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Abstract

This paper reports the results of a series of Monte Carlo exercises
to contrast the forecasting performance of several panel data esti-
mators, divided into three main groups (homogeneous, heterogeneous
and shrinkage/Bayesian). The comparison is done using di¤erent lev-
els of heterogeneity, alternative panel structures in terms of T and N
and using various error dynamics speci�cations. We also consider the
presence of various degrees of cross sectional dependence among units.
To assess the predictive performance, we use traditional measures of
forecast accuracy (Theil�s U statistics, RMSE and MAE), the Diebold
and Mariano�s (1995) test, and the Pesaran and Timmerman�s (1992)
statistics on the capability of forecasting turning points. The main
�nding of our analysis is that in presence of heterogeneous panels the
Bayesian procedures have systematically the best predictive power in-
dependently of the model�s features.
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1 Introduction

Over the last two decades a variety of estimation techniques have been pro-
posed to estimate parameters of interest when panel data are available: Bal-
tagi (2001), Arellano and Honore�(2001), Wooldridge (2002), Hsiao (2003),
and Arellano (2003) provide comprehensive surveys on the topic. It has be-
come customary to group these techniques into three main groups: homoge-
neous, heterogeneous and Bayesian (or shrinkage) estimators. While the �rst
class assumes poolability of the data in the panel, and therefore parameters
homogeneity across the panel units, the second one rejects this hypothesis
taking into account explicitly the presence of heterogeneity among units. The
class of Bayesian estimators is viewable as a hybrid solution between the two
other classes (see Maddala, Li and Srivatsava, 1994, and Pesaran, Hsiao and
Tahmiscioglu, 1999). It becomes then crucial to understand which estimation
method is the �best�, in statistical terms, for the speci�c research interest
(e.g. bias reduction, e¢ ciency, forecasting accuracy...).
Recently, in several seminal empirical papers Professor Badi Baltagi and

associates have focused on investigating which estimator is the �best�when
the speci�ed model has to be used for forecast purposes. Baltagi and Grif-
�n (1997), Baltagi, Gri¢ n and Xiong (2000), Baltagi, Bresson and Pirotte
(2002) and Baltagi, Bresson, Gri¢ n and Pirotte (2002) apply dynamic panel
speci�cations to industrial level data and �nd that the predictive ability of
homogeneous estimators outperforms the predictive ability of heterogeneous
and Bayesian estimators over any forecast horizon. Amongst the homoge-
neous estimators, GLS and within-2SLS emerge as the best estimators for
forecasting purposes, especially when we forecast over a long time span. The
superiority of the homogeneous estimators can sound quite reasonable when
the panel is short, and when the degree of heterogeneity across units is lim-
ited, but it is rather puzzling when the time length T of the panel is large
or when the degree of heterogeneity is high. This genuine empirical �nding
is particularly interesting because the model where we impose homogeneity
is in general rejected by the data. A �rst interpretation of this apparent
counter-intuitive empirical regularity is that a model that is �simple and
parsimonious�o¤ers a better forecasting performance.
It becomes therefore worth investigating whether these results hold gener-

ally speaking or if they are properties of the data considered in the works cited
above, or, possibly, if the outcome of the comparison among the estimators
forecasting performance is sensitively dependent on the number of units N
and the time length of the panel T , and on the degree of the parameters het-
erogeneity across units. Our main objective in this work is to compare via a
broad Monte Carlo simulation exercise the forecasting accuracy of several es-
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timators belonging to each of the three classes (homogeneous, heterogeneous
and shrinkage) for a routinely applied model (the dynamic speci�cation with
one or more exogenous covariates) under various circumstances. Such �cir-
cumstances�are the pair (N; T ), the level of heterogeneity among units, the
dynamic speci�cation of the error term, and the existence and degree of cross
sectional dependency across units. These issues are of paramount importance
in determining the properties of estimators.
An important related question that arises in these circumstances is how

to assess forecasting performance of a model. In their papers, Baltagi and
associates use the standard Root Mean Square Error (RMSE) to measure
forecasting accuracy. However, the literature on forecasting has developed
a quite critical attitude towards this classical statistical measure. Thus in
addition to the method based on RMSE, in our Monte Carlo experiments
we are going to use also the approach based on di¤erent speci�cations for
the loss function (Diebold and Mariano, 1995) and non parametric statis-
tics that evaluates the ability to forecast change points due to Pesaran and
Timmermann (1992).
The remainder of this paper is as follows. We set out the model we will be

considering for our exercise, and brie�y describe the estimation techniques
and the predictive performance tests that we employ in our experiments
(Section 2). We describe the details of the Monte Carlo experiments in
Section 3, and report and comment the main results from the simulations in
Section 4. Section 5 concludes.

2 Estimation and forecasting

2.1 Model

The DGP we employed for simulation is based on a dynamic speci�cation
and one strictly exogenous/predetermined variable:

yit = �i + �iyit�1 + 
ixit + uit (1)

where i = 1; ::; N and t = 1; ::; T . Without loss of generality, the error term
uit is assumed to have no time speci�c e¤ects since we focus on the impact of
grouping across units1 The possibility of having cross sectional dependence -
i.e. the case E [uitujs] 6= 0 for some pair (i; j) - is not ruled out. Model (1)
is the classical dynamic panel data speci�cation, as discussed extensively in
Baltagi (2001). It is also worth emphasizing that what we consider in our

1The applied literature seldom assumes the two ways error component model - an
exception being the contribution by Baltagi, Gri¢ n and Xiong (2000).
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exercise are ex post forecasts, i.e. forecasts where the exogenous variable in
model (1) is known without needing forecast it.
As far as estimation is concerned, we employed both homogeneous and

heterogeneous estimators, performing an exercise similar to that in Baltagi,
Bresson and Pirotte (2002), Baltagi and Gri¢ n (1997), Baltagi, Bresson,
Gri¢ n and Pirotte (2002) and Baltagi, Gri¢ n and Xiong (2000). Notice
that whilst heterogeneous estimators are based on model (1), homogeneous
estimators, assuming poolability of the data, are based on the following re-
stricted speci�cation of the DGP:

yit = �+ �yit�1 + 
xit + "it: (2)

The error term "it is assumed to follow the well known one way speci�cation:

"it = �i + uit;

where �i is the unobservable individual speci�c e¤ect and �it is the remainder
of the disturbance - see Baltagi (2001) for a thorough discussion. The results
of pooling using model (2) on estimators are discussed in Pesaran and Smith
(1995) and Hsiao, Pesaran and Tahmiscioglu (1999).

2.2 Homogeneous, Heterogeneous and Shrinkage/Bayesian
Estimators

We turn our discussion to estimation, referring to Baltagi (2001) for the
details of each estimator.

2.2.1 Homogeneous estimators

The homogeneous estimators we consider fall into two main groups: least
squares and instrumental variables estimators.
Within the class of least squares estimators, we �rst consider six standard

pooled estimators applied to model (2): OLS, which ignores unit speci�c ef-
fects; �rst di¤erence OLS to wipe out the e¤ect of (possible) serial correlation
in the error term; Within(-groups) estimator, which allows for unit speci�c
e¤ects; Between(-groups) estimator; and WLS and WLS-AR(1), where unit
speci�c e¤ects are assumed to be random. It is known that none of these
estimates is either unbiased or consistent (see Pesaran and Smith, 1995, and
the review in Baltagi, 2001). This is due to the assumption, common to
all these estimators, that regressors are exogenous. However, the model we
consider is dynamic and thus though all the explanatory variables are uncor-
related with the error components, the presence of either serial correlation in
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the remainder error term �it or of a random unit e¤ect such as �i makes the
lagged dependent variable correlated with the error term and therefore leads
to potentially inconsistent estimates. The asymptotic bias of OLS has been
assessed by Sevestre and Trognon (1985); it is also well known (see Nickell,
1981), that Within estimator is consistent only when T !1, being biased of
order O (1=T ) for �nite T . The random e¤ect WLS estimator is also biased
and inconsistent, as pointed out in Baltagi (2001).
To achieve consistency, we may focus on pooled estimators based on in-

strumental variables. Thus, we �rst employ a standard 2SLS, which is con-
sistent but not e¢ cient; no attempt was made to improve e¢ ciency by taking
into account the unit speci�c e¤ects. We also consider Within 2SLS, which,
like its least squares counterpart, wipes out unit speci�c e¤ects by trans-
forming the data in deviations across their mean, and the Between 2SLS.
Thirdly, we apply 2SLS to the �rst di¤erenced version of model (2); this
estimator (that henceforth will be referred to as FD-2SLS) is due to Ander-
son and Hsiao (1982) and is meant to eliminate �xed and random e¤ects.
However, given that this estimation procedure may induce autocorrelation
in the remainder error term �it � �it�1, we also employ the correction pro-
posed by Keane and Runkle (1992) that allows for arbitrary types of serial
correlation2. This is applied to both the speci�cation in levels (leading to
an estimator denoted as 2SLS-KR) and the �rst di¤erenced model (obtain-
ing another estimate referred to as FD-2SLS-KR). Also, we employ EC2SLS
estimator - see Baltagi (2001) - and EC2SLS-AR(1) - see Baltagi, Gri¢ n
and Xiong (2000) - to potentially achieve more e¢ ciency by taking account
of possible serial correlation in the error term3. As a variant of EC2SLS,
we also compute the G2SLS estimator due to Balestra and Varadharajan-
Krishnakumar (1987). It is worth noticing that such estimator has the same
asymptotic covariance matrix as EC2SLS - see Baltagi and Li (1992) - but
its performance is di¤erent in �nite samples. Finally, we employ the Arellano
and Bond (1991) estimation procedure, using a GMM estimation method on
the speci�cation in di¤erences (whose outcome will be labelled as FDGMM)
and also the same set of instruments in �rst di¤erence on a speci�cation in
levels (GMM)4.

2Such estimation technique can be applied only if N > T - see Baltagi (2001).
3Note that these estimators, unlike standard 2SLS, also require an estimate of the

variance components in order to be feasible.
4It is worth noticing that such GMM estimation procedures have existence conditions

depending on the sizes of N , T and k (this latter being the number of parameters to be
estimated) when the two-step GMM estimation is considered (see Baltagi, 2001) - this
existence condition is N > T (k � 2) + (T + 3) =2. These estimators wouldn�t have been
feasible for all the cases we consider in our experiment, and we did not perform them.
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Finally, we considered the MLE estimation on the ground of the discussion
in Baltagi (2001), using the iterative procedure suggested by Breusch (1987).
In total, we compare 18 homogeneous estimators.

2.2.2 Heterogeneous estimators

The estimators considered so far are all characterized by the assumption of
poolability of the data. This is a valid assumption only if the parameters
in model (1) are homogeneous across units. As pointed out by Pesaran and
Smith (1995) with respect to the dynamic pooled model, when parameters
are heterogeneous, pooling leads to biased estimates. Therefore, we turned
our attention also onto heterogeneous estimators.
In our Monte Carlo experiments we considered OLS and 2SLS applied

to each unit i, obtaining Individual OLS and 2SLS. Given the presence of a
lagged dependent variable, both estimates are biased. We then consider an
average of both estimates (obtaining Average OLS and 2SLS), as suggested
by Pesaran and Smith (1995). Averaging individual estimates leads to a
consistent estimator as long as both N and T tend to in�nity. We also
compute the Swamy (1970) estimator, which belongs to the class of GLS and
is a weighted average of the least squares estimates, using as weights the
estimated covariance matrix.
In total we compare 5 alternative heterogeneous estimators.

2.2.3 Shrinkage/Bayesian estimators

We employed a class of shrinkage/Bayesian estimators - see Maddala, Li and
Srivastava (1994) - where each individual estimate is shrunk towards the
pooled estimates by weighting it with weight depending on the correspond-
ing covariance matrix. The authors claim that shrinkage type estimator
are superior to either homogeneous or to other heterogeneous estimators as
far as predictive ability is concerned. The estimators we consider are the
Empirical Bayes based on OLS initialization, the Empirical Bayes based on
2SLS estimation and their iterative counterparts. Finally, we implement the
Hierarchical Bayes estimator using the same prior structure as in Hsiao, Pe-
saran and Tahmiscioglu (1999), which is found to have the best performance
among heterogeneous estimators in terms of bias reduction, especially when
T is small.
In total, we compare 5 alternative Bayesian estimators.

GAUSS code was anyway written and is available upon request.
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2.3 Comparing forecasting performance

In this section we introduce the measures of forecasting performance we em-
ploy in our simulation exercise.
We employ three (classes of) measures of forecasting performance to as-

sess the out-of-sample predicting ability of each estimator:

1. statistical measures of accuracy;

2. measure of statistical assessment of performance.

3. measures of the capability of predicting turning points.

The indicators we chose are, for each class:

1. MAE, RMSE and Theil�s U statistics, whose expressions are respec-
tively

MAEj �
1

h

hX
i=1

jŷji � yjij

RMSEj �

vuut1

h

hX
i=1

(ŷji � yji)2

Uj �

vuutPh
i=1 (ŷji � yji)

2Ph
i=1 y

2
ji

where: the index j refers to the j-th unit in the panel, h is the fore-
cast horizon, ŷji is the forecast i steps ahead of yji. To obtain a single
overall measure of performance, we considered the average of each in-
dicator across units, similarly to Baltagi and associates papers. These
indicators are all based on the residuals from forecast, and widely em-
ployed in the realm of forecasting. We calculate these three �classical�
measures but we report and comment on the Theil�s U statistics only,
given its nature of relative measure which doesn�t have the scaling prob-
lem of both RMSE and MAE. It is necessary to point out that using
these indicators to assess forecasting accuracy has been widely criticised
on the basis of statistical and economic considerations - for a general
overview, see the review in Mariano (2002). From a statistical point of
view, Clements and Hendry (1993) noted that the RMSE is not invari-
ant to isomorphic transformations of models, and can therefore lead to
contradictory results when applied to di¤erent (but isomorphic) rep-
resentations of the same model. Moreover, Diebold and Lopez (1996)
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show that since RMSE depends only on the �rst two moments of the
forecast distribution, it will su¤er from serious shortcomings when such
distribution is not adequately summarised by only two moments. The
literature has criticised RMSE also on the grounds of economic con-
siderations, arguing that predictive performance should be evaluated
via the losses that arise from forecasting errors when certain decisions
are made - see Leitch and Tanner (1991), Granger and Pesaran (2000a,
2000b), and the review by Pesaran and Skouras (2002). It has been
shown that the RMSE is compatible with a quadratic loss function -
see Pesaran and Skouras (2002) - but other speci�cations could be con-
sidered - see the discussions in Christo¤ersen and Diebold (1996) and
Mariano (2002).

2. The Diebold and Mariano�s (1995) test is a widely used alternative to
overcome the inadequacies of RMSE since it is based on a loss function
approach without needing specify the functional form. This statistics
- with the adjustment for small sample bias proposed by Harvey, Ley-
bourne and Newbold (1997) - can be used for any forecasting horizon h
and doesn�t require gaussianity, zero-mean, serial or contemporaneous
incorrelation of the forecast errors, and under the null hypothesis of
no di¤erence between forecasting performances it is distributed as a
standard normal. Formally, this statistic can be obtained as follows.
Let dkji = ŷji � yji be the forecast error at period i for series j when
estimating parameters with an estimator k; assuming covariance sta-
tionarity and other regularity conditions, it is straightforward to show
that

T�1=2
�
�dj � �d

�
) N [0; 2�f (0)] ;

where f (0) is the spectral density at frequency zero, �d = E
�
dkji
�
and

�dj =
hX
i=1

�
g
�
d1ji
�
� g

�
d2ji
��

with g (�) a generic loss function. Hence, the DM test is designed to
compare the performance of two predictors; computationally, the sta-
tistic is set equal to

DMj =
�djh

2�f̂ (0) =T
i1=2 :

The loss function we consider in order to compute the statistics is a
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quadratic one, which allows us to compare pairwise RMSEs.5 This
enables us to detect whether one estimator has a superior predictive
ability compared to another one by a proper testing rather than by
the pure comparison of RMSE values. Even in this case, we compute
the test statistics for every unit of the panel and then take the average
across units.

3. Since forecasting performance could refer to something di¤erent from
minimising a loss function, such as the capability to capture the sign of
changes in the series rather than its values - see Granger and Pesaran
(2000b). For this task, we employ Pesaran and Timmerman�s (1992)
statistics, de�ned as

PTj =
P̂j � P̂ �jr

V̂
�
P̂j

�
� V̂

�
P̂ �j

� � N(0; 1)
where

P̂j = h
�1

hX
i=1

sign (ŷjiyji) ; P̂ �j = P̂yjP̂xj+
�
1� P̂yj

��
1� P̂xj

�
;

V̂
�
P̂j

�
= h�1P̂ �j

�
1� P̂ �j

�
;

V̂
�
P̂ �j

�
= h�1

�
2P̂yj � 1

�2
P̂xj

�
1� P̂xj

�
+ h�1

�
2P̂xj � 1

�2
P̂yj

�
1� P̂yj

�
+

+4h�2P̂yjP̂xj

�
1� P̂yj

��
1� P̂xj

�
P̂xj = h

�1
hX
i=1

sign (ŷji) ; P̂yj = h
�1

hX
i=1

sign (yji) ;

where the function sign (�) takes the value of unity if its argument is
positive and is equal to zero otherwise. Pesaran and Timmerman (1992)
prove that this non parametric statistics is distributed as a standard
normal under the null hypothesis that ŷji and yji are independent - and
therefore that the predictor ŷji has no capability to forecast yji. Like

5The Diebold and Mariano testing procedure also requires a non parametric estimate of
the spectral density of the di¤erence of the loss associated with each predictor. The kernel
we employ is the truncated rectangular one employed by Diebold and Mariano (1995),
and the bandwidth we choose is speci�ed as m (h) = 1 + blog (h)c, where the operator b�c
denotes the rounding to the closest integer.
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in the previous point, here we compute the Pesaran and Timmerman
statistics for each unit of the panel and then report its average value
across units. Notice that this measure could be also employed as a de-
scriptive measure to rank forecasting techniques ( see inter alia Driver
and Urga, 2004).

Having described the estimators considered and the methods of evaluating
forecasting accuracy, in the next section we illustrate the design of the Monte
Carlo experiment.

3 The design of the Monte Carlo experiments

We generate a sample of N units with length T+T0, where T0 is the number
of initial values to be discarded to avoid dependence on the initial conditions
(set equal to 0). We let the number of units N and the time dimension T
assume various values.
The DGP we generate at each replication is the one given in model (1):

yit = �i + �iyit�1 + 
ixit + uit;

where:

� the parameters �i, �i and 
i are generated as, respectively:

�i = ��+ �
HN�

i ;

�i =
�� + �HN�

i ;


i = �
 + 

HN


i ;

where ��, �� and �
 are the mean values of the parameters, N �
i denotes

an independent (across i) extraction from a random variable and �H ,
�H and 
H control the parameters heterogeneity across units, which
will be useful throughout the set of simulations to assess the predictive
performance of the estimators. Notice that whilst we employed stan-
dard normals for �i and 
i, �i was simulated via a uniform distribution
with bounded support so as to rule out the possibility of having a value
larger than (or equal to) unity;

� the disturbance uit is, in a �rst set of experiments, assumed to follow
a stationary, invertible Gaussian ARMA(1,1) speci�cation de�ned by

uit = �uit�1 + � it + #� it�1;
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and the parameters (�; #) control the degree of autocorrelation of the
error term in model (1). The error term is then rescaled by the factor
� =

p
(1 + #) = (1� �) to give it unit variance. Here there is no cross

sectional dependence across units, since uit is generated independently
of ujt for any pair (i; j). In a second set of experiments, we take into
account the presence of cross sectional dependence by modelling the
error (now denoted as u

0
it) as

u
0

it = uit + � ift;

where ft is a standard normal independent over t and � i is a uniformly
distributed random variable whose support is chosen as [0; 0:2] to model
small cross section dependence and [�1; 3] to represent a large amount
of cross section dependence. This part of the experiments to modelling
cross sectional dependence follows the same line of Pesaran (2003);

� the explanatory variable xit is generated with the following DGP:

xit = �i + �i + �xit�1 + �it; (3)

where the error term �it is a Gaussian white noise generated indepen-
dently of uit. The presence of the term �i+ �i introduces a correlation
between �it and the error term in the random e¤ect speci�cation (2)

"it = �i + uit:

This correlation is such that E (xit�it) = 0 for any i - and hence xit
endogeneity is ruled out - and E (xit�i) 6= 0. This two results make xit a
strictly exogenous variable and a valid instrument for GMM estimation
a la Arellano and Bond (1991) thanks to its correlation with the unit
speci�c e¤ect - see Baltagi (2001) for discussion.

We considered the following values for the parameters of our simulation
exercise:

� we ran 5000 iterations for each simulation, and 2500 iterations (500 of
which in the burn-in period) for every Gibbs sampling algorithm - on
the ground of the results in Hsiao, Pesaran and Tahmiscioglu (1999);

� as far as the autocorrelation structure is concerned, we considered (�; #)
to be equal either to (0; 0) or to (0:9; 0:9)6. These two pairs represent
the cases of non autocorrelation and of near integration, respectively;

6Further developments of this work will consider the following spectrum of values for
(�; #): f�0:9;�0:3; 0; 0:3; 0:9g � f�0:9;�0:3; 0; 0:3; 0:9g
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� the number of initial observations to be discarded was set equal to
T0 = 100;

� the forecasting horizon is set equal to h = 107.

4 Simulation results

In this section we report and comment the full set of results from the vari-
ous Monte Carlo experiments using the three forecasting accuracy tests.We
consider two di¤erent degrees of heterogeneity assuming ( in �H ; �H ; 
H ,
H = 0:1 and 0:9 respectively); two di¤erent speci�cations for the error dy-
namics, namely (�; #) were set equal to (0; 0) and (0:9; 0:9); in addition to
the case of no cross dependence, two alternative degree of cross sectional
dependence are considered, namely the case of �mild�cross dependence (� i
[0; 0:2]) and one with �large�cross sectional dependence ( � i is now [�1; 3]).
Finally, the pairs of (T;N) we consider are (5; 10), (5; 20), (10; 20), (10; 50),
(20; 50) and (50; 50).
The presentation of the full set of experiments are reported in details in

a companion paper (Trapani and Urga, 2004).

4.1 Statistical measures of accuracy

In this section we report the results for the Theil�s U statitics (Tables A1-
A12)8. Each table is divided in three panels. We report the statistics for
the homogenoeus, heterogeneous and shirnkage/Bayesian estimators respec-
tively.

[Insert somewhere here Table A1-A12]

� Heterogeneity plays a very important role and has a strong impact on
the outcomes of the simulation exercises. When the degree of hetero-
geneity is low (columns with H = 0:1) and the amount of dependence
among units is mild, homogeneous estimators prevail. Such �ndings
are in the line with what reported in Baltagi and Associates. Note
that the results from homogeneous estimators are very clsoed to those
obtained from the class of shrinkage/Bayesian estimators. However, by

7Our results can be extended to the cases h = 1 and h = 5, as in Baltagi, Bresson and
Pirotte (2002), Baltagi and Gri¢ n (1997), Baltagi, Bresson, Gri¢ n and Pirotte (2002)
and Baltagi, Gri¢ n and Xiong (2000)

8We also computed RMSEs and the MAEs for each simulation. The �ndings remain
unchaged. The results are available upon request.
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increasing the level of heterogeneity (H = 0:9) homogeneous estimators
are outstaged by the shrinkage/Bayesian estimators. While the statis-
tics from shrinkage/Bayesian estimators does not change very much
with respect to the case of low heterogeneity, we note massive changes
a¤ecting homogeneous estimators.

� The impact of cross sectional dependence is also quite substantial. In
the case of mild cross dependence our �ndings are very much in the line
with what showed in the existent applied literature. When instead we
consider the case of large contemporaneous correlation, the statistics
change dramatically: irrespectively of the level of heterogeneity and of
all other characteristics of the panel (combination of T and N, dynamics
of the error terms), the estimators that show the best forecasting ac-
curancy are always the shrinkage/Bayesian ones. The presence of cross
sectional dependence has an impact on the shrinkage/Bayesian estima-
tors in the sense that the statistics get worse as cross dependence gets
larger, and this seems to suggest that an increasing presence of cross
dependence makes forecasting in general more di¢ cult in this case.

� The time and cross sectional dimensions do not play a substantial role.
Some estimators look very sensitive toN and T (particularly to T; while
N does not have a great impact on the predictive ability), especially
in the small sample case. On the other hand, most estimators are not
sensitive to the values of the pair (T;N). This is particularly evident
in the the case of the Hierarchical Bayes estimator, whose prediction
outcome is almost invariant with T . This result con�rms previous
�ndings reported in Hsiao, Pesaran and Tahmiscioglu (1999).

� The error term dynamics does have an impact on the choice of the best
estimator when cross dependence is mild. However, �rst di¤erence ho-
mogeneous estimators outperform all other estimators as long as het-
erogeneity is low. Moreover, both the presence of high heterogeneity
or high cross sectional dependence wipes out any e¤ects due to the
presence of serial correlation, and in this case too shrinkage/Bayesian
estimators dominate.

� The small sample problem, uniquely related to the time series dimen-
sion T , arises when using Individual OLS and 2SLS. For T = 5 (see Ta-
bles A1-A4), the Theil�s statistics is never lower than 104, and therefore
their forecasting capability is totally implausible. This also a¤ects the
performance of shrinkage estimators, whose magnitude of the Theil�s
statistics is much larger (at least of a factor 102) than that of the best
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estimators. Thus, for the case of a short panel (T = 5 in our case), our
results contradict the �ndings reported in Maddala, Li and Srivastava
(1994).

To summarise, there is a clear evidence that with a few exceptions, the
class of Bayesian estimator outperforms the alternative estimator indepen-
dendly of the control indicators per experiment.

4.2 Diebold and Mariano�s (1995) test

The outcome of Diebold and Mariano test is represented by a lower triangular
matrix of dimensions 28 � 28 for each experiments. Since the amount of
output generated by this part of the exercise exceeds a reasonable number of
pages, we decide not to report it.9

The main results con�rm the conclusions reported in the previous section
for the Theil�s U statistic, reinforcing some regularities encountered previ-
ously. The main �ndinds can be summarised as follows:

� For the mild cross sectional dependence case, there seems to be no
statistically signi�cant di¤erence between shrinkage and homogeneous
estimators when the degree of heterogeneity is small, and therefore
either class of estimators can be used irrespectively of any feature of the
data. On the other hand, when H is large, shrinkage estimators have a
signi�cantly better performance (especially for the small T case), and
therefore the conclusion that they should be preferred in such case is
reinforced. Only when the error component dynamics is characterised
by a nearly integrated behavior the performance of homogeneous, �rst
di¤erence, estimators is mildly (though signi�cantly) better than that
of shrinkage estimators based on the model in levels;

� When cross sectional dependence is large, for T larger than 5 the per-
formance of either class of estimators (homogeneous and shrinkage) is
not signi�cantly di¤erent. However, even in this case the nearly inte-
grated case shows a mildly signi�cant better performance of the �rst
di¤erecne homogeneous estimators. It should be pointed out that when
T = 5 the comparison between homogeneous and shrinkage estimators
can not be done given the extremely poor performance of the latter
class.

9All results on Diebold and Mariano�s test are available upon request.
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� When T = 5; though none of the estimators has a signi�cantly better
performance than the others, however there is statistical evidence that
Hierarchical Bayes is marginally better when heterogeneity increases;

� When T increases, the di¤erence between homogeneous and hetero-
geneous estimators becomes signi�cant, the latter group performing
better than the former. This holds especially, as already seen, when
heterogeneity increases. When we have a small amount of heterogeneity
there is virtually no di¤erence across estimators, Hierarchical Bayes in-
cluded. Such �nding illustrates that as long as heterogeneity is limited
across units the choice of estimators is not crucial for the forecasting
performance. This holds for T = 10 or greater. Finally, the presence
of serial correlation in the error term doesn�t a¤ect these �ndings.

� The main �ndings so far are reinforced when the number of units is
large (i.e. N = 50). Here too the presence of heterogeneity is crucial in
marking the di¤erence between pooled and heterogeneous estimators,
in favuor of the latter.

� The gain from considering an iterative shrinkage estimator rather than
a non iterative one has been assessed as poor when we used the Theil�s
U statistics. The Diebold and Mariano test reinforces this conclusion
showing no statistical di¤erence between the two types of estimators.

� It is worth noticing that the presence of cross-sectional dependence
preserves the predictive accuracy ranking of the estimators.

4.3 Measures of capability to forecast turning points

In this section, we describe the results of our Monte Carlo for the Pesaran
and Timmermann�s (1992) statistics (Tables B1-B12).

[Insert somewhere here Table B1-B12]

Since Pesaran and Timmermann�s test is asymptotically distributed as a
standard normal under the null hypothesis of no capability to detect turning
points, the values in Tables can be interpreted either as raw numbers to
rank estimators (the larger the value of the statistics, the higher the turning
points detection capability), or we may compare them with quantiles of the
normal distribution to test whether each estimator predicting capability is
signi�cant or not.
The main �ndings can be summarised as follows:
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� The impact of heterogeneity on the capability of forecasting turning
points is very much along the same lines as on Theil�s U statistic
case. When cross sectional dependence is mild, low heterogeneity leads
to homogeneous estimators, whilst increasing heterogeneity results in
having the shrinkage/Bayesian estimators to be the best ones and it
makes the performance of homogeneous estimators very poor. This pat-
tern changes when the amount of contemporaneous dependence across
units increases, and it makes homogeneous estimators less capable to
forecasting turning points even in the presence of near homogeneity
(H = 0:1). A striking regularity that can be noted is that a larger het-
erogeneity improves the turning point prediction ability, making on av-
erage the value attained by Pesaran and Timmermann statistic higher.

� As far as the impact of cross sectional dependence is concerned, this
is the most remarkable feature in our set of experiments. Whilst, as
already noted earlier in the paper, whenever mild levels of cross cor-
relation are present it is always possible to �nd an estimator whose
turning point prediction ability is statistically signi�cant, in presence
of large cross sectional dependence it is virtually impossible to �nd an
estimator that is signi�cantly capable of predicting turning points, with
few exceptions in the class of Bayesian estimators.

� The time series size T has an impact on the Pesaran and Timmermann�s
statistic, which show greater predictive performance when T increases,
while this does not extend to the cross sectional dimension N , whose
increase has an ambiguous impact.

� The impact of dynamics has some commonalities with the Theil�s U
statistic case. Here too a nearly integrated error term results in having
a better predictive performance on the side of �rst di¤erence homo-
geneous estimators when heterogeneity is limited; in this case as well
the presence of either heterogeneity or cross sectional correlation makes
predictive performance worse.

� As far as small samples are concerned, when T = 5 and cross depen-
dence is small it is still possible to �nd estimators that are signi�cantly
capable of identifying turning points. In this case, an increase in N
has the e¤ect of improving the forecasting performance. A striking re-
sult is that for T = 5 and N = 20, the predictive ability of Individual
estimators is signi�cant and very close to be the best among all estima-
tors, albeit these estimates are computed for each unit with a degree
of freedom equal to 2. This outcome is completely di¤erent than in
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the previous case, and it should lead to conclude that predictive per-
formance measured with Theil�s U statistics (and with other statistical
indicators such as RMSE and MAE, too) is di¤erent and unrelated with
this aspect of forecasting performance.

� Whilst the presence of mild dependence among units leaves results un-
changed, assuming large cross dependence strongly a¤ects them. Par-
ticularly, values taken by the statistics decrease dramatically, almost
independently of the other parameters. From the statistical viewpoint,
when cross dependence is mild or absent one can always �nd an esti-
mator whose turning point predictive ability is signi�cant; surprisingly,
this is not the case when there is no dynamics together with low het-
erogeneity (as reported in the �rst column of all Tables). Moreover, as
Tables B2, B4, B6, B8, B10, B12 show, none of the estimators would
pass a 5% signi�cance test.

� The performance of GMM based estimators shows an interesting pat-
tern. Even though the instruments for these estimators are chosen with
respect to a speci�cation in levels for the model, the performance of
estimates based on the speci�cation in �rst di¤erences is always better
than the one based on speci�cation (1). The di¤erence between the
two is found to be very large when heterogeneity is large.

� The presence of heterogeneity always improves the predictive ability
of heterogeneous and shrinkage estimators. The latter are always the
best when heterogeneity is high, when the test is always statistically
di¤erent from zero, the only exception being the case of large cross
sectional dependence.

� The presence of a nearly integrated dynamics makes homogeneous es-
timators based on the �rst di¤erenced model the best, as shown by
the third column of all Tables. Their performance is anyway heavily
a¤ected by cross dependence, and from being statistically signi�cant
when this is mild or absent, it becomes insigni�cant when the system
exhibits a large degree of covariance among units.

4.4 A summary of the main features of our �ndings

In this �nal section, the main features of the various experiments commented
above are presented via a summary of the three sets of statistics (Tables C1-
C12). Each of the table is divided in three panels. The �rst one reports
the best estimators according to Theil�s U statistics. In the second panel,
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using the Diebold and Mariano (1995) test (DM), we report the comparison
between the best and the second best estimator between the above estimators
(DM1) plus a comparison between the best estimator and the best Bayesian
estimator (DM2), Finally, the last panel (PT) reports the best estimator
according to the Pesaran and Timmerman (1992) statistic.

[Insert somewhere here Table C1-C12]

The main results can be summarised as follows:

� the estimators performance seems to be a¤ected only by the degree of
cross sectional dependence and heterogeneity, being independent of the
error term dynamics and of the time and corss sectional dimensions
(N; T );

� when cross sectional dependence is small, the best class of estimators
is either the homogeneous one - when heterogeneity H is limited - or
the shrinkage one - which happens when heterogeneity is set to a large
value. This regularity always takes place, irrespectively of any other
feature of the data;

� when cross sectional dependence is large, the best estimators are al-
most always the shrinkage ones for T larger than 5. This does not hold
when the error term exhibits a nearly integrated dynamics, as in such
case estimates based on the �rst di¤erenced data achieve the best per-
formance. When T = 5 it should be pointed out the poor performance
of both heterogeneous (which is likely to be due to the limited degree
of freedom in each equation) and shrinkage estimators (essentially be-
cause their prior is not designed to take account of the presence of
contemporaneous correlation).

5 Conclusions

In this paper, we compare the predictive performance of several homoge-
neous, heterogeneous and shrinkage estimators applied to a heterogeneous
model. We analyze the forecasting performance of the various estimators
by varying the degree of heterogeneity in the panel and using alternative
speci�cations for error dynamics.
Our main results are that for short panels with a limited degree of het-

erogeneity, homogeneous estimators are preferable to the heterogeneous ones.
This con�rms the �ndings of Baltagi, Bresson and Pirotte (2002), Baltagi and
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Gri¢ n (1997), Baltagi, Bresson, Gri¢ n and Pirotte (2002) and Baltagi, Grif-
�n and Xiong (2000). This outcome is not a¤ected by the the dynamics in the
error term speci�cation. For the case of near integration, the homogeneous
�rst di¤erence estimators performs best. Homogeneous estimators perform
also well when T increases and heterogeneity is small. On the other hand,
the performance of heterogeneous estimators show some sign of improve-
ments with respect to the case of small T mainly due to the higher degree
of freedom in the individual regressions. The good performance of the ho-
mogenous estimators is better than that of the Hierarchical Bayes estimator
and of shrinkage estimators, though the Hierarchical Bayes has in general
a better performance across all experiments, regardless of heterogeneity or
error dynamics.
Heterogeneity greatly a¤ects the performance of the various estimators.

Homogeneous estimators show a very poor predictive performance, and in
panels with long T heterogeneous estimators are preferable. Anyway, under
the presence of heterogeneity the shrinkage estimators and the Hierarchi-
cal Bayes estimator show the best performance. This conclusion is consis-
tent with Hsiao, Pesaran and Tahmiscioglu (1999) analysis, that shows how
Bayesian estimation gives the best results in terms of bias reduction. Diebold
and Mariano�s test shows that shrinkage estimators performance is also sig-
ni�cantly better than the one of the other estimators.
Our �ndings provide a clear guideline to practitioners when panel data

are available for forecasting purposes: use Bayesian procedures to forecast
with heterogeneous panels.
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APPENDIX
Table A1: Theil�s U for homogeneous, heterogeneous and shrinkage/Bayesian

estimators.
H (0:1) (0:9) (0:1) (0:9)
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.4276 1.8041 0.4821 1.8293
Within 0.4320 1.8715 0.4485 1.9070
Between 0.7010 1.7173 0.7852 1.7625
FD-OLS 1.1659 1.5383 1.0066 1.9551
WLS 0.4377 1.8868 0.4750 1.9430
WLS-AR(1) 179.8 6.2749 1.4677 7.4705
2SLS 0.4306 5.6352 0.4608 4.1889
FD-2SLS 0.7798 5�107 0.3257 1.9909
Within-2SLS 0.4276 1.8044 0.4821 1.8293
Between-2SLS 0.4344 2.0459 0.4512 792.3
MLE 0.4292 1.7336 0.4490 1.7613
EC2SLS 0.4729 1.6336 0.4774 1.6459
EC2SLS-AR(1) 0.4765 1.5706 0.4577 1.5989
G2SLS 0.4684 799.1 0.4720 2�106
2SLS-KR 0.4334 5977 0.4659 9.8�105
FD-2SLS-KR 0.7765 2615 0.3261 7.7820
FDGMM 0.7658 1.4166 0.3328 1.8479
GMM 0.44534 1.4349 0.5481 1.4278
Ind. OLS 7.5�105 1.9�106 7.9739 7.4�105
Ind. 2SLS 7.5�105 1.9�106 7.9739 7.4�105
Average OLS 0.4575 1.7823 0.4520 1.5321
Average 2SLS 0.4575 1.7823 0.4520 1.5321
Swamy 0.4319 1.8205 0.4620 1.8401
Bayes OLS 2.4�104 8.7�105 3.8284 3.6�105
It. Bayes OLS 6193 4241 3.4553 3.2�105
Bayes 2SLS 2.4�104 8.7�105 3.8284 3.6�105
It. Bayes 2SLS 6193 4241 3.4553 3.2�105
It. Bayes 0.4853 0.5307 0.3895 0.4832
Notes: H = 0:1 and H = 0:9 represent the cases of low and large het-

erogeneity in the panel, respectively. (b) Two alternative speci�cations for
the error term dynamics: white noise with (�; #) = (0; 0) ; and a nearly in-
tegrated with (�; #) = (0:9; 0:9) (c) Forecasting horizon (h =) 10 periods
ahead.
Case with (N; T ) = (5; 10) and �mild�cross dependence (the support of

� i is [0,0.2])
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Table A2: Theil�s U for homogeneous, heterogeneous and shrinkage/Bayesian
estimators.

H (0:1) (0:9) (0:1) (0:9)
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.7620 1.5374 0.8002 1.5506
Within 0.7763 1.5235 0.8268 1.5311
Between 4.5055 1.7486 1.8419 1.7716
FD-OLS 1.1583 1.3131 1.2317 1.3937
WLS 0.8505 1.5798 0.8397 1.6053
WLS-AR(1) 2669 7.1829 5259 1112
2SLS 1.8�105 61.52 3.8�106 14.07
FD-2SLS 8.23�109 1.5�108 1.45�1012 3.2�1013
Within-2SLS 0.7620 1.5374 0.8000 1.5506
Between-2SLS 6.5�105 1.45�105 2.73�1010 3.07�108
MLE 0.7618 1.4434 0.8215 1.4484
EC2SLS 0.9005 1.4060 0.9855 1.4133
EC2SLS-AR(1) 0.8933 1.4529 0.9592 1.4601
G2SLS 1.9858 4860 2.5763 1.42�106
2SLS-KR 3684 1.12�105 2227 2.66�106
FD-2SLS-KR 5.7�105 1.26�104 1.02�106 2.6�105
FDGMM 0.9368 1.1896 0.8840 1.2822
GMM 0.8091 1.3821 0.8990 1.3922
Ind. OLS 7.6�108 1.3�108 4.96�104 2.4�108
Ind. 2SLS 7.6�108 1.3�108 4.96�104 2.4�108
Average OLS 1.3045 2.2297 0.8922 1.6972
Average 2SLS 1.3045 2.2297 0.8922 1.6972
Swamy 0.7646 1.5375 0.8303 1.5523
Bayes OLS 1.01�108 8.1�105 9728 1.40�106
It. Bayes OLS 6.8�105 2855 7466 9.39�104
Bayes 2SLS 1.01�108 8.1�105 9728 1.40�106
It. Bayes 2SLS 6.8�105 2855 7466 9.39�104
It. Bayes 134.84 61.45 53.46 13.27
Notes: See Table A1.
Case with (N; T ) = (5; 10) and �large�cross dependence (the support of

� i is [-1,3])
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Table A3: Theil�s U for homogeneous, heterogeneous and shrinkage/Bayesian
estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.4405 1.2830 0.4957 1.4728
Within 0.4458 4.7534 0.4622 6.0493
Between 0.5476 1.2063 0.6701 1.3196
FD-OLS 1.1728 1.7763 0.9946 2.9064
WLS 0.4435 1.5327 0.4960 2.0016
WLS-AR(1) 84.52 2.3381 0.8205 5.4995
2SLS 0.4420 1.4184 0.4725 1.6100
FD-2SLS 0.7666 1.9080 0.2923 2.0287
Within-2SLS 0.4405 1.2830 0.4957 1.4728
Between-2SLS 0.4431 13.07 0.4657 12.242
MLE 0.4410 4.0369 0.4621 5.1148
EC2SLS 0.4830 1.3034 0.4866 1.5228
EC2SLS-AR(1) 0.4856 1.4198 0.4642 1.7396
G2SLS 0.4786 1.4735 0.4812 1.7036
2SLS-KR 0.4429 1.2372 0.4676 1.3340
FD-2SLS-KR 0.7664 5.2250 0.2923 605.7
FDGMM 0.7624 1.3367 0.2983 2.1542
GMM 0.4608 1.4774 0.5375 1.7409
Ind. OLS 6.9�106 4.8�1010 1.6�106 1.91�107
Ind. 2SLS 6.9�106 4.8�1010 1.6�106 1.91�107
Average OLS 0.4583 2.5986 0.4628 1.2699
Average 2SLS 0.4583 2.5986 0.4628 1.2699
Swamy 0.4427 1.4297 0.4719 1.7115
Bayes OLS 2.73�106 1.33�108 2574 1.37�107
It. Bayes OLS 1.81�106 7.14�107 1829 1.34�107
Bayes 2SLS 2.73�106 1.33�108 2574 1.37�107
It. Bayes 2SLS 1.81�106 7.14�107 1829 1.34�107
It. Bayes 0.4752 0.4988 0.4037 0.4899
Note: See Table A1.
Case with (N; T ) = (5; 20) and �mild�cross dependence (the support of

� i is [0,0.2]).
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Table A4: Theil�s U for homogeneous, heterogeneous and shrinkage/Bayesian
estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.7790 1.3527 0.8136 1.4234
Within 0.7943 3.3196 0.8554 3.6178
Between 1.6673 1.5365 1.5862 1.5977
FD-OLS 1.1831 1.3881 1.2702 1.5522
WLS 0.8616 1.4960 0.8457 1.6275
WLS-AR(1) 1463 50.31 197 8.8379
2SLS 6.5321 1.7271 5.0744 1.7927
FD-2SLS 546 2.31�105 9.63�105 6.66�104
Within-2SLS 0.7790 1.3527 0.8136 1.4234
Between-2SLS 8077 682 5927 1.01�105
MLE 0.7763 2.7422 0.8285 2.9631
EC2SLS 0.9198 1.2848 0.9826 1.3446
EC2SLS-AR(1) 0.9051 1.4271 0.9577 1.4891
G2SLS 2255 2.2485 13.32 9.8148
2SLS-KR 0.8698 1.5996 1.0086 1.6790
FD-2SLS-KR 1.2468 6.19�108 5413 355
FDGMM 0.9373 1.1415 0.8974 1.2668
GMM 0.8531 1.3981 0.9152 1.4539
Ind. OLS 8.7�108 2.19�109 1.08�106 9.93�105
Ind. 2SLS 8.7�108 2.19�109 1.08�106 9.93�105
Average OLS 0.8178 1.8017 0.8805 1.8523
Average 2SLS 0.8178 1.8017 0.8805 1.8523
Swamy 0.7763 1.3863 0.8369 1.4654
Bayes OLS 9.45�105 2.99�106 1.11�104 2.13�104
It. Bayes OLS 1.89�105 2.73�105 772.6 1.93�104
Bayes 2SLS 9.45�105 2.99�106 1.11�104 2.13�104
It. Bayes 2SLS 1.89�105 2.73�105 772.6 1.93�104
It. Bayes 4.2762 6.3261 121.25 10.4824
Note: See Table A1.
Case with (N; T ) = (5; 20) and �large�cross dependence (the support of

� i is [-1,3]).
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Table A5: Theil�s U for homogeneous, heterogeneous and shrinkage/Bayesian
estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.4371 1.1825 0.4941 1.3392
Within 0.4391 4.3250 0.4620 5.3691
Between 0.6224 0.8967 0.7175 0.8768
FD-OLS 1.1717 1.7841 0.9949 2.9049
WLS 0.4367 1.1964 0.4973 1.3910
WLS-AR(1) 4.4359 1.5865 1.3986 1.9487
2SLS 0.4378 1.2467 0.4707 1.4184
FD-2SLS 0.7596 1.2902 0.2911 2.0465
Within-2SLS 0.4371 1.1825 0.4941 1.3392
Between-2SLS 0.4382 5.8797 0.4641 9.0893
MLE 0.4373 3.8077 0.4638 4.6782
EC2SLS 0.4846 0.9081 0.4967 0.9118
EC2SLS-AR(1) 0.4896 0.8751 0.4757 0.8408
G2SLS 0.4803 0.9060 0.4917 0.8998
2SLS-KR 0.4384 1.5293 0.4685 13.24
FD-2SLS-KR 0.7601 3.3442 0.2912 1.8097
FDGMM 0.7571 1.3837 0.3190 2.2953
GMM 0.4876 0.8725 0.5809 0.8524
Ind. OLS 0.4942 0.4755 0.4511 0.4462
Ind. 2SLS 0.5112 0.5850 0.4495 0.4564
Average OLS 0.4394 1.1143 0.4592 0.9810
Average 2SLS 0.4393 1.1168 0.4579 0.9781
Swamy 0.4420 0.9778 0.4902 1.0316
Bayes OLS 0.4592 0.4445 0.4362 0.3999
It. Bayes OLS 0.4425 0.4620 0.4324 0.3894
Bayes 2SLS 0.4614 0.4476 0.4346 0.4000
It. Bayes 2SLS 0.4428 0.4683 0.4310 0.3891
It. Bayes 0.4653 0.4342 0.4243 0.3874
Note: See Table A1.
Case with (N; T ) = (10; 20) and �mild�cross dependence (the support of

� i is [0,0.2]).
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Table A6: Theil�s U for homogeneous, heterogeneous and shrinkage/Bayesian
estimators.

H 0:1 0:9 0:1 0:1
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.7303 1.1896 0.7570 1.2458
Within 0.7320 3.0581 0.7599 3.3109
Between 1.3466 1.1371 1.2462 1.1567
FD-OLS 1.1383 1.3696 1.1822 1.5360
WLS 0.7844 1.1983 0.7561 1.2633
WLS-AR(1) 1521 1.9325 1607 2.0025
2SLS 0.7370 1.3303 0.8430 1.3783
FD-2SLS 6.62�104 3.16�105 9.8064 1.2696
Within-2SLS 0.7303 1.1896 0.7570 1.2458
Between-2SLS 0.7704 80.43 3.1797 58.86
MLE 0.7309 2.6813 0.7602 2.8763
EC2SLS 0.8087 1.0491 0.8728 1.0617
EC2SLS-AR(1) 0.8045 1.0989 0.8807 1.1113
G2SLS 0.8114 1.0858 0.8866 1.0945
2SLS-KR 0.7216 5.1969 0.7658 2.3853
FD-2SLS-KR 0.9249 12.15 0.9681 1.9767
FDGMM 0.9113 1.1527 0.8431 1.2975
GMM 0.7761 1.0270 0.8414 1.0339
Ind. OLS 0.8184 0.7430 0.8849 0.7086
Ind. 2SLS 1.2993 0.9314 1.2752 0.9146
Average OLS 0.7317 1.1920 0.7599 1.2093
Average 2SLS 0.7319 1.1969 0.7597 1.2114
Swamy 0.7362 1.0976 0.7903 1.1241
Bayes OLS 0.7462 0.6358 0.7530 0.6294
It. Bayes OLS 0.7167 0.6400 0.7282 0.6304
Bayes 2SLS 0.7525 0.6509 0.7619 0.6418
It. Bayes 2SLS 0.7165 0.6434 0.7281 0.6370
It. Bayes 0.7872 0.6884 0.7857 0.6624
Note: See Table A1.
Case with (N; T ) = (10; 20) and �large�cross dependence (the support

of � i is [-1,3]).
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Table A7: Theil�s U for homogeneous, heterogeneous and shrinkage/Bayesian
estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.4244 2.1395 0.4826 1.8539
Within 0.4255 4.2404 0.4470 3.5849
Between 0.5859 0.9130 0.6966 0.9504
FD-OLS 1.1638 2.9423 1.0028 1.8792
WLS 0.4244 2.0014 0.4834 1.7481
WLS-AR(1) 989.3 4.9790 4.0820 3.52�104
2SLS 0.4246 2.0290 0.4546 1.8097
FD-2SLS 0.7351 2.4886 0.2743 1.4006
Within-2SLS 0.4244 2.1395 0.4826 1.8539
Between-2SLS 0.4246 5.0434 0.4476 4.1232
MLE 0.4245 3.7157 0.4493 3.1425
EC2SLS 0.4746 1.5100 0.4859 1.3616
EC2SLS-AR(1) 0.4789 0.9181 0.4549 0.9526
G2SLS 0.4702 1.3663 0.4794 1.3011
2SLS-KR 0.4248 1.4330 0.4477 1.3138
FD-2SLS-KR 0.7354 1.7268 0.2743 1.1068
FDGMM 0.7345 2.8496 0.2850 1.5887
GMM 0.4511 1.3367 0.5459 1.2441
Ind. OLS 0.5309 0.4250 0.4441 0.5107
Ind. 2SLS 0.5391 0.4423 0.5038 0.5004
Average OLS 0.4259 0.8928 0.4457 0.9080
Average 2SLS 0.4257 0.8899 0.4441 0.9089
Swamy 0.4272 1.8211 0.4757 1.6035
Bayes OLS 0.4491 0.3682 0.4239 0.4207
It. Bayes OLS 0.4264 0.3599 0.4195 0.4191
Bayes 2SLS 0.4507 0.3650 0.4223 0.4242
It. Bayes 2SLS 0.4263 0.3566 0.4183 0.4233
It. Bayes 0.4497 0.4155 0.4128 0.4319
Note: See Table A1.
Case with (N; T ) = (10; 50) and �mild�cross dependence (the support of

� i is [0,0.2]).
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Table A8: Theil�s U for homogeneous, heterogeneous and shrinkage/Bayesian
estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.7268 1.6376 0.7503 1.7234
Within 0.7281 2.6729 0.7531 2.8324
Between 1.2853 1.1869 1.1978 1.1879
FD-OLS 1.1386 1.4775 1.1813 1.6377
WLS 0.7882 1.5747 0.7476 1.6514
WLS-AR(1) 634.9 22.53 42.92 143.0
2SLS 0.7287 1.7152 0.7552 1.7789
FD-2SLS 0.8978 1.1769 0.8189 1.3257
Within-2SLS 0.7268 1.6376 0.7503 1.7234
Between-2SLS 0.7337 3.2429 0.7586 3.5686
MLE 0.7268 2.3591 0.7531 2.4954
EC2SLS 0.7894 1.2493 0.8514 1.2835
EC2SLS-AR(1) 0.7920 1.1600 0.8625 1.1591
G2SLS 0.7866 1.3507 0.8565 1.3688
2SLS-KR 0.7132 2.4810 0.7443 1.6889
FD-2SLS-KR 0.8937 1.0412 0.8104 1.1162
FDGMM 0.9010 1.2519 0.8308 1.4243
GMM 0.7769 1.1934 0.8208 1.2101
Ind. OLS 0.8119 0.7238 0.8129 0.6933
Ind. 2SLS 4.7210 0.8435 1.1890 1.58�104
Average OLS 0.7263 1.0552 0.7515 1.0557
Average 2SLS 0.7260 1.0583 0.7509 1.0573
Swamy 0.7302 1.3935 0.7823 1.4469
Bayes OLS 0.7401 0.6392 0.7464 0.6210
It. Bayes OLS 0.7097 0.6458 0.7194 0.6143
Bayes 2SLS 0.7448 0.6478 0.7490 0.6311
It. Bayes 2SLS 0.7094 0.6480 0.7190 0.6186
It. Bayes 0.7764 0.6664 0.7769 0.6549
Note: See Table A1.
Case with (N; T ) = (10; 50) and �large�cross dependence (the support

of � i is [-1,3]).
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Table A9: Theil�s U for homogeneous, heterogeneous and shrinkage/Bayesian
estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.4254 1.8840 0.4836 2.1999
Within 0.4258 3.3288 0.4536 3.9276
Between 0.6586 0.9302 0.7311 0.8854
FD-OLS 1.1636 1.9070 1.0020 3.0153
WLS 0.4243 1.7296 0.3891 1.9994
WLS-AR(1) 150.9 2.4387 1.0760 2.5892
2SLS 0.4255 1.7241 0.4550 1.9468
FD-2SLS 0.7354 1.4340 0.2744 2.5780
Within-2SLS 0.4254 1.8840 0.4836 2.1999
Between-2SLS 0.4255 4.0620 0.4467 5.0968
MLE 0.4255 3.0942 0.4565 3.6575
EC2SLS 0.4790 1.1719 0.4988 1.2294
EC2SLS-AR(1) 0.4851 0.9244 0.4859 0.8767
G2SLS 0.4755 1.0475 0.4934 1.0290
2SLS-KR 0.4256 379.4 0.4473 521.9
FD-2SLS-KR 0.7357 1.0551 0.2744 1.6303
FDGMM 0.7351 1.6976 0.3244 3.1165
GMM 0.5147 0.9343 0.6213 0.9047
Ind. OLS 0.4458 0.3826 0.4518 0.3461
Ind. 2SLS 0.4475 0.3847 0.4464 0.3399
Average OLS 0.4257 0.8287 0.4511 0.8774
Average 2SLS 0.4256 0.8287 0.4458 0.8735
Swamy 0.4305 1.3987 0.5083 1.5394
Bayes OLS 0.4300 0.3789 0.4435 0.3412
It. Bayes OLS 0.4255 0.3786 0.4419 0.3394
Bayes 2SLS 0.4308 0.3803 0.4385 0.3340
It. Bayes 2SLS 0.4254 0.3800 0.4374 0.3323
It. Bayes 0.4420 0.3832 0.4423 0.3582
Note: See Table A1.
Case with (N; T ) = (20; 50) and �mild�cross dependence (the support of

� i is [0,0.2]).
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Table A10: Theil�s U for homogeneous, heterogeneous and shrinkage/Bayesian
estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.7063 1.6391 0.7294 1.7353
Within 0.7065 2.4841 0.7294 2.6296
Between 1.1675 1.0852 1.1091 1.0755
FD-OLS 1.1320 1.4979 1.1719 1.6695
WLS 0.7388 1.5438 0.7203 1.6261
WLS-AR(1) 2.6�105 8654 4701 30.11
2SLS 0.7055 1.5392 0.7293 1.5984
FD-2SLS 0.8937 1.1953 0.8135 1.3611
Within-2SLS 0.7063 1.6391 0.7294 1.7353
Between-2SLS 0.7061 3.1520 0.7294 3.5700
MLE 0.7070 2.3199 0.7301 2.4603
EC2SLS 0.7673 1.1311 0.8355 1.1398
EC2SLS-AR(1) 0.7710 1.0745 0.8452 1.0637
G2SLS 0.7470 1.1200 0.8171 1.1103
2SLS-KR 0.6981 67.90 0.7249 3.3737
FD-2SLS-KR 0.8917 1.0049 0.8096 1.0734
FDGMM 0.8955 1.3073 0.8196 1.5076
GMM 0.7838 1.0254 0.8488 1.0140
Ind. OLS 0.7271 0.5927 0.7446 0.5899
Ind. 2SLS 0.7296 0.5964 0.7460 0.5916
Average OLS 0.7051 0.9147 0.7287 0.9284
Average 2SLS 0.7050 0.9159 0.7282 0.9284
Swamy 0.7152 1.2574 0.7753 1.2898
Bayes OLS 0.7063 0.5806 0.7233 0.5779
It. Bayes OLS 0.6972 0.5939 0.7134 0.5785
Bayes 2SLS 0.7070 0.5825 0.7234 0.5787
It. Bayes 2SLS 0.6970 0.5948 0.7132 0.5790
It. Bayes 0.7257 0.5894 0.7419 0.5910
Note: See Table A1.
Case with (N; T ) = (20; 50) and �large�cross dependence (the support

of � i is [-1,3]).
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Table A11: Theil�s U for homogeneous, heterogeneous and shrinkage/Bayesian
estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.4245 1.9199 0.4880 2.0656
Within 0.4248 2.0163 0.4641 2.2689
Between 0.7105 0.8702 0.7238 0.8056
FD-OLS 1.1681 1.6591 0.9974 2.3449
WLS 0.4217 1.6533 0.4954 1.6793
WLS-AR(1) 110.4 2.40�107 1.0054 2.7350
2SLS 0.4246 1.6139 0.4619 1.7449
FD-2SLS 0.7510 1.2676 0.2954 1.8359
Within-2SLS 0.4245 1.9199 0.4880 2.0656
Between-2SLS 0.4247 3.1573 0.4531 5.0014
MLE 0.4246 1.8698 0.4671 2.063
EC2SLS 0.4792 0.9079 0.5039 0.8413
EC2SLS-AR(1) 0.4880 0.8658 0.5003 0.7992
G2SLS 0.4754 0.8764 0.4999 0.8110
2SLS-KR 0.4259 2.6086 0.5048 13.21
FD-2SLS-KR 0.7512 107.6 0.2955 1.9853
FDGMM � 1026 � 1022 � 1023 � 1027
GMM � 1026 � 1022 � 1023 � 1027
Ind. OLS 0.4313 0.3982 0.4627 0.3932
Ind. 2SLS 0.4323 0.3993 0.4551 0.3848
Average OLS 0.4247 1.1230 0.4612 1.1773
Average 2SLS 0.4246 1.1233 0.4563 1.1697
Swamy 0.4351 1.0326 0.5276 0.9989
Bayes OLS 0.4225 0.3957 0.4566 0.3902
It. Bayes OLS 0.4225 0.3952 0.4562 0.3891
Bayes 2SLS 0.4230 0.3965 0.4495 0.3826
It. Bayes 2SLS 0.4227 0.3961 0.4495 0.3817
It. Bayes 0.4308 0.3972 0.4601 0.3888
Note: See Table A1.
Case with (N; T ) = (50; 50) and �mild�cross dependence (the support of

� i is [0,0.2]).
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Table A12: Theil�s U for homogeneous, heterogeneous and shrinkage/Bayesian
estimators.

H 0:1 0:9 0:1 0:1
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.6998 1.5362 0.7258 1.5363
Within 0.6999 1.5150 0.7257 1.5482
Between 1.1335 1.0424 1.0752 1.0170
FD-OLS 1.1318 1.3082 1.1749 1.4189
WLS 0.7123 1.4013 0.7172 1.3828
WLS-AR(1) 1.3845 197.2 2.4403 1.9808
2SLS 0.6992 1.3826 0.7261 1.3820
FD-2SLS 0.9041 1.1001 0.8268 1.1870
Within-2SLS 0.6998 1.5362 0.7258 1.5363
Between-2SLS 0.6996 7.0826 0.7261 4.8631
MLE 0.7005 1.4245 0.7261 1.4478
EC2SLS 0.7659 1.0227 0.8357 0.9964
EC2SLS-AR(1) 0.7712 1.0375 0.8439 1.0115
G2SLS 0.7461 1.0352 0.8216 1.0082
2SLS-KR 0.6990 2.1240 0.7623 3.4547
FD-2SLS-KR 0.9037 1.0751 0.8248 2.39�104
FDGMM � 1052 � 1032 � 1039 � 1026
GMM � 1052 � 1032 � 1039 � 1026
Ind. OLS 0.7097 0.5929 0.7363 0.5997
Ind. 2SLS 0.7112 0.5938 0.7364 0.6000
Average OLS 0.6990 1.0232 0.7256 1.0235
Average 2SLS 0.6989 1.0238 0.7251 1.0230
Swamy 0.7132 1.0531 0.7754 1.0285
Bayes OLS 0.6971 0.5870 0.7218 0.5938
It. Bayes OLS 0.6932 0.5958 0.7159 0.5953
Bayes 2SLS 0.6976 0.5876 0.7215 0.5937
It. Bayes 2SLS 0.6931 0.5965 0.7153 0.5948
It. Bayes 0.7096 0.5924 0.7357 0.5990
Note: See Table A1.
Case with (N; T ) = (50; 50) and �large�cross dependence (the support

of � i is [-1,3]).
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Table B1: Pesaran and Timmermann�s (1992) statistic for homogeneous,
heterogeneous and shrinkage/Bayesian estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 1.4355 0.0645 1.7299 0.0924
Within 1.3383 1.7426 1.7571 1.8785
Between 0.4766 -0.0296 0.3241 0.0344
FD-OLS -1.4332 -0.2197 -0.2303 -0.3239
WLS 1.4598 0.0122 1.8314 0.0588
WLS-AR(1) 1.1639 0.4089 1.6345 0.4890
2SLS 1.4370 -0.0878 1.7132 -0.0319
FD-2SLS 1.6350 0.9092 2.8151 0.9843
Within-2SLS 1.4355 0.0645 1.7299 0.0924
Between-2SLS 1.3830 1.6642 1.7080 1.8125
MLE 1.4164 0.7241 1.7910 0.8037
EC2SLS 1.4554 0.6877 1.930 0.7908
EC2SLS-AR(1) 1.3512 0.8957 2.0017 1.0558
G2SLS 1.5542 0.4710 2.0091 0.5720
2SLS-KR 1.4423 -0.0297 1.7377 0.0059
FD-2SLS-KR 1.6559 0.8813 2.8158 0.9628
FDGMM 1.6805 0.9222 2.8000 1.0017
GMM 1.0586 0.0040 0.9832 0.1028
Ind. OLS 1.3461 2.2208 2.0630 2.7630
Ind. 2SLS 1.3461 2.2208 2.0630 2.7630
Average OLS 1.3451 1.1251 1.7940 1.2776
Average 2SLS 1.3451 1.1251 1.7940 1.2776
Swamy 1.3753 0.5429 1.8187 0.6340
Bayes OLS 1.4275 2.2305 2.0900 2.7680
It. Bayes OLS 1.4772 2.2421 2.1101 2.7696
Bayes 2SLS 1.4275 2.2305 2.0900 2.7680
It. Bayes 2SLS 1.4772 2.2421 2.1101 2.7696
It. Bayes 1.5241 2.3312 2.0479 2.5816
Note: See Table A1.
Case with (N; T ) = (5; 10) and �mild�cross dependence (the support of

� i is [0,0.2]).

36



Table B2: Pesaran and Timmermann�s (1992) statistic for homogeneous,
heterogeneous and shrinkage/Bayesian estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.6364 0.2003 0.6778 0.2135
Within 0.5748 1.4618 0.6291 1.5026
Between 0.2664 -0.0274 0.1836 0.0018
FD-OLS -0.6458 -0.1276 -0.7144 -0.1577
WLS 0.6587 0.1562 0.7004 0.1716
WLS-AR(1) 0.6859 0.4130 0.7839 0.4518
2SLS 0.6364 -0.0029 0.6458 0.0375
FD-2SLS 0.8889 0.7844 1.1166 0.8051
Within-2SLS 0.6364 0.2003 0.6778 0.2135
Between-2SLS 0.5728 1.3804 0.6010 1.4015
MLE 0.6237 0.7135 0.6001 0.7388
EC2SLS 0.6215 0.5425 0.5661 0.5598
EC2SLS-AR(1) 0.5800 0.5694 0.5378 0.6300
G2SLS 0.6655 0.3725 0.6125 0.4280
2SLS-KR 0.6241 -0.0232 0.6444 0.0161
FD-2SLS-KR 0.9087 0.7561 1.1789 0.7859
FDGMM 0.9682 0.8262 1.1872 0.8540
GMM 0.5548 0.0517 0.5145 0.0977
Ind. OLS 0.5177 1.5606 0.6647 1.7540
Ind. 2SLS 0.5177 1.5606 0.6647 1.7540
Average OLS 0.5647 0.8173 0.6305 0.8206
Average 2SLS 0.5647 0.8173 0.6305 0.8206
Swamy 0.6139 0.4696 0.5743 0.4861
Bayes OLS 0.5809 1.6031 0.7379 1.7945
It. Bayes OLS 0.6427 1.6365 0.7912 1.8277
Bayes 2SLS 0.5809 1.6031 0.7379 1.7945
It. Bayes 2SLS 0.6427 1.6365 0.7912 1.8277
It. Bayes 0.6007 1.6961 0.6362 1.8367
Note: See Table A1.
Case with (N; T ) = (5; 10) and �large�cross dependence (the support of

� i is [-1,3]).
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Table B3: Pesaran and Timmermann�s (1992) statistic for homogeneous,
heterogeneous and shrinkage/Bayesian estimators.

H 0:1 0:9 0:1 0:1
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 1.8379 0.1390 2.0313 0.3045
Within 1.7795 0.6395 2.2387 0.6326
Between 0.6912 -0.0419 0.5918 0.1268
FD-OLS -1.4255 -0.3255 0.3876 -0.6475
WLS 1.8422 0.1090 1.9424 0.2631
WLS-AR(1) 1.3516 0.0446 1.8901 0.1894
2SLS 1.8318 0.0175 2.1414 0.1976
FD-2SLS 1.6473 0.9111 2.8150 1.1917
Within-2SLS 1.8379 0.1390 2.0313 0.3045
Between-2SLS 1.7796 1.1574 2.2107 1.2569
MLE 1.8330 0.0632 2.2391 0.0742
EC2SLS 1.5989 0.2577 2.1875 0.4402
EC2SLS-AR(1) 1.5476 0.2412 2.3231 0.4618
G2SLS 1.6400 0.1067 2.2368 0.2670
2SLS-KR 1.8354 -0.0179 2.2360 0.1230
FD-2SLS-KR 1.6478 0.9001 2.8153 1.1818
FDGMM 1.6573 0.9092 2.8062 1.1810
GMM 1.5140 0.0204 1.4405 0.1864
Ind. OLS 1.3616 1.7207 2.1708 2.5424
Ind. 2SLS 1.3616 1.7207 2.1708 2.5424
Average OLS 1.7091 0.5378 2.2450 0.7745
Average 2SLS 1.7091 0.5378 2.2450 0.7745
Swamy 1.8025 0.2989 2.1858 0.4699
Bayes OLS 1.5131 1.7570 2.2142 2.5530
It. Bayes OLS 1.6368 1.7661 2.2467 2.5547
Bayes 2SLS 1.5131 1.7570 2.2142 2.5530
It. Bayes 2SLS 1.6368 1.7661 2.2467 2.5547
It. Bayes 1.7747 1.8769 2.2987 2.2135
Note: See Table A1.
Case with (N; T ) = (5; 20) and �mild�cross dependence (the support of

� i is [0,0.2]).
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Table B4: Pesaran and Timmermann�s (1992) statistic for homogeneous,
heterogeneous and shrinkage/Bayesian estimators.

H 0:1 0:9 0:1 0:9
(�; #;H) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.7305 0.1428 0.8078 0.2138
Within 0.6669 0.5451 0.7322 0.5502
Between 0.2867 -0.0466 0.2201 -0.0109
FD-OLS -0.6568 -0.1692 -0.7012 -0.2272
WLS 0.7200 0.1040 0.8158 0.1615
WLS-AR(1) 0.6944 0.0590 0.8183 0.1119
2SLS 0.7015 -0.0141 0.7785 0.0559
FD-2SLS 0.9331 0.7186 1.1725 0.7770
Within-2SLS 0.7305 0.1428 0.8078 0.2138
Between-2SLS 0.6257 0.8203 0.6969 0.8228
MLE 0.7333 0.0476 0.7424 0.0599
EC2SLS 0.6657 0.1556 0.6232 0.2210
EC2SLS-AR(1) 0.6292 0.0518 0.5408 0.1142
G2SLS 0.7259 0.0444 0.6849 0.1095
2SLS-KR 0.7359 -0.0571 0.7892 -0.0090
FD-2SLS-KR 0.9520 0.7065 1.2184 0.7634
FDGMM 0.9579 0.7410 1.1756 0.7915
GMM 0.6486 0.0288 0.6101 0.1156
Ind. OLS 0.4899 1.1055 0.6315 1.2785
Ind. 2SLS 0.4899 1.1055 0.6315 1.2785
Average OLS 0.6469 0.3977 0.7358 0.4083
Average 2SLS 0.6469 0.3977 0.7358 0.4083
Swamy 0.7311 0.1962 0.6545 0.2658
Bayes OLS 0.6051 1.1609 0.7470 1.3450
It. Bayes OLS 0.7217 1.2056 0.8544 1.3933
Bayes 2SLS 0.6015 1.1609 0.7470 1.3450
It. Bayes 2SLS 0.7217 1.2056 0.8544 1.3933
It. Bayes 0.5994 1.2584 0.6646 1.3594
Note: See Table A1.
Case with (N; T ) = (5; 20) and �large�cross dependence (the support of

� i is [-1,3]).
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Table B5: Pesaran and Timmermann�s (1992) statistic for homogeneous,
heterogeneous and shrinkage/Bayesian estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 1.8630 0.1727 2.0518 0.3147
Within 1.8706 0.3962 2.2569 0.3930
Between 0.3272 0.0098 0.2979 0.1148
FD-OLS -1.4284 -0.3317 0.5497 -0.6491
WLS 1.8405 0.1650 1.9350 0.2950
WLS-AR(1) 1.3114 0.1069 1.8404 0.2205
2SLS 1.8616 0.0709 2.1861 0.2180
FD-2SLS 1.6535 0.9322 2.8143 1.1993
Within-2SLS 1.8630 0.1727 2.0518 0.3147
Between-2SLS 1.8468 1.1768 2.2730 1.1951
MLE 1.8585 -0.0179 2.2489 -0.0125
EC2SLS 1.5363 0.0784 2.0618 0.2092
EC2SLS-AR(1) 1.4621 -0.0037 2.2652 0.0948
G2SLS 1.6050 0.0234 2.1245 0.1569
2SLS-KR 1.8548 -0.0107 2.2463 0.1146
FD-2SLS-KR 1.6540 0.9248 2.8141 1.2001
FDGMM 1.6624 0.9297 2.7523 1.2135
GMM 1.0939 0.0224 0.9380 0.1200
Ind. OLS 1.7151 1.9827 2.2108 2.6123
Ind. 2SLS 1.6920 1.9738 2.2228 2.6172
Average OLS 1.8543 0.7812 2.2762 0.9186
Average 2SLS 1.8532 0.7685 2.2883 0.9509
Swamy 1.7812 0.1098 2.0684 0.2498
Bayes OLS 1.8024 1.9983 2.2359 2.6095
It. Bayes OLS 1.8304 1.9787 2.2438 2.6063
Bayes 2SLS 1.7819 1.9943 2.2490 2.6198
It. Bayes 2SLS 1.8240 1.9728 2.2553 2.6183
It. Bayes 1.7766 2.0116 2.2921 2.4676
Note: See Table A1.
Case with (N; T ) = (10; 20) and �mild�cross dependence (the support of

� i is [0,0.2]).
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Table B6: Pesaran and Timmermann�s (1992) statistic for homogeneous,
heterogeneous and shrinkage/Bayesian estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 0.8309 0.1851 0.9016 0.2449
Within 0.7821 0.3734 0.8547 0.3590
Between 0.1976 -0.0300 0.1412 0.0469
FD-OLS -0.7174 -0.1765 -0.8968 -0.2416
WLS 0.8336 0.1707 0.9181 0.2302
WLS-AR(1) 0.7729 0.1298 0.8930 0.1562
2SLS 0.8144 0.0562 0.8759 0.0965
FD-2SLS 0.9551 0.7415 1.2013 0.7940
Within-2SLS 0.8309 0.1851 0.9016 0.2449
Between-2SLS 0.7672 0.8761 0.8367 0.8505
MLE 0.8263 -0.0315 0.8684 -0.0279
EC2SLS 0.6261 0.0533 0.5150 0.1071
EC2SLS-AR(1) 0.5749 -0.0141 0.4347 0.0444
G2SLS 0.6972 0.0164 0.5838 0.0747
2SLS-KR 0.8548 -0.0234 0.8902 0.0021
FD-2SLS-KR 0.9680 0.7341 1.2275 0.7893
FDGMM 0.9797 0.7398 1.2111 0.7905
GMM 0.5026 0.0089 0.4548 0.0542
Ind. OLS 0.7484 1.3693 0.8809 1.5320
Ind. 2SLS 0.7447 1.3608 0.8754 1.5209
Average OLS 0.7717 0.4915 0.8686 0.5129
Average 2SLS 0.7796 0.4802 0.8554 0.5139
Swamy 0.7567 0.0559 0.6474 0.1310
Bayes OLS 0.8669 1.4253 1.0013 1.5962
It. Bayes OLS 0.8872 1.4405 1.0679 1.5791
Bayes 2SLS 0.8541 1.4186 0.9995 1.5823
It. Bayes 2SLS 0.8863 1.4408 1.0608 1.5772
It. Bayes 0.7560 1.3993 0.8585 1.5397
Note: See Table A1.
Case with (N; T ) = (10; 20) and �large�cross dependence (the support

of � i is [-1,3]).

41



Table B7: Pesaran and Timmermann�s (1992) statistic for homogeneous,
heterogeneous and shrinkage/Bayesian estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 2.0374 1.0464 2.1999 0.8491
Within 2.0593 1.6050 2.4656 1.5140
Between 0.5935 0.2201 0.6017 0.1390
FD-OLS -1.4921 -0.8402 -0.4118 -0.5898
WLS 2.0283 1.0671 2.0603 0.8654
WLS-AR(1) 1.5590 0.9751 2.0500 0.7859
2SLS 2.0327 0.5718 2.3972 0.4188
FD-2SLS 1.7252 1.6821 2.8517 1.3815
Within-2SLS 2.0374 1.0464 2.1999 0.8491
Between-2SLS 2.0484 1.5748 2.5131 1.4589
MLE 2.0326 0.2532 2.4374 0.2283
EC2SLS 1.6761 0.8254 2.1952 0.6479
EC2SLS-AR(1) 1.6327 0.3194 2.4192 0.2177
G2SLS 1.7265 0.4019 2.2514 0.2965
2SLS-KR 2.0349 0.2974 2.4985 0.1651
FD-2SLS-KR 1.7256 1.8359 2.8515 1.4731
FDGMM 1.7285 1.5602 2.8287 1.2943
GMM 1.8480 0.6130 1.4864 0.4587
Ind. OLS 1.8094 2.7020 2.2924 2.2132
Ind. 2SLS 1.7967 2.7016 2.3023 2.2098
Average OLS 2.0487 1.6325 2.4719 1.3652
Average 2SLS 2.0511 1.6486 2.4851 1.3619
Swamy 1.9982 0.8855 2.2469 0.7019
Bayes OLS 1.9099 2.7002 2.3206 2.2358
It. Bayes OLS 2.0343 2.7008 2.3338 2.2180
Bayes 2SLS 1.9058 2.7032 2.3307 2.2295
It. Bayes 2SLS 2.0314 2.7046 2.3403 2.2119
It. Bayes 1.9211 2.5238 2.3819 2.1644
Note: See Table A1.
Case with (N; T ) = (10; 50) and �mild�cross dependence (the support of

� i is [0,0.2]).
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Table B8: Pesaran and Timmermann�s (1992) statistic for homogeneous,
heterogeneous and shrinkage/Bayesian estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 1.0156 0.6478 1.0903 0.6974
Within 1.0066 1.3108 1.0803 1.3212
Between 0.2502 0.0502 0.2451 0.0981
FD-OLS -0.7469 -0.3390 -0.9209 -0.4161
WLS 0.9698 0.6553 1.1227 0.7069
WLS-AR(1) 0.8635 0.5982 0.9852 0.6480
2SLS 1.0121 0.3127 1.0836 0.3771
FD-2SLS 1.0260 1.0510 1.2789 1.1383
Within-2SLS 1.0156 0.6478 1.0903 0.6974
Between-2SLS 0.9855 1.1892 1.0787 1.1976
MLE 1.0039 0.1755 1.0733 0.1773
EC2SLS 0.7684 0.4277 0.6985 0.4936
EC2SLS-AR(1) 0.7165 0.0689 0.6105 0.1458
G2SLS 0.8618 0.1562 0.7396 0.2315
2SLS-KR 1.0630 0.0921 1.1341 0.1621
FD-2SLS-KR 1.0342 1.0943 1.2919 1.1983
FDGMM 1.0244 1.0305 1.2576 1.1132
GMM 0.7513 0.3374 0.6728 0.4073
Ind. OLS 0.8199 1.4738 0.9465 1.6247
Ind. 2SLS 0.8011 1.4685 0.9364 1.6168
Average OLS 1.0218 1.0954 1.0929 1.1112
Average 2SLS 1.0158 1.0848 1.0884 1.1131
Swamy 0.9573 0.4685 0.8239 0.5348
Bayes OLS 0.9697 1.5318 1.1047 1.6810
It. Bayes OLS 1.0756 1.4926 1.2078 1.6370
Bayes 2SLS 0.9607 1.5280 1.0961 1.6780
It. Bayes 2SLS 1.0730 1.4885 1.2143 1.6342
It. Bayes 0.8429 1.5019 0.9363 1.6293
Note: See Table A1.
Case with (N; T ) = (10; 50) and �large�cross dependence (the support

of � i is [-1,3]).
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Table B9: Pesaran and Timmermann�s (1992) statistic for homogeneous,
heterogeneous and shrinkage/Bayesian estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 2.0058 0.8615 2.1871 1.0480
Within 2.0342 1.5275 2.4010 1.5870
Between 0.3259 0.0185 0.2992 0.1822
FD-OLS -1.4853 -0.5672 -0.3992 -0.8096
WLS 1.9981 0.8859 2.0842 1.0881
WLS-AR(1) 1.5041 0.7930 2.0696 0.9809
2SLS 2.0082 0.4496 2.3980 0.5890
FD-2SLS 1.7208 1.3695 2.8517 1.6742
Within-2SLS 2.0058 0.8615 2.1871 1.0480
Between-2SLS 2.0302 1.3917 2.4994 1.4642
MLE 2.0057 0.6897 2.3721 0.7789
EC2SLS 1.6425 0.5406 2.0655 0.6824
EC2SLS-AR(1) 1.5690 0.0451 2.2310 0.1900
G2SLS 1.6960 0.2200 2.1261 0.3164
2SLS-KR 2.0142 0.3207 2.5027 0.4218
FD-2SLS-KR 1.7206 1.4763 2.8513 1.8432
FDGMM 1.7234 1.3744 2.7458 1.7006
GMM 1.1199 0.2881 0.9265 0.3815
Ind. OLS 1.8963 2.3158 2.2643 2.6862
Ind. 2SLS 1.8919 2.3086 2.3042 2.6993
Average OLS 2.0290 1.4163 2.4144 1.6181
Average 2SLS 2.0258 1.4122 2.4560 1.6440
Swamy 1.9401 0.5998 2.0246 0.7575
Bayes OLS 1.9635 2.3199 2.2897 2.6825
It. Bayes OLS 2.0191 2.3186 2.3016 2.6837
Bayes 2SLS 1.9599 2.3154 2.3248 2.6995
It. Bayes 2SLS 2.0173 2.3111 2.3377 2.7002
It. Bayes 1.9175 2.3034 2.3154 2.6622
Note: See Table A1.
Case with (N; T ) = (20; 50) and �mild�cross dependence (the support of

� i is [0,0.2]).
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Table B10: Pesaran and Timmermann�s (1992) statistic for homogeneous,
heterogeneous and shrinkage/Bayesian estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 1.0454 0.6634 1.1349 0.7081
Within 1.0555 1.3531 1.1444 1.3336
Between 0.1784 0.0151 0.1359 0.0553
FD-OLS -0.7720 -0.3308 -0.9804 -0.4015
WLS 1.0263 0.6792 1.1523 0.7206
WLS-AR(1) 0.9238 0.6165 0.9563 0.6396
2SLS 1.0563 0.3131 1.1474 0.3694
FD-2SLS 1.0460 1.0559 1.2924 1.1397
Within-2SLS 1.0454 0.6634 1.1349 0.7081
Between-2SLS 1.0478 1.1499 1.1469 1.1171
MLE 1.0383 0.5846 1.1377 0.6217
EC2SLS 0.7133 0.3675 0.5736 0.4030
EC2SLS-AR(1) 0.6927 0.0006 0.5071 0.0618
G2SLS 0.8091 0.1518 0.6680 0.1548
2SLS-KR 1.0785 0.1909 1.1701 0.2052
FD-2SLS-KR 1.0488 1.1066 1.2978 1.2116
FDGMM 1.0427 1.0687 1.2751 1.1640
GMM 0.4374 0.1703 0.4370 0.2519
Ind. OLS 0.9330 1.6131 1.0326 1.7262
Ind. 2SLS 0.9199 1.6048 1.0251 1.7201
Average OLS 1.0425 1.0973 1.1505 1.1220
Average 2SLS 1.0502 1.0965 1.1501 1.1230
Swamy 0.9406 0.4194 0.7822 0.4717
Bayes OLS 1.0298 1.6308 1.1213 1.7403
It. Bayes OLS 1.0797 1.5466 1.1719 1.6778
Bayes 2SLS 1.0281 1.6223 1.1201 1.7379
It. Bayes 2SLS 1.0791 1.5424 1.1829 1.6742
It. Bayes 0.9323 1.6116 1.0261 1.7281
Note: See Table A1.
Case with (N; T ) = (20; 50) and �large�cross dependence (the support

of � i is [-1,3]).
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Table B11: Pesaran and Timmermann�s (1992) statistic for homogeneous,
heterogeneous and shrinkage/Bayesian estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 2.0055 0.4365 2.1602 0.5572
Within 2.0126 1.2593 2.3319 1.3702
Between 0.1451 0.0139 0.1338 0.1533
FD-OLS -1.4435 -0.4500 0.6097 -0.6308
WLS 1.9728 0.4273 2.0485 0.5336
WLS-AR(1) 1.3978 0.2559 1.9136 0.4426
2SLS 1.9963 0.1289 2.3305 0.2574
FD-2SLS 1.6773 0.9795 2.8223 1.1234
Within-2SLS 2.0055 0.4365 2.1602 0.5572
Between-2SLS 2.0165 1.1697 2.4166 1.2375
MLE 2.0046 0.0882 2.3061 0.2386
EC2SLS 1.6215 0.0930 1.9550 0.2688
EC2SLS-AR(1) 1.5372 0.0206 2.0518 0.1093
G2SLS 1.6848 0.0420 2.0303 0.1696
2SLS-KR 1.9914 0.1061 2.2242 0.2415
FD-2SLS-KR 1.6772 0.9966 2.8220 1.1545
FDGMM 0.7081 0.3876 1.8207 0.4991
GMM 0.6632 0.2940 0.9659 0.3501
Ind. OLS 1.9287 2.1208 2.2467 2.5350
Ind. 2SLS 1.9219 2.1202 2.2946 2.5513
Average OLS 2.0217 1.1502 2.3458 1.2074
Average 2SLS 2.0171 1.1483 2.4043 1.2260
Swamy 1.9101 0.1274 1.8821 0.2768
Bayes OLS 1.9413 2.1386 2.2503 2.5351
It. Bayes OLS 1.9996 2.1461 2.2513 2.5337
Bayes 2SLS 1.9371 2.1363 2.2992 2.5487
It. Bayes 2SLS 1.9941 2.1393 2.3046 2.5509
It. Bayes 1.9330 2.1233 2.2530 2.5366
Note: See Table A1.
Case with (N; T ) = (50; 50) and �mild�cross dependence (the support of

� i is [0,0.2]).
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Table B12: Pesaran and Timmermann�s (1992) statistic for homogeneous,
heterogeneous and shrinkage/Bayesian estimators.

H 0:1 0:9 0:1 0:9
(�; #) (0:0; 0:0) (0:0; 0:0) (0:9; 0:9) (0:9; 0:9)

OLS 1.0218 0.3821 1.1148 0.4291
Within 1.0054 1.0604 1.1083 1.0262
Between 0.0667 0.0184 0.0690 0.0571
FD-OLS -0.7214 -0.2894 -0.9515 -0.3453
WLS 1.0115 0.3819 1.1521 0.4226
WLS-AR(1) 0.8542 0.2643 0.8933 0.3381
2SLS 1.0319 0.1428 1.1320 0.1750
FD-2SLS 0.9907 0.7747 1.2404 0.8331
Within-2SLS 1.0218 0.3821 1.1148 0.4291
Between-2SLS 1.0097 0.9699 1.1268 0.9535
MLE 1.0120 0.0868 1.1163 0.1564
EC2SLS 0.5496 0.0844 0.3701 0.1063
EC2SLS-AR(1) 0.5173 0.0106 0.3396 0.0873
G2SLS 0.7117 0.0354 0.4448 0.0658
2SLS-KR 1.0167 0.0806 1.0540 0.1750
FD-2SLS-KR 0.9915 0.7887 1.2413 0.8423
FDGMM 0.1613 0.2013 0.2281 0.2044
GMM 0.1812 0.2410 0.2278 0.2847
Ind. OLS 0.9368 1.4924 1.0647 1.6103
Ind. 2SLS 0.9291 1.4841 1.0604 1.6060
Average OLS 1.0106 0.9346 1.1125 0.9422
Average 2SLS 1.0137 0.9332 1.1154 0.9513
Swamy 0.8910 0.1240 0.6584 0.1778
Bayes OLS 1.0274 1.5384 1.1551 1.6500
It. Bayes OLS 1.0512 1.5185 1.1560 1.6281
Bayes 2SLS 1.0176 1.5304 1.1430 1.6494
It. Bayes 2SLS 1.0529 1.5119 1.1665 1.6380
It. Bayes 0.9359 1.4919 1.0647 1.6083
Note: See Table A1.
Case with (N; T ) = (50; 50) and �large�cross dependence (the support

of � i is [-1,3]).
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Tables

Table C1: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (5,10) (5,10) (5,10) (5,10)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous OLS FDGMM FD-2SLS GMM
0.4276 1.4166 0.3257 1.4278

Theil’s U Heterogeneous Swamy Average OLS Average OLS Average OLS
0.4319 1.7823 0.4520 1.5321

Shrinkage It. Bayes It. Bayes It. Bayes It. Bayes
0.4853 0.5307 0.3895 0.4832

DM1 OLS vs Swamy It. Bayes vs FDGMM FD-2SLS vs It. Bayes It. Bayes GMM
DM (0.3190) (-2.1966)(**) (2.0660)(**) (-2.3024)(**)

DM2 It. Bayes vs. OLS
(0.8880)

Homogeneous FDGMM Within FD-2SLS-KR Within
1.6805(*) 1.7426(*) 2.8158(**) 1.8785(*)

PT Heterogeneous Average OLS Ind. OLS Ind. OLS Ind. OLS
1.3451 2.2208(**) 2.0630(**) 2.7630(**)

Shrinkage Bayes OLS It. Bayes I.B. OLS I.B. OLS
1.4275 2.3312(**) 2.1101(**) 2.7696(**)

Note: This Table reports results for the case (N,T ) = (5, 10) under ”mild” cross dependence (the support of
ζ i is [0,0.2]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table C2: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (5,10) (5,10) (5,10) (5,10)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous MLE FDGMM Within-2SLS FDGMM
0.7618 1.1896 0.8000 1.2822

Theil’s U Heterogeneous Swamy Average OLS Swamy Average OLS
0.7646 2.2297 0.8303 1.6972

Shrinkage It. Bayes It. Bayes It. Bayes It. Bayes
134.84 61.45 53.46 13.27

DM1 Swamy vs. MLE Average OLS vs. FDGMM Swamy vs. Within-2SLS Average OLS vs. FDGMM
DM (0.1387) (4.1188)(**) (-0.0170) (4.1035)(**)

DM2 It. Bayes vs. MLE It. Bayes vs. FDGMM It. Bayes vs. Within-2SLS It. Bayes vs. FDGMM
(0.8286) (-1.2647) (0.0293) (-1.0731)

Homogeneous FDGMM Within FDGMM Within
0.9682 1.4618 1.1872 1.5026

PT Heterogeneous Ind. OLS Ind. OLS Ind. OLS Ind. OLS
0.5177 1.5606 0.6647 1.7540(*)

Shrinkage Bayes OLS It. Bayes I. B. OLS It. Bayes
0.5809 1.6961(*) 0.7912 1.8367(*)

Note: This Table reports results for the case (N,T ) = (5, 10) under ”large” cross dependence (the support of
ζ i is [-1,3]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table C3: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (5,20) (5,20) (5,20) (5,20)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous OLS Between FD-2SLS Between
0.4405 1.2063 0.2923 1.3196

Theil’s U Heterogeneous Swamy Swamy Average OLS Average OLS
0.4427 1.4297 0.4628 1.2699

Shrinkage It. Bayes It. Bayes It. Bayes It. Bayes
0.4752 0.4988 0.4037 0.4899

DM1 Swamy vs. OLS Between vs. It. Bayes It. Bayes vs. FD-2SLS Average OLS vs. It. Bayes
DM (0.2034) (-2.2382)(**) (2.4040)(*) (1.1141)

DM2 It. Bayes vs. OLS
(0.7101)

Homogeneous WLS Between-2SLS FD-2SLS-KR Between-2SLS
1.8422(*) 1.1574 2.8153(**) 1.2569

PT Heterogeneous Swamy Ind. OLS Average OLS Ind. OLS
1.8025(*) 1.7207(*) 2.2450(**) 2.5424(**)

Shrinkage It. Bayes It. Bayes It. Bayes I. B. OLS
1.7747(*) 1.8769(*) 2.2987(**) 2.5547(**)

Note: This Table reports results for the case (N,T ) = (5, 20) under ”mild” cross dependence (the support of
ζ i is [0,0.2]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table C4: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (5,20) (5,20) (5,20) (5,20)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous MLE FDGMM OLS FDGMM
0,7763 1.1415 0.8136 1.2668

Theil’s U Heterogeneous Swamy Swamy Swamy Swamy
0.7763 1.3863 0.8369 1.4654

Shrinkage It. Bayes It. Bayes It. Bayes It. Bayes
4.2762 6.3261 121.25 10.4824

DM1 Swamy vs. MLE Swamy vs. FDGMM Swamy vs. OLS Swamy vs. FDGMM
DM (0.1870) (1.1881) (0.5656) (1.3239)

DM2 It. Bayes vs. MLE It. Bayes vs. FDGMM It. Bayes vs. OLS It. Bayes vs. FDGMM
(0.7609) (-0.9985) (0.2129) (-0.7957)

Homogeneous FD-2SLS Between -2SLS FD-2SLS-KR Between-2SLS
0.9331 0.8203 1.2184 0.8228

PT Heterogeneous Swamy Average OLS Average OLS Ind. OLS
0.7311 0.3977 0.7358 1.2785

Shrinkage I. B. OLS It. Bayes I. B. OLS I. B. OLS
0.7217 1.2584 0.8544 1.3933

Note: This Table reports results for the case (N,T ) = (5, 20) under ”large” cross dependence (the support of
ζ i is [-1,3]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table C5: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (10,20) (10,20) (10,20) (10,20)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous WLS GMM FD-2SLS EC2SLS-AR(1)
0.4367 0.8725 0.2911 0.8408

Theil’s U Heterogeneous Average 2SLS Ind. OLS Ind. 2SLS Ind. OLS
0.4393 0.4755 0.4495 0.4462

Shrinkage I. B. OLS It. Bayes It. Bayes It. Bayes
0.4592 0.4342 0.4243 0.3874

DM1 Average 2SLS vs. WLS Ind. OLS vs. It. Bayes It. Bayes vs. FD-2SLS Ind. OLS vs. It. Bayes
DM (0.1913) (0.3638) (2.5319)(**) (0.5813)

DM2 I. B. OLS vs. WLS
(0.1424)

Homogeneous Within Between-2SLS FD-2SLS-KR FD-2SLS
1.8706(*) 1.1768 2.8141(**) 1.993(**)

PT Heterogeneous Average OLS Ind. OLS Average 2SLS Ind. 2SLS
1.8543(*) 1.9827(**) 2.2883(**) 2.6172(**)

Shrinkage I. B. OLS It. Bayes It. Bayes Bayes 2SLS
1.8304(*) 2.0116(**) 2.2921(**) 2.6198(**)

Note: This Table reports results for the case (N,T ) = (10, 20) under ”mild” cross dependence (the support of
ζ i is [0,0.2]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table C6: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (10,20) (10,20) (10,20) (10,20)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous 2SLS-KR GMM WLS GMM
0.7216 1.0270 0.7561 1.0339

Theil’s U Heterogeneous Average OLS Ind. OLS Average 2SLS Ind. OLS
0.7319 0.7430 0.7597 0.7086

Shrinkage I. B. 2SLS Bayes OLS I. B. 2SLS Bayes OLS
0.7165 0.6358 0.7281 0.6294

DM1 2SLS-KR vs. I. B. 2SLS Ind. OLS vs. Bayes OLS WLS vs. I. B. 2SLS Ind. OLS vs. Bayes OLS
DM (-0.1842) (-0.3241) (-0.5509) (-0.5827)

DM2

Homogeneous FDGMM Between-2SLS FD-2SLS-KR Between-2SLS
0.9797 0.8761 1.2275 0.8505

PT Heterogeneous Average 2SLS Ind. OLS Ind. OLS Ind. OLS
0.7796 1.3693 0.8809 1.5320

Shrinkage I. B. OLS I. B. 2SLS I. B. OLS Bayes OLS
0.8872 1.4408 1.0679 1.5962

Note: This Table reports results for the case (N,T ) = (10, 20) under ”large” cross dependence (the support of
ζ i is [-1,3]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.

53



Table C7: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (10,50) (10,50) (10,50) (10,50)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous OLS Between FD-2SLS Between
0.4244 0.9130 0.2743 0.9504

Theil’s U Heterogeneous Average OLS Ind. OLS Ind. OLS Ind. 2SLS
0.4249 0.4250 0.4441 0.5004

Shrinkage I. B. 2SLS I. B. 2SLS It. Bayes I. B. OLS
0.4263 0.3566 0.4128 0.4191

DM1 Average OLS vs. OLS Ind. OLS vs. I. B. 2SLS It.Bayes vs. FD-2SLS Ind. 2SLS vs. I. B. OLS
DM (0.1919) (-0.3208) (2.5529)(**) (-0.4254)

DM2 I. B. 2SLS vs. OLS
(0.1294)

Homogeneous Within FD-2SLS-KR FD-2SLS Within
2.0593(*) 1.8359(*) 2.8517(**) 1.5140

PT Heterogeneous Average 2SLS Ind. OLS Average 2SLS Ind. OLS
2.0511(**) 2.7020(**) 2.4851(**) 2.2132(**)

Shrinkage I. B. OLS I. B. 2SLS It. Bayes Bayes OLS
2.0343(**) 2.7046(**) 2.3819(**) 2.2358(**)

Note: This Table reports results for the case (N,T ) = (10, 50) under ”mild” cross dependence (the support of
ζ i is [0,0.2]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table C8: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (10,50) (10,50) (10,50) (10,50)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous 2SLS-KR FD-2SLS-KR 2SLS-KR FD-2SLS-KR
0.7132 1.0412 0.7443 1.1162

Theil’s U Heterogeneous Average 2SLS Ind. OLS Average 2SLS Ind. OLS
0.7260 0.7238 0.7509 0.6933

Shrinkage I. B. OLS I. B. 2SLS I. B. 2SLS I. B. OLS
0.7097 0.7190 0.7190 0.6143

DM1 I. B. OLS vs. 2SLS-KR Ind. OLS vs. I. B. 2SLS 2SLS-KR vs. I. B. 2SLS Ind. OLS vs. I. B. OLS
DM (-0.1522) (-0.3148) (-0.4638) (-0.3885)

DM2

Homogeneous 2SLS-KR Within FD-2SLS-KR Within
1.0630 1.3108 1.2919 1.3212

PT Heterogeneous Average OLS Ind. OLS Average OLS Ind. OLS
1.0218 1.4738 1.0929 1.6247

Shrinkage I. B. OLS Bayes OLS I. B. 2SLS Bayes OLS
1.0756 1.5318 1.2143 1.6810(*)

Note: This Table reports results for the case (N,T ) = (10, 50) under ”large” cross dependence (the support of
ζ i is [-1,3]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table C9: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (20,50) (20,50) (20,50) (20,50)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous WLS EC2SLS-AR(1) FD-2SLS EC2SLS-AR(1)
0.4243 0.9244 0.2744 0.8767

Theil’s U Heterogeneous Average OLS Ind.OLS Average 2SLS Ind. 2SLS
0.4256 0.3826 0.4458 0.3399

Shrinkage I.B. 2SLS I.B. OLS I.B. 2SLS I.B. 2SLS
0.4254 0.3786 0.4374 0.3323

DM1 I.B. 2SLS vs. WLS I.B. OLS vs. Ind. OLS I.B. 2SLS vs. FD-2SLS Ind. 2SLS vs. I.B.2SLS
DM (0.1666) (-0.1734) (2.7041)(**) (-0.3480)

DM2

Homogeneous Within Within FD-2SLS FD-2SLS-KR
2.0342(**) 1.5275 2.8517(**) 1.8432(*)

PT Heterogeneous Average OLS Ind. OLS Average 2SLS Ind. 2SLS
2.0290(**) 2.3158(**) 2.4560(**) 2.6993(**)

Shrinkage Bayes OLS Bayes OLS I.B. 2SLS I.B. 2SLS
2.0191(**) 2.3199(**) 2.3377(**) 2.7002(**)

Note: This Table reports results for the case (N,T ) = (20, 50) under ”mild” cross dependence (the support of
ζ i is [0,0.2]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.

56



Table C10: Forecasting accuracy measures: Theil’s U, Diebold andMariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (20,50) (20,50) (20,50) (20,50)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous 2SLS FD-2SLS-KR WLS GMM
0.7055 1.0049 0.7203 1.0140

Theil’s U Heterogeneous Average 2SLS Ind. OLS Average 2SLS Ind. OLS
0.7050 0.5927 0.7282 0.5899

Shrinkage I.B. 2SLS Bayes OLS I.B. 2SLS Bayes OLS
0.6970 0.5806 0.7132 0.5779

DM1 Average 2SLS vs. I.B. 2SLS Ind. OLS vs. Bayes OLS WLS vs. I.B. 2SLS Ind. OLS vs. Bayes OLS
DM (-0.7593) (-0.4589) (-0.2570) (-0.3689)

DM2

Homogeneous 2SLS-KR Within FD-2SLS-KR FD-2LSLS-KR
1.0785 1.3531 1.2978 1.2116

PT Heterogeneous Average 2SLS Ind. 2SLS Average OLS Ind.OLS
1.0502 1.6131 1.1505 1.7262(**)

Shrinkage I.B. OLS Bayes OLS I.B. 2SLS Bayes OLS
1.0797 1.6308 1.1829 1.7403(**)

Note: This Table reports results for the case (N,T ) = (20, 50) under ”mild” cross dependence (the support of
ζ i is [-1,3]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table C11: Forecasting accuracy measures: Theil’s U, Diebold andMariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (50,50) (50,50) (50,50) (50,50)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous WLS EC2SLS-AR(1) FD-2SLS EC2SLS-AR(1)
0.4217 0.8658 0.2954 0.7992

Theil’s U Heterogeneous Average 2SLS Ind. OLS Ind. 2SLS Ind. 2SLS
0.4246 0.3982 0.4551 0.3848

Shrinkage Bayes OLS I.B. OLS Bayes 2SLS I.B. 2SLS
0.4225 0.3952 0.4495 0.3817

DM1 Bayes OLS vs. WLS Ind. OLS vs. I.B. OLS Bayes 2SLS vs. FD-2SLS Ind. 2SLS vs. I.B. 2SLS
DM (0.0333) (-0.1316) (2.7075)(**) (-0.1940)

DM2

Homogeneous Between-2SLS Within FD-2SLS Within
2.0165(**) 1.2593 2.8223(**) 1.3702

PT Heterogeneous Average OLS Ind. OLS Average 2SLS Average OLS
2.0217(**) 2.1208(**) 2.4043(**) 2.0217(**)

Shrinkage I.B. OLS I.B. OLS I.B. Bayes 2SLS I.B. OLS
1.9996(**) 2.1461(**) 2.3046(**) 1.9996(**)

Note: This Table reports results for the case (N,T ) = (50, 50) under ”mild” cross dependence (the support of
ζ i is [0,0.2]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table C12: Forecasting accuracy measures: Theil’s U, Diebold andMariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (50,50) (50,50) (50,50) (50,50)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous 2SLS EC2SLS WLS EC2SLS
0.6992 1.0227 0.7172 0.9964

Theil’s U Heterogeneous Average 2SLS Ind. OLS Average 2SLS Ind. OLS
0.6989 0.5929 0.7251 0.5997

Shrinkage I.B. 2SLS Bayes OLS I.B. 2SLS Bayes 2SLS
0.6931 0.5870 0.7153 0.5937

DM1 Average 2SLS vs. I.B. 2SLS Ind. OLS vs. Bayes OLS WLS vs. I.B. 2SLS Ind. OLS vs. Bayes 2SLS
DM (-0.7603) (-0.3006) (-0.074) (-0.2384)

DM2

Homogeneous 2SLS Within FD-2SLS-KR Within
1.0319 1.0604 1.2413 1.0262

PT Heterogeneous Average 2SLS Ind. OLS Average 2SLS Ind. OLS
1.0137 1.4924 1.1154 1.6103

Shrinkage I.B. 2SLS Bayes OLS I.B. 2SLS Bayes OLS
1.0529 1.5384 1.1665 1.6500(*)

Note: This Table reports results for the case (N,T ) = (50, 50) under ”large” cross dependence (the support of
ζ i is [-1,3]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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