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Abstract

Motivating problem of this work is consequence assessment of incidents in indus-
tries of relevant environmental risk. An incident consists generally of a chain of ad-
verse events whose effects possibly produce serious damages to people, structures
and environment. For consequence assessment mathematical models are utilized
to simulate such complex processes. A feature of computer models like these is
that they are deterministic; nevertheless they are affected by various sources of
uncertainty. Objective of this work is planning computer experiments that produce
a probabilistic evaluation of incidental effects. In particular, we consider the un-
certainty associated with input variability in the models of interest. This specific
source of variability is only rarely considered by risk analysts. However, it appears
essential in assessing the quality of results especially in analysis of domino effects -
consisting in causal connection of incidental subsequent occurrences - with serious
error propagation.

In this paper, uncertainty analysis, primarily, and sensitivity analysis as well as
optimization techniques, more incidentally, will be discussed in this relatively new

context of computer models chains. Further, distinction between system-intrinsic



uncertainty and analyst subjective uncertainty, recovered from Helton extensive
work (1997), is maintained. An efficient computational strategy of uncertainty anal-
ysis is outlined and, finally, applied to an illustrative example of a two-consequence

model incidental sequence.
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1 Introduction

Motivating problem of this work is consequence assessment of incidental se-
quences in industries of relevant environmental risk. With relevant risk we
mean the possibility of a negative uncertain occurrence which can produce
serious damages to people, structures and environment. An incidental se-
quence is a chain of adverse events that typically starts from an uncontrolled
release of dangerous substances or a short circuit, and, possibly, continues
with other events such as fires, explosions or dispersions. In this context,
domino effect analysis is carried out for evaluation of final incidental risk by
concatenation of subsequent incidental chains.

Mathematical models are used to simulate these physical processes and de-
rive damage outputs. Although these models are deterministic, consequence
assessment is affected by several sources of uncertainty. Main object of the
work is to carry out an uncertainty analysis specifically to quantify the ef-

fect of model input uncertainty on model output. Before dealing with the



tasks of this study, a brief introduction to the general statistical problems
of computer experiments is given.

Scientific phenomena for which physical experimentation is too time- or
cost-consuming or simply impossible, are investigated by computer models,
i.e., mathematical models for simulating these complex systems. Then, for
computer experiment we mean a number of runs of the model code with
various inputs. The following lines synthetically list the major features of
this modeling area.

Our computer models are black boz-like and deterministic (see table 1), i.e.,
replicate observations from running the code with the same inputs will be
identical. Further, they are typically characterized by mathematical com-
plexity; high-dimensional and correlated inputs; multivariate output that is
commonly a time-dependent function with presence of discontinuities; inten-
sive computation. In summary, structural complexity compensates for the
lack of random error. In more general terms, the issue of systematic error of
a possible fitted response-curve, together with input uncertainty, substitutes
for the traditional issue of random variability in experimental units.

From this premise, it is clear that non-standard statistical techniques are
needed to solve the typical issues concerning computer experiments. In par-
ticular, given a general consequence model, the first step of a statistical
analysis is the selection of an efficient experimental design, i.e., the search
for the minimum number of input configurations to obtain analysis results
with the desired level of accuracy. To accomplish this task, the analyzer has
to specify appropriately the joint distribution of input variables from which

to generate the designed sample. Therefore, he has to choose the sampling



Table 1: A general consequence model

INPUT ouTPUT
1 1
substances c. Y\ /! measures
process c. — deterministic — time
plant c. — MODEL N, damage
meteo c. N T T

0 BLACK BOX! random!
fixed & physic-chem.modeling

random! experimental param.

method following various criteria as ease of implementation, flexibility, pre-
cision degree of the uncertainty estimation and adaptability to sensitivity
analysis. Finally, he has to summarize in an opportune way the random
output resulting from the input randomization. In the literature two main
ways alternate: Monte Carlo integration or meta model fitting.

There are several analysis that a statistician may be required to face with
by a computer experiment. Validation is aimed at assessing if the computer
model is an adequate representation of the corresponding system in the real
world. In the pilot phase of a simulation study, screening is the search for
the few really important factors that controls most of the variability of the
output (Occam’s razor principle). Sensitivity Analysis (SA) is aimed at
evaluating the contributions of individual influential inputs to the total un-

certainty in the output. Uncertainty Analysis (UA) is aimed at quantifying



output uncertainty that derives from the total input uncertainty. Optimiza-
tion (O) is the search for input regions that are transformed in maximum
output.

In this paper, uncertainty analysis, primarily, and sensitivity analysis as
well as optimization technique, but more incidentally, will be discussed in
this relatively new context of computer models chains. Further, distinction
between system-intrinsic uncertainty and analyst subjective uncertainty, re-
covered from Helton extensive work (1997, [1]), is maintained. An efficient
computational strategy of uncertainty analysis is outlined and, finally, ap-
plied to an illustrative example of a two-consequence model incidental se-
quence.

A code in R language, executable with the free-software R (which can be
downloaded at http://cran.r-project.org/), has been implemented to link to-
gether the statistical analysis with the deterministic one in a flexible way.
The statistical utility accounts for the input sampling phase as well as for the
output probabilistic analysis, leaving unaltered incidental C-codes (Carpig-
nano, 1995, [2]) to elaborate the central deterministic part. Lastly, graphi-
cal summaries of output distributions are immediate tools for conveying the
added value of this approach to uncertainty analysis.

This work is included in the L.T.E.R.E ( Experts of Innovative Techniques
for Environmental Risk) project joined by the Dipartimento di Ingegneria
Chimica, Processi and Materiali of the University of Palermo, the Joint Re-
search Center of Ispra (Va), the Dipartimento di Scienze Statistiche of the
University of Padua, ARTES, the Assessorato dell’Agricoltura e Foreste of

Sicily Region, the 2i map sud Consortium and financed by UE, the Ministero



del Lavoro e Previdenza Sociale and Sicily Region.

2 Formal Structure of UA

First object of this work is carrying out an appropriate UA in order to assess
model output uncertainty that derives from model input uncertainty. In a
wide current of computer models literature, a distinction is used to keep
between objective uncertainty (otherwise said stochastic (Helton, 1997) or
simulation uncertainty (Cheng and Holland, 1995, [3])) and subjective un-
certainty (so called by Helton, otherwise said parameter uncertainty). The
first one is system-intrinsic so as to be irreducible. In general it derives from
oscillation of some input variables around their nominal values (or param-
eters) which are supposed to be definitely set in deterministic simulations.
The other characterizes the degree of belief which is assigned to the analyst
hypothesis. It generally depends on an imprecise knowledge of some param-
eters so as to be reducible as the state of knowledge improves.

Incidentally, this distinction does not match that one dividing input vari-
ables into noise factors and control factors. In fact, here, imprecisely-known
parameters are a larger class of that of inputs which are set in a discretionary
way by the analyst. However, sensitivity analysis concerns especially with
subjective uncertain parameters within control factors are included as well
In general terms, UA is an aleatory transformation of the probability space,
(X, 4, P), characterizing input vector x, via black bozx f(x). Then, a com-
plementary cumulative distribution function (ccdf), or, in equivalent way,

a cumulative distribution function (cdf) or a probability density function



(pdf), is used to represent the uncertainty in f. However, after distinguish-
ing the two types of input uncertainty, (X, A, P) may be interpreted as the
product space built up from the probability space for irreducible noises,
(Xobj, Aobj, Popj) and the probability space for imprecisely-known parame-
ters, (Xsubj, Asubj, Psupj). Hence, UA turns into a family of aleatory vari-
ables, {t[f(XObj|x8U‘bj)]}xsubj’ arising from (Xup;, Asubj, Poubj), Where t(-)
is an opportune function of the output value. Otherwise, UA can be inter-

preted as an aleatory transformation

Xsubj > t[f (Xobj[Xsubs)]

defined on (X5, Asubj, Psupj) and mapped onto the probabilistic functional
space of aleatory functions t[f(Xopj|Xsup;)] Which are, in turn, defined on
the conditional space (Xop; (Xsubj)s Aobj (Xsubj)s Pobj (Xsubj))-

This formal structure synthesizes the UA framework of Helton extensive pa-
per (1997) which outlines a sort of two-stage analysis. The first step involves
the determination of the ccdf each one representing the system-intrinsic vari-
ability conditional to a specific parameter choice. This UA stage allows the
analyst to explore the effect of varying subjective opinion on output un-
certainty. A SA results by comparing either the total ccdf, associated to
different x,,5;, or single synthetic values as E(f|Xgyp;), Q95O(f|xsubj), et
caetera. The second step summarizes the distribution of ccdf (as each cedf
has in concept a probability of zero) by, for instance, the distribution of the
exceedance probabilities, p(f > D), conditional to a certain damage output
D, that derives from subjective uncertainty, or the expected value of this

distribution, p(f > D). To accomplish these two steps some integration



problems need to be solved. They consist in

p’rob(f > Dlxsubj) =1- / 1[f(X) < D]W(xobj|x5ubj)dxobj, (1)

Sobj
for determining the ccdf of f associated with a specific x4y,

prob(p < P|D) =
_ / 1
Ssubj
for determining the cdf of p(f > D) conditional to a certain D, and
p(f > D) :/5 ll _/s 1[f(x) < D]W(Xobﬂxsubj)dxobj] T (Xsubj ) dXsubj
subj
(3)

for, lastly, determining the marginal ccdf of f. As for notation, 1[-] is the

W(xsubj)dxsubj )

(2)

(1 - / 1[f(x) < D]W(xobj|xsubj)dxobj> <P
Sobj

obj

usual indicator function and 7(z) denotes the pdf for the probability space
of Z.

Finally, the choice of cedf in (1) as well as that of cdf in (2) reflects the
interest in knowing how likely is to have a consequence worse than a certain
damage or the aim of having low probabilities associated to high damages.

Then, this preference is right suitable for incidental sequence issues.

3 An efficient strategy for UA of multimodel chains

The work outlines an efficient strategy to achieve UA goals (1), (2) and (3).
It also involves, as by-products, some results of SA and O study. Besides it
tackles the problem of endogenous input transmission in multimodel chains.
The premise is that integrals like (1), (2) and (3) have to be approximated as

their exact solution is generally precluded in real complex problems. Then,



MC method is the favored technique for approximate inference. Here, a
particular procedure of MC sampling is worked out to produce an effective
simulation design.

The plan requires basically the sampling from the pdf, h(x), of the overall
input probability space (X, A, P). Usually first chain model inputs are sup-
posed to be statistically independent. Besides, the distribution form needs
to be carefully specified, thus exploiting expert advice.

Directly, this basic sampling provides a MC estimate of (3). Yet, moreover,
h(x) is assumed to be the importance sampling density (isd) in the MC

integration for (1). In fact, (1) will be rewritten as

Foxons) = [ 7)) e ey, ()

A generic function ¢(-) of the output substitutes 1[-] in the original form (1)
to stress that any interesting statistic of f distribution results typically from
an integration.

For importance sampling integration (4) being effective, x4, has to be statis-
tically dependent on Xg,p; so that m(Xepj|Xsup;) is varying with xg,p;. This
is not fulfilled in hypothesis of stochastic independence between x,,; and
Xsubj, as typically holds. Hence, x,,p; input has to be in general interpreted
both as uncertain parameter and as system variable randomly oscillating
around its characterizing value. Section 4 will clarify how this condition
naturally arises.

This expedient importance sampling involves several simulation gains.

It suffices only one loop of MC sampling in order to obtain the entire dis-

tribution of ccdf that arises from subjective uncertainty. MC estimate of



(4),

N

- 1 (X | X

I(xsubj) = N E :t[f(xz (lex b_] = N E xz ]wz xsub]) (5)
i=1 i)

needs only to weight the same ¢[f(x;)], fori = 1,..., N, sample with varying
coefficients w;(xsyp;). The same applies for computing the inner integration
in (2).

Then, it traditionally implies a possible Variance reduction of the MC esti-
mate [ (Xsupj)- Finally, it will yield as a by-product the gradient estimate

6[ xsub] a” xsub])
= E X 7, 6
OXsubj N i) OXsubj (6)

again without repeating the MC loop as only the w; depend on x,;. This
last result recovers the so-called Parametric sampling technique of Singhal
and Pinel (1981, [4]).

Model chains have a further issue: transmission of output from a given
model as input to a subsequent model. It will be called endogenous input.
Two alternative solutions are considered in this setting.

The first one consists in making a Latin hypercube sampling (LHS) to simu-
late an endogenous input. That is, given the empirical distribution function
of the output variable from some previous model, its range will be divided
in, say, [ nonoverlapping sets of equal marginal probability. Then, a sample
of N/l dimension will be obtained from each set. It is worth noting that if
> 2 endogenous inputs are output of the same incidental model, they need to
be correlated. In fact, they result from one set of deterministic relationships
constituting the model box. If this is the case, input dependencies have to

be incorporated: given a target rank correlation matrix ( available from the
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previous model), an appropriate pairing procedure of input variables will
be performed (for instance, the restricted pairing procedure of Iman and
Conover, 1982).

The alternative solution reduces the uncertainty flow that arises in linking
models to single values. It drives the transmission choosing certain sum-
mary statistics (expected values, 95° percentiles, et caetera) of endogenous

inputs, possibly conditional to sensitivity parameters of out-model.

4 An illustrating example: a two model chain

A two model incidental sequence has been selected to describe the previ-
ous discussion on a UA effective strategy. The composition of a model for
gas release from vessel with a model for unconfined vapour cloud explosion

(UVCE) is synthetically illustrated in table 2.

Release model In gas release from vessel model input variables have
been classified in certain or uncertain data on the basis of engineers ex-
pert opinion. In particular, fixed inputs are gas code (here, methane),
thermodynamic hypothesis (here, adiabatic hypothesis), physical hypoth-
esis (here, equation of perfect gas), internal vessel free volume (V = 40m?)
and, finally, time interval by which the release period is discretized for com-
puting time-varying variables (A; = 0.1s). Aleatory inputs are internal
pressure (pg), internal temperature (7p) and external pressure (p;). They
are assigned normal distributions with means 0.5M Pa, 360K, and, respec-
tively, 0.1 M Pa, and standard deviations 0.1M Pa, 15K, and, respectively,

0.05M Pa. Sensitivity inputs are the isentropic constant (k) and the area
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Table 2: A two model chain

V, A, ...

quadpg, Ty, P,
k, A

you oy

' RELEASE |

output —

endog. input —>
Subj. unc.inputs —

fized inputs —>

— Fized inputs
— Obj. unc. inputs
— Subj. unc. inputs
== ‘ gas dispersion‘
Gas Mass
\ 4
Cloud Radius
I = |[EXPLOSION|
d, E,... /*
4
output — Overpressure
Peak
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of out-flow opening (A). According to experts opinion, k is a parameter
whose value may be, in theory, exactly determined. Yet, in practice, it is
imprecisely-known so that it is assigned a uniform distribution around its
nominal value with extremes 1.1 and 1.2. Besides, model analysts are par-
ticularly concerned with the effects of an irregular variable such as A on
output previsions. In fact, three differing categories can be associated to
A: small (here, 0.05m?2) as its most likely value, medium (here, 0.1m?)
with probability, say, between 1/100 and 1/10, large (here, 0.30 m?) with
infinitesimal probability. Then, A is assigned a lognormal distribution that
meets such requirements (figure 1 shows the density of a lognormal with

log p = 1og(0.054) and logo = log(1.859)). Following the procedure which

Mode in 0.05

1/10< p(0.1) <1/100

© p(0.3)~0

T
0.0 0.1 0.2 0.3 0.4
A: out-flow opening

Figure 1: Lognormal density for out-flow opening A

has been described in section 3, the joint pdf, h(x), is specified as product
of the marginal densities for the random inputs, as the latter are assumed

to be statistically independent. Moreover, 7(Xg;|Xsupj) in (4) consists of
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the product of N(a|u,p/2), representing the stochastic oscillation of A in-
put around its nominal value u, and the other normal distributions for the
remaining noise factors. The weights in (5) and (6) are computed in the
Appendix. Figure 2 shows ccdf distribution as results, on the basis of (4),
from subjective uncertainty associated specifically with A. The graph shows,
in particular, the ccdf related to u = 0.01,0.05,0.1,0.3, the last three be-
ing from left-bottom to right-top, while the 0.01 one being amid the 0.05
and 0.1 ones. The bold line represents the mean ccdf computed as in (3).
The vertical line set at 86.7 released mass, intersects the ccdf in points of
height equal to p(Release > 86.7|A = u) related to the inner integral in
(2). The 86.7 number corresponds to the deterministic output computed at
input nominal values (with A set equal to 0.05 mode value). It has been
chosen just to point out how much more exhaustive is the information from

a probabilistic evaluation of computer experiments.

Explosion model In UVCE model fixed inputs are distance (d) from
explosion, energy of combustion (E.) et alia. The only aleatory input is the
endogenous input cloud radius (r) such as derived from released gas mass
(m):

4
V, = ‘/;:Vé*?)’ ‘/0257'('7'3

m
07
where Vg, V, (in m3) refer to gas mixture volume and, respectively, cloud
volume, m refers to (total) released mass of gas and r to cloud radius, whence
r = 3V w3 ](im).

Sensitivity input is wave intensity (I) representing initial intensity level of

explosion due to bordering space degree. It is assigned a uniform discrete
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prob(release > R)

T T
20 40 60 80 100 120 140

R: gas release

Figure 2: Distribution of release cedfs conditional to out-flow opening A.

distribution on the integers from 1 to 10.

Before giving figure 3, we introduce a discussion on what kind of informa-
tion a computer experiment may be required to provide. Indeed, computer
experimenters have to account primarily for the type of questions which the
clients are usually interested in. For instance, the users of the explosion-
release computer sequence may wish to know the probability of a certain
explosion degree happening, given certain initial conditions. Actually, an
explosion may produce a pressure wave of differing intensity. In particu-
lar, the (static) over-pressure peak (Ps) output may be roughly classified
into four categories: (1) P; < 0.03 does provoke irrelevant damages; (2)
0.03 < P; < 0.3 does modest damages; (3) 0.3 < P; < 0.7 does very de-

structive damages; (4) Ps > 0.7 does disastrous damages. Then, examples
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of questions are: (i) What is the probability distribution in average of Ps,
given certain release and UVCE conditions?; (ii) What is its probability dis-
tribution conditionally to differing choices of sensitivity parameters?; (iii)
What is the highest risk of an explosion of a certain gravity happening?;
(iv) Or, what is the lowest risk? The interest is more focused on (iii) or,
alternatively, (iv), depending on the users’ risk attitude: risk aversion in
one case, or, respectively, risk seeking in the other. Moreover, these last two
questions can arise in a context of domino effect or optimization analysis.
Figure 3 answers to (i) providing the mean cedf (the bold one) as well as to
(ii) distinguishing the ccdf with respect to the sensitivity parameter I. More
in detail, the ccdf move from left to right as I increases and are actually
coincident for I = 8,9,10. The ccdf for I = 1,2 (the vertical line at P; =1
and, respectively, the two-step curve with median approximately at Ps; = 2)
need probably a model check because of their differing behavior from the
rest. Figure 3 also offers a qualitative answer to (iii) and (iv).

For instance, consider the critical P; = 0.7 value. Then, the ccdf (alterna-
tively, the cdf as in (2)) of the prob(pressure > 0.7) - the intersection points
with the ccdf on the vertical line at 0.7 of figure 2 - can be obtained. Figure
4 just provides the ccdf of the prob(pressure > 0.7) variable with respect
to subjective probability space of the explosion model, thus replying to (iv).
For instance, the probability that prob(pressure > 0.7) > 0.5 is 0.5.

The imported values of gas mass input can eventually be certain synthetic
values of the empirical distribution. In table 3, expected values or 95° per-
centiles of gas mass, conditional to A = 0.05, have been chosen for compar-

ison with deterministic output. This last has been evaluated at mass= 86.7
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1.0

P=0.7 disastreous damage

0.4 0.6 0.8

prob(pressure > P)

0.2

P: explosion pressure

Figure 3: Distribution of pressure ccdfs conditional to initial intensity I.

1.0

0.8
L

0.6
L

prob(p(P > 0.7) >= risk prob)
0.4

0.2

0.0
L

T
0.0 0.2 0.4 0.6 0.8 1.0
risk probability

Figure 4: ccdf of prob(pressure > 0.7) conditional to the predetermined 0.7 pres-

sure output.
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as results from the release model when it is exercised in a deterministic
manner. Along this way, if the worst consequences are of greatest interest,
distribution of 95° percentiles of gas mass, Q%°(A), can be studied with
respect to subjective uncertainty associated with A. So proceeding, a sort

of stochastic process of the worst effects can be explored.

Deterministic mean(4 = 0.05) Q% (A = 0.05)
I=1 NA NA NA
=2 0.01 0.01 0.02
I=3 0.03 0.03 0.04
1=4 0.08 0.08 0.09
I=5 0.2 0.2 0.2
I=6 0.38 0.38 0.42
I=7 0.54 0.49 0.99
I=8 0.7 0.68 0.92
I=9 0.7 0.68 0.92
1=10 0.7 0.68 0.92

Table 3: Comparison between deterministic and stochastic outputs

5 Appendix

In this Appendix the basic steps of the importance sampling strategy that

has been used in the release model are reported.
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Weights w;

In the release model the weights w;(u) = m;(u)/h; result as following;:

) = 55
_ _N{ai|pp/2)
LogN(ai|m,s)

where m, s stay for log mean and log sd of the lognormal distribution.

After simple computations w;(u) are derived as

2s a; 1
7 a; - exp{—2 (j — 1)2 + 74 (log a; — m)2}

Derivative of the weight function w;(u)

The gradient estimate (6) can be easily computed using

ow; 2

o 4a; (a; — p) — p
8/1, = wz(u)

3

which shows that weight derivative is a decreasing function of p.
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