MATLAB
7.4.0 framework, according to the method described in the previous section with u0,min

2 =
−1, u0,max

2 = 1, smin
u1

= smin
u2

= 0.1 and smax
u1

= smax
u2

= 3. The stochastic second order
cone programming approach (SSOCP) (49) was implemented in GAMS 22.5 by using the
Mosek package. The stochastic semidefinite programming approach (SSDP) (22) and (23) was
implemented in MATLAB 7.4.0 using the software package “DSDP” developed by Benson, Ye
and Zhang [4].
In our computational experiments we supposed equiprobable scenarios; furthermore we have
fixed the location l = (1, 1) of the node D at initial time t0 = 0, its lowest speed v = 1, and
the final time t1 = 1 so that the disk C0 is described by the equation:

C0 = {u ∈ ℜ2 : u2
1 + u2

2 − 2u1 − 2u2 + 1 = 0} , (67)

with center in l = (1, 1) and unitary radius.
The first and second stage costs c and q are given by:

c = [0.1, 0.5,0, 0, 0]T , (68)
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q = [0.5,0,0]T ; (69)

this assumption implies that the cost of choosing the radius of the first stage circle C is five
times more expensive with respect to choose its center ũ; because of the low value of c̃, we
expect that the center ũ of the circle is not necessarily closed to the origin 0. Moreover, we
suppose the cost of changing, at each scenario, the radius of the second stage circle, is the
same of the first stage circle. For a detailed sensitivity analysis approach according to different
values of the costs c and q see Zhu, Zhang and Patel (2008), [16].

The purpose of the first test is to compare, on the same set of ellipsoid scenarios, the total
cost and solutions obtained by solving our model with respect to that proposed by Ariyawansa
and Zhu (2006) [2].

Table 1 refers to the particular case of five ellipsoids Ek, k = 1, . . . , 5 randomly generated
according to the procedure described in the previous section.

k u0
1 u0

2 ϕ su1
su2

1 2.1332 -0.7902 1.2972 1.9214 0.6592

2 2.9051 -0.5123 1.5647 0.7656 1.1444

3 1.9848 -0.2146 0.6954 2.0558 0.8161

4 2.0417 -0.2325 1.5109 2.3710 1.3641

5 3.4630 0.5189 1.3645 1.6104 0.3094

Table 1: Centre (u0
1, u

0
2), angle ϕ between the u1-axis and the main axis of the conic and

semiaxes su1
and su2

of five ellipsoids Ek, k = 1, . . . , 5 randomly generated according to the
procedure described in section 5.

Table 2 and Figure 1 refer to the solution obtained by the model proposed by Ariyawansa
and Zhu (2006) [2] in the case of the five scenarios k = 1, . . . , 5 reported in Table 1. We note
that the first stage disk C coincides with the second stage one C∗.

K ũ1 ũ2 d1 d2 γ τ obj. value

5 2.26 -0.07 2.26 7.04 -1.91 2.65 3.75

500 2.74 0.17 2.75 13.51 -5.97 4.72 8

Table 2: First stage decision solutions and total cost obtained by the model proposed by
Ariyawansa and Zhu (2006) [2] in the case of 5 and 500 scenarios.

We have solved on the same set of 5 scenarios the model with the proposed modified Stage
2m; first line of Table 3 shows the first stage decision variables and objective function. The
second-stage decision variables γ̃k, k = 1, . . . , 5, related to the radius of the second-stage disks
C∗

k are: γ̃1 = −3.51, γ̃2 = γ̃3 = −2.19, γ̃4 = −3.29 and γ̃5 = −5.53. Looking at the results
we can deduce that each second-stage disk C∗

k , k = 1, . . . , 5 contains the disks C0, C and the
ellipse Ek of the corresponding scenario k. We can also deduce that the use of a second stage
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Figure 1: Solution of the model proposed by Ariyawansa and Zhu (2006) [2] in the case of five
scenarios k = 1, . . . , 5.

action as a recourse on the first stage decision, for each scenario, allows a saving of about
8% of the total costs. The saving drastically increases by considering an higher number of
scenarios as shown in Table 2 in the case of K = 500, where the total cost becomes 8 instead
of 4.20 of the corresponding case reported in Table 3.
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Figure 2: Solution of our model in the case of five scenarios k = 1, . . . , 5.

The next purpose of our computational tests is to compare the solutions of SSOCP and
SSDP models. The optimal values of the objective function and the decision variables are the
same for both models. Since this SSDP model requires a lot of memory, we were able to solve
the case only with 500 scenarios. Instead, with the other model we reached a larger number
of scenarios (20250).

To validate the SSOCP model, at first we analyze the sensitivity of solutions to different
number of scenarios and we report the relative results in Table 3. We deduce that the model
gives an in-sample stability, i.e. whichever number of scenarios we consider, the optimal
objective values are approximately the same (for a definition of in-sample stability see Kaut
and Wallace, (2007) [9]). In particular, Figure 3 shows the convergence of the optimal profit
value as the number of scenarios increases. The execution time for the largest case of
20250 scenarios is of 13.359 seconds. It is composed of 25 blocks of equations, 303769 single
equations, 19 blocks of variables and 263269 single variables, and 44 iterations.

The values in Table 3 represent the in-sample costs. To estimate the impact of a richer
scenario tree (see Dupac̆ová et al. (2000), [6]), we compare the out-of-sample costs (see again
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K ũ1 ũ2 d1 d2 γ τ obj. value

5 1.79 -0.06 1.79 5.38 -2.19 2.32 3.45

10 2.26 0.53 2.32 5.51 -0.11 2.35 3.69

50 2.37 0.36 2.40 6.31 -0.56 2.51 4.18

100 2.32 0.42 2.36 5.98 -0.41 2.45 4.40

200 2.18 0.38 2.22 5.44 -0.53 2.33 4.06

300 2.28 0.39 2.31 5.85 -0.50 2.42 4.16

400 2.24 0.31 2.26 5.86 -0.74 2.42 4.25

500 2.25 0.38 2.28 5.73 -0.54 2.39 4.20

1000 2.23 0.37 2.26 5.67 -0.55 2.38 4.10

1480 2.23 0.36 2.26 5.70 -0.59 2.39 4.13

2015 2.24 0.36 2.27 5.74 -0.60 2.40 4.16

3010 2.23 0.37 2.26 5.66 -0.55 2.38 4.11

4160 2.24 0.37 2.27 5.72 -0.57 2.39 4.15

5240 2.24 0.38 2.27 5.71 -0.54 2.39 4.16

6015 2.23 0.36 2.26 5.70 -0.59 2.39 4.17

7440 2.23 0.37 2.26 5.67 -0.57 2.38 4.14

8015 2.23 0.36 2.26 5.70 -0.60 2.39 4.15

9051 2.23 0.37 2.26 5.67 -0.55 2.38 4.14

10040 2.23 0.36 2.26 5.71 -0.59 2.39 4.16

11268 2.22 0.36 2.25 5.67 -0.59 2.38 4.15

20250 2.23 0.36 2.26 5.68 -0.58 2.38 4.15

Table 3: First stage decision solutions and optimal profit value for increasing K.

Kaut and Wallace, (2007), [9]). For this purpose, we claim the 7440 scenario tree to represent
real world model description, and use it as a benchmark. We report in Table 4 some of the
results of the out-of-sample analysis relying on the benchmark tree.

To check the importance of modelling the randomness of the parameters, we compare the
optimal solutions and objective value of the stochastic model with those obtained from the
corresponding deterministic model, where we consider an unique scenario represented by an
ellipse with the center (umean

1 , umean
2 ) = (2.8289, 0.010142), the angle ϕmean = 0.79322, the

semiaxis smean
u1

= 1.7814, smean
u2

= 1.0371 given respectively by the mean of the centers, of the
angles and of the semiaxes of the ellipses Ek, k = 1, . . . , 7440; its parametric equation is given
by
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Figure 3: Convergence of the optimal function value for an increasing number of ellipsoid
scenarios.

K in 7440 obj. value

50 in 7440 4.19
100 in 7440 4.17
200 in 7440 4.15
300 in 7440 4.15
400 in 7440 4.15
1000 in 7440 4.14

Table 4: Out-of-sample objective value for the cases of K = 50, 100, 200, 300, 400, 1000 sce-
narios, with respect to the benchmark tree composed by 7440 branches.

{

u1 = 1.7814 cos (0.79322) cosϑ − 0.7771 sin (0.79322) sinϑ + 2.8289 , ϑ ∈ [0, 2π] ,
u2 = 1.7814 sin (0.79322) cosϑ + 0.7771 cos (0.79322) sinϑ + 0.010142 , ϑ ∈ [0, 2π] .

(70)
In literature, this kind of problem is called Expected value problem or Mean value problem,

(see Birge and Louveaux, (1997) [5] and Kall and Wallace (1994) [8]).
Solutions to the deterministic model are reported in Table 5 and shown in Figure 4.
Because in a deterministic problem the future is completely known, the first stage disk

C coincides with the second stage one C∗
1 (γ = γ̃ = 0.34), and consequently the total cost

is much smaller than in the stochastic case. We have to remember that this is an in-sample
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K ũ1 ũ2 d1 d2 γ τ obj. value

1 2.12 0.71 2.24 4.66 0.34 2.16 2.56

Table 5: First stage decision solutions and optimal profit value in the case of Expected value
problem with one scenario given by eq. (70).

1 2 3 4

-1

1

2

C

C0

Emean

Figure 4: Solution in the case of Expected value problem with one scenario described by the
ellipse given by eq. (70).

objective value (using the terminology from Kaut and Wallace, (2007) [9]) and the true cost
of the solution—or the out-of-sample objective value—is likely to be higher. To see how much
we can solve the stochastic model with 7440 scenarios and the first-stage variables fixed to the
deterministic solution. The result is a total cost of 4.36, much higher than the predicted (in-
sample) cost of 2.56. We see that the resulting total cost is higher than the optimal solution
for the benchmark tree with 7440 branches. The difference is known as the Value of stochastic
solution (VSS), (see e.g. Birge and Louveaux, (1997) [5]). In our case, it is:

VSS = obj. val. (det. sol. on benchmark tree ) − obj. val.(opt. sol. of benchmark tree)

= 4.36 − 4.14 = 0.22 .

This shows that one can save about 5% of the cost by using the stochastic model, compared
to the deterministic one.

Another measure of the role of the randomness of the parameters in the model is given
by the Expected value of perfect information (EVPI) (see again e.g. Birge and Louveaux,
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(1997) [5]). EVPI is defined as the difference between the optimal objective value of the
stochastic model with 7440 scenarios, also called here-and-now solution, and the expected
value of the wait-and-see solution (WS), calculated by finding the optimal solution for each
possible realization of the random variables, as follows:

EVPI = obj. val. (opt. sol. of benchmark tree) − obj. val.(WS)

= 4.14 − 3.12 = 1.02 .

This means that we should be ready to pay 1.02 in return for complete information before,
about the direction and velocity of the destination node D. The large value obtained for EVPI
means that the randomness plays an important role in the problem.
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