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FACOLTÀ DI INGEGNERIA

Corso di dottorato di ricerca in Meccatronica e tecnologie innovative

XXIII
◦

Ciclo

Investigation on the dynamic performances of

piezoelectric multilayer actuators

Coordinatore

Chiar.mo Prof. Riccardo Riva

Tutor

Chiar.mo Prof. Roberto Strada

Tesi di Dottorato di

Mauro FORLANI

Matr. 26621

Anno Accademico 2010/2011





A Sara





AKNOWLEDGEMENTS:

This work is the result of slightly more than three years of research, during which

several people gave their contribution. First and foremost I would like to thank my

tutor Prof. Roberto Strada who has been providing constant support and

encouragement, besides precious advice and help. He has been definitely more than a

tutor. My gratitude goes to Prof. Paolo Righettini, the main inspirer of this work. His

observations, comments, and suggestions shaped this work more than anything else. I

would like to thank Prof. Vittorio Lorenzi for his patience in removing all my doubts

about finite elements techniques, I know I have been exhausting and I apolgize for

that. The contribution of Prof. Giacomo Gigante in the analytical modelling has been

foundamental too: thank you very much.

A special mention must be made for all the colleagues and fellow students who made

these three years of PhD a memorable experience. In particular I would like to thank

Prof. Riccardo Riva, Prof. Bruno Zappa, Alberto, Michele, Paolo, Andrea e Fabio.

Un grazie incommensurabile va alla mia famiglia, che mi è sempre stata vicina
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Introduction

Created to improve men’s ability to exploit the surrounding environment, machines

contributed to differentiate men from the other living creatures who roamed planet

Earth. Machines gave men an edge over competiting species, allowing them to secure

more food and water, to travel long distances, to make clothes, weapons, etc. The

evolution of machines is thus strickly connected with that of mankind.

The question whether machines were the result of an active process of human think-

ing or the fortunate outcome of some coincidence is not relevant: either ways the ability

of men was to make use of that finding in order to solve a problem and to reduce the

daily burden for survival. Early machines were conceived to be operated by men them-

selves: first and foremost the lever comes into mind, a powerful mean to amplify human

force.

As soon as men became organized in larger groups technology and machines under-

went a formidable evolution thanks to the possibility of having specialized professional

figures who spent their time working on technological improvements [6]. New devel-

opments see the machines interacting with the environment, harvesting energy from

natural power sources such as wind and water. These machines had no longer to be

man (or horse) -sized, since input power was not provided anymore from men nor

animals. This change is of paramount importance because introduces the concept of

scaling and paves the way to modern machines: once energy can be introduced, it

does not matter what size the system is. Another step in machine evolution was taken

when the capability of storing and of producing energy on demand was developed. As

an example, spring loaded machines made use of elastically accumulated mechanical

energy; steam engines employed the energy trapped into the wood’s chemical bonds,

made readily available by combustion. This improvement reduced the role of the avail-

able natural energy, since it allowed machines to work even when this was not readily

17



18 Introduction

available due to geographic, climatic, and/or meteorological conditions. In this respect,

the discovery of electrical energy and the means of its generation and use constitutes

probably one of the greatest achievements of mankind and it is certainly one that bears

the largest consequences. There is nearly no human activity related to making or pro-

cessing goods that does not employ electrical energy. Electrical energy has become the

primary source of energy in many applications thanks to ease of trasportation and the

great performances of electric motors and actuators.

In contemporary times global markets and the competition between companies play

a central role in the development of new machines. Efficiency, reliability, ease of use,

durability, and cost are the keywords around which innovation spins. Indeed all ma-

chines are subject to market’s laws (in this sense machines are a product not a tool),

thus only machines that are economically sustainable survive.

Recent technological trends see an increasing concern in energy efficiency and minia-

turization: the former is related to global worries regarding the falling short of planet

Earth raw materials, especially in terms of fossil fuels; the latter is the result of the great

advances made in the fields of micro- and nano- technologies. These technologies made

possible reducing the size and efficiency of many devices, first and foremost electronic

circuits that became integral parts of many devices such as sensors and actuators. The

two trends are somehow related in the sense that smaller and lighter systems tend to

require less energy in carrying out their functions.

Reducing the context of this introduction to the field of actuators and in partic-

ular to that of actuators that convert electrical energy into mechanical energy, a new

class of materials and actuators made their appearance in recent times: the so called

smart materials and actuators. Some materials present “unusual” couplings between

their physical properties (and consequently external fields); because of their peculiar-

ity they were named smart. “Usual” couplings include elasticity (relation between

external forces and body deformation), thermal expansion (deformation due to tem-

perature variation), permeability (variations in magnetization related to external mag-

netic fields), dielectricity (charge accumulation due to external electric field), and many

more. “Unusual” couplings are for example deformations induced by a magnetic field

(magnetostriction), or by incident light (photostriction); other well-known couplings

are those that occurs in shape memory alloys (thermally or magnetically activated

phase transition causing deformation), in piezoelectric materials (electric field induced

deformations), and in pyroelectric materials (electric field induced heating). For many
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Figure 1: Articles regarding smart materials - 2008/2010 comparison

this process is reversible and allows exploiting the material’s peculiar characteristics

for designing both sensors and actuators. Among the smart materials, the piezoelec-

tric ones are widely employed in industrial applications of many sorts. Piezoelectric

actuators are widely used components that can be found in several everyday objects,

from mobile phones to inkjet printers, as well as in more sophisticated devices such as

medical equipments and car injection systems [30].

The bi-annual conference “ACTUATOR” is a good place to capture the trends in

microactuation and smart material applications; last edition was held in 2010. Fig-

ure 1 shows the number of articles presented at the last two conferences divided by

technology; it is really interesting to notice that piezoelectric materials are by far the

most written about materials, with approximately 35 % of the articles. Furthermore

the piezoelectric actuators gather, in the field of small actuators, more interest than

EM (electromagnetic) devices such as electric motors. The reason behind this interest

is that the efficiency of piezoelectric devices is quite independent on size while that of

electric motors decreases sensibly as the motor diameter gets smaller [31]. Of all the

piezoelectric devices motors, multilayer actuators, and bulk portion of the material are

the most studied (see Fig. 2). In the last conference some motor solutions incorporat-

ing piezoelectric multilayer actuators were proposed as well. A comparison between

the last two editions see a quite stable trend, as shown in Fig. 1: the interest towards
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Figure 2: Smart materials employed in actuation - 2008/2010 comparison

piezoelectric devices is constant and motors are coming out as they are more and more

suitable for industrial applications, outperforming the electromagnetic counterparts.

A particular type of piezoelectric actuator consists of alternating layers of piezoelec-

tric material and conducting electrodes (see Fig. 3). All the layers are stuck together

by glueing or are made in one piece during the manufacturing process (co-firing tech-

niques). The electrodes are connected in parallel to a voltage source: when an electric

tension is applied the induced deformation of each layer contributes to the overall dis-

placement of the actuator. Such device, usually referred to as multilayer actuator or

MLA, presents the remarkable advantage of producing relatively large displacements

with a considerably low driving voltage. The amplitude of such displacement is nev-

ertheless very small for many applications (it rarely exceeds 0.3 mm), thus forcing

engineers to design motion amplifiers. The latter is often a viable solution given the

high force produced by MLAs.

As it frequently happens when high performances are requested, understanding of

the dynamic behaviour is of paramount importance. Only with a complete compre-

hension of the role each component plays when interacting with the rest of the system,

performances can be optimized exploiting each component’s capabilities. It is cus-

tomary to estimate the response speed of a piezoelectric actuator on the basis of its

first resonance frequency. When a mechanical system driven by a piezoelectric MLA

is analysed the resonance frequency of the whole system must be considered. This



Introduction 21

Figure 3: Example of piezoelectric multilayer actuator. Courtesy of [23].

calculation might prove to be a difficult task. Should the driven system be non-linear,

appropriate approximations must be carried out. Nevertheless, the dynamic behaviour

of the whole system is due not only to its piezo-mechanical characteristics but also to

those of the electric driving circuit [31]. From the electrical point of view, piezoelectric

actuators can be seen as capacitors, therefore the power source has to supply enough

current to charge their capacitance, and that turns into inducing deformation in the

piezoelectric actuator. Beside current requirements, the speed of charging a piezo ac-

tuator’s capacitance depends on the equivalent RC circuit’s time constant. A further

difficulty is constituted by the fact that the capacitance of a piezoelectric actuator is

not constant, on the contrary it varies with its deformation. It is therefore clear how

the performances of a system driven by a piezoelectric multilayer actuator are deeply

dependent on all the components and their mutual interaction. For such a system a

mechatronic approach must be employed in the design process to obtain high dynamic

performances.

Mathematical modelling of multilayer piezoelectric devices dates back to at least

half a century ago: intensive research on transducer applications along with the limited

processing power of computers made researchers concentrate their efforts in predicting

the behaviour of such devices through mathematical modelling. The analytical basis

for the modelling of piezoelectric continua were set by the former Institute of Radio

Engineers who issued standards later published by the Institute of Electrical and Elec-

tronics Engineers as IEEE Std 176-1959 and IEEE Std 178-1958 [13]. In the year 1978
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the IEEE Std 176-1978 Standard on Piezoelectricity was published, then revised in

1987 [1]. Both standards report an analytical approach to model the behaviour of

piezoelectric materials whichever purpose they are intended for. The standards contain

also methods for parameters identifications and measurements.

The first thorough work encountered in literature on mathematical modelling of

piezoelectric multilayer devices is that by Brunot [4], a very detailed article on the

modelling of “piezoelectric multilayered structures” dating back to 1976, based on pre-

vious research on multilayer transducers. Brunot’s work aims at formulating a general

mathematical model for piezoelectric multilayer structures that could be used either for

analysing resonators or transducers. The model presents several layers that may show

piezoelectric effect. Each layer material is thus characterised by its own thickness, mass

density, viscosity, piezoelectric properties, and conductivity. The resulting equations

are very complex and furthermore they are not very well suited for analysing actuators

since external mechanical loads cannot be taken into account.

The equations presented in [1], strictly speaking valid only for a piezoelectric contin-

uum, were later adopted for the analysis of multilayer actuators. Intensive research has

been carried out at the Center for Intelligent Material Systems and Structures of the

Virginia Polytechnic and State University. In 1994 Liang et al. showed a method for

the dynamic analysis of a piezoelectric actuator driving a spring-mass-damper system

[14]. The model developed consider the piezoelectric multilayer actuator as constituted

by a bulk piezoelectric active part. Therein emphasis was put on impedance matching.

The adoption of complex elastic and dielectric material constants allows calculating

losses in the actuator [15, 10]. Although treated as a monolithic element, the layered

structured of the actuator was taken into account for the electric circuit calculation in

[8].

The aforementioned works never ventured the field of non-linear behaviour, a nec-

essary step to take into account hysteresis and to analyse large deformations. The

motivation of research in this field can be easily ascribed to the need for micropo-

sitioners and relative control algorithms, as well as accurate computation of energy

dissipation in ultrasonic motors. Works in this area tackled the subjects of model-

ing non-linearities (i.e. [11, 25, 28]). Another issue related to non-linearities is the

influence of the actual internal electrodes configuration on overall behaviour. Some

analytical approaches were proposed [32] although very often numerical simulation and

finite element modelling were preferred (as in [12, 3]).
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Notwithstanding the remarkable efforts put in for an accurate modelling of the

MLA, often researchers who need to integrate an MLA into a mechanical system do

use very simple models [20, 5, 16]. The more accurate available analytical models are

either extremely complex to implement or do not allow introducing external loads.

Non-analytical models lack synthesis capabilities, thus proving not to be a valid early

design tool.

The models presented in this dissertation achieve the remarkable objective of pro-

viding more information on the dynamics of mechanical systems driven by piezoelectric

MLAs without increasing the complexity of the mathematical model. Such accom-

plishment is made considering the actual distribution of the piezoelectric layers. The

additional information obtained includes a more complete description of the dynamic

behaviour at higher-than-first-resonance frequencies. Piezoelectric multilayer actuators

are very fast devices that find wide use in high precision and/or high dynamics me-

chanical systems, such as injection systems, inkjet printers, resonators, vibration control

systems, energy harvesting devices, etc. Ongoing studies on active vibration control

employ piezoelectric MLAs for actuating purposes, given their high load capabilities

and resonant frequency (see [24]). Furthermore, piezoelectric MLAs are used as compo-

nents in ultrasonic motors, thus they are driven near either resonance ot anti-resonance

frequencies [2]. In such cases the knowledge of the frequency response function is of

paramount importance.
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Nomenclature

Table 1 shows the main symbols and units used in the following paper, all in compliance

with IEEE Std 176-1987.

Symbol Description SI Unit

cijkl, cpq Elastic stiffness constant N/m2

C Capacitance F

dijk , dip Piezoelectric (strain) constant m/V, C/N

Di Electric displacement C/m2

eijk, eip Piezoelectric (stress) constant C/m2

Ei Electric field V/m

f Frequency Hz

gijk, gip Piezoelectric (voltage) constant V ·m/N, m2/C

I Electric current A

j Imaginary unit -

Q Electric charge C

R Resistance Ω

sijkl, spq Elastic compliance constant m2/N

Sij , Sp Strain -

t Thickness m

Tij , Tp Stress N/m2

Vp Electric tension V

v Sound speed m/s

εij Permettivity F/m

φ Scalar electric potential V

τ Time s

ω Angular frequency Hz

The field symbols D, E, S, and T can be used as superscripts

of constants meaning that the quantity has been measured at constant

values of the specified field

Table 1: Piezoelectricity symbols and units
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Chapter 1

Piezoelectric thin plates

A thin plate of piezoelectric material is generally used either in the so-called d33 mode

or d13 mode. The former exploits the material’s property of undergoing deformation in

the same direction along which the electric field is applied (this direction is the poling

direction as well); the latter mode makes use of the in-plane deformation due to an

electric field whose lines are perpendicular to the plate surface.

The plate considered is so thin that three dimensional effects can be neglected. Its

dimensions are t (thickness), and A (area). A coordinate system is placed at its very

center (see Fig. 1.1) and the direction 3 is normal to the plate surface (in the figure the

coordinate x is along this direction). At the upper and lower surfaces are placed two

electrodes that induce an electric field along the axis 3 when connected to a voltage

source.

Pertinent constitutive and dynamic equations as derived from Eq. B.18 and Eq. B.19

are







T = cES − eE

D = eS + εSE
(1.1)

x2

x

Figure 1.1: Unconstrained plate model
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





cEu,xx + eϕ,xx = ρu,ττ

eu,xx − εSϕ,xx = 0
(1.2)

based on the hypothesis that strains S1, S2, S4, S5 and S6 are negligible, as well as the

electric fields along directions 1 and 2. The subscript 3 has been dropped for clarity’s

sake and substituted by an x in case of differentiation with respect to the coordinate

x3
1.

1.1 Single plate dynamics

The dynamics of a thin plate can be efficiently studied employing Eq. 1.1 and 1.2.

Given the same assumptions on displacements and fields, the dynamic equations can

be simplified in







(

cE + e2

εS

)

u,xx = ρu,ττ

u,xx = εS

e ϕ,xx

(1.3)

The first of the two equations models the dynamics of the mechanical part of the

thin plate while the second connects the mechanical domain to the electric field domain.

The first equation is formally equal to the wave equations, therefore it will be re-written

as

u,xx =
1

v2
u,ττ (1.4)

where v =

√

cE+ e2

εS

ρ is the speed of sound in the piezoelectric medium. The periodic

solution to the wave equation is very well known and it assumes the generic expression

of

u(x, τ) =
(

A1 cos
(ω

v
x
)

+A2 sin
(ω

v
x
))

sin (ωτ) (1.5)

The second equation of Eq. 1.3 can be integrated in time yielding

ϕ(x, τ) =
e

εS
u(x, τ) +B1(τ)x+B2(τ) (1.6)

Since electric potential is only defined up to an additive constant, B2(τ) can be set

arbitrarily to zero.

1The partial derivative of the function X with respect to a variable Y are expressed in this paper

as X,Y . A repetition of the variable indicates higher order derivative.
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The integration constants A1, A2, and B1 can be found imposing boundary condi-

tions to the mechanical and electrical variables. From the constitutive equations Eq. 1.1

the explicit expression of the mechanical stress and the electric displacement can be

found:







T (x, τ) = cEu,x + eϕ,x

D(x, τ) = eu,x − εSϕ,x

(1.7)

Substituting Eq. 1.5 into Eq. 1.7 yields







T = ω
v

(

cE + e2

εS

)

(

−A1 sin
(

ω
v x
)

+A2 cos
(

ω
v x
))

+ eB1

D = −εSB1

(1.8)

where the time dependent part of Eq. 1.5 has been left out for clarity’s sake, given that















T (x, τ) = T sin (ωτ)

D(x, τ) = D sin (ωτ)

B1(τ) = B1 sin (ωτ)

(1.9)

The electric displacement D allows a simple calculation of the charge Q accumulated

on the electrodes by integration over the plate surface of area A

Q(τ) = −

∫

A
D(x, τ) dA =

∫

A
εSB1(τ) dAA = εSAB1 sin (ωτ) (1.10)

It is easy then to calculate the electric current I flowing out of the electrode by

differentiating the explicit expression of Q once the integration constant B1(τ) is found

I(τ) = εSAωB1 cos (ωτ) (1.11)

It is worth noticing that in this formulation the displacement is always in phase with

the electric tension applied to the electrodes while the current is always 90◦ shifted. In

this respect the piezoelectric actuator behaves electrically as a capacitor whose capac-

itance is frequency dependent. The value of the capacitance can be calculated easily

as

CPZT = εSA
B1

Vp
(1.12)
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1.1.1 Unconstrained plate

An unconstrained plate is free to vibrate in space and it may be subject to an electric

field given by a voltage Vp applied to the electrodes. Boundary conditions express the

potential difference among the upper and lower surface of the piezoelectric plate and

the zero stress condition at the aforementioned surfaces. It must be noticed that this

statement is true if and only if the electrodes mass is negligible. Boundary equations

are















ϕ
(

t
2 , τ
)

− ϕ
(

− t
2 , τ
)

= Vp sin (ωτ)

T
(

t
2 , τ
)

= 0

T
(

− t
2 , τ
)

= 0

(1.13)

Substituting Eq. 1.6 and 1.8 into Eq. 1.13 yields the integration constants A1, A2, and

B1















2 e
εS
A2 sin

(

ω
v
t
2

)

+ tB1 = Vp
ω
v c̄

EA2 cos
(

ω
v
t
2

)

+ eB1 = 0

ω
v c̄

EA1 sin
(

ω
v

t
2

)

= 0

(1.14)

having defined c̄E = cE + e2

εS
. The system of equations can be solved as































A2 =
Vp

2 e

εS

(

sin(ω
v

t
2)−

εSc̄E

e2
(ω
v

t
2) cos(

ω
v

t
2)
)

B1 =
Vp

t

(

1− e2

εS c̄E

tan(ω
v

t
2)

ω
v

t
2

)

ω
v c̄

EA1 sin
(

ω
v
t
2

)

= 0

(1.15)

The last equation of the set presents non-trivial solution if and only if A1 = 0,

otherwise the driving angular frequency ω must satisfy the following relation

ω(n) = 2nπ
v

t
n = 0, 1, 2, . . .

Resonance

The amplitude of the displacement u depends on the driving voltage, on the material

constants, on the plate dimensions, and on the driving frequency. In particular, for a

given piezoelectric plate, there are values of driving frequency for which the denomina-

tors of Eq. 1.15 tend to infinity or zero. In correspondence of such values, resonance or

anti-resonance conditions are found.
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In resonance conditions the electric source introduces energy in the system contin-

uously and this energy is converted both in mechanical energy, that is both kinetic and

deformation energy. The resonance condition implies therefore an increase in defor-

mation and displacement; such condition is reached when the denominator of the first

equation of the set Eq. 1.15 is zero. Introducing the variable ξ = ω
v

t
2 , the resonance

condition is met when

sin (ξ)−
εS c̄E

e2
ξ cos (ξ) = 0 (1.16)

This equation is implicit and thus requires numerical method to be solved. Fur-

thermore, it can be easily shown that the denominator of the second equation of the

set Eq. 1.15 is zero in the same conditions. In a physical perspective, that means the

current tends to infinity in resonance conditions.

On the contrary, anti-resonance conditions are reached when there is no energy

transmission from the source to the system. In this situation there is no displacement

nor deformation and the current is not flowing at all. From a mathematical point of

view, anti-resonance condition is reached when the denominators of Eq. 1.15 tends to

infinity, that is

tan (ξ) → ±∞ ω(n) = 2
(π

2
+ nπ

) v

t
n = 1, 2, . . . (1.17)

1.1.2 Inertially loaded unconstrained plate

In the previous investigation the influence of the electrode mass was dismissed, on

the ground that it can be regarded as negligible. In this section the influence of a

symmetric inertial load is taken into account, and it will be shown that, for reasonably

thin electrodes, their mass does not influence consistently the values of the resonance

frequencies.

The symmetric inertial load is constituted by two rigid bodies of mass ml fixed to

the electrodes’ outer surfaces (green body in Fig. 1.2). The boundary conditions will

be written as















ϕ
(

t
2 , τ
)

− ϕ
(

− t
2 , τ
)

= Vp sin (ωτ)

T
(

t
2 , τ
)

= −ml+me

A u,ττ
(

t
2 , τ
)

T
(

− t
2 , τ
)

= ml+me

A u,ττ
(

− t
2 , τ
)

(1.18)
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x2

x

Figure 1.2: Unconstrained plate with inertial load model

where me is the electrode mass. Substituting Eq. 1.6 and 1.8 into Eq. 1.18 allows

finding the integration constants A1, A2, and B1. The system of equations is















2 e
εS
A2 sin

(

ω
v
t
2

)

+ tB1 = Vp

A2
ω
v c̄

E cos
(

ω
v
t
2

)

+ eB1 = A2
ml+me

A ω2 sin
(

ω
v
t
2

)

ω
v c̄

EA1 sin
(

ω
v
t
2

)

= −A1ω
2ml+me

A cos
(

ω
v
t
2

)

(1.19)

which can be solved as







































B1 =

(

2c̄EεS

ρte2
ml+me

A (ω
v

t
2) sin(

ω
v

t
2)−

εSc̄E

e2
cos(ω

v
t
2)
)

(ω
v

t
2)

(

2c̄EεS

ρte2
ml+me

A (ω
v

t
2)

2
+1
)

sin(ω
v

t
2)−

εS c̄E

e2
(ω

v
t
2) cos(

ω
v

t
2)

Vp

t

A2 =
Vp

2 e

εS

((

2c̄EεS

ρte2
ml+me

A (ω
v

t
2)

2
+1
)

sin(ω
v

t
2)−

εSc̄E

e2
(ω
v

t
2) cos(

ω
v

t
2)
)

A1

(

ω
v c̄

E sin
(

ω
v
t
2

)

+ ω2ml+me

A cos
(

ω
v
t
2

))

= 0

(1.20)

As previously found, the integration constant A1 should be set to zero in order not

to introduce additional constraints to the angular frequency ω that would leave the

value itself of A1 discretionary.

Resonance

The resonance and anti-resonance conditions can be found respectively when the coef-

ficients A2 and B1 go to infinity or zero. From the formulation found in Eq. 1.20, the

resonance condition implies

(

2c̄EεS

ρte2
ml +me

A
ξ2 + 1

)

sin (ξ)−
εS c̄E

e2
ξ cos (ξ) = 0 (1.21)

where the variable ξ has been employed replacing ω
v
t
2 . The anti-resonance condition

can be found when the numerator of the expression of B1 is null, that is



CHAPTER 1. PIEZOELECTRIC THIN PLATES 33

x2

x

Figure 1.3: Constrained plate

2

ρt

ml +me

A
ξ sin (ξ)− cos (ξ) = 0 (1.22)

Both Eq. 1.21 and 1.22 are implicit and require numerical methods to be solved.

1.1.3 Constrained plate

A more meaningful configuration, in the perspective of actuation, sees one surface of

the plate constrained to a fixed reference (see Fig. 1.3). In such a condition, when

the piezoelectric plate is excited by a driving voltage, the free surface moves and can

interact with a load. This configuration is that of an actuator. The boundary conditions

can be formulated as















ϕ
(

t
2 , τ
)

− ϕ
(

− t
2 , τ
)

= Vp sin (ωτ)

T
(

t
2 , τ
)

= 0

u
(

− t
2 , τ
)

= 0

(1.23)

and more explicitly as















2 e
εS
A2 sin

(

ω
v
t
2

)

+ tB1 = Vp

−ω
v c̄

EA1 sin
(

ω
v
t
2

)

+ ω
v c̄

EA2 cos
(

ω
v
t
2

)

+ eB1 = 0

A1 cos
(

−ω
v
t
2

)

+A2 sin
(

−ω
v
t
2

)

= 0

(1.24)

The solution to the system is



































B1 =
1

1− e2

εS c̄E

tan(2ω
v

t
2)

(2ω
v

t
2)

Vp

t

A2 =
− εS

e
cos(ω

v
t
2)

c̄EεS

e2
(2ω

v
t
2) cos(2

ω
v

t
2)−sin(2ω

v
t
2)
Vp

A1 =
− εS

e
sin(ω

v
t
2)

c̄EεS

e2
(2ω

v
t
2) cos(2

ω
v

t
2)−sin(2ω

v
t
2)
Vp

(1.25)
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x2

x

Figure 1.4: Constrained plate with additional mass

In this case it is interesting to calculate the maximum displacement umax, that

obviously occurs at x = t
2 . Substituting the values found for A1 and A2 in Eq. yields

umax =
εS

e

1− c̄EεS

e2

(

2ω
v

t
2

)

cot
(

2ω
v

t
2

)
Vp (1.26)

Resonance

Resonance conditions can be found by analysing the maximum displacement formula

(Eq. 1.26). Resonance is found when

εS c̄E

e2
(2ξ) cot (2ξ) = 1 (1.27)

is satisfied. On the contrary anti-resonance frequencies satisfy the relation

cot (2ξ) → ±∞

that is

ω(n) = nπ
v

t
n = 1, 2, . . . (1.28)

1.1.4 Inertially loaded constrained plate

The influence of an inertial load on the system (see Fig. 1.4) can be analysed considering

the following boundary conditions















ϕ
(

t
2 , τ
)

− ϕ
(

− t
2 , τ
)

= Vp sin (ωτ)

T
(

t
2 , τ
)

= −ml+me

A u,ττ
(

t
2 , τ
)

u
(

− t
2 , τ
)

= 0

(1.29)
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which can be written, thanks to Eq. 1.23 and 1.19















2 e
εS
A2 sin

(

ω
v
t
2

)

+ tB1 = Vp

−ω
v c̄

EA1 sin
(

ω
v
t
2

)

+ ω
v c̄

EA2 cos
(

ω
v
t
2

)

+ eB1 =
ml+me

A ω2
(

A1 cos
(

ω
v
t
2

)

+A2 sin
(

ω
v
t
2

))

A1 cos
(

−ω
v
t
2

)

+A2 sin
(

−ω
v
t
2

)

= 0

(1.30)

The solution to such boundary conditions is







































B1 =
εS c̄E

e2
−

ml+me
A

εSv2

te2
(2ω

v
t
2) tan(2

ω
v

t
2)

εS c̄E

e2
−
(

1+
ml+me

A
εSv2

te2
(2ω

v
t
2)

2
) tan(2ω

v
t
2)

(2ω
v

t
2)

Vp

t

A2 =
− εS

e
Vp cos(ω

v
t
2)

εS c̄E

e2
(2ω

v
t
2) cos(2

ω
v

t
2)−

(

1+
ml+me

A
εSv2

te2
(2ω

v
t
2)

2
)

sin(2ω
v

t
2)

A1 =
− εS

e
Vp sin(ω

v
t
2)

εS c̄E

e2
(2ω

v
t
2) cos(2

ω
v

t
2)−

(

1+
ml+me

A
εSv2

te2
(2ω

v
t
2)

2
)

sin(2ω
v

t
2)

(1.31)

The maximum displacement occurs at the upper surface and it is

umax =
εS

e

1 + ml+me

A
εSv2

te2

(

2ω
v

t
2

)2
− εS c̄E

e2

(

2ω
v

t
2

)

cot
(

2ω
v

t
2

)

Vp (1.32)

Resonance

Resonance conditions can be found by analysing the maximum displacement formula

(Eq. 1.32). Resonance is found when

1 +
ml +me

A

εSv2

te2
(2ξ)2 −

εS c̄E

e2
(2ξ) cot (2ξ) = 0 (1.33)

is satisfied. On the contrary anti-resonance frequencies satisfy the relation

cot (2ξ) → ±∞

that is

ω(n) = nπ
v

t
n = 1, 2, . . . (1.34)

1.2 Driving circuit

The model presented in the previous sections does not include losses of whatever nature,

mechanical, dielectrical, or piezoelectrical. A way to include losses that naturally occurs

in all the aforementioned domains is to introduce a dissipative element in the driving



36 1.3. SIMULATIONS AND COMMENTARY

Vs Vp

R

PZT

Figure 1.5: Driving circuit of the piezoelectric actuator

electric circuit. The driving circuit is constituted by a controllable voltage source Vs,

a resistor R, and the piezoelectric actuator (see Fig. 1.5).

As previously pointed out, the piezoelectric actuator can be analysed in an electric

circuit as a capacitor with a frequency-dependent capacitance. With the definition of

capacitance of Eq. 1.12, the driving ciruict can be analysed as a standard RC circuit

for which the following relations hold







θ = arctan (RCPZT ω)

Vp = Vs cos θ
(1.35)

In order to evaluate the expressions of Eq. 1.35, a configuration must be chosen for

the system. Considering the constrained plate with an inertial load the capacitance

can be written as

CPZT =
εS c̄E

e2
− ml+me

A
εSv2

te2

(

2ω
v

t
2

)

tan
(

2ω
v
t
2

)

εS c̄E

e2
−
(

1 + ml+me

A
εSv2

te2

(

2ω
v
t
2

)2
)

tan(2ω
v

t
2)

(2ω
v

t
2)

εSA

t
(1.36)

1.3 Simulations and commentary

The equations shown in the previous sections allow a straightforward calculation of the

system’s frequency response function (FRF). The frequency response function gives an

insight about the dynamic behaviour of the system when excited by a periodic signal.

First of all the material’s constants need be known. From most piezoelectric mate-

rial’s datasheets the values of cE33, e33, and ε
S
33 are not found, while the values of sE ,

d, and εT are more common. Thus the relations of Eq. B.4 must be employed. In

particular:
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Figure 1.6: Strain FRF for different constraints and loading conditions















cEprs
E
qr = δpq

εTpq = εSpq + dpreqr

epq = dprc
E
rq

which can be solved as















[

cE
]

=
[

sE
]−1

[e] = [d] ·
[

cE
]

[

εS
]

=
[

εT
]

− [e] · [d]T

(1.37)

It must be noticed that the inverse of the matrix
[

sE
]

might not exist due to null rank,

condition that often occurs because some coefficients of
[

sE
]

might not be given by the

manufacturer. In this case the matrix
[

cE
]

shall be calculated with the Moore-Penrose

pseudoinverse algorithm ([19], [21]).

This is the case for the material considered for the following simulations. The

manufacturer’s datasheets reports the values of sE11, s
E
33, ε

T
11, ε

T
33, d31, d15 and d33 (see

Tab. C.1 in appendix C), besides many more parameters that are not employed in the

modelling presented, such as aging stability, temperature stability, current constants,

etc. Table 1.37 shows the material’s parameter necessary for the present simulation

calculated with the above-mentioned procedure.

Figure 1.6 shows the strain FRF with different constraints and loading conditions.

The acronim “UTP” stands for unconstrained thin plate while “CTP” stands for con-
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PIC 151

piezoelectric stress constant e 29.5 C/N

stiffness constant cE 5 · 1010 N/m2

dielectric permettivity constant εS 6.8192 · 10−9 F/m

mass density ρ 7.8 · 103 kg/m3

Table 1.1: PI Ceramic - PIC 151 characteristics [22]
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Figure 1.7: Current FRF for different constraints and loading conditions

strained thin plate. The unconstrained thin plate is free to vibrate about its centre of

mass; in other word it behaves as if it had a fixed centre of mass. The constrained

configuration sees the thin plate constrained on one side to a fixed frate. When la-

beled with an additional “IL”, the thin plate is loaded with and inertial load. In these

simulations the load mass has been chosen to be equal to the thin plate mass itself.

The normalized load mass coefficient km, defined as the ratio between the load mass

and the piezoelectric material mass, is introduced in order to better define the inertial

loading condition on the piezoelectric device.

The FRF of the strain shows a flat part up to a certain value of frequency, than

the strain amplitude incresases, peaking in correspondence of the first the resonance

frequency. In the reported range, a second resonance frequency and two anti-resonance

frequencies can be seen. As easily predictable, the values of the resonance frequency is

lower when an inertial load is considered. The resonance frequencies are 13.58 MHz,

6.78 MHz, 5.28 MHz, and 2.64 MHz respectevly for UTP, UTP-IL, CTP, and CTP-IL.

It is really interesting to point out that the anti-resonance frequencies do not depend on
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Figure 1.8: Strain FRF when considering an electric resistance

inertial loading: both the simulations for the unloaded and the loaded plate show equal

anti-resonance frequencies (47.72 MHz and 23.86 MHz for the unloaded and inertially

loaded thin plate).

The current FRF (Fig. 1.7) shows a gain of one order of magnitude per decade in

the low frequency region. At high frequencies resonances occurs; it is very interesting to

notice that anti-resonances are found in correspondence of lower frequencies than those

of Fig. 1.6. Values for the four anti-resonance frequencies are 4.97 MHz, 9.92 MHz,

11.93 MHz, and 23.86 MHz.

When the driving circuit includes a resistor, the strain and current FRF changes

as shown in Fig. 1.8 and 1.9. The results for the current at low frequencies is very

much in accordance with the analysis of an electric RC circuit of given capacitance:

the current FRFs at low frequencies match. The inclusion of the resistor changes to

a limited extent the FRF plots. To quantify the difference, the FRF plots have been

magnified and superposed (see Fig. 1.10). As expected, the calculated gain does not

go to infinity anymore but is limited to 0.2 %/V and 1 A/V for respectively the strain

and the current.

A look on the voltage across the piezoelectric plate shows that in this case the cur-

rent at low frequencies is really negligible. Figure 1.11 shows the FRF of the voltage Vp

over the driving voltage Vs. It can be noticed that the downwards peaks of the plot

are generally quite narrow. The higher the inertial loading (due to either constraining

or to the load mass itself) the narrower the peak is. The lower part of Fig. 1.11 shows
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Figure 1.9: Current FRF when considering an electric resistance
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Figure 1.10: Current FRF comparison: with and without resistive load
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Figure 1.11: Voltage across piezoelectric actuator FRF

the phase plot of Vp/Vs, which is the same for the displacement/strain as well. The

current FRF phase plot has the same frequency dependence with values 90◦ shifted.
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Chapter 2

Finite difference modelling

The analytical model presented in the previous chapter is best suited for the evaluation

of the system’s dynamics in some peculiar conditions. First of all transient dynamics

is not included in the analysis and secondly the load dynamic behaviour of the load

must be reduced to that of a point mass. Obviously more complex loads and driving

signals can be analysed by superposition of different load masses and input signals.

Nevertheless, non-linear behaviour cannot be taken into account.

A way to overcome such problems is to implement a numerical model of the piezo-

electric plate. The finite difference method is a powerful tool for the analysis of any

kind of system, either mechanical, electrical, fluid-dynamic, or a combination thereof.

A finite difference technique for modelling piezoelectric plate in stretch mode had been

already presented in [26]: the model includes the driving circuitry as well. It is a

straightforward method to implement and allows the analysis of transient phenomena,

such as the response to a step voltage.

The finite difference modelling of a piezoeletric thin plate will be presented in the

following sections. Some loading and constraining conditions will be taken into account,

as well as the electric driving circuit.

2.1 Numerical analysis of single plate dynamics

Considering a single free plate, the pertinent constitutive and dynamic equations are

those reported in the first chapter (see Eq. 1.1 and 1.1). Employing finite difference

methods, the displacement u(x, τ) can be discretized in space and time above the two

intervals
[

− t
2 ,

t
2

]

and [0, τf ] (see Fig. 2.1). Introducing two indexes i and j, the following

variable substitutions hold

43
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Figure 2.1: Thin plate spatial discretization







x = − t
2 +

t
M−1(i− 1) = − t

2 + δ(i − 1)

τ =
τf

N−1(j − 1) = χ(j − 1)
(2.1)

where i = 1, . . . ,M and j = 1, . . . , N . The spatial and time coordinates of a grid point

(i, j) could be expressed as xi and τ
j. The plate is thus divided into M − 1 elements of

thickness δ and time is split in N−1 time steps of duration χ. Based on this definition,

the displacement u(xi, τ
j) can be written also as uji . Displacements around a point of

this grid can be found by Taylor’s expansion (as shown in [18]) as



































uj+1
i = uji + χ

(

∂u
∂τ

)j

i
+ 1

2χ
2
(

∂2u
∂τ2

)j

i
+ 1

6χ
3
(

∂3u
∂τ3

)j

i
+ 1

24χ
4
(

∂4u
∂τ4

)j

i
+ . . .

uj−1
i = uji − χ

(

∂u
∂τ

)j

i
+ 1

2χ
2
(

∂2u
∂τ2

)j

i
− 1

6χ
3
(

∂3u
∂τ3

)j

i
+ 1

24χ
4
(

∂4u
∂τ4

)j

i
+ . . .

uji+1 = uji + δ
(

∂u
∂x

)j

i
+ 1

2δ
2
(

∂2u
∂x2

)j

i
+ 1

6δ
3
(

∂3u
∂x3

)j

i
+ 1

24δ
4
(

∂4u
∂x4

)j

i
+ . . .

uji−1 = uji − δ
(

∂u
∂x

)j

i
+ 1

2δ
2
(

∂2u
∂x2

)j

i
− 1

6δ
3
(

∂3u
∂x3

)j

i
+ 1

24δ
4
(

∂4u
∂x4

)j

i
+ . . .

(2.2)

These forward and backward expansions can be summed and rearranged, according to

Eq. 1.4, yielding

1

v2

(

∂2u

∂τ2

)j

i

−

(

∂2u

∂x2

)j

i

=
uj+1
i − 2uji + uj−1

i

v2χ2
−
uji+1 − 2uji + uji−1

δ2
−

−
1

12

χ2

v2

(

∂4u

∂τ4

)j

i

+
1

12
δ2
(

∂4u

∂x4

)j

i

+ · · · = 0 (2.3)

A useful relation between even-order derivatives of u can be found by differentiation of

Eq. 1.4. For example, finding a relation between u,xxxx and u,ττττ







u,xxxx = 1
v2
u,ττxx

u,ττττ = v2u,xxττ
⇒ u,xxxx =

1

v4
u,ττττ (2.4)

It must be noted that the process can be iterated and the relation between higher

even-order derivatives can be found. Substituting Eq. 2.4 into Eq. 2.3 yields
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1

v2

(

∂2u

∂τ2

)j

i

−

(

∂2u

∂x2

)j

i

=
uj+1
i − 2uji + uj−1

i

v2χ2
−
uji+1 − 2uji + uji−1

δ2
−

−
1

12

(

χ2

v2
−
δ2

v4

)(

∂4u

∂τ4

)j

i

+ · · · = 0

Choosing suitable values for h and χ, so that the relation

χ2v2 = δ2 (2.5)

is satisfied, makes the truncation error null and therefore Eq. 2.3 can be written in a

more compact form as

uj+1
i = uji+1 + uji−1 − uj−1

i i = 1, . . . ,M ; j = 1, . . . , N (2.6)

Equation 2.6 allows calculating explicitly the displacement of all grid points at the

following time step τ j+1 once the displacements at the time τ j−1 and τ j are known

for all grid points. Furthermore it must be noticed that the displacement of two more

points are required for the solution of Eq. 1.4: those are uj0 and u
j
M+1. These two points

do not exist physically but are required for the computation of the spatial derivatives

at the boundaries of the plate. They will be called hereafter ghost points, since they

do not influence the dynamics of the system. The electric potential can be written as

ϕj
i =

e

εS
uji +Bj

1xi (2.7)

based on Eq. 1.6. Imposing a voltage difference V j
p between the electrodes, Eq. 2.7

allows expressing the integration constant Bj
1 as

ϕj
M − ϕj

1 =
e

εS

(

ujM − uj1

)

+Bj
1t = V j

p

Bj
1 =

V j
p

t
−

e

εSt

(

ujM − uj1

)

(2.8)

Mechanical stress and electric displacement at a grid point (i, j) can be written as







T j
i = c̄E

2δ

(

uji+1 − uji−1

)

− e2

εSt

(

ujM − uj1

)

+ e
tV

j
p

Dj = − εS

t V
j
p + e

t

(

ujM − uj1

) (2.9)

where it is well clear that the electric displacement is only time-dependent. The ex-

pression of charge Q, electric current I, and electric capacitance C are
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

















Qj = εS A
t V

j
p − eAt

(

ujM − uj1

)

Ij = εS A
2χt

(

V j+1
p − V j−1

p

)

− e A
2χt

(

uj+1
M − uj−1

M − uj+1
1 + uj−1

1

)

Cj = εS A
t − eAt

uj
M−uj

1

V j
p

(2.10)

where the centered difference formula has been employed for the calculation of the

current Ij . The expression of the capacitance shows very well the contribution of the

piezoelectric effect: while the material is not deformed (ujM = uj1 = 0) the capacitance

is the customary one; in case the plate undergoes deformation, the capacitance increases

(please notice that the piezoelectric stress constant e is negative). The expression of the

current shows the link between the mechanical and the electric field, being composed of

two separate terms. All these quantities can be calculated only once the voltage across

the piezoelectric material is known. To do so, the circuit equation

V j
s = RIj + V j

p (2.11)

must be considered (the electric circuit analysed is the same shown in Fig. 1.5). Overall

the dynamics of a piezoelectric plate is modelled by the following system of equations







uj+1
i = uji+1 + uji−1 − uj−1

i i = 1, . . . ,M ; j = 1, . . . , N

V j
s = RIj + V j

p

(2.12)

where boundary conditions must be included for obtaining a solution.

2.2 Boundary and initial conditions formulation

The solution to the system of equations Eq. 2.12 can be found only when boundary and

initial conditions are specified. While initial conditions allows calculating the values of

uji and V
j
p at the first time steps, boundary conditions helps defining a general scheme

for the solution to the system Eq. 2.12. Boundary conditions will be specified for all

four the cases reported in chapter one.

2.2.1 Unconstrained plate

The boundary conditions of Eq. 1.13 can be written explicitly by employing the stress

equation Eq. 2.9
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





T j
1 = c̄E

2δ

(

ujM+1 − ujM−1

)

− e2

εSt

(

ujM − uj1

)

+ e
tV

j
p = 0

T j
M = c̄E

2δ

(

uj2 − uj0

)

− e2

εSt

(

ujM − uj1

)

+ e
tV

j
p = 0

(2.13)

These formulas contains two unknowns, ujM+1 and uj0, given that the voltage V j
p has

been previously calculated. Indeed, the circuit equation can be re-written as

V j
s = V j

p + εSR
A

2χt

(

V j+1
p − V j−1

p

)

− eR
A

2χt

(

uj+1
M − uj−1

M − uj+1
1 + uj−1

1

)

(2.14)

expression that in fact holds true for any boundary conditions and allows calculating

the value of V j+1
p once uj+1

1 and uj+1
M are known. These last two variables can be

calculated starting from the dynamic equation Eq. 2.6. In conclusion, the system of

equations finds a solution in







































uj0 = uj2 +
2δe
c̄E

(

V j
p

t − e
εSt

(ujM − uj1)

)

ujM+1 = ujM−1 −
2δe
c̄E

(

V j
p

t − e
εSt

(ujM − uj1)

)

uj+1
i = uji+1 + uji−1 − uj−1

i i = 1, . . . ,M

V j+1
p = V j−1

p + 2χt
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(

V j
s − V j

p

)

+ e
εS

(

uj+1
M − uj−1

M − uj+1
1 + uj−1

1

)

(2.15)

The solution to the system of equations is based on the assumption that the dis-

placement of all points at the time τ j is known, as well as the voltage V j
p . Such

assumption might seem questionable, given that a different formulation of the current

expression (i.e. the backward difference formula) could lead to different results. In fact

the linear theory of piezoelectricity states that the electric field can be considered to

be quasi-stationary, that means transient phenomena in the electric circuit occur in

a much smaller fraction of time with respect to those related to the piezo-mechanical

part. Such hypothesis will be later verified when the electric circuit time constant will

be compared to the mechanical resonant period.

2.2.2 Inertially loaded unconstrained plate

The addition of an inertial load of mass m changes the boundary conditions Eq. 2.13

in







T j
1 = c̄E

2δ

(

uj2 − uj0

)

− e2

εSt

(

ujM − uj1

)

+ e
tV

j
p = m

A
uj+1
1 −2uj

1+uj−1
1

χ2

T j
M = c̄E

2δ

(

ujM+1 − ujM−1

)

− e2

εSt

(

ujM − uj1

)

+ e
tV

j
p = −m

A
uj+1
M −2uj

M+uj−1
M

χ2

(2.16)
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The two equations contain four unknowns, thus require two more equations for

finding a solution. The dynamic equation Eq. 2.6 for the upper and lower nodes 1

and M can be employed yielding































c̄E

2δ

(

uj2 − uj0

)

− e2

εSt

(

ujM − uj1

)

+ e
tV

j
p = µ

uj+1
1 −2uj

1+uj−1
1

χ2

c̄E

2δ

(

ujM+1 − ujM−1

)

− e2

εSt

(

ujM − uj1

)

+ e
tV

j
p = −µ

uj+1
M −2uj

M+uj−1
M

χ2

uj+1
1 = uj2 + uj0 − uj−1

1

uj+1
M = ujM+1 + ujM−1 − uj−1

M

(2.17)

where µ has been defined as m
A . The solution to such system can be found as



































































uj0 = −uj2 + 2
(

1 + 2δ
c̄E

µ
χ2

)−1 (

uj2 +
2δ
χ2

µ
c̄E
uj1+

+ δ
c̄E

e
t

(

V j
p − e

εS

(

ujM − uj1

)))

uj+1
i = uji+1 + uji−1 − uj−1

i i = 1, . . . ,M

ujM+1 = −ujM−1 +
(

1 + 2δ
χ2

µ
c̄E

)−1 (

2ujM−1 + 2 2δ
χ2

µ
c̄E
ujM + 2δ

c̄E
−

−2δ
t

e
c̄E

(

V j
p − e

εS

(

ujM − uj1

)))

V j+1
p = V j−1

p + 2χt
εSRA

(

V j
s − V j

p

)

+ e
εS

(

uj+1
M − uj−1

M − uj+1
1 + uj−1

1

)

(2.18)

2.2.3 Constrained plate

In case of a constrained plate the boundary conditions are modified as follows







uj1 = 0

T j
M = c̄E

2δ

(

uj2 − uj0

)

− e2

εSt

(

ujM − uj1

)

+ e
tV

j
p = 0

(2.19)

The results already found for the unconstrained plate in Eq. 2.15 are partly valid

for this case as well. The solution to the system Eq. 2.19 is thus















































uj0 = uj2

uj1 = 0

ujM+1 = ujM−1 −
2δe
c̄E

(

V j
p

t − e
εSt

(ujM − uj1)

)

uj+1
i = uji+1 + uji−1 − uj−1

i i = 2, . . . ,M

V j+1
p = V j−1

p + 2χt
εSRA

(

V j
s − V j

p

)

+ e
εS

(

uj+1
M − uj−1

M − uj+1
1 + uj−1

1

)

(2.20)
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2.2.4 Inertially loaded constrained plate

The addition of an inertial load to the system implies a change in the formulation

of the boundary conditions. The stress on the unconstrained face of the plate is not

always zero but it is variable according to the accelerations of the load. The system of

equations Eq. 2.19 has to be modified in







uj1 = 0

T j
M = c̄E

2δ

(

uj2 − uj0

)

− e2

εSt

(

ujM − uj1

)

+ e
tV

j
p = −m

A
uj+1
M −2uj

M+uj−1
M

χ2

(2.21)

This system finds a solution as



























































uj0 = uj2

uj1 = 0

uj+1
i = uji+1 + uji−1 − uj−1

i i = 2, . . . ,M

ujM+1 = −ujM−1 +
(

1 + 2δ
χ2

µ
c̄E

)−1 (

2ujM−1 + 2 2δ
χ2

µ
c̄E
ujM−

−2δ
t

e
c̄E

(

V j
p − e

εS

(

ujM − uj1

)))

V j+1
p = V j−1

p + 2χt
εSRA

(

V j
s − V j

p

)

+ e
εS

(

uj+1
M − uj−1

M − uj+1
1 + uj−1

1

)

(2.22)

2.3 Simulations and commentary

The finite difference technique is a very simple kind of finite element modelling. As

happens for any of this numerical solutions, a particular care must be taken in evalu-

ating the accuracy of the results. As the method models a space and time dependent

problem, convergence and accuracy have to be checked with respect to both.

In a finite element model the result of a simulation might depend on the number of

elements involved in modelling the object under analysis. In the finite difference model

presented there is a double discretization, both in space and time. As demonstrated,

best results are achieved when a particular ratio between the two discretization steps

is chosen (see Eq. 2.5).

A simple method to evaluate the accuracy and the convergence of the finite differ-

ence model of a piezoelectric thin plate is to give an input step voltage and to compare

the resulting deformation and period of oscillation. The amplitude of the oscillation

will be twice the static deformation, while the oscillating period will be approximately

equal to the reciprocal of the first resonance frequency.
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Figure 2.2: Thin plate model convergence

Figure 2.2 shows the values of the maximum strain and of the first resonance fre-

quency as the number of elements increases. The simulations that were carried out

consisted in inputting a 100 V step voltage to an undeformed thin plate with the same

geometrical and material specifications as that employed in chapter one. Both maxi-

mum strain and first resonance frequency reach rapidly a “stable” value. The better

accuracy due to employing a large number of elements has a downside: the computa-

tional time increases considerably.

Figure 2.3 reports the computational time taken to produce the aforementioned

results (simulations run in Matlab, on a Intel Core 2 Duo 2.2 GHz processor equipped

with 8 GB RAM). It can be noticed that the computational time shows a quadratic

dependence on the number of elements. Therefore a trade-off between accuracy and

computational time must be taken. It seems resonable to consider satisfactory the

results obtained with 100 elements: further discretization does not bring tremendous

improvements both with respect to deformation and dynamic behaviour, while the

computational time is still quite limited.

2.3.1 FRF estimation

The frequency response function of a system can be estimated by giving an impulse

and measuring the response. Then both the input signal and the response are analysed

by means of the fast Fourier transforms and the FFR is calculated. Such method goes

under the name of impact testing and is a very common practice in many engineering
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Figure 2.3: CPU time as element number increases

areas.

The procedure can be employed numerically too for estimating the FRF of a system

modelled by the finite difference method. The input signal can be obviously reproduced

numerically and the simulation gives as output the response. The numerical techniques

for the analysis of the data are the same as those employed in the experimental esti-

mation of the FRF.

One way to give an excitation to a system is to input a inpulse of very short duration.

The shorter is the duration of the signal, the higher the frequencies to be excited. The

longer the acquisition/simulation time is, the broader is the frequency spectrum in the

range lower end. The shape of the impulsive signal influences the way the frequencies

are excited. Very good results can be achieved by inputting a impulse shaped as a

half-sine (see Fig. 2.4).

The fast Fourier transform (FFT) of the half sine impulse is shown in Fig. 2.5.

This FFT is calculated for a unitary amplitude impulse signal whose duration is about

10−9 seconds. The simulation time is 2 ·10−5 s. The remarkable result is that the signal

give an homogeneous excitation in a very broad frequency range. The lower and upper

range boundaries can be calculated approximately as the inverse of the simulation time

and the inverse of the impulse duration respectively. In fact at the upper frequency

boundary defined in this way overestimates the region in which the FFT of the signal

still presents the same gain and phase at lower frequencies. According to particular

needs, the upper frequency bound can be considered one or two order of magnitude
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Figure 2.4: 1 V half sine pulse

lower.

Nevertheless, the half sine pulse excitation achieves the remarkable goal of giving a

constant excitation in a broad frequency spectrum. Furthermore, numerically this range

can be easily controlled, given that the time discretization reproduces well the shape

of the signal. The chosen spatial discretization of 100 elements implied an integration

time step of 2.1 · 10−10 s, which is quite satisfactory in this respect.

Figures from 2.6 to 2.9 reports the strain and current FRF’s of the thin plate

analysed in chapter one, comparing the results with the finite difference simulations.

Figures 2.6 and 2.7 show the FRF’s of an unloaded constrained thin plate, while Fig. 2.8

and 2.9 represent the behavior of the system when inertially loaded. In this case the

load mass equals the piezoelectric plate mass, i.e. km = 1.

The finite difference model shows an adequate to good dynamic description of the

system dynamics with respect to the analytical solution. The strain FRF of the un-

loaded thin plate matches very well the one calculated analyticaly at low frequencies

while there is only an asymptotical correspondence of the dynamic behaviour at high

frequencies, that is for frequencies higher than the first resonance. In particular the first

resonance frequency resulting from finite difference modelling of the system dynamics

differs quite drastically from the analytical model. Indeed a peak can be spotted at

about 7.5 MHz, while the resonace frequency calculated analytically is at 5.28 MHz. It

is interesting to notice that the resonance frequency estimated with the procedure on

which Fig. 2.2 is based yields slightly different results. Reading the plot of Fig. 2.2 the
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Figure 2.5: 1 V half sine pulse - FFT
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Figure 2.6: Unloaded constrained plate - Strain FRF comparison between BKM and FDM
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Figure 2.7: Unloaded constrained plate - Current FRF comparison between BKM and FDM
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Figure 2.8: Inertially loaded constrained plate - Strain FRF comparison between BKM and

FDM
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Figure 2.9: Inertially loaded constrained plate - Current FRF comparison between BKM and

FDM

first resonance frequency occurs at about 7 Mhz, instead of 7.5 MHz. The conclusion

to be drawn is that the shape of the excitation signal influence the calculated FRF.
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Chapter 3

Piezoelectric multilayer actuators

Far more interesting for the mechanical engineer is the piezoelectric multilayer actuator

(MLA). Indeed, the biggest downside of piezoelectric materials is their limited defor-

mation induced by electric field. Altough large enough in certain applications such

as MEMs and NEMs (nano- and micro- electromechanical systems), bulk piezoelectric

devices (that is devices made by a single piece of piezoelectric material) do not find

applications in larger scale mechanical systems, with the remarkable exception of some

piezoelectric motors.

The piezoelectric MLA, made by a stack of single piezoelectric plates or disks, over-

comes two large limitations: the small deformations and strokes, and the high driving

voltages. At the time this document is written, commercially available piezoelectric

MLAs reach 1 mm strokes with driving voltages of 120 V.

3.1 Multilayer actuator modelling

Amultilayer stack is basically made by a series of piezoelectric thin plates and electrodes

(see Fig. 3). Due to manufacturing considerations, layers and electrodes can be arranged

in different configurations (as shown in Fig. 3.1). The easiest solution, from a theoretical

point of view, is the alternation of layers of piezoelectric material and electroded surfaces

that span the whole actuator’s width (Fig. 3.1.a). This plate-through solution presents

some insulation issues: the electrodes side must be connected in parallel to the driving

electric circuit in an alternating way. Every two conducting layers there must be an

insulating coating that prevents short circuits.

Insulating might be problematic, thus alternative configurations were introduced.

The interdigital configuration sees the electrodes occupy only a portion of the actuator’s

57
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(a) (b)

Figure 3.1: Plate-electrode configurations

(a) (b)

Figure 3.2: Solutions for relieving stress and electric field concentrations

cross section (Fig. 3.1.b). Employing this solution, there is no concern about short

circuiting, although other problems arise. In the areas close to the actuator’s outer

surface there is no deformation, since the electrodes do not cover the whole area. This

causes mechanical stress and electric field concentration (field lines are not parallel to

the actuator axis). To overcome these drawbacks, some modification to the interdigital

design were proposed. One solution aims at relieving mechanical stress by making some

slits where the electrodes end (Fig. 3.2.a). Another solution allows reducing the electric

field concentration by putting some disconnected electrodes in the piezoelectric layer

(Fig. 3.2.b).

3.1.1 Multilayer statics

The overall displacement can be approximated considering the stack made by a series

of L piezoelectric plates and disregarding the influence of the electrodes deformation.

When each plate is subject to a displacement ku, the stack undergoes an elongation

equals to

u = L ku

It should be noted that larger displacements can be obtained without raising the

driving voltage. Low driving voltages result from very thin layers of piezoelectric ma-

terial and electrodes, which are the remarkable outcome of improved manufacturing
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F

Figure 3.3: Multilayer actuator and loading conditions

processes, known as tape-casting methods. Laminated ceramics with printed electrodes

are laminated and co-fired with internal electrodes.

3.2 System’s description

The multilayer actuator shall be constituted by L layers of thickness t. Each layer is

bound by two electrodes that allow applying a voltage Vp. The actuator is fixed at

one end, while the opposite end is free to move and can be loaded by a force F (see

Fig. 3.3).

In order to simplify notation, Eq. 1.1 and 1.2 can be greatly simplified if the dis-

placement variable is changed by the linear transformation

ū =
e

εS
u (3.1)

as



























T = cEεS

e ū,x + eϕ,x

D = εS (ū,x − ϕ,x)

cEεS

e ū,xx + eϕ,xx = ρ εS

e ū,ττ

ū,xx − ϕ,xx = 0

(3.2)

3.3 Hypotheses

Let ū be the transformed variable that describes the displacement of the layers. The

variable ū is dependent on the coordinate x and the time τ . Defining the sub-domainsRk

upon which ū is defined as Rk = [(k − 1)t, kt] × [0,+∞), it is required that u ∈
(

⋃L
k=1C

2(Rk)
)

∩ C
(

⋃L
k=1Rk

)

, i.e. that ū can be differentiated twice with respect

to time and space within a sub-domain Rk and that is continuous across neighboring

sub-domains.
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3.4 Formulation of the equations

3.4.1 Dynamic equations

For each layer, the set of equations Eq. 3.2 can be written as



























T k = cEεS

e ūk,x + eϕk
,x

Dk = εS
(

ūk,x − ϕk
,x

)

cEεS

e ūk,xx + eϕk
,xx = ρ εS

e ū
k
,ττ

ūk,xx − ϕk
,xx = 0

k = 1, . . . , L (3.3)

Expressing the electric potential derivative ϕk
,x as a function of displacement derivative

as ϕk
,x = ūk,x +Bk(τ), one gets































T k =
(

cEεS

e + e
)

ūk,x + eBk

Dk = −εSBk

(

cEεS

e + e
)

ūk,xx = ρ εS

e ū
k
,ττ

ϕk
,x = ūk,x +Bk

k = 1, . . . , L (3.4)

Recalling the definition of the coefficients c̄E = 1 + cEεS

e2
and v2 = c̄Ee2

ρεS
yields



























T k = e
(

c̄E ūk,x +Bk
)

Dk = −εSBk

ūk,ττ − v2ūk,xx = 0

ϕk = ūk +Bkx

k = 1, . . . , L (3.5)

3.4.2 Boundary and initial conditions

Boundary and initial conditions are such as

1. The piezoelectric actuator is fixed at one end:

ū1(0, τ) = 0

2. Every layer except the free end one is fixed to a neighboring one:

ūk(kt, τ) = ūk+1(kt, τ) k = 1, . . . , L− 1

T k+1(kt, τ) = T k(kt, τ) + µe
εS

e
ūk,ττ (kt, τ) k = 1, . . . , L− 1

where µe is the electrode mass per unit area. The latter can be re-written as

T k(kt, τ) = e
(

c̄E ūk+1
,x (kt, τ) +Bk+1

)

− µe
εS

e
ūk,ττ (kt, τ)
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3. A voltage is applied to each layer:

V k
p (τ) = ϕk(kt, τ) − ϕk((k − 1)t, τ) k = 1, . . . , L

This condition can be re-written as

V k
p (τ) = ūk(kt, τ) − ūk((k − 1)t, τ) + tBk k = 1, . . . , L

4. The mechanical stress acting upon the free end shall be given by an applied force,

an inertial load, and an elastic load:

TL(Lt, τ) = f(τ)− (µl + µe)
εS

e
ūL,ττ (Lt, τ)− κ

εS

e
ūL(Lt, τ)

where f = F
A , κ = k

A and µl =
ml

A

5. The actuator is initially undeformed:

ūk(x, 0) = 0

3.4.3 Boundary equations formulation

Boundary conditions equations can be simplified following a particular scheme. As the

stress on the free end can be expressed as a function of F and ūL only, BL can be

calculated as well. The voltage condition on layer L can be now expressed only as a

function of F and ūL.

The equality T k(kt, τ) = T k+1(kt, τ) − µe
εS

e ū
k
,ττ (kt, τ) allows progressing to inner

layers as Tab. 3.1 shows. The explicit expression of Bk can be substituted into that

of V k
p yielding

V k
p = ūk(kt, τ) − ūk((k − 1)t, τ) +

t

e
T k(kt, τ)− tc̄E ūk,x(kt, τ) (3.6)

and once more T k(kt, τ) can be re-written as

T k(kt, τ) = ec̄E ūk+1
,x (kt, τ)− ec̄E ūk+1

,x ((k+ 1)t, τ) + T k+1((k +1)t, τ)− µe
εS

e
ūk,ττ (kt, τ)

(3.7)

giving a more compact notation for the kth voltage equation

V k
p = ūk(kt, τ)− ūk((k − 1)t, τ)− tc̄E ūk,x(kt, τ)+

+tc̄E
L−1
∑

h=j

uh+1
,x (ht, τ)−uh+1

,x ((h+1)t, τ)−µe
εS

c̄Ee2
uh,ττ (ht, τ)+

t

e
TL(Lt, τ) k = 1, . . . , L−1

(3.8)
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The explicit formulation of the voltage equation for the layer L can be read in Tab. 3.1.

Subtracting V k−1
p from V k

p yields:

V k
p − V k−1

p = ūk(kt, τ)− 2ūk((k − 1)t, τ) + ūk−1((k − 2)t, τ)+

+tc̄E ūk−1
,x ((k−1)t, τ)−tc̄E ūk+,x ((k−1)t, τ)+µet

εS

e2
ūk−1
,ττ ((k−1)t, τ) k = 2, . . . , L−1

(3.9)

This result can be extended to k = 2, . . . , L. For V L
p

V L
p −

t

e
f(τ) = ūL(Lt, τ)− ūL((L− 1)t, τ)−

−
tεS

e2
(µe + µl)ū

L
,ττ (Lt, τ)− κt

εS

e2
ūL(Lt, τ)− tc̄EūL,x(Lt, τ)

(3.10)

Boundary conditions constitute a set of 2L equations. They can be summed up as



















































































ūL(Lt, τ )− ūL((L− 1)t, τ )− tεS

e2
(µe + µl)ū

L
,ττ (Lt, τ )− κt ε

S

e2
ūL(Lt, τ )−

−tc̄EūL
,x(Lt, τ ) = V L

p −

t
e
f(τ )

ūk(kt, τ )− 2ūk((k − 1)t, τ ) + ūk−1((k − 2)t, τ ) + tc̄Eūk−1
,x ((k − 1)t, τ )−

−tc̄Eūk+
,x ((k − 1)t, τ ) + µet

εS

e2
ūk−1
,ττ ((k − 1)t, τ ) = V k

p − V k−1
p k = 2, . . . , L

ūk(kt, τ ) = ūk+1(kt, τ ) k = 1, . . . , L− 1

ū1(0, τ ) = 0

(3.11)

3.5 Solution

The dynamic equation Eq. 3.5 is linear, as well as boundary conditions expressed in

Eq. 3.11. Considering the external actions V k
p and F , a function Gk that groups them

is defined as

GL = V L
p − t

ef

Gk−1 = V k
p − V k−1

p k = 2, . . . , L
(3.12)

Because of the linearity of the equations, if ū is a solution associated with Gk and

˜̄u associated with G̃k, ū+˜̄u is a solution associated with Gk+G̃k. The generic solution ū

to the problem is such as
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ūk(x, τ) = Xk(x)Θ(τ) (3.13)

where X ∈
(

⋃L
k=1C

2([(k − 1)t, kt])
)

∩C ([0, Lt]), and Xk = Xχ[(k−1)t,kt]
. The dynamic

equation can be re-written as

Θ′′(τ)

Θ(τ)
= v2

X ′′
k (x)

Xk(x)
= −λ (3.14)

where λ is a constant dependent on Gk. Boundary conditions Eq. 3.11 can be re-written

as











































































((

1− κ tεS

e2

)

XL(Lt)−XL((L− 1)t) + λ tεS

e2
(µe + µl)XL(Lt)− tc̄EX ′

L(Lt)
)

Θ(τ ) = GL

(

Xk(kt)− 2Xk((k − 1)t) +Xk−1((k − 2)t) + tc̄EX ′

k−1((k − 1)t)−

−tc̄EX ′

k((k − 1)t)− λµe
tεS

e2
Xk−1((k − 1)t)

)

Θ(τ ) = Gk−1 k = 2, . . . , L

Xk(kt) = Xk+1(kt) k = 1, . . . , L− 1

X1(0) = 0

(3.15)

3.5.1 Positive parameter

Let λ = ω2, the solution ūk can be written as

ūk(x, τ) =
(

rk cos
(ω

v
x
)

+ qk sin
(ω

v
x
))

sin(ωτ) (3.16)

The first derivative with respect to x of Eq. 3.16 is

ūk,x(x, τ) =
ω

v

(

−rk sin
(ω

v
x
)

+ qk cos
(ω

v
x
))

sin(ωτ) (3.17)

This solution implies that Gk is either null or equal to gk sin(ωτ). In the most

generic case, the boundary conditions can be written as
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
























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














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











































































rL

((

1− κ tεS

e2

)

cos
(

Ltω
v

)

− cos
(

(L− 1)tω
v

)

+ ω2 tεS

e2
(µe + µl) cos

(

Ltω
v

)

+

+tc̄E ω
v
sin
(

Ltω
v

))

+ qL

((

1− κ tεS

e2

)

sin
(

Ltω
v

)

− sin
(

(L − 1)tω
v

)

+

+ω2 tεS

e2
(µe + µl) sin

(

Ltω
v

)

− tc̄E ω
v
cos
(

Ltω
v

)

)

= gL

rk
(

cos
(

ktω
v

)

− 2 cos
(

(k − 1)tω
v

)

+ tc̄E ω
v
sin
(

(k − 1)tω
v

))

+

+qk
(

sin
(

ktω
v

)

− 2 sin
(

(k − 1)tω
v

)

− tc̄E ω
v
cos
(

(k − 1)tω
v

))

+

+rk−1

(

cos
(

(k − 2)tω
v

)

− tc̄E ω
v
sin
(

(k − 1)tω
v

)

− ω2µe
tεS

e2
cos
(

(k − 1)tω
v

)

)

+

+qk−1

(

sin
(

(k − 2)tω
v

)

+ cos
(

(k − 1)tω
v

)

− ω2µe
tεS

e2
sin
(

(k − 1)tω
v

)

)

= gk−1

k = 2, . . . , L

rk+1 cos
(

ktω
v

)

+ qk+1 sin
(

ktω
v

)

− rk cos
(

ktω
v

)

− qk sin
(

ktω
v

)

= 0 k = 1, . . . , L− 1

r1 = 0

(3.18)

It is convenient, for a computer code implementation, to express the system of

equations in matrix form. Defining

p = {r1, . . . , rL, q1, . . . , qL}
T

g = {0, . . . , gL, 0, . . . , 0}
T

(3.19)

and
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being

p1,1 = 1− tc̄E ω
v sin

(

tωv
)

− ω2µe
tεS

e2
cos
(

tωv
)

p1,2 = cos
(

2tωv
)

− 2 cos
(

tωv
)

+ tc̄E ω
v sin

(

tωv
)

ph,h = cos
(

(h− 1)tωv
)

− tc̄E ω
v sin

(

htωv
)

− ω2µe
tεS

e2
cos
(

htωv
)

ph,h+1 = cos
(

(h+ 1)tωv
)

− 2 cos
(

htωv
)

+ tc̄E ω
v sin

(

htωv
)

pL,L =
(

1− κ tεS

e2

)

cos
(

Ltωv
)

− cos
(

(L− 1)tωv
)

+ ω2 tεS

e2
(µe + µl) cos

(

Ltωv
)

+ tc̄E ω
v sin

(

Ltωv
)

p1,L+1 = cos
(

tωv
)

+ ω2µe
tεS

e2
sin
(

tωv
)

p1,L+2 = sin
(

2tωv
)

− 2 sin
(

tωv
)

− tc̄E ω
v cos

(

tωv
)

ph,L+h = sin
(

(h− 1)tωv
)

+ c̄Etωv cos
(

htωv
)

− ω2µe
tεS

e2
sin
(

htωv
)

ph,L+h+1 = sin
(

(h+ 1)tωv
)

− 2 sin
(

htωv
)

− tc̄E ω
v cos

(

htωv
)

pL,2L =
(

1− κ tεS

e2

)

sin
(

Ltωv
)

− sin
(

(L− 1)tωv
)

+ ω2 tεS

e2
(µe + µl) sin

(

Ltωv
)

− tc̄E ω
v cos

(

Ltωv
)

pL+1,1 = − cos
(

tωv
)

pL+1,2 = cos
(

tωv
)

pL+h,h = − cos
(

htωv
)

pL+h,h+1 = cos
(

htωv
)

p2L−1,L−1 = − cos
(

(L− 1)tωv
)

p2L−1,L = cos
(

(L− 1)tωv
)

pL+1,L+1 = − sin
(

tωv
)

pL+1,L+2 = sin
(

tωv
)

pL+h,L+h = − sin
(

htωv
)

pL+h,L+h+1 = sin
(

htωv
)

p2L−1,2L−1 = − sin
(

(L− 1)tωv
)

p2L−1,2L = sin
(

(L− 1)tωv
)

p2L,1 = 0

(3.20)

The system of equations can be solved as

p = P−1g (3.21)

3.6 Physical quantities

The key to obtain an explicit expression of all the physical quantities is to calculate

the values of Bk. That is easily achieved by
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Bk(τ) =
1

t

(

V k
p (τ)− ūk(kt, τ) + ūk((k − 1)t, τ)

)

k = 1, . . . , L (3.22)

The time-independent part can be obtained from Eq. 3.16 as

Bk =
1

t

(

Vp − rk

(

cos
(ω

v
kt
)

− cos
(ω

v
(k − 1)t

))

−

−qk

(

sin
(ω

v
kt
)

− sin
(ω

v
(k − 1)t

)))

k = 1, . . . , L (3.23)

3.6.1 Stress

The maximum stress occurs at the lower surface, where the actuator is fixed to the

base. The stress can be calculated as

Tmax =
e

t
Vp + r1

e

t

(

1− cos
(ω

v
t
))

+ q1
e

t

(

c̄Et
ω

v
− sin

(ω

v
t
))

(3.24)

recalling Eq. 3.4.

3.6.2 Electric displacement, charge, and current

The same can be done for the electrical quantities; from Eq. 3.4 and 3.23

Dk = −
εS

t

(

Vp − rk

(

cos
(ω

v
kt
)

− cos
(ω

v
(k − 1)t

))

−

−qk

(

sin
(ω

v
kt
)

− sin
(ω

v
(k − 1)t

)))

k = 1, . . . , L (3.25)

The amplitude of the charge and current can be easily calculated as







Qk = −DkA

Ik = −ωDkA
(3.26)

3.7 Electric circuit

The electric driving circuit specifications can be included in the model as done in

chapter one. Should an internal resistor be taken into account, the relative equations

are as follows. The equations previously developed consider an ideal voltage source. As

a consequence the voltage drop V k
p is exactly the voltage drop across the two electrodes.

When an internal resistor is considered such voltage drop is not the one produced by

the voltage source. A procedure for calculating it can be nevertheless devised.
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Vs Vp

R

1C
. . .

kC
. . .
LC

Figure 3.4: Driving circuit for a piezoelectric actuator

When a voltage Vs is applied, a current flows through each layer according to the

charge accumulated on the piezoelectric layer and the layer deformation. Pertinent

equations are those in Eq. 3.26. The electric circuit equation is

Vs = R

L
∑

k=1

Ik + Vp (3.27)

which can be expressed explicitly as

Vs = Vp sin(ωτ) +RA

L
∑

k=1

εS

t

(

Vp − rk

(

cos
(ω

v
kt
)

− cos
(ω

v
(k − 1)t

))

−

−qk

(

sin
(ω

v
kt
)

− sin
(ω

v
(k − 1)t

)))

cos(ωτ) (3.28)

As the equation Eq. 3.28 shows, the amplitude of the voltage Vs required to apply

a voltage Vp to the actuator varies according to rk, qk. Supposing a unitary voltage

across the piezoelectric actuator, the circuit equation Eq. 3.27 becomes

Vs = R

L
∑

k=1

IkVp=1 + 1 (3.29)

In such conditions, the charge accumulated on the electrodes in Eq. 3.26 is numer-

ically equal to the actuator’s capacitance, that is

C = L
εSA

t
−
εSA

t

L
∑

k=1

r
Vp=1
k

(

cos
(ω

v
kt
)

− cos
(ω

v
(k − 1)t

))

+

+ q
Vp=1
k

(

sin
(ω

v
kt
)

− sin
(ω

v
(k − 1)t

))

(3.30)

where the superscript “Vp = 1” has been added to the coefficients rk, qk to underline

that they must be calculated for a unitary voltage Vp. All this said and done, the
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system could be described as an RC electric circuit where the multilayer actuator is

a capacitor whose capacitance is frequency-dependent, as already analysed in chapter

one. For an RC electric circuit, the voltage across the capacitive element, in this case

the piezoelectric actuator, is reduced according to Eq. 1.35.

The actual values of displacement, current, mechanical stress, etc. can be found

simply multiplying the values found at Vp = 1 for the coefficient Vs cos θ, since the

system of equations Eq. 3.21 is linear.

3.8 Parametric analysis

The multilayer analytical modelling (MLM) allows evaluating the influence of all the

parameters employed on the system’s dynamics, as the equations set Eq. 3.21 shows.

The parameters whose influence is to be investigated are those related to the actuator’s

geometry. Material characteristics were not taken into account, as to underline the

focus of the present work on the system design. The cross-sectional area does not have

any influence on the dynamic behaviour of the actuator, granted that the load mass m

is proportional to the actuator’s active mass mMLA, i.e. the mass of the piezoelectric

material alone. The preload force is considered to be constant given the very small

displacement of the actuator’s free end, thus can be modelled as a constant force. For

a constant force does not interfere with the dynamic behaviour, it is not taken into

account in the present analysis. On the contrary the load mass and stiffness, the stack

height, the electrode thickness will be varied in wide ranges.

As introduced in the previous sections, often piezoelectric multilayer actuators have

been modelled as bulk piezoelectric continua (bulk modelling, BKM). It will be shown

that MLM does provide a higher number of resonance frequencies in the same frequency

range, besides the capabilities of a more detailed analysis.

3.8.1 Parameters estimation

The mathematical models presented require a number of parameters that are not read-

ily available from the manufacturer’s datasheet. Nevertheless, some simpe procedures

were devised in order to find all the necessary data without carrying out dedicated mea-

surements. The procedure to evaluate the material constants were already presented

in chapter one.

The next step is to estimate the actuator’s geometrical dimensions, namely the layer
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thickness and area, and the number of layers. The layer thickness t can be calculated

once the height of the active part of the actuator is known. A simple comparison

between the different overall heights and relative maximum displacements of actuators

belonging to the same family allows deducing the displacement corresponding to a

certain height of the active part. Supposing an height H and a displacement umax,

from Eq. B.24

umax

H
= −

e33

cE33

LVp
Lt

→ t = −
e33

cE33

H

umax
Vp (3.31)

where L is the number of layers. It is straightforward then to calculate L, given the

active part height

L =
H

t
(3.32)

The active part area A can be easily obtained from the capacitance value found in

the datasheets. Often the capacitance is measured at a certain voltage and frequency,

usually far enough from resonance condition. Therefore it is appropriate to consider

this value comparable to the static capacitance (see Eq. 1.36). Furthermore, the voltage

amplitude is small, so that deformation is limited; consequently

A =
t

LεS
(3.33)

In case the electrode thickness is taken into account, Eq. 3.31 and 3.32 are modified

as follows







umax
Lt = − e33

cE33

LVp

Lt

H = (1 + kt)Lt
→







L = −
cE33
e33

umax
Vp

t = H
(1+kt)L

(3.34)

where kt is the ratio between electrode thickness and piezoelectric layer thickness. It

goes without saying that this ratio in the present investigation is discretionary.

In order to evaluate properly the mass of the load that the active part is moving,

some estimation on the mass of the actuator’s mechanical interface must be made.

Most multilayer actuators present the active part enclosed in a metallic case that serves

both as a protective shell against humidity and pollution and as a practical mean to

exert a constant compressive force on the active part. Indeed, to avoid dangerous

tensile stresses on the piezoelectric material, an elastic element is interposed between

the active part of the actuator and the case (see Fig. 3.5). The active part is rigidly
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mechanical interface

elastic element

active part

Figure 3.5: Multilayer actuator cross-sectional view. Please notice that this image is only

qualitative.

connected to a sort of threaded rod that allows fixing a load to the actuator. The mass

of this device must be known and it will be referred to as mtip.

3.8.2 Influence of system’s parameters

To evaluate the influence of the system’s parameters to the dynamic behaviour, the

characteristics of some commercially available actuators were considered (PI - P840/841

family [22]). The actuators from this family withstand loads up to 1000 N, are driven at

a voltage between -20 V and 120 V, produce displacements from 15 µm to 90 µm, and

have resonance frequencies ranging from 6 kHz to 18 kHz. The mass of the actuator’s

mechanical interface is estimated as

mtip =
π(5 mm)2

4
· 15 mm · 7.8 · 10−6 kg/mm3 = 0.0023 kg (3.35)

value that will be rounded up to 0.003 kg, comprehensive of part of the preload element.

The mass of the active part of the actuator is 0.012 kg, that means the coefficient of

normalized load mass coefficient km cannot be lower than 0.25.

The electrodes constitute, from the mechanical point of view, a set of passive ele-

ments that slow down the actuator’s response. They cannot be treated as an external

bulk load since their dynamics differs according to their position along the actuator.

The presented multilayer model allows taking their exact dynamics into account. Fig-

ure 3.6 shows the influence of the electrode mass on the overall dynamics of a system

driven by a piezoelectric actuator under the excitation of a sinusoidal voltage. The
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Figure 3.6: Frequency response as electrodes mass varies: the solid line shows the frequency

response when the influence of electrode mass is disregarded. The dashed and dash-dotted

ones are the result of the actuator’s dynamics when the electrodes thickness is respectively one

tenth and one fifth of the layer thickness. In these simulations the load stiffness k and the load

mass m were set to zero.

length of the actuator’s active part is 54 mm (the load mass is fixed at 3 g while the

elastic stiffness of the external load are set to zero. Such mass is that of the mechan-

ical interface to the outside and it does not vary for any actuator of the family). The

electrode mass is chosen so that its thickness te can be compared to that of the ac-

tive piezoelectric layer. The electrode mass does slow, although not very sensibly, the

natural frequencies of the system, even for electrode thickness equal to one fifth of the

piezoelectric layer.

The same system has been tested under various values of the load stiffness. In these

simulations the electrode mass is discarded, and the load mass is still 3 g. Results are

shown in Fig. 3.7. The three curves show the frequency response of the actuator as the

spring stiffness k increases from zero to one tenth and to the same value of the actuator

stiffness kMLA. The actuator stiffness is calculated in static conditions at constant

electric field. As the load stiffness increases, so does the first resonance frequency; but

at the same time the static deformation decreases. As the figure shows, the influence

of the external elastic load is nearly negligible when the spring stiffness is much lower

than the actuator’s.

The specification that differentiates one another the MLAs is the stack length H.

This parameter is directly connected to the actuator’s stroke and therefore is definitely
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Figure 3.7: Frequency response as load stiffness varies: the solid line shows the frequency

response of the unloaded actuator’s dynamics when the stiffness constant k was set to zero.

The dashed and dash-dotted ones are the result of the actuator when k is set to respectively

0.1 kMLA and kMLA, being kMLA the axial stiffness of the piezoelectric actuator at constant

electric field.

a key design variable.

The dynamic response of the actuator alone to a sinusoidal voltage excitation has

been investigated for several values of the actuator length. The value of the load

mass has been set to 3 g to take the mechanical interface mass into account, the

electrode thickness to one tenth of the piezoelectric layer’s one, and the load stiffness

to zero. Figure 3.8 shows the frequency responses of the actuator for several values of its

length. Since the length is tightly connected to the actuator’s stroke, the y axis reports

corresponding stroke values for a deformation of 0.08 %. Resonance and antiresonance

frequencies can be identified in the figure by the colors: the red areas indicate the

resonance peaks, while the deep blue ones the antiresonance peaks. As the actuator

length increases all natural frequencies decrease following a hyperbolic-like trend. The

influence of the inertial load (the mass of the mechanical interface) weakens as the

actuator grows larger: such behaviour is easily predictable since the inertial load mass

becomes a smaller fraction of the actuator’s active part mass. For the smallest actuator

of the family, the inertial load mass is of the same order of magnitude of that of the

active part. Higher natural frequencies (found in the top-right part of Fig. 3.8) seem

to be linearly dependent on the actuator length.

Focusing on the the first resonance frequency, the family of actuators was tested
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Figure 3.8: Frequency response to a sinusoidal voltage as the actuator length varies: the red

areas are found in correspondence of the resonance peaks.

when a purely inertial load is considered1. The load mass is normalized to the mass of

the actuator’s active part, allowing a less biased comparison of the actuators’ perfor-

mances. The parameter km is the ratio of the load mass m to the mass of the active

part mMLA. Figures 3.9 and 3.10 show the results of these simulations. In Fig. 3.9 the

value of the first resonance frequency is plotted versus the actuator length while the

normalized load mass is varied. In Fig. 3.10 the values of the first resonance frequency

are plotted versus the normalized load mass while the actuator length is a parameter.

The first resonance frequency is inversely proportional to the actuator length re-

gardlessly of the load mass m (in the double logarithmic plot of Fig. 3.9 the resonance

frequency is a linear function of the stack length). The resonance frequency is inversely

proportional to the load mass ratio km too. In the double logarithmic plot of Fig. 3.10

a non-linear dependency is clearly visible. There is a transition between km = 0.1 and

km = 1 where the slope of the curve changes. Outside this range the curves can be

regarded as straight lines, although with different slopes. For km greater than 1, the

first resonance frequency is conversely proportional to km, while for km smaller than

0.1 the influence of the mass load is negligible.

1The values of the stack length H are linearly spaced between 18 and 108 mm. The values of km

are 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. Neither linear nor

logarithmic spacings were considered suitable since both do not provide enough values at either ends

of the range. Figures 3.9, 3.10, and 3.16 are all obtained for these ranges.
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Figure 3.9: First natural frequency of the piezoelectric actuator versus the actuator length H ;

several curves are plotted for various values of the normalized inertial load mass km.
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Figure 3.10: First natural frequency of the piezoelectric actuator versus the normalized inertial

load mass km; several curves are plotted for various values of the actuator length H .
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Figure 3.11: Frequency response of an unloaded multilayer actuator: the solid line

shows the frequency response of the MLA modelled by BKM. The dashed line is the

result of the MLM.

3.8.3 Comparison with bulk modelling

The behaviour of a sample piezoelectric MLA was analysed. Its characteristics are

close to those of commercially available actuators. The sample MLA is constituted

by 500 layers whose area and thickness are respectively 100 mm2 and 0.1 mm. The

piezoelectric material’s constants were taken from a commercially available ceramics

(PIC 151 from PI ceramics [22]) as shown in Tab. 1.1. A sinusoidal voltage of 100 V is

applied; the applied voltage induces an electric field of 1 MV/m.

Figure 3.11 shows the frequency response for a MLA modelled both by BKM and

by MLM. The equations employed for the analytical modelling of the piezoelectric

continuum are those shown in [26]. The first natural frequency is calculated with the

significant difference of 8 % (12.6 kHz versus 13.6 kHz). A remarkable difference is given

though by the first antiresonance frequency (89 % difference, 25.4 kHz versus 47.9 kHz)

and by higher order resonance frequencies. When an inertial load is considered, the two

models provide more similar results for the first resonance frequency (0.7 % difference,

6918 Hz versus 6966 Hz). Nevertheless, higher order frequencies differ more consistently

(see Fig. 3.12). At higher frequencies the MLM modelling allows funding a larger

number of resonance frequencies in the investigated range than BKM modelling , as

both Fig. 3.11 and Fig. 3.12 shows.

A more complete investigation of the behaviour of the two mathematical models
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Figure 3.12: Frequency response of a loaded multilayer actuator: the solid line shows

the frequency response of the MLA modelled by BKM. The dashed line is the result

of the MLM. The actuator is loaded by an inertial load whose mass equals that of the

actuator.

can be done by evaluating the resonance frequencies as the number of layers L used

for modelling the piezoelectric MLA and km vary. For L = 500 the behaviour is

that of the multilayer modelling and for L = 1 the behaviour coincides with that of

the monolithic modelling. It must be noted that the electric field is kept constant

at 1 MV/m, therefore the driving voltage is increased accordingly. The purpose of

this workaround is to obtain equal static deformations. Nonetheless, driving voltage

amplitudes do not influence resonance frequencies.

Figure 3.13 helps highlighting the influence of the piezoelectric layer thickness and

of the inertial load mass on the actuator’s dynamics. The figure shows the value of

the first natural frequency: it is slightly depended on the layer thickness at low inertial

loads, while it is nearly independent on L at higher inertial loads (as Fig. 3.12 already

showed). However, the value of the first resonance frequency decreases significantly as

the inertial load mass increases.

Figures 3.14 and 3.15 show respectively the second and third resonance frequencies.

In these cases the frequencies are very much dependent on both L and km. While the

latter was easily predictable, the former indicates a significant difference between the

mathematical models.

It is worth noticing that similar values of the resonance frequencies are found for a

number of layers that is considerably smaller than the actual one. It can be affirmed
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Figure 3.13: First natural frequency of the piezoelectric actuator as the number of

layers L and the normalized inertial load mass km vary.

that for 100 layers (that is 1/5 of the actual value) there is no difference in the values

of the first, second, and third resonance frequencies, regardless of the normalized load

mass km. For L = 10 (1/50 of the actual value) some differences in the values of the

first three resonance frequencies are found at low km (below km = 0.1). Therefore the

MLM modelling is claimed to provide accurate results of the investigated resonance

frequencies even if a reduced number of layers is considered. This methodology allows

reducing the size of the equations set Eq. 3.21 and therefore reduces the computational

effort.

The simulations presented does not consider any dissipative phenomena, therefore,

in correspondence of resonance frequencies, the displacements amplitude goes to infin-

ity. Such behaviour is obviously not encountered in the real-life situations where friction

and other dissipative phenomena reduce the amplitude of the displacements. Neverthe-

less, even in this theoretical speculation, some limitations can be taken into account.

As an example, a limit to the stress level has to be introduced, otherwise the actuator

breaks down because of mechanical failure. Indeed as the frequency increases there is

significant increase in magnitude of the inertial forces (due to both larger displacement

and accelerations) and thus of the stress level. The stress, calculated analytically, was

monitored at the fixed end of the actuator, where it is largest. Figure 3.16 shows the

frequency reduction with respect to the first natural frequency (Fig. 3.9 can be taken as

reference). The largest frequency reductions occur for those configurations that reach

the highest resonance frequencies: these are made by small actuators with low inertial
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Figure 3.14: Second natural frequency of the piezoelectric actuator as the number of

layers L and the normalized inertial load mass km vary.

Figure 3.15: Third natural frequency of the piezoelectric actuator as the number of

layers L and the normalized inertial load mass km vary.
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Figure 3.16: Reduction of frequency range of use of the piezoelectric actuator due to stress

limitations. The curves shows the frequency reduction with respect to the 1st natural frequency

versus the actuator length H ; several curves are plotted for various values of the normalized

inertial load mass km.

load. It must be noted that this results are purely indicative (maximum stress was set

to 30 MPa) and are obtained from a non-dissipative system.
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Chapter 4

Finite difference modelling of

piezoelectric MLAs

The motivation for the formulation of a finite difference model of a piezoelectric multi-

layer actuator lies in the same limitations found for the analytical model of a piezoelec-

tric plate. The hypothesis on which the two analytical models presented are based are

exactly the same; therefore the limitations to the use of the models are identical. The

same can be said for the advantages that a finite difference model can bring in. Fur-

thermore, while the dynamics of a piezoelectric plate can be interesting for a relatively

limited number of applications, the dynamics of systems driven by piezoelectric actu-

ators, especially in transient conditions, can be very useful for the choice of actuator

and the design of the power supply.

Figure 4.1 shows how a piezoelectric MLA can be modelled by finite elements.

Each layer is split in M elements, whose displacement is kuji . Although an electrode is

Figure 4.1: Discretization in finite elements of a piezoelectric multilayer actuator

83
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interposed between piezoelectric layers, from the kinematical point of view the faces of

neighbouring layers are considered to have the same displacement. This assumption is

equivalent to neglecting the electrodes’ elasticity.

4.1 Multilayer dynamics

The dynamics of a stack of piezoelectric plates can be studied by finite difference

modelling considering varying boundary conditions on each plate. Equations obtained

in the previous sections are valid for any boundary conditions, including rigid body

motion of the plate.

Considering a piezoelectric actuator made by L layers, having the same thickness t

and the same surface area A, the dynamics of each “internal” layer can be described

by the following set of equations and boundary conditions




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
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k = 2, . . . , L− 1 (4.1)

where the first superscript refers to the corresponding layer. The system of equations

can be written in terms of finite difference equations as
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(4.2)

An internal layer is one upon which no external forces can be applied and only

kinematic constraints to neighbouring layers are present. The equations set Eq. 4.1

is to be completed by the equations governing the dynamics of the “external” layers,

which vary according to peculiar boundary conditions.
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Figure 4.2: Model of a constrained multilayer actuator; the figure shows the loading conditions,

featuring stiffness, damping, and inertia. Furthermore a time-dependent force can be applied.

4.2 Constrained actuator

Since the unconstrained actuator can be studied as composed by two constrained ac-

tuators oh half height, the equations will be derived only for a constrained one.

Should the layer 1 be constrained to a fixed position and the layer L loaded by a

load with inertia ml, stiffness k and a known force F (τ) (as shown in Fig. 4.2), the

additional equations are
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(4.3)

Finite difference method can be employed for finding the solution to this set of

equations, yielding
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where µe = me

A , µ = ml+me

A , γ = c
A , κ = k

A and f = F
A are defined per unit area.

Unknowns include ghost points at the time τ j and the position at time τ j+1. Unknowns

can be isolated
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(4.5)

4.2.1 Electric circuit for multilayer actuator

The electric circuit for the multilayer actuator is the one shown in Fig. 3.4. The

electrodes are connected in parallel to the same voltage source; this wiring method
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justifies the simplification introduced in the dynamics equation of the piezoelectric

stack, the one that consider the voltage across every piezoelectric layers equal at all

times. Circuit equations remain roughly the same with respect to the finite difference

formulation already presented in chapter three, albeit the resultant current must be

calculated summing up all the contributions. The circuit equation is

V j
s = R

L
∑

k=1

kIj + V j
p (4.6)

where kI is the current flowing to each piezoelectric layer k. In Eq 4.6 no distinction

in voltage has been made between layers since they are all connected in parallel. The

explicit expression of the overall current I is
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1

)

(4.7)

I =
A

2χt

(

εSL
(

V j+1
p − V j−1

p

)

− e
(

Luj+1
M − Luj−1

M

))

(4.8)

This expression can be substituted into Eq 4.6 allowing the calculation of the voltage

across the piezoelectric actuator at the time step τ j+1:

V j+1
p = V j−1

p +
2χt

LεSRA

(

V j
s − V j

p

)

+
e

εSL

(

Luj+1
M − Luj−1

M

)

(4.9)

4.3 Transient dynamics of a piezoelectric MLA

The transient dynamic response of a system driven by piezoelectric MLA is investi-

gated for an actuator driving an inertial load. Although very simple, such system

allows drawing some general conclusions regarding the influence of loads on the system

dynamics. Analysing more complex situations would yield results hardly applicable to

other contexts.

The transient behaviour of the system will be tested when subject to an input step

voltage. The load mass and the circuit impedance will be varied for estimating their

influence on the response speed. The parameters for the MLA are chosen to match

a commercially available one (Physik Instrumente P842.10). This actuator is capable

of strokes up to 15 µm when driven at 100 V and forces ranging from 300 N (trac-

tion) and 800 N (compression). Its capacitance is 1.5 µF and its unloaded resonance

frequency is 18 kHz. All these values are subject to a ±20 % variability [22]. The
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Figure 4.3: Convergence of MLA dynamics: first resonance frequency and amplitude of dis-

placement

piezoelectric material the actuator is made of is a commercially available ceramic (PIC

151) whose characteristics are shown in Tab. 1.1. By making use of the equations of

linear piezoelectricity all of the parameters of the MLA model presented could be cal-

culated from the manufacturer’s specifications, with the sole exception of the electrode

thickness, which was estimated to be one tenth of the piezoelectric layer thickness. The

resulting actuator’s parameters are 254 layers, each 64.4 µm thick, whose surface area

is 15.71 mm2.

As for the piezoelectric plate, the MLA finite difference model is subject to numerical

approximations, due to the discretization process. Figure 4.3 shows the dependency

of maximum displacement and first resonance frequency on the number of elements

employed for modelling a single layer. The procedure followed to obtain the lines of

Fig. 4.3 is the same explained in chapter two. Instead of the strain, the displacement

is represented, being more directly comparable with the actuator’s datasheet values.

It must be noticed that the displacement reported in figure is calculated as half the

maximum displacement resulting from a step voltage input. As previously pointed out,

this computed displacement should be equal to the static displacement, thus comparable

to the values given by the manufacturer.

According to the convergence conditions previoulsy stated, each layer is subdivided

into 50 elements, each 1.29 µm thick. As introduced in chapter two, the spatial and time

discretization are linearly dependent, thus the time step must be set to 2.7 ·10−10 s.
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Figure 4.4: Response to a step voltage as load mass varies. The normalized load mass coeffi-

cient km in the three cases is 0.1, 1, and 10. The circuit resistance R is set to zero.

The values of the load mass are chosen so that they can be easily compared to the

mass of the active part of the multilayer actuator. For this purpose the coefficient of

normalized load mass km was introduced in chapter one. It is calculated as the ratio

betweeen the load mass and the mass of the MLA active part. The load mass will

be set to three values representative of three different conditions: small (km = 0.1),

intermediate (km = 1), and large inertial loading (km = 10). Figure 4.4 shows the

position of the free end of the actuator in response to a step voltage of amplitude 1 V.

In this simulation the electric circuit impedance is set to zero, as to underline the effect

of the load inertia on the system response. Being undamped, the system oscillates about

the position of static equilibrium when driven at constant voltage. The amplitude of

the oscillation is therefore equal to twice the static deformation. Since this value does

not depend on the load mass (gravity is disregarded), the amplitude of the oscillations

for the different loading conditions is the same. It must be noted that the period of

oscillation is inversely proportional to the first resonance frequency of the system. As

the load mass increases the shape of the displacement curve becomes smoother and

the zones where the motion inversion occurs present a larger radius. Indeed, when the

load mass is ten times the actuator active part’s mass, the displacement curve looks
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Figure 4.5: Displacement response to a step voltage as load mass varies. The circuit resis-

tance R is set to 1 Ω.

very much like a sine. This behaviour may indicate similarities with a one degree of

freedom spring-mass system. For smaller load masses the resulting motion is not so

easily described and may suggest the superposition of several modes of vibration of the

system.

A dissipative effect is introduced when the electric circuit impedance is considered,

for example setting the value of R to 1 Ω. Figure 4.5 shows the displacement induced

by a 1 V step voltage. The response is calculated for three different values of km: 0.1,

1, and 10; the smaller the load mass is, the quicker is the settling time. Furthermore it

can be seen from Fig. 4.5 that the amplitude of the oscillations are proportional to the

load mass. From the mechanical point of view this result can be easily forseen: the load

mass lowers the resonance frequencies of the system and thus settling is expected to

take more time. From the electrical point of view, one may anticipate a quite different

behavior, independent of the load mass, on the ground that the electric circuit time

constant is given by the product of the impedance and the MLA’s capacitance. This

reasoning fails because it considers the MLA’s capacitance as a constant: in fact it

depends on the actual deformation of the actuator. The rise time of the actuator, that

is the time it takes to the actuator to settle in a static equilibrium position at a given

driving voltage, could be estimated, in a purely electrical perspective, as five times the

electric circuit time constant, yielding roughly 0.01 ms. From Fig. 4.5 it is clear that

this calculation does not produce matching results.
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Figure 4.6: Capacitance response to an input step voltage as load mass varies. Vs = 1 V,

R = 1 Ω

The implemented model allows calculating the actuator capacitance at each time

step. The same simulations that brought the results shown in Fig. 4.5, gave also the

values of the actuator’s capacitance reported in Fig. 4.6. The variations of capacitance

are very much connected to the displacement of the free end of the actuator, as the

curves of Fig. 4.5 and Fig. 4.6 look very similar. At the beginning of the simulation the

actuator undergoes large displacements and deformations that result in large fluctua-

tions of the capacitance about its nominal value. When the transient phenomena have

passed, the capacitance value is settled at 1.37 µF, that is close to the value measured

by the manufacturer at 1 kHz, which is 1.5 µF [22]. Even in the “worst” case (that

corresponds to the largest value of capacitance read in Fig. 4.6), the electric circuit time

constant is not larger than 0.002 ms. The rise time of the actuator could be estimated

as five time this time constant, yielding 0.01 ms. From Fig. 4.6 it is clear that this

calculation does not produce matching results.

In Fig. 4.5 the static displacement is reached when the system has settled. Since

linear relationships between electric field and deformation hold (see Eq. 1.1), the static

displacement for 50 elements of Fig. 4.4 can be compared to 100 times the values read

in the aforementioned figures: the values match.

Figure 4.7 shows the current requirement obtained in the same simulations of

Fig. 4.5. The figure is split in two: in the upper part the whole time history is shown

while in the lower part only the first 0.05 ms are shown in order to highlight the very

first values of the current. The first value of the current is very large (0.5 A) for all the
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Figure 4.7: Current response to a step voltage as load mass varies. The circuit resistance R is

set to 1 Ω.

three load masses and it may be due to the singularity encountered when the voltage

goes from 0 V to 1 V. Nevertheless, the current rapidly decreases its absolute value

following the same curve in the three cases until it takes different paths according to

the inertial loading. For intermediate and large values of km the current curve is as

smooth as the displacement and the capacitance curves. For small values of km the cur-

rent changes abruptly, varying from constant values to upwards and downwards peaks.

This behaviour is considered to reflect that of the displacement, where linear variations

are alternated by sharp inversions. In the linear sections the capacitance varies too in

a linear fashion, therefore the current is expected to be constant as in this case it can

be regarded as proportional to the derivative of the capacitance.



Chapter 5

Test bench design

The results presented until now are very promising since they provide many pieces

of information regarding the dynamic behaviour of a mechanical system driven by a

piezoelectric actuator, either bulk or multilayer. To be of any practical use, the model

presented must adhere to a certain degree to real dynamic behaviour. Here lies the

motivation for the design of a test bench which allows to verify the models presented.

The test bench consists of a piezoelectric multilayer actuator rigidly connected to an

inertial load whose mass can be varied in order to analyse its influence on the system’s

dynamics. The load displacement is monitored by a laser displacement sensor and a

miniature accelerometer. The piezoelectric actuator is driven by a voltage signal that

is amplified by dedicated circuitry. This electronic part allows also the measurement

of the supplied current.

5.1 Test bench model

The test bench dynamics can be easily analysed with the mathematical models imple-

mented in the previous chapters. This analysis will provide valuable indications for the

choice of suitable sensors and the electronic components of the amplifying circuit. The

amplifier’s electric scheme can be reduced to an ideal controllable voltage source and

a resistor (the one across which current is measured). The overall scheme of the test

bench can be found in Fig. 5.1.

For convenience, the analytical model of a thin plate can be employed for investi-

gating the dynamics of the test bench. The plate thickness will be equal to the height

of the active part of the actuator, and the voltage will be multiplied by the number of

layers.

93
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Vs Vp

R

m

Figure 5.1: Test bench model

The actuator under test is a Physik Instrumente P842.60 whose characteristics are

reported in Tab. 5.1; the material which it is made of is a modified lead-zirconate

titanate (PIC151), as declared by the manufacturer. Its characteristics are reported in

Tab. 1.1.

This data can be introduced into the Eq. 3.31, 3.32, and 3.33 yielding















t = 64.4 µm

L = 1525

A = 15.69 mm2

Characteristic Value Unit

Open loop travel 0-100 V 90± 20% [µm]

Resolution 0.9 [nm]

Static large signal stiffness 10± 20% [N/µm]

Push/Pull force capacity 800/300 [N]

Electrical capacitance (@1 V, 1000 Hz) 9± 20% [µF]

Dynamic operating current coeff. 12.5 [µA / Hz / µm ]

Unloaded resonance frequency 6± 20% [kHz]

Mass (no cable) 86± 20% [g]

Length 127 [mm]

Table 5.1: PI P-842.60 specifications [22]
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Figure 5.2: Displacement/Acceleration FRF, km = 0.25, 10

5.1.1 Test bench simulations

Of particular interest is the frequency response function of the various quantities (dis-

placement, acceleration, current, and stress) in order to choose the proper electronic

components and sensors, and to avoid breakage (due to exceeding current and/or

stress).

Figures from 5.2 to 5.3 shows the aforementioned frequency response functions. To

limit the displacement the voltage amplitude must be kept below 0.1 V. In such case

the current requirements are 10 mA. It can be seen that the maximum stress with

such voltage level is always below 100 MPa and the acceleration peak is 104 g. It

must be noted though that the mathematical models presented do not include losses in

the piezoelectric material. These losses will very likely affect the actuator’s behavior,

reducing the amplitude of the peaks found in Fig. 5.2 and 5.3.

Overall the simulations suggest to keep voltage amplitude near resonance in the

range 0.01 V - 0.1 V. Should this be the case, the current requirements, the maximum

acceleration, and the stress never exceed the aforementioned limits.
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Figure 5.3: Current/stress on piezo FRF, km = 0.25, 10

5.2 Amplifier design

The amplifier is a conceptually simple device that takes an input voltage signal and

produces as output an amplified voltage signal. An ideal amplifier shows a constant

ratio between input and output voltage, no time delay between the two signals, no

distortion, and no additional noise. Such characteristics can be met to certain extent,

given that no ideal amplifier can be manufactured. In a practical case, a suitable

amplifier will have a flat frequency response function and no or very limited delay in a

desired frequency range; distortion and noise should be al low as possible.

The starting point for the design of an amplifier for driving a piezoeletric actuator

is the gain, that is the ratio between output and input voltage. Typically piezoelectric

devices require a voltage ranging from tens to hundreds of volt; in the case of multilayer

actuators the typical voltage is about -20 V / +120 V. Another important specification

is the current requirements, cannot be specified a-priori without a knowledge of the

system the piezoelectric actuator is going to drive.

Based on the results from previous simulations, the specifications for the voltage

amplifiers are stated as shown in Tab. 5.2, beside general characteristics as being linear,

not introducing noise or delays. The voltage gain was chosen in order to to exploit the

DC power supplies available (± 30 V) and on the fact that driving signal can be
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Figure 5.4: Amplifier electric scheme

generated at 10 V.

Piezoelectric actuators in general can be approximated as a capacitive load from the

electrical point of view when driven off resonance and as a resistive load when driven

near resonance (see [1] for further details on equivalent electric circuit representation

in resonance conditions). The amplifier scheme proposed in [33] has been adopted. It

is based on the use of an operational amplifier with feedback control, such as the Texas

Instruments OPA548 [27]. This operational amplifiers can be driven either to +60 V or

to ± 30 V, in respectively single or double supply mode, and can supply continuously

3 A current with peaks of 5 A. The gain bandwith over a resistive load of 8 Ω is 1 MHz

and the total harmonic distortion plus noise at 1 kHz is 0.02 %. In other words, the

OPA548 completely meets all the requirements of Tab. 5.2 and is even more performing

in some respects (bandwidth and current).

Figure 5.4 shows the electric scheme of the amplifier. The “heart” is the OPA548,

placed in the left part of the scheme, wired in the inverting configuration so that the

voltage gain 6

maximum current 100 mA

frequency range 1 Hz - 20 kHz

Table 5.2: Amplifier requirements
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Figure 5.5: Amplifier

gain is 6; a trimmer (TRIM1) allows adjusting the current limit. Directly wired to

the voltage output terminal of the operational amplifier are two diods that permit

an extremely quick discharge of current returning towards the voltage source. Their

presence is of paramount importance given the capacitive behaviour of the piezoelectric

actuator. Two voltage dividers are then placed in order to measure the actual output

voltage. Each presents a different total resistance; at most one can be connected. The

basic idea behind the introduction of these “multiple resistance” voltage divider was

to stabilise the output voltage in case of need. Looking at the right part of the electric

scheme, one can see the resistive load (T1 and T2) which can be alternatively selected.

They both serve as a measuring resistor (the voltage drop across them is read by the

instrumentation operational amplifier Texas Instruments INA111 [27]) and as circuit

element whose influence on the system’s dynamics is to be evaluated. The gain of the

INA111 is set to 100 by connecting a 510R resistor (1 % accuracy). Furthemore two

electrolitic capacitors were placed between the power input voltage connection to filter

out noise.

The input terminals are the power supply voltage for the OPA548 -30V/0V/+30V,

the voltage supply for the INA111 -15V/0V/+15V, and the voltage signal that is to

be amplified. The output terminals include the amplified voltage across the measuring

resistor, the two voltage dividers reading, a zero to amplified voltage output, and a

-30V to amplified voltage output. These outputs are to be connected to the load. They

can thus provide a -30 V to +30 V or a 0 V to +60 V range. The assembled amplifier
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Figure 5.6: Voltage measuring set-up

is shown in Fig. 5.5.

5.2.1 Calibration

Comprehenive testing was made in order to verify that the amplifier met all the re-

quirements. Two DC power supplies were employed: a TTi EL 302 D (dual power

supply ± 30 V, 2 A per channel) and an Agilent E3631 A (0 - +6V 5A/± 25 V 1 A)

that served both as power supply for the instrumentation operational amplifier and as

a DC signal source.

First the output voltage was read on the output terminals employing two digital

multimeters (Fluke 79 III and Fluke 111 [9]). The measuring set-up is shown in Fig. 5.6.

The input signal was swept from -5 V to +5 V by steps of 0.5 V and the corresponding

output voltage was read. Figure 5.7 shows the measurements: The output signal is very

linear except towards the ends of the graph where the voltage limit of the amplifier is

reached.

The same measurement has been made for the voltage dividers readings. Figure 5.8

reports the results and they are very much satisfactory. In particular the gain of the

two amplifiers has been computed (except for the values of voltage signal close to zero)

and the results (see Fig. 5.8) shows a variation that is definitely negligible (standard

deviations of 0.0048 and 0.005 for the voltage dividers VD1 and VD2 respectively).

Output current was monitored by connecting a resistive load (a 100R resistor, 1 %
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Figure 5.10: Current measuring set-up
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Figure 5.11: Current flowing into circuit

accuracy) and measuring both the current flowing and the instrumentation amplifier

voltage output. The measurement set-up is shown in Fig. 5.10.

The current flowing into the circuit is measured directly by the digital multime-

ter Fluke III and indirectly via the instrumentation amplifier. Figure 5.11 shows the

measured current and the current calculated from the amplified voltage readings. The

current is calculated dividing the voltage reading by the appropriate operational am-

plifier gain and the resistance of the resistor T1. The calculated current fits extremely

well the measured data with the sole exception of the negative values close to zero.

This mismatch is considered to be due to the very small values of the current, which is

very close to the digital multimeter resolution.
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Figure 5.12: Frequency response function of supplied voltage

The frequency response fuction of the amplifier when a purely resistive load is

connected is of paramount importance, since it shows whether the amplifier introduces

or not distortions or noise. To this end the amplifier input and output signals have

been connected to a data acquisition system (LMS Scadas Mobile, 16 channels of analog

input, 24 bit per channel, 46 kHz ADC bandwidth). The front end generated a swept

sinusoidal voltage of 1 V over a frequency range of 50-20000 Hz. The sampling frequency

was set to 51200 Hz; a highpass filter of 0.5 Hz was activated. The amplifier was

connected to a 1K resistor (1 % accuracy). The FRF of the supplied voltage is nearly

flat and equal to 6 in all the desired frequency range. The phase shows some feeble

deviation from zero, approximately visible from 1 kHz and reaching -11◦ at 20 kHz (see

Fig. 5.12). The FRF of the supplied current is shown in Fig. 5.13. As read from the

instrumentation operational amplifier, the current follows identically the trend of the

voltage FRF.

5.3 Sensors

The test bench is equipped with a displacement laser sensor and an uniaxial accelerom-

eter placed on the mechanical load. The displacement laser sensor is a MicroEpsilon

optoNCDT 1402 [17]. This sensor presents a 5 mm measuring range with maximum
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Figure 5.13: Frequency response function of supplied current

resolution of 0.6 µm. Resolution and linearity are respectively equal to 0.01 % and

±0.18 % of full scale, that is 0.5 µm and ±0.9 µm. The measuring rate can be set up

to 1.5 kHz.

The accelerometer is a Dytran 3035 BG miniature piezoelectric accelerometer, fea-

turing 50 g of full scale with sensitivity of 100 mV/g [7]. This sensor has a resonant

frequency of 45 kHz, a linearity of ±1 % of full scale, that is ±0.5 g. Its weight is

2.5 grams, that is roughly the 21 % of the mass of the actuator’s active part. The

accelerometer requires a flat surface for adhesive mount.

5.4 Mechanical load

The actuator will be loaded with some different inertial loads. These loads need to

present a M5 threaded hole and a flat top surface so that the accelerometer can be

mounted and displacement can be read. Few loads were manufactured out of aluminium

and steel weighing 2, 5, and 70 grams. Their masses relative to that of actuator’s

active part is respectively 16.67 %, 41.67 %, and 58.33 %. When equipped with the

accelerometer, and considering the mass of the mechanical interface, the ratio between

the load mass and the active part mass (previously defined as normalized load mass

coefficient km) is respectively 0.625, 0.875, and 6.29. Should the actuator be tested
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Figure 5.14: Test bench set-up

with no load and thus no accelerometer km reaches 0.25. The test bench as designed is

shown in Fig. 5.14.



Chapter 6

Experimental analysis and

models validation

The experimental campaign constitutes the final step in the process of analysing the

system. Different models were presented, simulations were run in order to investigate

the dynamic behavior of a piezoelectric multilayer actuator. The test bench designed

allows to verify all the models implemented, from all points of view. The results that

are going to be presented cover the dynamic behaviour of the system excited by a

periodic signal. Transient phenomena have not been investigated yet.

6.1 Experimental set-up

The test bench configuration has been largely described in the previous section: it is

constituted by a commercial piezoelectric multilayer actuator (PI P842.60), a dedicated

amplifier (in-house developed and assembled), a LMS Scadas Mobile data acquisition

system, and a personal computer. The test bench is equipped with some sensors in

order to measure displacements, accelerations, voltages, and currents.

6.1.1 Description of the instrumentation

The LMS Scadas Mobile SCM05 is a data acquisition system and signal analyzer featur-

ing up to 40 input analog channels, two analog output channels, two tachometric input

channels, and a GPS receiver. Each channel has a 24-bit resolution and can be sampled

at up to 102.4 kHz. Data is sent real time (2.2 megasample per second) through an

ethernet connection to any personal computer running LMS software such as TestEx-

press or TestLab. All sensors and voltage signals are connected to this system, while an

105
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output channel is wired to the corresponding input terminals of the amplifier. Channel

properties are set so that input voltages are scaled and expressed in the appropriate

units, that is ampere on channel 1 (T1.I), volt on channel 2, 3, and 4 (DV1, VD1,

VD2), meter on channel 5 (PZT.u), and g (9.81 m/s2) on channel 6 (PZT.upp). These

last two channels are connected respectively to the displacement laser sensor and to the

miniature accelerometer. Channel 1 takes as input the amplified voltage OA2.V from

the instrumentation amplifier and scales it in order to show the corresponding current.

6.1.2 Measuring methodology

No particular methodology was followed in carrying out measurements. Each mea-

surement type was repeated three times in order to have a small statistical basis.

Measurements were basically of two kinds: a constant frequency sine signal or a fre-

quency sweep sinusoidal signal across a frequency range. The former was used to check

the low-frequency behaviour of the multilayer actuator and to investigate the voltage-

displacement relation, while the latter was employed to analyse the dynamic behaviour

of the system. Care was nevertheless taken in starting the measurements only after

the accelerometer settling time had passed (few seconds, being 0.5 s the discharge time

constant of the sensor).

6.2 Static behavior

The relation between input voltage and displacement was analysed by slowly varying

the input voltage amplitude from 0 V to 60 V (that correspond to generating a signal

from -5 V to +5 V at 1 Hz), as Fig. 6.1 shows.

Magnifying Fig. 6.1, a closer look on the displacement-voltage relation can be taken.

There is a sort of delay in the displacement response; Fig. 6.2 shows the superposition

of the driving voltage curve and the displacement curve. Should Eq. 1.1 hold, the two

curves would be coincident or slightly offset due to different axis scaling.

A better understanding of the relation between the two quantities can be achived by

eliminating time from the graphical representation. Figure 6.3 reports the displacement-

voltage curve. It can be easily observed that two parts can be distinguished: one below

35 V and one above; each can be approximated as a straight line. The one up to 35 V

is quite flat: the displacement is less than 10 µm for 35 V of driving voltage. In the

second part the actuator proves to be much more responsive travelling 40 µm more
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Figure 6.1: MLA displacement under large voltage excitation. Sampling frequency 2048 Hz
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Figure 6.2: Half period of MLA displacement under large voltage excitation. Sampling fre-

quency 2048 Hz
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Figure 6.3: Relation between voltage and displacement for large signal excitation

under approximately 25 V of extra driving voltage. The slope of the two curves can be

calculated elementary as 0.286 µm/V and 1.6 µm/V respectively. The value expected

from Eq. 1.1 is

u

Vs
= L

e

cE
= 0.9 µm/V (6.1)

where the values obtained in chapter five had been employed. This value corresponds

to the data declated by the manufacturer (90 µm at 100 V). Anyhow, the behaviour

shown by the actuator proves that the relation between voltage and displacement is not

linear, thus giving a confirmation that the simplifications introduced in the constitutive

equations are valid only for low intensity electric fields (see appendix B).

6.3 Quasi-static behaviour

Quasi static behavior was investigated by driving the system at a low frequency sinu-

soidal signal. This signal would result in an almost in-phase load displacement and

from the electrical point of view the actuator would be equivalent to a capacitor with

constant capacitance (when the signal amplitude is small).

Raising the voltage amplitude would result in larger deformation thus displacements

and consequently in larger capacitance. The actuator’s capacitance can be calculated

starting from the measured electrical quantities as
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Figure 6.4: Electrical quantities in a 24 V p-p 10 Hz sine excitation
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Figure 6.5: Relation between capacitance and voltage at low frequencies
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C =
I

ω (Vs −RI)
(6.2)

making use of well-known relations for RC circuits. In this way the relation between

capacitance and voltage amplitude (at a certain frequency, 10 Hz in this case) can be

found, as shown in Fig. 6.5.

The capacitance is remarkably dependent on driving voltage level (the slope of the

curve is 0.182 µF/V) at least in the voltage range considered. The variation could be due

to the different thickness of the piezoelectric layer: the higher the driving voltage, the

higher the deformation and thus the thickness of the piezoelectric layer. An increased

thickness results in a larger electric capacitance of the actuator.

Nevertheless it must be noticed that the actuator’s capacitance calculated in this

manner is sensibly larger than the value read on the actuator’s datasheet. As seen in

Tab. 5.1, the declared capacitance is 9 µF measured at 1 kHz, while the values reported

in Fig. 6.5 range from 11 µF to 13 µF at 10 Hz. The different frequency at which the

capacitance has been measured should not invalidate the considerations made since the

capacitance of a piezoelectric actuator is proportional to the driving frequency.

6.4 Dynamic behaviour

The dynamic behavior of the system over a large range of frequencies can be analysed by

driving it with a sinusoidal signal of varying frequency. In particular the frequency of the

signal can be swept either linearly or logarythmically over a time interval; in the former

case equal time is given to all frequencies, while in the latter more time is allocated

for lower frequencies. Logarythmic sweeping is thus more suitable for analysing also

lower frequencies: in fact at lower frequencies it takes more time for complete periods

to pass. Sinusoidal sweep gives a rather uniform excitation in a wide frequency range,

therefore the FRF calculated from the measured data can be considered accurate.

The system will be tested in different configurations, emphasis will be put on the

influence of the load inertia on the overall dynamics. The FRF will be calculated for the

measurable quantities, that are current and acceleration. All the voltage amplitudes

reported from now on are referred to the values generated before amplification.

Figure 6.6 shows the frequency response function of the current when the actuator

is unloaded. As previously pointed out, that does not mean the load mass is zero,

since the inertia of the actuator’s mechanical interface has to be taken into account;
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Figure 6.6: Current FRF in the range 200 Hz - 20 kHz, km = 0.25. Voltage amplitude 0.12 V,

sampling frequency 102.4 kHz, sweep time 10 s.

therefore km = 0.25. The plot shows a linear behavior roughly up to 2 kHz and then

there is a resonance peak at 5056 Hz. At higher frequencies three more phenomena

can be seen: the first anti-resonance peak at 5936 Hz, a second resonance peak at

13.33 kHz, and a second anti-resonance peak at 15.63 kHz. In the linear part of the

curve the current gains one order of magnitude per decade, in complete accordance

with RC circuit analogy. The phase is 90◦ shifted with respect to driving voltage in the

linear part and that too is in accordance with RC circuit analogy. In this configuration

the acceleration cannot be measured.

Figure 6.7 shows the current frequency response function of the current when the

actuator is loaded an the accelerometer is mounted. In this configuration km = 0.63

and the acceleration can be measured. With respect to the previous figure, the current

FRF shows the same frequency dependence. The resonance and anti-resonance peaks

are shifted to lower frequencies (first and second resonance at 4294 Hz and 12.27 kHz,

first and second anti-resonance at 5209 kHz and 12.87 kHz). The same can be said for

the phase plot.

Figure 6.8 shows the current frequency response function of the system when km =

6.3. With respect to the previous measurements, the curve shows much lower oscilla-

tions at frequencies higher than the first of resonance. Only the first resonance and
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Figure 6.7: Current FRF in the range 200 Hz - 20 kHz, km = 0.63. Voltage amplitude 0.12 V,

sampling frequency 102.4 kHz, sweep time 10 s.

anti-resonance peaks can be found at 1876 Hz and 2172 Hz. The same can be said for

the phase plot.

Looking at the acceleration FRF plots the same considerations can be made. Figures

from 6.9 to 6.12 shows the FRF plots. The measurements have been carried out splitting

the frequency range in two parts in order to set different voltage amplitudes. In fact

at low frequency the acceleration would be too low to be measured.

All the acceleration FRF curves show a linear part in the low frequency range

(Fig. 6.9 and 6.10) that ends invariabily before the first resonance frequency. In this

part the acceleration gains two orders of magnitude per decade; once again this result is

in accordance with the linear theory of piezoelectricity (see Eq. 1.5). It can be noticed

that at low frequencies there are some sudden jumps of the phase from 180◦ to -180◦;

this behavior must be regarded to merely as a numerical artifact, not representative

of real dynamic behavior. A minor resonance peak can be noticed at 300 Hz in both

Fig. 6.9 and 6.10; it is believed that this resonance peak has nothing to do with the

system dynamics itself but it is more likely due to the experimental apparatus. This

hypothesis wuold be confirmed by the current FRF plot (see Fig. 6.7 and 6.8), where

no resonance peak can be spotted at 300 Hz. Should the system present any kind of

resonance, an increase in current absorption would occur.
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Figure 6.8: Current FRF in the range 200 Hz - 20 kHz, km = 6.3. Voltage amplitude 0.15 V,

sampling frequency 102.4 kHz, sweep time 10 s.
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Figure 6.9: Acceleration FRF in the range 200 Hz - 1 kHz, km = 0.63. Voltage amplitude 1 V,

sampling frequency 20.48 kHz, sweep time 15 s.
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Figure 6.10: Acceleration FRF in the range 200 Hz - 1 kHz, km = 6.3. Voltage amplitude 1 V,

sampling frequency 20.48 kHz, sweep time 15 s.

At high frequencies (Fig. 6.11 and 6.12) the resonance peaks can be easily identified.

There are two resonances and one anti-resonance, as the current FRFs showed. With

respect to the current plots, these are more disturbed, especially in between the two

resonances for Fig. 6.11 and in correspondence of the first resonance for Fig. 6.12.

It can be observed that the current plots do not allow a clear identification of the sec-

ond resonance and the anti-resonance frequencies when high inertial loads are present,

especially with respect to the acceleration plots. This behavior favors acceleration

measurements in the analysis of system driven at high frequencies.

6.5 Comparison with numerical data

After carrying out the experimental campaign is time to verify the numerical model

implemented. A numerical model of the test bench for each mathematical model will

be implemented and the FRF will be calculated. The method for calculating the

frequency response function differs according to the mathematical model employed. In

the case of analytical models, the FRF is calculated point-wise. Given a frequency

range of interest, a vector of frequencies is considered (of course a larger vector results

in smother line plots) and the analytical solution of the displacement, current, and
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Figure 6.11: Acceleration FRF in the range 1 kHz - 20 kHz, km = 0.63. Voltage amplitude

0.12 V, sampling frequency 102.4 kHz, sweep time 10 s.
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Figure 6.12: Acceleration FRF in the range 1 kHz - 20 kHz, km = 6.3. Voltage amplitude

0.15 V, sampling frequency 102.4 kHz, sweep time 10 s.
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acceleration is found at each frequency. In the finite difference modelling the simulated

impact testing is employed (as illustrated in chapter two). In this case best results are

obtained for longer simulation times and a high number of elements. Either cases better

results imply longer simulation times. In all the simulations, the frequency vector for

the analytical models was composed by 1000 elements. The simulation time for such

models (on a Intel Core 2 Duo 2.2 GHz processor equipped with 8 GB RAM) was of

about 40 minutes for the MLM model and few tens of seconds for the BKM model.

The FDM model was made by dividing each layer in 50 elements and considering a

simulation time of 2 ms. The simulation time in these cases was much longer: the

average simulation took 36 hours to complete. A simulation time this large is the

result of carring out the calculation of approximately

50× 1525 ×
2 · 10−3

4.2 · 10−10
≈ 0.38 · 1012 (6.3)

unknowns.

The experimental data will be compared to the analytical bulk model (BKM, as

extended in chapter five to simulate the dynamic behavior of multilayer actuators), to

multilayer analtytical model (MLM), and to the finite difference model (FDM). Fig-

ures 6.13 from to 6.15 shows the various FRFs with different inertial loads. Each figure

reports superposed the four curves resulting from either simulations or measurements.

Figure 6.13 shows the current FRF when the actuator is not loaded with any exter-

nal load. As already stated, that condition is not equivalent to not having any inertial

load; indeed the normalized load mass coefficient km is equal to 0.25 (see chapter 5 for

further explanations). In the low frequency range (100 Hz to 3 kHz) the four curves

are coincident, clear sign that the three models describe extremely well the dynamic

behaviour of the system. From 4 kHz and on the mathematical models show a larger

gain with respect to the actual system. This might be due to damping effects that

where not taken into account in modelling. The resonance frequency, identified by the

local maximum, occurs at a slightly lower frequency than predicted by the models.

Once again this could be ascribed to the undamped modelling. Anyhow the MLM

model is the most accurate one in predicting the first resonance frequency. At higher

frequencies all the models fail; first of all the anti-resonance frequency, represented by

the downward peak, is present in all curves but occurs at wrong frequencies. Once

again best results are obtained by the MLM model although there is a large error (pre-

dicted 8.5 kHz against approximately 5.94 kHz measured). The other models predicts
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Figure 6.13: Current FRF - no external inertial load (km = 0.25)

the first anti-resonance frequency at approximately 10.5 kHz and 12.14 kHz for respec-

tively the FDM and the BKM models. As previously pointed out in chapter three it is

remarkable the difference between the two mathematical models. The MLM and the

FDM curves show a second resonance right before the end of the analysed range, while

the BKM model none. This is confirmed by the experimental evidence, although the

resonance peak is hardly noticeable; on the contrary the anti-resonance downward peak

can be easily seen. Simulated data places second resonance frequencies at 15.56 kHz

and 17 kHz for the MLM and FDM models respectively, while the measured data shows

it at 13.33 kHz (value read from the phase diagram). The second anti-resonance can be

seen at 16.96 kHz and at 19.5 kHz for respectively the MLM and the FDM models; the

measurements indicates that it occurs at 15.63 kHz. The MLM model is very accurate

in identifying these second resonance and anti-resonance frequencies.

The phase plot can be commented similarly: repentinous changes in this phase

indicates that a singularity (i.e. resonance or anti-resonance) occurred. With respect

to the magnitude plots, the phase diagram allows a more precise evaluation of the

resonances, either on numerical or simulated data.

Figures 6.14 and 6.15 reports the comparison between current FRFs when higher
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Figure 6.14: Current FRF - external inertial load m = 2 g, (km = 0.63)
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Figure 6.15: Current FRF - external inertial load m = 70 g, (km = 6.3)
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inertial load are applied. As already seen the values of the resonance and anti-resonance

frequencies are shifted to lower values. The simulated data is shifted as well; the same

comments can be made for these curves. Table 6.1 sums-up all the results for the

resonance and anti-resonance frequencies obtained either experimentally or numerically.

The current FRF at low frequencies can be compated to another values which is

given in the actuator’s datasheet. This parameter, called dynamic operating current

coefficient, gives and indication of the current requirement for the functioning of the

actuator ar a certain operating frequency and a fixed amplitude of displacement. For

the actuator employed in the test bench the dynamic operating current coefficient is 12.5

µA/Hz/µm (see Tab. 5.1 for complete specifications of the actuator). It is thus possible

to reconstruct the low frequency part of the current FRF plots shown in Fig. 6.13, 6.14,

and 6.15 by calculating the slope of the current gain. The resulting value at 100 Hz

is 2.25 · 10−3 A/V, a value definitely smaller than that read in the aforementioned

figures. In other words the current absorption of the system is larger than predicted;

this fact could be due to two distinct aspect: the larger than declared capacitance (see

previous section § 6.3) and the measuring resistor which raises the current requirements.
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Resonance [kHz] Anti-resonance [kHz]

km Type f
(1)
R f

(2)
R f

(1)
A f

(2)
A

0.25

EXP 5.06 13.33 5.94 15.63

MLM 5.03 15.56 8.50 16.96

BKM 5.39 - 12.14 -

FDM 5.50 17.00 10.50 19.50

0.63

EXP 4.29 12.27 5.20 12.87

MLM 4.06 14.03 7.31 14.65

BKM 4.18 - 12.16 -

FDM 4.50 15.50 9.00 17.00

6.3

EXP 1.88 - 2.17 -

MLM 1.59 12.50 2.99 12.52

BKM 1.59 - 12.10 -

FDM 1.50 13.50 5.00 -

Table 6.1: This table sums up all the values of the resonance and anti-resonance fre-

quencies resulting from either experiments or simulations



Conclusions

The aim of the present work was to investigate the dynamic behaviour of a mechanical

system driven by a piezoelectric multilayer actuator (MLA). Fairly simple in construc-

tion, MLAs are far more complicated objects to analyse from the dynamic standpoint.

Indeed, the dynamics of any mono-dimensional piezoelectric media is ruled by the sound

wave equation with time-dependent boundary conditions.

The models presented have different complexities, reflecting the different purposes

which they have been conceived for. The analytical bulk modelling (BKM) is directly

derived from the theory of linear piezoelectricity as presented in [1] and in [34]. This

model is extended to MLA by simply considering a very thick layer of piezoelectric

material and including a driving circuit. Such modelling has a very limited number

of parameters, it is very easy to implement and requires a modest processing power.

Obviously this model is based on a great simplification of the actuator’s real structure;

nevertheless very interesting results are obtained in certain conditions. Furthermore

this model gives results only for a periodic excitation, failing to describe transient be-

haviour. Herein lied the motivation to implement a finite difference model (FDM).

This model is much more flexible, allows analysing the system in transient conditions,

can be employed to study the response to harmonic excitation, and can include a much

larger variety of loading conditions. On the contrary results depends on the level of dis-

cretization and may require high-end processing capabilities. The multilayer analytical

model is somehow a trade-off between the “exactness” of the analytical model and the

modelling accuracy of the finite difference model. Being an original contribution, this

model was implemented to give a better description of the actuator’s structure, being

composed of alternating layers of piezoelectric material and electrodes. The contribu-

tion of the electrodes’ inertia to the overall dynamics was taken into account, as well

as the external load and the driving circuit.

121
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An experimental campaign was carried out for the validation of the mathematical

models, a necessary step to be taken. The choice of the test bench, quite essential in its

design, was due mostly to the need of not introducing complex parameter identification

that would interfere with the validation of the model. Indeed, the aim was to minimize

the risk of attributing discrepancies between models and experiments to the parameters

evaluation.

The three models provides substantially equivalent results in the low frequency

region, that spans from static behaviour to first resonance frequency. Especially with

high load inertia the results of the three models are equivalent, as reported in Fig.6.13,

6.14, and 6.15. The most substantial differences can be found in the identification of the

anti-resonance frequencies; in this respect the three models yields different results. The

most accurate is the multilayer analytical model; the finite difference model succedes in

identifying two anti-resonance frequencies but the corresponding frequency values are

far less accurate than the MLM model. The bulk analytical model is very inaccurate

in this respect since it shows only one anti-resonance frequency in the given range.

The overall predicting behaviour of the mathenatical model is very satisfactory. In

all the loading cases the three models describe very well the low frequency dynamic

behaviour and identify very precisely the first resonance frequency. In this respect

the “simple” BKM model provides very good results at a very limited cost in terms of

processing capabilities. When the frequency range under consideration spans above the

first resonance frequency the MLM model is more suitable. Emerging applications like

the development of piezoelectric ultrasonic motors constituted by an MLA as active

part may benefit from the accurate prediction of the high frequency dynamic behavior.

The FDM model places itself somewhere in between the other two models in terms of

accuracy. Nevertheless it must be noticed that, while the two analytical models are

“exact”, the FDM model is discretization dependent. Therefore the model accuracy

may improve if more elements are employed in modelling the actuator. In any case the

FDM model is a extremely valuable design tool since it allows analysing the transient

dynamics of a mechanical system driven by a piezoelectric MLA.

The present investigation was limited to the analysis of the system under a periodic

excitation. Although the analytical models cannot describe the system’s dynamics in

transient conditions, the FDM model definitely can. Thus the natural next step to be

taken is that of measuring the dynamic response of the test bench under the excitation

of transient signals such as step, ramps, impulses, etc. in order to validate the results
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provided by the FDM model.

Much can be done too in the field of parameters identification. In the present

work a very straightforward technique has been employed, which in fact does not take

into account any experimental evidence. It goes without saying that results could be

largely improved by considering, for the parameters identification, some feedback from

the experimental data. Black-box, grey-box techniques could be proficiently employed

to this end.

From the modelling point of view, a simple model that could be used for control

purposes would be highly desiderable. In fact the models presented are not suitable

for implementing control strategies. Some authors consider piezoelectric MLAs as ideal

constraints to the driven system for the constitutive equation relates directly strain

and voltage [29]. It was proved that such approach does not yield accurate results,

especially when the load mass is not much larger than the actuator’s active part mass.

Therefore a reasonably simple model could help design more accurate controllers.
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Appendix A

Non-linear theory of

electroelasticity for strong fields

The theory of electroelasticity studies the behaviour of a solid body subject to mechan-

ical forces and electical fields acting upon it. The non-linear theory is valid for large

deformations and strong electric fields [34].

Conventions

Scalars are generally represented with lower case letters (such as a), vectors with bold

letters (such as a). Unit vectors are represented by the letter “i” (either lower case or

upper case). Unit vectors are orthogonal, thus

ii · ij = 0 ∀i, j : i 6= j

Tensors will be represented using the two-point Cartesian tensor notation. Repeated

indexes imply summation

aibi = a1b1 + . . .+ aNbN i = 1, . . . ,N

aijbi = aj1b1 + . . .+ ajNbN j = 1, . . . ,M

When a set of coordinates is represented by a vector x such as

x = {x1, . . . , xN}
T

the differentiation of a scalar function f with respect to a coordinate xi is indicated by

its index i using the comma notation,

125
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f,i =
∂f

∂xi

This expression alone can be interpreted as the gradient of the scalar function f . Higher

order derivatives can be represented as follows

f,ii =

{

d2f

dx21
, . . . ,

d2f

dx2N

}T

The differentiation of a vector-valued function f(x) with respect to x is written

df

dx
= fj,i =









df1
dx1

. . . dfM
dx1

. . . . . . . . .

df1
dxN

. . . dfM
dxN









The divergence of a vector-valued function f is

∇ · f = fi,i

while the vector product can be represented in a compact manner introducing the

permutation tensor εijk

εijk = ii · (ij × ik) =















1 i, j, k = 1, 2, 3; 2, 3, 1; 3, 1, 2;

−1 i, j, k = 1, 3, 2; 2, 1, 3; 3, 2, 1;

0 otherwise

where ii, ij and ik are three orthogonal unit vectors. Therefore

a× b = c ci = εijkajbk

The curl of a vector-valued function f is

∇× f = {εijkfk,jii}

The Kronecker delta is a unit matrix, whose generic element is δij . An interesting

property is

ij · iK = δjk IJ · IK = δJK

From the properties of unit matrices, δjk = δJK
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Figure A.1: Description of a deformable body

A.1 Kinematics of a deformable body

The theory of electroelasticity studies a continuum body that, starting from a refer-

ence configuration, undergoes rigid body motion and deformations. In the reference

configuration the body is delimited by a surface S which contains a volume V. The

surface can be described by an outward unit vector N that is always normal to it. At

any subsequent time t, the body is in its present configuration; the same quantities are

labeled respectively, s, v, and n (see Fig A.1).

A.1.1 Coordinate systems

The position of a continuum body can be described in its reference configuration by the

position of all its points. A vector X carries out this task. While a rigid body can be

fully described by six coordinates, a deformable body needs more information for a full

description. This is why a vector y comes into play. The description of the position of

the deformable body in the present time is given by y. The vector y may be expressed

in a different coordinate system than X. In the most generic case
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y = Y1I1 + Y2I2 + Y3I3 = YKIK

y = y1i1 + y2i2 + y3i3 = ykik

where IK and ik are the unit vectors of respectively the reference and present coordinate

systems. The position vectors X and y can be expressed using the index notation as

XI = δMIXM

yi = δmiym

With this notation, the position y can be written as

yM = δMiyiIK

where

δMi = IM · ii

Since there will be no need for a moving present coordinate system, the reference

and the present coordinate systems are chosen to be coincident (see Fig A.2). Therefore

the following relations hold

I1 = i1, I2 = i2, I3 = i3

δkl = δKL = δkL

A.1.2 Displacements

Due to rigid body motion or deformation a point can change its position. This trans-

lation is described by the displacement vector u such that the relation

y = X+ u (A.1)

is satisfied. The present position y is a function of X and u. Let it be expressed in

the present coordinate system while X and u in the reference one; the Eq. A.1 can be

written as

yi = δiM (XM + uM ) (A.2)
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Figure A.2: Simplified description of a deformable body
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The differential of y is a material line element in the present configuration which

comes from an original configuration dX. The two are related by

dyi|t fixed = yi,KdXK (A.3)

The spatial derivative of y with respect to X gives the deformation gradient

yk,K = δkK + δkLuL,K (A.4)

a matrix whose determinant J will be very important. It can be shown that the

determinant can be calculated as

J =
1

6

(

2
∂yK
∂XL

∂yL
∂XM

∂yM
∂XK

− 3
∂yK
∂XK

∂yL
∂XM

∂yM
∂XL

+

(

∂yM
∂XM

)3
)

The relative position of two neighbouring points in their reference configuration

is given by dX = X2 − X1. In the present configuration their relative position is

expressed by dy = y2 − y1. The distance between these two points in either states can

be computed from the following relations

dS2 = dXKdXK = δKLdXKdXL

ds2 = dyidyi = yi,KdXKyi,LdXL = CKLdXKdXL

where CKL = yi,Kyi,L is the deformation tensor. The determinant of the deformation

tensor CKL is equal to J2. The elongation of this material element ds2 − dS2 can be

related to the strain tensor by

ds2 − dS2 = 2SKLdXKdXL

that can be written as

SKL =
1

2
(CKL − δKL) =

1

2
(yi,Kyi,L − δKL) (A.5)

Substituting Eq. A.4 into Eq. A.5 yields

SKL =
1

2
(uK,L + uL,K + uM,KuM,L) (A.6)

This strain tensor SKL is symmetric.
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A similar reasoning allows writing the relations between areas and volumes in the

reference and present state. This can be accomplished considering respectively two and

three material line elements. The resulting relations are

dai = JXL,idAL (A.7)

dv = JdV (A.8)

where dai is the projection of the infinitesimal area da along the ni direction in the

present state, dAL is the projection of the infinitesimal area dA along the NL direction

in the reference state, v is the present volume and V is the reference one.

A.1.3 Velocity and acceleration

Velocity and acceleration of a material point can be calculated by differentiating Eq. A.2

with respect to time. It has to be noticed that since the position of a material point

depends only on time, the expressions of the velocity v and the acceleration v̇ can be

simplified in

vi =
Dyi
Dt

= ẏi =
∂y(X, t)

∂t

∣

∣

∣

∣

X fixed

(A.9)

v̇i =
Dvi
Dt

= ÿi =
∂2y(X, t)

∂τ2

∣

∣

∣

∣

X fixed

(A.10)

since the terms
∂Xj

∂t vanish. The derivative with respect to time of XL,j can be calcu-

lated as

D

Dt
(XL,j) = −vi,KXK,jXL,i (A.11)

The velocity gradient

∇ · v = vi,i

is a tensor that can be decomposed into a symmetric deformation rate tensor dij and

the anti-symmetric spin tensor ωij defined as

dij =
1

2
(vi,j + vj,i) (A.12)
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ωij =
1

2
(vi,j − vj,i) (A.13)

The differentiation of Eq. A.5 with respect to time gives the relation between the

strain rate ṠKL and the deformation rate dij

ṠKL = dijyi,Kyj,L (A.14)

It can be shown that the derivative of the determinant J is equal to

J̇ = Jvk,k (A.15)

A.2 Balance laws

Balance laws are physic laws based on experimental evidences. They are postulated

as they constitute the basis for the formulation of the theory of continuum. Gauss’a

and Faraday’s law, conservation of mass, linear and angular momentum, and energy

are used for developing the theory of electroelasticity.

A.2.1 Interactions

The interaction between a body and an electric field are due to the body crystal struc-

ture. This interaction can be studied the electric field induced phenomena by modelling

the continuum as two interpenetrating bodies: one carrying the mass and the positive

charges and the other massless carrying the negative charges. The results are an electric

body force FE and an electric body momentCE acting upon an infinitesimal volume dV;

an electric body power per unit mass wE is generated as well. Their expressions are

FE
j = ρeEj + PiEj,i (A.16)

CE
i = εijkPjEk (A.17)

wE = ρEiπ̇i (A.18)

where ρe is the present free charge density, Ej is the j component of the electric field E,

Pi is the i component of the polarization P. π̇i is the i component of the time derivative

of the polarization per unit mass
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π =
Pi

ρ
(A.19)

A.2.2 Gauss’s law

Gauss’s law states that a flux of an electric field E through a closed surface s is equal

to the total electric charge present in the volume v bound by the surface s divided by

the electric constant ε0. When considering a dielectric material, which is polarizable,

the equivalent formulation

∮

s
D · da =

∫

v
ρedv (A.20)

is more convenient.

Eq. A.20 can be written in differential form using the divergence theorem

∮

s
D · da =

∫

v
∇ ·D dv

which can be written using the index notation as

∮

s
Didai =

∮

s
niDida =

∫

v
Di,i dv

yielding the differential formulation

Di,i − ρe = 0 (A.21)

A.2.3 Faraday’s law

The maxwell-Faraday’s equation for quasi-static fields states that the line integral of

the electric field E along any closed path is zero

∮

l
E · dl = 0 (A.22)

Using the Stoke’s theorem the equation can be written as

∮

l
E · dl =

∫

s
(∇×E) · da = 0

that must hold for any surface s whose boundary is l. Therefore

∇×E = 0
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that can be written in index notation as

εijkEk,jii = 0 (A.23)

using the permutation tensor εijk.

A.2.4 Conservation of mass

The conservation of mass implies that the derivative of the total mass with respect to

time is zero

D

Dt

∫

v
ρdv = 0 (A.24)

According to Leibniz’s rule for differentiation under the integral sign, the expression

Eq. A.24 can be easily solved once the domain of integration is constant. This can be

accomplished using Eq. A.8

D

Dt

∫

v
ρdv =

D

Dt

∫

V
ρJdV =

∫

V

D

Dt
(ρJ) dV =

∫

V

(

ρ̇J + ρJ̇
)

dV

Introducing Eq. A.15 yields

∫

V

(

ρ̇J + ρJ̇
)

dV =

∫

V
(ρ̇J + ρJvk,k) dV = J

∫

V
(ρ̇+ ρvk,k) dV = 0

that must hold for any volume V, therefore

ρ̇+ ρvk,k = 0 (A.25)

A.2.5 Conservation of linear momentum

The conservation of linear momentum can be written as

D

Dt

∫

v
ρv dv =

∫

v

(

ρf+ FE
)

dv +

∫

s
t da (A.26)

where f is a mechanical body force per unit mass and t is a mechanical force per unit

area acting on the surface s of the body. It can be shown that

D

Dt

∫

v
ρvi dv =

∫

v
ρ
Dvi
Dt

dv (A.27)

Introducing the Cauchy stress tensor σji, whose relation to the surface force per

unit area t is ti = σjinj, Eq. A.26 can be written as
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∫

v
ρ
Dvi
Dt

dv =

∫

v

(

ρfi + FE
i

)

dv +

∫

s
σjinjda

Applying the divergence theorem and considering that the relation must hold for any

volume v, the differential form of the conservation of the linear momentum is obtained

ρv̇i = ρfi + FE
i + σji,j (A.28)

A.2.6 Conservation of angular momentum

The conservation of angular momentum can be written as

D

Dt

∫

v
y× ρv dv =

∫

v

(

y×
(

ρf+ FE
)

+CE
)

dv +

∫

s
y× t da (A.29)

With the introduction of the permutation tensor εijk the term on the left-hand side is

D

Dt

∫

v
ρεijkyjvk dv =

∫

v
ρεijkyj v̇k dv

The contribution of the surface force t can be written as

∫

s
εijkyjtk da =

∫

s
εijkyjσlknl da =

∫

v
(εijkyjσlk),l dv =

=

∫

v
εijk (yjσlk),l dv =

∫

v
εijk (δjlσlk + yjσlk,l) dv =

∫

v
εijk (σjk + yjσlk,l) dv

that can be substituted into Eq. A.29 yielding the index equation of conservation of

angular momentum in the integral form

∫

v
ρεijkyj v̇k dv =

∫

v

(

εijkyj
(

ρfk + FE
k

)

+ CE
i

)

dv +

∫

v
εijk (σjk + yjσlk,l) dv

Some elements can be grouped and, considering the conservation of linear momentum

(Eq. A.28), the following result is obtained

∫

v

(

εijkσjk + CE
i

)

dv =

∫

v
εijkyj

(

ρv̇k − ρfk − FE
k − σlk,l

)

dv = 0

Since the conservation of angular momentum must hold for any volume v

εijkσjk + CE
i = 0 (A.30)
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A.2.7 Conservation of energy

The conservation of energy is a scalar equation that can be formulated as

D

Dt

∫

v
ρ

(

1

2
v · v+ e

)

dv =

∫

v

((

ρf+ FE
)

· v+wE
)

dv +

∫

s
t · v da (A.31)

The term on the left hand side can be written in index notation as

∫

v
ρ (viv̇i + ė) dv

The contribution to energy balance due to the surface force t can be written in terms

of the Cauchy stress tensor σji as

∫

s
tkvk da =

∫

s
σlknlvk da =

∫

v
(σlkvk),l dv =

∫

v
(σlk,lvk + σlkvk,l) dv

Relation Eq. A.28 can be substituted into Eq. A.31 yielding a more compact ex-

pression

∫

v

(

σlkvk,l + wE − ρė
)

dv = 0

that implies

ρė = σlkvk,l + ρEiπ̇i (A.32)

A.2.8 Electrostatic stress tensor and total stress tensor

The electrostatic stress tensor σEij is defined as a function of y whose divergence yields

the electric body force FE
j . The relation between the two is

σEij,i = FE
j (A.33)

The choice of σEij is not unique; it is chosen to be

σEij = DiEj −
1

2
ε0EkEkδij (A.34)

A total stress tensor τij can be defined as the sum of σij and σ
E
ij . This tensor can be

decomposed into a symmetric tensor σSij and an anti-symmetric one σMij (the Maxwell

stress tensor) such as
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τij = σij + σEij = σSij + σMij (A.35)

where

σSij = σij + PiEj (A.36)

σMij = ε0

(

EiEj −
1

2
EkEkδij

)

(A.37)

The definition of the electrostatic stress tensor σEij can be introduced in Eq. A.28

yielding

ρv̇i = ρfi + σEji,j + σji,j

ρv̇i = ρfi +
(

σEji + σji
)

,j

ρv̇i = ρfi + τji,j

The definition of the electric body couple CE and of total stress tensor τij can be

introduced in Eq. A.30 yielding

εijk (σjk + PjEk) = 0

εijk
(

σjk + σEjk
)

= 0

εijkτjk = 0

A.2.9 Free energy

The free energy ψ is a function of the internal energy per unit mass e, the electric

field E and the polarization per unit mass π

ψ = e− Eiπi (A.38)

The expression of the free energy can be substituted into Eq. A.32 yielding

ρψ̇ = σlkvk,l − PiĖi
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A.2.10 Material form of the balance laws

The expressions derived from the balance laws are



















































Di,i − ρe = 0

εijkEk,j = 0

ρ̇+ ρvk,k = 0

ρv̇i = ρfi + τji,j

εijkτjk = 0

ρψ̇ = σlkvk,l − PiĖi

(A.39)

As it can be noticed from the lower case indexes, these relations are function of y

which refers to an unknown configuration. To be of practical use, relations Eq. A.39

need be expressed using the reference coordinates X.

Gauss’s law

∫

s
Didai =

∫

v
ρedv

∫

S
DiJXL,idAL =

∫

V
ρeJdV

∫

S
DiJXL,iNLdA =

∫

V
ρeJdV

∫

V
(DiJXL,i),L dV =

∫

V
ρeJdV

Defining the material dielectric displacement D as

DL = DiJXL,i Di = J−1yi,LDL

yields

DL,L = ρE

where ρE is the free charge per unit volume in the undeformed configuration.

Faraday’s law

∫

l
Eidli =

∫

L
Eiyi,KdLK =

∫

S
εIJK (Eiyi,K),J dAI = 0

Defining the material electric field E as
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EK = Eiyi,K Ei = EKXK,i

whose relation to the electric potential φ is

EK = −φ,iyi,K = −φ,K

Faraday’s law can be written

∫

S
εIJKEK,JdAI = 0

εIJKEK,J = 0

Conservation of mass

∫

v
ρdv =

∫

V
ρ0dV

∫

V
ρJdV =

∫

V
ρ0dV

ρ0 = ρJ

where ρ0 is the mass density in the reference state.

Conservation of linear momentum

∫

v
ρv̇idv =

∫

v
ρfidv +

∫

s
τjida

∫

V
ρv̇iJdV =

∫

V
ρfiJdV+

∫

S
τjiJXL,jdAL

∫

V
ρv̇iJdV =

∫

V
ρfiJdV+

∫

V
(τjiJXL,j),L dV

ρ0v̇i = ρ0fi + (τjiJXL,j),L

Defining KLj = τjiJXL,j yields

ρ0v̇i = ρ0fi +KLj,L
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Conservation of angular momentum

The total stress τji can be expressed in terms of KLj by

τji = J−1yi,LKLj

Substituting it into the quation of conservation of angular momentum listed in Eq. A.39

gives

εijkτjk = εkijJ
−1yi,LKLj = 0

εkijyi,LKLj = 0

Conservation of energy

The definition of a symmetric stress tensor T S
KL and the material polarization vector P

T S
KL = JXK,kXL,lσ

S
kl σSkl = J−1yk,Kyl,LT

S
KL

PK = JXK,kPk Pk = J−1yk,KPK

allows writing the conservation of energy with respect to the reference coordinates as

ρ0ψ̇ = ṠKLT
S
KL − PK ĖL

The balance laws assume, in the material form, the followig expression



















































DL,L = ρE

εIJKEK,J = 0

ρ0 = ρJ

ρ0v̇i = ρ0fi +KLj,L

εkijyi,LKLj = 0

ρ0ψ̇ = ṠKLT
S
KL − PK ĖL

that is expressed using the reference coordinates.
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A.3 Constitutive equations

The conservation of energy equation gives hints on the dependency between the system’s

variables. Strain and electric field can be considered to be the independent variables.

Free energy, stress and polarization can be expressed as function of these variables

ψ = ψ (SKL, EK)

T S
KL = T S

KL (SKL, EK)

PK = PK (SKL, EK)

Based upon this assumption, the conservation of energy can be written as

ρ0

(

∂ψ

∂SKL
ṠKL +

∂ψ

∂EL
ĖL

)

= ṠKLT
S
KL − PK ĖL

(

T S
KL − ρ0

∂ψ

∂SKL

)

ṠKL =

(

ρ0
∂ψ

∂EL
+ PK

)

ĖL

For these equations hold for any ṠKL, ĖL the following relations must be verified

T S
KL = ρ0

∂ψ

∂SKL

PK = −ρ0
∂ψ

∂EL

The explicit expression of the free energy ψ can be found and it is dependent on

twelve tensors, ranking from second to fourth order.

A.4 Initial-boundary-value problem

The balance equation must hold for any part of the body and at any time. Faraday’s

law is automatically satisfied since the electric field can be computed from the diver-

gence of a potential φ. The conservation of angular momentum is always verified since

the total stress tensor τij is symmetric. The constitutive equations are derived from the

conservation of energy, therefore it already taken into account. The present mass den-

sity ρ can be calculated once the deformed configuration is known. The only equations

left are the Gauss’s law and the conservation of linear momentum
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





DL,L = ρE

ρ0v̇i = ρ0fi +KLj,L

The free energy formulation, along with the balance equations, allow writing the

system of equations as a function of four unknowns yi (XL, t) and φ (XL, t).
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Linear Piezoelectricity

The hypothesis upon which the theory of linear piezoelectricity is based on are that the

displacement vector is small for any point of the electroelastic body, the electric field

intensity is small, and that the electric field variations are much faster than the body

dynamics.

B.1 Constitutive equations

The constitutive equations are nine independent equations that relate strain S, stress T ,

electric field E, and electric displacement D. They usually are expressed as

Tij = cEijklSkl − eijkEk

Di = eijkSkl + εSijEk

(B.1)

and they describe the material’s behaviour under static conditions.

B.2 Dynamic equations

The dynamics of a continuum of piezoelectric material can be described by a set of four

differential equation in its displacement from reference configuration u and the electric

potential ϕ







cEijkluk,li + ekijϕ,ki = ρüj

eijkui,jk − εSijϕ,ij = 0
(B.2)

where ü is the second derivative of u with respect to time.

143



144 B.3. COMPRESSED MATRIX REPRESENTATION

ij or kl p or q

11 1

22 2

33 3

23, 32 4

13, 31 5

12, 21 6

Table B.1: Compact index notation

B.3 Compressed matrix representation

The symmetry properties of the material constants, of the stress tensor, and of the strain

tensor allow writing the constitutive equations in a more compact form. The stress and

strain tensors have six independent components, out of the nine that constitute each

of them. The number of independent coefficients of material constants is 36, 18, and 6

for respectively cEijkl, ekij , and ε
S
ij .

Introducing a simple correspondence between indexes (see Tab B.1)

Tij → Tp, Sij → Sq

cijkl → cpq, eikl → eiq

the constitutive equations can be written in matrix-vector form. This simplification is

in accordance with the IEEE standard 176-1987 [1]. The stress tensor can be written

in vector form as

{T} = {T11 T22 T33 T23 T13 T12}
T

while the strain vector is defined as

{S} = {S11 S22 S33 2S23 2S13 2S12}
T

where the elements of the vector S are
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S11 =
∂u1
x1

S22 =
∂u2
x2

S33 =
∂u3
x3

S23 =
∂u2
x3

S13 =
∂u1
x3

S12 =
∂u1
x2

The matrix form of the constitutive equations (see Eq. B.1) is







Tp = cEpqSq − ekpEk

Di = eiqSq + εSikEk

(B.3)

B.4 Relation between material constants

The following relations between material constants hold

cEprs
E
qr = δpq cDprs

S
qr = δpq

βSprε
S
qr = δpq βTprε

T
qr = δpq

cDpq = cEpq + erphrq sDpq = sEpq + drpgrq

εTpq = εSpq + dpreqr βTpq = βSpq − gprhqr

epq = dprc
E
rq dpq = εTprg

E
rq

gpq = βTprdrq hpq = gprc
D
rq

(B.4)

B.5 The elasto-piezo-dielectric matrix

Depending on crystal structure, some elements of cpq, eiq, and εik are zero. The elastic-

piezo-dielectric matrix helps finding out which entries are null. Most piezoelectric

materials present a perovskite structure, a crystal structure that belongs to the 4mm

point group. Figure B.1 shows the symmetric elasto-piezo-dielectric matrix for the 4mm

point group. A connecting line between elements means equality.

The non-zero coefficients for a perovskite-like piezoelectric material are c11, c12, c13,

c33, c44, e31, e, e15, ε11, and ε33. The element c66 is equal to 1
2(c11 − c12) [34].

These constants can be calculated from the more readily available values of spq

and diq. The following relations hold
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Figure B.1: The 4mm elasto-piezo-dielectric matrix non-zero entries
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

















































































c11 = (sE11s33 − s213)/(s33s
2
11 − 2s213s11 − s212s33 + 2s213s12)

c12 = −(s12s33 − s213)/(s33s
2
11 − 2s213s11 − s212s33 + 2s213s12)

c13 = −s13/(s11s33 − 2s213 + s12s33)

c33 = (s11 + s12)/(s11s33 − 2s213 + s12s33)

c44 = 1/s44

c66 = 1/s66

e15 = d15c44

e31 = d31c11 + d32c12 + d33c13

e33 = (d31 + d32)c13 + d33c33

(B.5)

for perovskite-like materials. The superscript E has been omitted in the previous

equations for sake of clarity.

B.6 Constitutive and dynamic equations

Since the elasto-piezo-dielectric matrix has many null entries, the constitutive and

dynamic equation can be written explicitly in a rather compact form (Eq. B.6 and

Eq. B.7).
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x3

x1

Figure B.2: Rod model
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







T1 = cE11S1 + cE12S2 + cE13S3 − e31E3

T2 = cE12S1 + cE11S2 + cE13S3 − e31E3

T3 = cE13(S1 + S2) + cES3 − e33E3

T4 = cE44S4 + e15E2

T5 = cE44S5 + e15E1

T6 = cE66S6

D1 = e15S5 + εS11E1

D2 = e15S4 + εS11E2

D3 = e31(S1 + S2) + e33S3 + εS33E3

(B.6)




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





cE11u1,11 + (cE12 + cE66)u2,12 + (cE13 + cE44)u3,13 + cE66u1,22 + cE44u1,33+

+(e31 + e15)ϕ,13 = ρü1

cE66u2,11 + (cE12 + cE66)u1,12 + cE11u2,22 + (cE13 + cE44)u3,23 + cE44u2,33+

+(e31 + e15)ϕ,23 = ρü2

cE44u3,11 + (cE44 + cE13)u1,31 + cE44u3,22 + (cE13 + cE44)u2,23+

+cE33u3,33 + e15(ϕ,11 + ϕ,22) + e33ϕ,33 = ρü3

e15(u3,11 + u3,22) + (e15 + e31)u1,13 + (e15 + e31)u2,32 + eu3,33−

−e11(ϕ,11 + ϕ,22)− εS33ϕ,33 = 0

(B.7)

B.7 Slender rod in axial mode

The rod is electroded on the end faces while the lateral surface is completely free and

unloaded. The rod might be mechanically loaded along the poled axis, that is axis 3

(see Fig. B.2).

Some simplifications can be introduced, that the only non-zero stress is T3 = f .

Furthermore, the electric field’s only component is E3. Given this set of hypothesis,

the most appropriate constitutive equations are
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





Sp = sEpqTq + dkpEk

Di = diqTq + εTikEk

(B.8)

The constitutive equations can be written taking into account the simplifications

previously made, yielding



























S1 = sE13T3 + d31E3

S2 = sE13T3 + d31E3

S3 = sE33T3 + d33E3

D3 = d33T3 + εT33E3

(B.9)

B.7.1 Electromechanical coupling coefficient

The piezoelectric effect allows converting mechanical energy into electrical energy and

vice versa. Through the direct piezoelectric effect mechanical energy is converted into

electrical one, and the opposite happens in case of the converse piezoelectric effect.

Energy can be accumulated in a piezoelectric solid either as mechanical or electrical

energy. It can be introduced indifferently by mechanical or electric loading. The

electromechanical coupling coefficient, usually labeled k, measures the ratio of stored

mechanical/electrical energy over the input electrical/mechanical one. Subscript and

superscript specify the loading conditions and the piezoelectric mode. The value of the

electromechanical coupling coefficient depends on the directions upon which forces and

electric field are applied. Often mechanical coupling coefficients are expressed relative

to the one calculated for a slender rod.

Direct effect

Considering a force F applied to the end faces so that a stress f is induced, the work

done is different whether the electrodes are shorted or not (see Fig. B.3). In case the

electrodes are shorted, the electric potential is equal on the end faces and thus the

electric field E3 is zero. The following equations hold:



























S1 = sE13f

S2 = sE13f

S3 = sE33f

D3 = d33f

The work done at constant electric field per unit volume can be calculated as
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R

R

f f

f f

Figure B.3: Mechanically loaded piezoelectric rod

wE
m =

1

2
sE33f

2 (B.10)

and there is no electric energy accumulated into the material.

When the electrodes are open, there is no net charge on the electrodes, thus D3 = 0

at both ends of the rod. The constitutive equations can be written now as































S1 =
(

sE13 −
d13d33
εT33

)

f

S2 =
(

sE13 −
d13d33
εT33

)

f

S3 =
(

sE33 −
d233
εT33

)

f

E3 = −d33
εT33
f

The mechanical work done at constant electric displacement per unit volume can be

calculated as

wD
m =

1

2

(

sE33 −
d233
εT33

)

f2 (B.11)

while the electric energy stored per unit volume is equal to

we =
1

2

d233
εT33

f2 (B.12)
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Vp

Vp

Figure B.4: Electrically loaded piezoelectric rod

It is worth noticing that the mechanical work done is larger at constant electric field;

at constant electric displacement part of the input energy is converted into electrical

one via the direct piezoelectric effect. Indeed:

wE
m − wD

m = we

The ratio between the stored electrical energy and the input mechanical energy

yields the electromechanical coupling coefficient kl33, that is

kl33 =

√

we

wE
m

=
d33

√

sE33ε
T
33

(B.13)

Converse effect

The deformation of the rod can be induced by an electric field as well. When the

electrodes are connected to a voltage source and there is no mechanical force acting on

the rod, the induced deformation can be easily calculated. Indeed, the stress T3 is zero

and the electric field E3 is equal to −Vp/l, being l the rod length. The deformation is

thus
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




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















S1 = −d31
Vp

l

S2 = −d31
Vp

l

S3 = −d33
Vp

l

D3 = −εT33
Vp

l

and the electric energy per unit volume stored is

wT
e =

1

2

εT33
l2
Vp

2 (B.14)

In case the rod is constrained so that no deformation S3 is allowed, the constitutive

equations are































S1 = −
(

d33sE13
sE33

+ d31

)

Vp

l

S2 = −
(

d33sE13
sE33

+ d31

)

Vp

l

T3 =
d33
sE33

Vp

l

D3 =
(

d233
sE33

− εT33

)

Vp

l

The electric energy stored per unit volume can be calculated as

wS
e =

1

2Al
Vp

∫

D3dA =
1

2l2

(

d233
sE33

− εT33

)

Vp
2 (B.15)

whereA is the area of rod cross-section. The mechanical work that can be done releasing

the constraints on the end faces is

wm =
1

2

d233
sE33

Vp
2

l2
(B.16)

It is worth noticing that

wS
e − wT

e = wm

The ratio between the stored mechanical energy and the input electrical energy

yields the electromechanical coupling coefficient

kl33 =

√

wm

wT
=

d33
√

sE33ε
T
33

(B.17)

As anticipated, the ratio between stored and input energy does not depend on the

type of input energy (see Eq. B.13 and Eq. B.17).
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x2

x3

Figure B.5: Thin plate model

B.8 Thin plate in stretch mode

A thin plate of piezoelectric material shall present electrodes on the upper and lower

faces, perpendicular to the direction 3 (see Fig. B.5). It is assumed that the only

non-zero deformation is S3 and the electric field lines are directed along the axis 3.

The constitutive and dynamic equations Eq. B.1 and Eq. B.2 can be simplified

respectively as



























T1 = cE13S3 − e31E3

T2 = cE13S3 − e31E3

T3 = cE33S3 − e33E3

D3 = e33S3 + εS33E3

(B.18)







cE33u3,33 + e33ϕ,33 = ρü3

e33u3,33 − εS33ϕ,33 = 0
(B.19)

B.8.1 Coupling coefficient of a thin plate

The electromechanical coupling coefficient for a thin plate in stretch mode is labeled kt33.

As for the piezoelectric rod model, the direct and converse effects shall be analysed.

Direct effect

Considering a force F that induces a constant stress f on the plate upper and lower

surfaces, the conversion of energy will be analysed (see Fig. B.6). When the electrodes

are shorted they are at the same electric potential and thus the electric field E3 is zero.

The constitutive equations Eq. B.18 can be written as
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R

R

f

f

f

f

Figure B.6: Mechanically loaded piezoelectric thin plate
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T1 = cE13S3

T2 = cE13S3

f = cE33S3

D3 = e33S3

which can be easily solved as































T1 =
cE13
cE33
f

T2 =
cE13
cE33
f

S3 =
1
cE33
f

D3 =
e33
cE33
f

The mechanical work done at constant electric field per unit volume is

wE
m =

1

2cE33
f2 (B.20)

When the electrodes are open, the net charge must be zero and therefore the electric

displacement D3 is zero. Given a constant stress f along the axis 3, the following

equations hold
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
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



T1 = cE13S3 − e13E3

T2 = cE13S3 − e13E3

p = cE33S3 − e33E3

0 = e33S3 + εS33E3

which find a solution in


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

















T1 =
e33

e233+εS33c
E
33

(

εS33c
E
13 + e33e13

)

f

T2 =
e33

e233+εS33c
E
33

(

εS33c
E
13 + e33e13

)

f

S3 =
εS33

e233+εS33c
E
33
f

E3 = − e33
e233+εS33c

E
33
f

The mechanical work done at constant electric displacement per unit volume is

wD
m =

1

2

εS33
e233 + εS33c

E
33

f2 (B.21)

and the electromechanical coupling coefficient kt33 is

kt33 =

√

wE
m − wD

m

wE
m

=

√

1−
εS33c

E
33

e233 + εS33c
E
33

=
e33

√

εS33c
D
33

(B.22)

where some relations of Eq. B.4 between constants have been used. The available

electrical energy that can be used connecting the electrodes to an electric load can be

easily calculated as

we =
1

2

e233
cE33
(

e233 + εS33c
E
33

)f2 (B.23)

It is worth noticing that

we = wT
m − wS

m

Converse effect

Considering the thin plate mechanically unloaded and with the electrodes connected

to a voltage source Vp (see Fig. B.7), the piezoelectric plate is permeated by an electric

field whose intensity is equal to Vp/t. The constitutive equations can be written as
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Vp

Vp

Figure B.7: Electrically loaded piezoelectric thin plate
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T1 =
(

−cE13
e33
cE33

+ e13

)

Vp

t

T2 =
(

−cE13
e33
cE33

+ e13

)

Vp

t

S3 = − e33
cE33

Vp

t

D3 = −
(

e233
cE33

+ εS33

)

Vp

t

(B.24)

The stored electric energy at constant stress per unit volume can be calculated as

wT
e =

1

2

(

e233
cE33

+ εS33

)

Vp
2

t2
(B.25)

Should the plate be constrained, so that no deformation is induced, the constitutive

equations are



























T1 = −e13
Vp

t

T2 = −e13
Vp

t

T3 = −e33
Vp

t

D3 = εS33
Vp

t

and the stored electrical energy at constant strain per unit volume is

wS
e =

1

2
εS33

Vp
2

t2
(B.26)

The available mechanical energy that can be used releasing the constraint can be

easily computed as
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wm =
1

2

e233
cE33

Vp
2

t2
(B.27)

It is worth noticing that

wm = wT
e − wS

e

The electromechanical coupling coefficient can be calculated as

kt33 =

√

wT
e −wS

e

wT
e

=

√

1−
εS33c

E
33

e233 + εS33c
E
33

=
e33

√

εS33c
D
33

(B.28)

and it has the same value as the one calculated in Eq. B.22.



Appendix C

Piezoelectric ceramics

The following Tab. C.1 reports all the material characteristics of the piezoelectric ma-

terials manufactured by Physik Instrumente. All the materials share the following

properties: specific thermal capacity ch (350 J kg−1K−1), specific thermal conductiv-

ity ct (1.1 W m−1K−1), Poisson’s coefficient ν (0.34), thermal expansion coefficient in

the polarization direction and perpendicular respectively α‖ (−4÷−6 · 10−6 K−1) and

α⊥ (4÷ 8 · 10−6 K−1), and the maximum compressive stress R (>600 MPa).

The soft piezoelectric materials are those that show stronger piezoelectric effect, i.e.

larger deformations are induced by an electric field (especially in the 33 mode) with

respect to the hard piezoelectric materials (see for comparison the d33 coefficient values

in Tab. C.1). On the contrary soft piezoelectric materials present a very large hysteresis

of the strain - electric field curve, thus they are not particularly suited for deviced

working at very high frequencies. Indeed hysteresis causes large energy losses. More

performing in this respect are the hard piezoelectric materials; quantitative comparison

can be made by looking up the mechanical quality factor: the larger it is the smaller

the hysteresis losses.
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