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Abstract

We propose a lattice based model for computing the fair premiums of equity-linked policies with
or without embedded surrender options. The model is based on a binomial lattice describing
the evolution of the reference fund value where the periodical deemed contributions are invested.
Since we consider the case of periodical premiums, the lattice is not recombining. In order to
avoid that the evaluation process becomes computationally unmanageable, the model considers
sets of representative values of the reference fund associated to each node of the tree. Then, the
usual backward induction technique coupled with linear interpolation allows to define a simple and
efficient method to compute the fair periodical premiums.

1 Introduction

An equity-linked policy is a policy whose payoff depends upon the performance of a
reference fund made up of equities. In the case of single premium policies a unique
contribution is deemed in the reference fund at the inception date but, in most cases,
people prefer to pay smaller periodical premiums, typically at the beginning of each
year, at the same date the deemed contributions in the reference fund are made.
Since the policy payoff depends upon the performance of the reference fund, the
policyholder bears the risk of a negative investment performance. To mitigate this
risk, insurance companies, usually, insert into the contract a minimum guarantee
providing a lower bound for the policy payoff that protect the insured investment.
The problem of computing the fair premiums for equity-linked policies with mini-
mum guarantee has been tackled for the first time by Brennan and Schwartz [5] in
1976. The sake of their model is that the benefit at maturity may be decomposed
into the guaranteed amount plus the value of an immediately exercisable call option
written on the reference fund with strike price the guaranteed amount, or into the
value of the reference fund plus the value of an immediately exercisable put option
with strike price the guaranteed amount. Hence, the tools developed in financial
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theory to price contingent claims may be used for computing the policy premiums.
In particular, Brennan and Schwartz computed the policy premiums in the Black-
Scholes evaluation framework.

Many other authors were concerned in pricing equity-linked policies both with single
and periodical premiums. Delbaen [8] and Aase and Persson [1] studied the period-
ical premium case under the assumption of deterministic interest rates. Bacinello
and Ortu [4] analyzed the case of equity-linked policies with stochastic interest rates.
They derived a closed form formula for the single premium case. Nielsen and Sand-
mann [10] used Monte Carlo simulations to compute periodical premiums under
stochastic interest rates.

An interesting problem arises when a surrender option is embedded into the equity-
linked contract. In this case, the policyholder may exercise the option at certain
dates so receiving a pre-specified surrender value and the contract expires immedi-
ately. Otherwise, at maturity the policyholder will receive the stated benefit.

The computation of the fair premiums of a policy with an embedded surrender
option has been tackled into two different ways. The first one considers the deci-
sion to surrender the policy as exogenous, hence, the early exercise of the option
is treated as an independent source of risk as such as mortality risk. Given large
enough statistical observations about early withdrawals, the fair policy premiums
may be computed using mortality tables that consider both death and surrender
probabilities.

The second approach considers the surrender decision as endogenous in the financial
evaluation framework. In other words, the policyholder exercises the surrender op-
tion when it is financially convenient and the evaluation process works in the same
way as in the American option case. Whenever the early withdrawal is admitted,
the contract value is set equal to the maximum of two terms: the policy value in
the case of no exercise and the policy value if the contract is surrendered. In this
context, it is worth mentioning the contribution of Bacinello for computing the fair
premiums of participating life insurance [2| and equity-linked endowment policies
[3]. Periodical premiums, in a Cox-Ross-Rubinstein framework, makes the lattice
describing the evolution of the reference fund value non recombining and the val-
uation problem becomes computationally unmanageable when the number of time
steps increases.

Our contribution is devoted to overcome this obstacle by considering at each node
of the tree a set of "representative values” for the reference fund. This technique
is similar to that one developed for pricing path dependent options, in particular
arithmetic average Asian options in a lattice framework. In this case, in fact, the
number of arithmetic averages associated to each node of the tree grows exponen-
tially when the number of time steps used for price computation increases. The
problem is solved by considering sets of "representative averages” and by comput-



ing the option values via the usual backward induction scheme coupled with linear
interpolation (see [9] for further details).

The remainder of the paper is organized as follows. In Section 2, we illustrate the
dynamics of the reference fund value when a periodical premium is deemed in the
reference fund. In Section 3, we present the evaluation model used to compute the
fair periodical premiums. In Section 4, we illustrate the numerical results of the
evaluation model. Finally, in Section 5, we draw conclusions.

2 The dynamics of the reference fund value

In order to compute the fair premiums of equity-linked policies we need, at first, to
determine the dynamics of the reference fund value. The reference fund is generated
by investing a fixed contribution, D, to acquire equities of the same kind at the
beginning of each year until maturity, 7. We assume that the equity value evolves in
the discrete-time environment described by the Cox-Ross-Rubinstein [6] model and,
as a consequence, a binomial lattice is used to describe the equity price evolution.
We divide the policy lifetime into n time steps each of length b = T//n. Without
loss of generality, we choose the number of time steps, n, equal to a multiple of T',
such that 1/h = n/T is a positive integer. At time ¢ty = 0 the equity value is S
and at the end of the first period it may rise to Su or may decrease to Sd. After ¢
time periods (0 < ¢ < n), the equity has registered j (0 < j < i) up steps and i — j
down steps. The equity Value at node (i, 7) is S(i,7) = Su/d*7. We shall denote by
7, =1 7),l=0,...,4;50 =0 and j; = j} a generic path characterized by the
equity values S(I, jl) that starts from S and reaches S(i, 7).

As usual, we set u = exp(ov/h) and d = 1/u (o is the standard deviation of the
equity rate of return). Moreover, the no-arbitrage assumption requires that u >
exp(rh) > d (r is the continuously compounded risk free interest rate).

Let tp = k,k = 0,..., T — 1 denote the dates at which the deemed contributions
in the reference fund are invested. At time fy = 0, with the first contribution, D,
the insurer buys n(0,0) = D/S(0,0) equities. At each anniversary of the contract,
ty, after i = k/h time steps, when the equity value is S(k/h, j), the insurer buys
n(k/h,j) = D/S(k/h,j) equities. Hence, the total number of equities acquired by
the insurer when the equity value has followed the path 7, ; is

L]
Z (k/h,jr), 0<i<mn, (k/h,jk) €T

where [x] computes the greatest integer smaller than or equal to x. Note that N (i, j)
changes its value only at those time steps coinciding with the contribution dates.



Consequently, after ¢ time steps, the reference fund value is

(5]

o oSGy

N(2,7)5(i,7) = k/h, ji)S =D

(.9)9(6.9) = S nth/h, Z s
It is useful to remark that whenever a surrender optlon is embedded into the con-
tract, at each anniversary, t, = k, of the policy, just before the payment of the
periodical premium, the insured has to decide whether to escape out of the contract
or not. In the first case, no further contributions are invested into the reference fund
and the total number of equities acquired after ¢ time steps is
o1
N(Zaj) - Z n(k/hajk)a 0<Z§TL, (k/hajk) ETi,j
k=0

where [x] represents the smallest integer greater than or equal to .

We underline that the presence of periodical deemed contributions causes a
huge increment in the number of possible values of the reference fund. Indeed, the
dynamics of the reference fund value is represented by a non recombining binomial
tree with a number of nodes that grows exponentially when the number of time
steps increases.

The following example may clarify this point. We fix S = 100, T" = 2 years,
D = 100, ¢ = 0.25, » = 0.01. We choose n = 4, thus h = 0.5, v = 1.1934 and
d = 0.8380.
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Figure 1: The dynamics of the reference fund value.

In Figure 1, we illustrate the dynamics of the value of the reference fund. Since
T = 2 years, there are two contributions to be invested in the reference fund: the



first one at time £y = 0 and the second one at time ¢; = 1 year, after two time steps.
With the first contribution the insurer buys one equity. The number of equities
purchased with the second contribution depends upon the value of the equity at
time t; = 1 year. If the equity has registered two up steps during the first year, i.e.,
S(2,2) = 142.4204, the insurer buys 100/142.4204 = 0.7021 equities and the value
of the reference fund becomes 242.4204. If at time ¢; = 1 year only one up steps has
been registered, the equity price is S(2,1) = 100, one equity is purchased and the
value of the reference fund becomes 200. If the first two steps were down steps, the
equity price has value S(2,0) = 70.2244, the insurer buys 1,4240 equities and the
reference fund value becomes 170.2244. Let consider the situation at time ¢ = 1.5
years, after two up steps and one down steps. At node (3,2) the equity has price
S(3,2) = 119.34 but the value of the reference fund depends upon the path followed
by the equity price. Indeed, if the path followed by the equity has two up steps
followed by a down step, the reference fund value is 242,4204 x 0.8380 = 203.14.
On the contrary, if the path of the equity price has one up step, then one down step
and, finally, one up step, the reference fund value is 200 x 1.1934 = 238.68. This is a
key point when one tries to build up a lattice based model to evaluate equity linked
policies since the binomial tree that describes the reference fund value dynamics is
non recombining.

To overcome this problem, we may use a trick already applied in finance to evaluate
derivative securities whose payoff depends upon a certain function of an asset value
that cannot be described by a recombining tree. This is the case, for example, of
arithmetic average Asian options whose payoff depends upon the arithmetic aver-
age of the underlying asset price during the option lifetime. The number of possible
arithmetic averages increases exponentially when the number of time steps increases
and, as a consequence, if one tries to represent them in a binomial lattice the prob-
lem becomes intractable from a computational point of view. Hull and White [9]
proposed to consider a set of representative averages associated to each node of the
tree describing the evolution of the underlying asset price. The option price at in-
ception is then computed via the usual backward induction scheme coupled with
linear interpolation.

The idea behind our model follows that one of Hull and White in the sense that,
instead of considering all the possible values of the reference fund, we choose a set
of representative values at each node of the tree representing the evolution of the
equity price.

The considered values are between the minimum, RFy,,(4,7), and the maximum,
REax (i, 7), value of the reference fund when the equity price is Su/d7. The first
step is to describe RFyax(7,7) and RFyin(i,7) in terms of the periodical deemed
contribution D. This is the content of Proposition 1 and 2, respectively.
Proposition 1. In a binomial tree with n time steps, the maximum value of the



reference fund when the equity price is Su/d™7,0< 7 <1,0<i<n is

[¢T/n]—1 e Cen
RFmaX (27 j) - Z Dumm(]’liT)dmaX(li Ti]jO) . (1)
k=0
Proof
We prove the proposition by forward induction on ¢, for all 0 < 5 < 3.
For @ = 1 we have that

RFuux(1,0) = Dd, and  RFpax(1,1) = Du.

On the other hand, the sum in (1) reduces to Du™0:0)gmax=50) that is Dd if j = 0
and Du if j = 1. Thus (1) holds for i = 1.
In order to complete the proof, we start to notice that

| [RFumax(i— 1,5 = 1) + DI 1—gn gemylu if § >0
RFmaX(Z7j) — { [RFmax(i . 17j) T D]{iflzq%,qeﬂTV}]d if j -0 (2)

where [(;_1—4n 4envy is the indicator function that is equal to one if i — 1 = ¢7 for
g € IN and zero otherwise.
We may rewrite (2) more conveniently, as

RFax (i, §) = { RFax|i — 1, max(j — 1, 0)] + DIi_1-qz qeavy b0 am> 050 - (3)

The key observation that allows to justify (2) and (3) is that the maximum value

of the reference fund at a given node (i, j) is obtained from those trajectories of the
reference fund value that reach the node (i, 7) from below. This is because when a
deemed contribution is invested to buy equities, less is the equity value more is the
number of equities that the insurer has to insert in the reference fund.
Indeed, when 7 — 1 is a time step where no contribution arises, that is the indicator
function is equal to zero, then the maximum value of the reference fund at time
i, RFyax(i,7), is obtained from the maximum value of the reference fund at the
previous time step, RF (i — 1,7 — 1) multiplied by w if j > 0 or RFpax(i — 1, 7)
multiplied by d if j = 0. Hence (3) holds or equivalently, we have that

REFmax(i,7) = RFmax|i — 1, max(j — 1, 0)]u™m(1) gmax(1=5.0),

Otherwise, when ¢ — 1 is a time step coinciding with a contribution date, then the
indicator function is equal to one and the maximum value of the reference fund at
the next time step, RF .« (4, 7), is obtained from the maximum value of the reference
fund at the previous time step, RF (i — 1, max(j — 1,0)) plus the amount D of
the deemed contribution multiplied by w™n(1d) gmax(1-3.0) " that ig

RFmax (i, §) = {RFuax|i — 1, max(j — 1,0)] + D} gmax(1=5.0)



Thus (3) holds.
Now we can complete our proof of (1) by induction. Indeed, we assume that (1) is
valid at a generic time step ¢ — 1 > 0, i.e.,

((z 1)T—‘ 1
RFmax[i . 1’ max(j . 1’ 0)] _ Z Dumin[iflf%,max(jfl,O)]dmax[ —1-kn 2 —max(j—1,0), O]‘

Then, using (3) and the inductive assumption, we have that

((z 1)T—‘ 1
RFmax(iyj) _ Z Dumin[iflfan,maX(jfl,O)]dmaX[ —1-kn Z—max(j—1,0), O]umin(l,j)dmax(lfj,0)+

+D[{i71:q%,qeﬂ\[}umin(l’j)dmax(lfjao) _
((z 1)T—‘
= Z Dumln( )dmax(sz—fj, ) T D]{iflzq%,qeﬂ\[}umin(l’j)dmax(lij’o), (4)

Now, if (z — 1) # gn/T with g € IN then, the last addendum in (4) is equal to zero
since [(i — 1)T/n] = [iT/n], hence (4) reduces to (1).

If (i — 1) = gn/T with g € IN, we have that (i — 1)T/n = [iT/n] — 1. Clearly, all
the terms in the first addendum of the sum described in (4) coincide with the first
([iT/n] — 2)-th terms in (1) and the last addendum in (4),

min(1,5) dmaX(1 —7,0)

D]{iflzq%,qGIN}u )

is the ([¢T/n] — 1)-th addendum in (1) since i — ([{T/n] — 1)n/T = 1 and the
indicator function is equal to one. Consequently, (1) holds for the i-th time step
and Proposition 1 is completely justified. 7 The proof of Proposition 2 below is like

that of Proposition 1 and we shall omit it.

Proposition 2. In a binomial tree with n time steps, the minimum value of the
reference fund when the equity price is Su/d™7,0< 7 <1,0<i<n is
[¢T/n]—1 e .
RFmin(i,§) = Z DA i—ji— ), max(j—,0) (5)
k=0
Now we can describe the set of representative values of the reference fund cor-
responding to each node of the tree describing the evolution of the equity price.

The smallest value in the set associated to the node (i, j), denoted by RF (i, 7, 1), is
chosen equal to RFyin(i, j) and the greatest value is equal to RF .« (4, 7). The other

7



reference fund representative values are of the form RE(i,j, k+ 1) = REun (i, 7)e™

where a is a positive real number and k assumes all the integer values in the interval

[1, kmax (4, 7)] in such a way that RFy, (4, j)e® =) < REL . (1,5) < REum (i, j)edtFmax(@)+1],
In this way, at each node (i, j) we associate kpyax(Z,7) + 1 values.

3 The evaluation model

We start by considering the simple case of a term policy with periodical premiums
typically paid at the beginning of each year either if the insured is alive or if he dies
before the policy maturity, T". The policy forces the insurer to pay at maturity a
capital C'(T'). For the moment, we consider the case of no surrender option embedded
into the contract; hence the insured has no chance of early withdrawal.

We consider the case

C(T) = max|[RF(T), G(T))],

where:

e RI(T) is the value at time T of the reference fund made up of equities of the
same kind that the insurer buys at the beginning of each year by investing a
fixed component, D, of the annual premium;

e G(T) is the value at maturity of the minimum guarantee inserted into the con-
tract to protect the policyholder’s investment against a negative performance
of the reference fund.

Among the different possible types of minimum guarantees, we consider

T5_1

T
G(T) = Y De¥ = De? 665 —
k=1
where ¢ > 0 is the minimum guaranteed continuously compounded interest rate (the
case § = 0 is trivial). In other words, the insurer is forced to pay at least the deemed
contributions D invested at the annual interest rate 0.
Following Brennan e Schwartz [5], the payofl at maturity of the equity-linked policy
may be decomposed into two different forms as

C(T) = RF(T) + max[G(T) — RF(T), 0], (6)

or as

C(T) = G(T) + max|RF(T) — G(T), 0]. (7)



Equation (6) characterizes the payoff at maturity of the equity-linked policy as the
sum of the value of the reference fund and the value of a put option written on the
reference fund with strike price G(T'). Conversely, equation (7) characterizes the
payoff at maturity as the sum of a fixed amount, G(T'), and the payoff of a call
option written on the reference fund with strike price G(T).

Our goal is to compute the fair value at time ¢y = 0 of the policy payoff at maturity.
Using equation (6) it is equal to

VolC'(T)] = Vo RE(T)] + Vo{max|G(T) — RF(T), 0]}.

Clearly, the put option value represents the cost of the minimum guarantee embed-
ded into the contract.
In a risk-neutral evaluation framework, this is equal to

Da(lififj+erTEhmmKXT>—fHNT»M}

er—1

where E represents the expectation under the risk-neutral probability measure and
r is the risk-free continuously compounded interest rate. The second term in the
above sum is the price at time {5 = 0 of a put option written on the reference fund
with strike price G(T).

If we consider equation (7), the value at inception of the policy payoff is given by

VolC(T)] = Vol G(T)] + Vo max[RF(T) — G(T), 0]] =

61:36__11) +e " E{max[RF(T) — G(T), 0]}.

&

_ DeSfrT (

The second addendum of the above sum is the value at time ¢y = 0 of a call option
written on the reference fund with strike price G(T).

In order to compute the fair value of the policy at inception, we need to evaluate
the put option embedded into the contract according to (6) or the call option if we
prefer to decompose the policy payoff according to (7).

We tackle the pricing problem within the Cox, Ross and Rubinstein [6] binomial
model. Hence, the dynamics of the reference fund value is that one described in
Section 2.

We label O(i, j, k) the k-th option value (for the call or for the put) when the equity
price has reached the node (7,j) and the reference fund value is RF (i, 7, k). We
compute O(i, j, k) via the usual backward-induction scheme, i.e.,

O(i, j, k) = e "[pO@i + 1,5 + 1, k) + qO(i + 1, 5, k)]

where:
p is the risk neutral probability of an up step and g =1 — p;



O(i+1,j 41, k,) is the option value at node (i + 1,7 + 1) where the reference fund
has value [RF(i, j, k) + DIji—gn/r e vy U

O(i+1,j 4+ 1, ky) is the option value at node (i + 1, ) where the reference fund has
value [RE'(i, 7, k) + DI—gnrqe 3 1d.

Both [RF (i, j, k) + DIfi—gn/Tqenilw and [RF (i, j, k) + DIgi—gn/T,qe vi]d may not be
in the set of the representative values of the reference fund at node (i + 1,7 + 1)
and (i + 1,7), respectively. To overcome this obstacle, O(i + 1,5 + 1,k,) can be
computed by linear interpolating between the option values O(i + 1,7 + 1, k) and
O@ + 1,7 + 1,ky) where ki and ko are chosen in a way that RF(i + 1,5 + 1, k1)
is the greatest reference fund value smaller than [RF(i,7,k) + DI gn/reenylu
and RE(i + 1,7 + 1, k) is the smallest value of the reference fund greater than
[RF (i, j, k) + DIgi—gn/rqemyu. O3 + 1, 7, kg) is computed analogously.

Once the policy fair value at inception has been computed, the periodical premiums
to be paid, typically, at the beginning of each year, can be calculated by following
the approach presented in [5] simply by annualizing at the riskless interest rate the
policy value at inception.

Now we consider the case of a term policy with periodical premiums and an
embedded surrender option under the assumption that the insured may escape out
of the contract at the beginning of each year, just before the payment of the premium.
If the insured decides to surrender the policy, he receives a sum that depends upon
the current value of the reference fund and/or on the minimum guarantee evaluated
at the surrender time. We label SV (i, 7, k) the surrender value at time ¢ = ih,
corresponding to the reference fund value RF'(i,7, k). Among others, we consider
the cases

SV (i,j, k)= RF(i, j, k),

i.e., the insured receives the accrued reference fund value,

SV (i, j, k) = G(ih) = Delih-03,

=0

i.e., the insured receives the minimum guarantee given by the deemed contributions
paid by the policyholder after ¢ time-steps evaluated at the minimum guaranteed
interest rate and, finally,

SV (i, j, k) = max|RF (i, j, k), G(ih)]

i.e., the insured receives the maximum between the reference fund and the minimum
guarantee evaluated after ¢ time periods.

In order to evaluate the periodical premium, P, we define V (i, j, k) as the value of
the policy in the state of nature (7,7, k). At the maturity of the contract, after n

10



time steps,

V(n,j, k) = max[RF(n, j, k), G(T)].

At time step ¢ (0 < @ < n), we must distinguish between two cases. If i is a time
step coinciding with an anniversary of the contract, i.e., i = gn/T,q € IN, we have

V(i,j, k) = max{e pV (i + 1,5 + 1, k) +qV (i + 1,5, ka)] — P, SV (i,5,k)}.
Otherwise, if 7 is a time step that does not coincide with an anniversary of the policy
V(i jik) = e pV i+ 15+ Lk +qV (i + 1,4, ka)l.

V(i+1,7,kq) and V(i+ 1,5 + 1, k,) are, respectively, the values of the policy corre-
sponding to the reference fund value [RF (i, §, k) + D1{;—gnrge vy |d and [RE'(3, 7, k) +
D]{i:qn/T,qeﬂV}]u' Again, [RF(Zv 75 k)+D]{i:qn/T,q€W}]d and [RF(Zv Js k)+D]{i:qn/T,q€W}]u7
may not be in the set of the representative values of the reference fund at time step
i+ 1. As before, we compute V(i + 1,5 + 1, k,) using linear interpolation between
the option values V(i + 1,5 + 1,ky) and V(i + 1,5 + 1, ks) where k; and ky are
chosen in a way that RF(i+ 1,7+ 1, k1) is the greatest reference fund value smaller
than [RF(i,7, k) + DIgi—gn/rgenylu and RF(i + 1,5 + 1, k) is the smallest value
of the reference fund greater than [RF(i, j, k) + DI—gn/rgemnylu. V(i + 1,7, kq) is
computed in the same way.

At time £ = 0, in order to compute the fair periodical premium, P, we have to solve
the following equation with respect to P

V(0,0,1) = e ™[pV (1,1, k,) + ¢V (1,0,ky)] — P = 0. (8)

We solve (8) numerically and the solution represents the periodical premium
to be paid at the beginning of each year by the insured until he will surrender the
contract 2.

The previous analysis may be easily extended including mortality risk. To do
this, we now consider an endowment policy with maturity 1" years. The insurer pays
a certain capital if the insured dies during the T' years, otherwise, if the insured is
alive at time T', the insurance company pays a prespecified sum. To buy the policy,
the insured pays a fixed premium, P, at the beginning of each year as long as he is
alive. Moreover, we consider an embedded surrender option that gives the insured
the chance to escape the contract at the beginning of each year just before the pay-
ment of the annual premium.

We label ;p, the probability that an individual of age z will survive at least ¢ years
while ;q. = 1 —; p, will denote the probability of the individual death during the
next t years. We assume independence between mortality risk and financial risk.

2 As already proved by Bacinello [3], equation (8) admits a unique solution
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The evaluation framework is easily extended from that one developed for term poli-
cies. At the beginning of each year, if the insured is still alive and has not previously
surrendered the contract, the periodical premium, P, is paid and a contribution D
is deemed in the reference fund to buy equities. The dynamics of the equity value
and that one of the reference fund value are given by the same binomial processes
described in Section 2.

We divide the policy lifetime, T') into n time intervals each of length h = T'/n with
n/T a positive integer. We assume that, if the insured dies during the time inter-
val ((i — 1)h,ih), the company pays at time ¢ = ih a capital given by fp(i, ], k)
where fp(i,7,k) is a function specifying the sum paid by the insurer in case of
death when the state of nature is (7, j, k). Among the possibilities, we may consider
fD(iaja k) - RF(Zvja k)a fD(iaja k) - G(Zh)v fD(iaja k) - maX[RF(ivja k)? G(Zh)]
Even more complicated functions specifying the capital to be paid in the case of
death may be easily managed in this evaluation framework.

Furthermore, if the insured is alive at maturity T', the capital paid is max|[RF (n, 7, k), G(T)]
if the state of nature is (n, j, k).

Now, our goal is to compute the fair periodical premium of the policy.

At time step n — 1, given that the policyholder is still alive and the contract is still
in force, if (n—1) # qn/T, q € IN, the policy value in the state of nature (n—1, j, k)
(when the reference fund value is RF(n — 1,7, k)) is

V(n - 17 j7 k) - eirh{hpaﬁL(n*l)h[p maX[RF(nvj + 17 ku)? G(T)]+

+q maX[RF(nv j7 kd)? G(T)] th qaﬁL(n*l)h[pr(naj + 17 ku) + (1 - p)fD(na j7 kd)]}

We remark that the function fp (i, j, k) (fp(7, J, k4)) determines the sum paid by the
insurer in case of death when the reference fund value is RF (i, j, k) (RF (i, 7, ka)).
As before, RF(i,j, k,) and RF (i, j, ky) are computed, respectively, as RF (i —1,j —
1, k)u and RF(i — 1,7, k)d.

In particular, if the sum paid in the case of death is given by the minimum guarantee,
the evaluation formula reduces to

V(n - 17 j7 k) - eirh{hpaﬁL(nfl)h[p maX[RF(nvj + 17 ku)? G(T)]+
q max[RF(n, Js kd)a G(T)H Th qgﬁ+(n71)hG(T)}'

Going backwards along the tree, at the i-th time step, assuming that the insured is
still alive and that the contract is still in force, we have to distinguish two cases.
Consider at first the possibility that i # ¢n/T,q € IN, i.e., i is a time step not
coinciding with an anniversary of the contract, then

V(iaja k) - eirh{hpaﬁrih[pv(i + 17] + 17 ku) + qV(l + 17j7 kd)]+

+hqgg+ih[pr(i + 17] + 17 ku) + QfD(Z + 17j7 kd)]}
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On the contrary, if i = gn/T,q € IN, i.e., i is a time step coinciding with an
anniversary of the contract, then

V(iaja k) - max(eirh{hpzw%h[pv(i + 17] + 17 ku) + qV(Z + 17j7 kd)]+

+hQI+ih[pr(i + 17] + 17 ku) + QfD(Z + 17j7 kd)]} - P7 SV(Zaja k))

Once the backward induction scheme reaches ¢ = 0, in oder to compute the fair
periodical premium, P, we need to solve, as in [3] the following equation

V(07 07 1) - eirh{hpz [pV(l, 17 ku)+QV(1, 07 kd)]+hqgﬁ [pr(la 17 ku)+QfD(17 07 kd)]}_P =0.
(9)

We solve (9) numerically and the solution represents the periodical premium to be

paid at the beginning of each year by the insured until he is alive and has not exer-

cised the surrender option to escape out of the contract.

4 Numerical results

We tested the pricing model depicted in Section 3 by computing the fair premiums
of different equity linked policies. Each policy benefit is linked to a reference fund
accrued by investing at the beginning of each year a fixed amount D = 100. All
the premiums computed with the binomial model used n = 30 time steps and
a = 0.0001.

In Table 1 we reported the fair present value (PV B) and the fair periodical premiums
(PB) computed with the binomial algorithm for a term policy without surrender
option for different maturities and a minimum guaranteed interest rate 6 = 0. The
risk-free continuously compounded interest rate is 7 = 0.04 and the volatility is
o = 0.1358. The results are compared with those ones computed by Brennan and

Schwartz (PV BrS and PBrS).

Table 1

Fair premiums for term policies
without surrender option
T 1 5 10 15
PVB  103.53 47729  863.89  1176.25
PVBrS 103.5 A477.1 863.8 1176.4
PB 103.53 103.2432  102.747 102.2221
PBrS  103.5 103.2 102.7 102.2
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In Table 2 we report the fair periodical premiums for equity linked term policies
with an embedded surrender option. At the beginning of each year the policyholder
has the right to escape out of the contract. In this case, he receives the surrender
value max|RF (i, j, k), G(ih)] if the state of nature is (4, j, k). Otherwise, he pays the
annual premium and a contribution D = 100 is deemed into the reference fund. No
mortality risk is yet considered and the volatility is equal to o = 0.1358

Table 2

Fair premiums for term policies
with surrender option
r=0.04 r=0.04 r—=0.06
0=20 0=0.02 0=0.02
103.5292  104.4635 103.6043
105.1015  106.7734 105.0780
105.6214 108.1607 105.5145
105.9325 109.0168 105.6956

In Table 3, 4, 5 we report the fair periodical premiums for equity-linked endow-
ment policies with surrender option for individuals with different initial age. At the
beginning of each year, if the policyholder is still alive, he decides to surrender the
contract receiving the benefit max[RF (i, j, k), G(ih)] or to pay the premium and, in
this case, a contribution D = 100 is deemed into the reference fund. The company
is forced to pay a capital max[RF (i, j, k), G(ih)] at the end of the time interval of
death if the insured dies before maturity or a capital if the insured is alive at that
date.

We modeled the mortality risk by considering Italian Statistics for Male mortal-
ity in 2002. In this table, there are quoted the annual probabilities of death. It
means that, if we consider an individual of age x, the table quotes the probability
19+ = ¢z, i.e., the probability that the individual dies before age x 4+ 1. In our evalu-
ation framework, we face the problem to value death probabilities on period of time
smaller than one year, pq,+ ;. We solve this problem by invoking the assumption
of uniformity of deaths, in the sense that in any fraction of width z of one year
it is expected the same fraction z of the deaths related to that age. Hence, the
death probability on a fraction z of one year, ,q, = z¢.. In our case, z = h and
hGz+ih = NGuiin), Where [ih| computes the largest integer smaller than or equal to

ih. Clearly, npevin = 1 —h Gutin
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Table 3

Fair premiums for endowment policies
with surrender option

=40 o =0.1358
r=0.04 r=0.04 r=0.06
T 0=20 6= 0.02 6 —0.02

1 103.5281 104.4617  103.6031
5 105.0960 106.7654  105.0730
10 105.6103 108.1376  103.5035

Table 4

Fair premiums for endowment policies
with surrender option

r=50 o=0.1358
r=0.04 r=0.04 r=0.06
T 0=20 6= 0.02 6 —0.02

1 103.5265 104.4593  103.6014
5 105.0880 106.7532  105.0653
10 105.5294 108.1001 105.4857

Table 5

Fair premiums for endowment policies
with surrender option

=40 o =0.2716
r=0.04 r=0.04 r=0.06
T 0=20 6= 0.02 6 —0.02

1 108.6516 109.7526 108.7607
5 113.2604 115.5214 113.2692
10 115.7685 119.4469 115.8029
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5 Conclusions

We proposed an evaluation model to compute fair periodical premiums of equity-
linked policies with minimum guarantees and an embedded surrender option that
allows the policyholder to escape out of the contract at certain prespecified dates.
We assumed that a fixed component of the periodical premiums are invested in a
reference fund whose evolution is described within the binomial model of Cox, Ross
and Rubinstein. The periodical contributions makes the tree non recombining with
a huge complexity from a computational point of view. We propose to overcome this
obstacle by choosing sets of representative values of the reference fund associated
to each node of the tree. The periodical premiums are computed by solving an
equation obtained via the usual backward induction technique. Finally, in order to
test the proposed algorithm, numerical results are presented in Section 4.
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