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Abstract

We consider a nonparametric goodness of fit test problem for the drift
coefficient of one-dimensional ergodic diffusions, where the diffusion coeffi-
cient is a nuisance function which is estimated in some sense. Using a theory
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1 Introduction

Goodness of fit tests play an important role in theoretical and applied statistics,
and the study for them has a long history. Such tests are really useful especially if
they are distribution free, in the sense that their distributions do not depend on the
underlying model. The origin goes back to the Kolmogorov-Smirnov and Crámer-
von Mises tests in the i.i.d. case, established early in the 20th century, which are
asymptotically distribution free. Although their great importance in application,
the theory of goodness of fit tests for diffusion processes has not received much
attention from researchers until several years ago. Kutoyants [11] discussed some
possibilities of the construction of such tests in his Section 5.4, where he considered
the Kolmogorov-Smirnov statistics based on the continuous time observation of
a diffusion process. The goodness of fit test based on the Kolmogorov-Smirnov
statistic is asymptotically consistent and the asymptotic distribution under the
null hypothesis follows from the weak convergence of the empirical process to a
suitable Gaussian process, but this test is not asymptotically distribution free. Note
that the Kolmogorov-Smirnov statistic for ergodic diffusion process was studied in
Fournie [4], see also Fournie and Kutoyants [5] for more details, while the weak
convergence of the empirical process was proved in Negri [14] (see van der Vaart and
van Zanten [20] for further developments). Dachian and Kutoyants [1] and Negri
and Nishiyama [15] proposed some asymptotically distribution free tests. Recently
Kutoyants [12] proposed some Crámer-von Mises type tests based on the empirical
distribution function and the local time estimator of the invariant density; the
proposed test is asymptotically distribution free after a suitable transformation
of the test statistics. However, all these results are based on continuous time
observation of the diffusion processes.

One of the interesting points of this paper is that the proposed test is based
on tick time sample scheme of observations. Tick time sample scheme, roughly
speaking, consists in observing the underling process only when the process reaches
some fixed values of a suitable grid in the state space. The moments when the
process reaches those values are called tick times. Tick time sample arises in
many problems in finance, when for example, the prices are sampled with every
continued price changes in bid or ask quotation data. See for example the work of
Fukasawa [6] and reference therein. Usually in finance the most common scheme is
one where the prices are sampled at regular interval in calendar time. We should
mention that there is a huge literature on discrete time approximations of statistical
estimators for diffusion processes; see e.g. the Introduction of Gobet et al. [7] for
a review including not only high frequency cases but also low frequency cases.
On the other hand, with the increasing availability of transaction data alternative
sampling scheme, such as tick time sampling and transaction time sampling, has
gain popularity. See Griffin and Oomen [8] for an interesting discussion on these
different sample schemes. We are interested in this new research direction.

In this work, we extend the approach taken by Negri and Nishiyama [15] who
considered the continuous time observation case to the tick time sample case; a
similar attempt in the high frequency sampled case can be found in Masuda et al
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[13] and Nishiyama [18]. The method is essentially based on a certain marked em-
pirical process to construct an asymptotically distribution free test, where “marked
empirical process” actually means a random field of innovation martingales, and
we will show that with some necessary modifications it can be applied to the tick
time sample case.

The approach based on the marked empirical process goes back to and it is
motivated by the work of Koul and Stute [10] who considered a non-linear para-
metric time series model (see also Section 7.3 of Nishiyama [17] which is a reprint
of his thesis in 1998). They studied the large sample behavior of the proposed
test statistics under the null hypotheses and present a martingale transformation
of the underlying process that makes tests based on it asymptotically distribution
free. Some considerations on consistency have also been done. The approach is
well expounded in Koul [9]. See Delgado and Stute [2] and references therein for
more recent information.

Now we turn to the description of the problem treated in this paper. Consider
a one-dimensional stochastic differential equation (SDE)

Xt = X0 +

∫ t

0

S(Xs)ds +

∫ t

0

σ(Xs)dWs, (1)

where the initial value X0 is finite almost surely, S and σ are functions which
satisfy some properties described later, and t ; Wt is a standard Wiener process
defined on a stochastic basis (Ω,F , (Ft)t≥0, P ). We consider a case where a unique
strong solution X to this SDE exists, and we shall assume that X is ergodic. We
are interested in goodness of fit test for the drift coefficient S, while the diffusion
coefficient σ2 is an unknown nuisance function whose expected value with respect
to the invariant law is estimated in our testing procedure. That is, we consider the
problem of testing hypothesis H0 : S = S0 versus H1 : S 6= S0 for a given S0. The
meaning of the alternatives “S 6= S0” will be precisely stated in Section 2.

The data is supposed to be sampled as follows. For every T > 0, let
⋃

p(a
T
p , aT

p+1]
be a countable partition of the state space of the diffusion process. We assume that
infp |aT

p+1 − aT
p | > 0 for each T . The process X = {Xt : t ∈ [0,∞)} is observed at

random times 0 = τT
0 ≤ τT

1 < · · · < τT
N(T ) < τT

N(T )+1 = T , where

τ1 = inf{t > 0 : Xt = aT
p for some p}

and

τi = inf{t > τT
i−1 : Xt = aT

p+1 or aT
p−1 where XτT

i−1

= aT
p }, for i = 2, ..., N(T ).

We suppose that hT = o(T−1/2) as T → ∞, where hT = supp |aT
p+1 − aT

p |. We
will prove that N(T ) < ∞ almost surely for every T ; the precise formulation
including the case where τT

1 ≥ T will be described in Section 3. We will propose
an asymptotically distribution free test based on this sampling scheme, namely,
tick time sample scheme.

The organization of the article is as follows. In Section 2, we begin with the
continuous time observation case which was considered by Negri and Nishiyama
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[15]. Using the result for the continuous time observation case, our main results
for the tick time sample case are given in Section 3. Throughout Sections 2 and 3
the proofs for “Theorems” are stated there, and those for “Lemmas’ will be given
in Section 6. Section 4 contains a proposal of an ad-hoc “estimator” for a value
which we have to estimate in our testing procedure. In Section 5 we present some
computer simulation results, including the one for the ad-hoc estimator proposed
in Section 4. The Appendix contains some known results which are used in the
main text.

Let us close this section with making some conventions. We denote by ℓ∞(T)
the class of bounded functions on a set T, and equip the space with the uniform
metric. We denote by “→p” and “→d” the convergence in probability and in
distribution as T → ∞, respectively. The notation “→” means that we take the
limit as T → ∞. See e.g. van der Vaart and Wellner [19] for the weak convergence
theory in the ℓ∞(T) space.

2 Continuous observation case

Throughout all this paper we shall assume the following.

A1. The diffusion process X, which is a solution to the SDE (1) for (S, σ), is
regular, and the speed measure mS,σ is finite. (Thus the process X is ergodic.)
The invariant density fS,σ satisfies that

Σ2
S,σ :=

∫ ∞

−∞

σ(z)2fS,σ(z)dz ∈ (0,∞).

3

We consider the stochastic process V T = {V T (x); x ∈ [−∞,∞]} defined by

V T (x) =
1√
T

∫ T

0

1(−∞,x](Xt)[dXt − S0(Xt)dt].

Negri and Nishiyama [15] called (a slightly different version of) this process the
“score marked empirical process”, and obtained the following result, which is a
fruit of the combination of the weak convergence theory for ℓ∞-valued continuous
martingales based on the metric entropy developed by Nishiyama [16], [17] and a
theorem for local time of ergodic diffusion processes given by van Zanten [21] (see
also van der Vaart and van Zanten [20]). To consider the “metric entropy” we
introduce the metric ρS,σ on [−∞,∞] given by

ρS,σ(x, y) =

√∫ x∨y

x∧y

(σ(z)2fS,σ(z) + φ(z))dz

where φ is the density of the standard Gaussian distribution. Without φ, the above
ρS,σ may not define a metric but just define a semimetric. Nishiyama’s [17] weak
convergence theory requires that ρ is a metric, so we have added the Gaussian
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density φ. It is easy to see that the space [−∞,∞] is compact and the metric
entropy condition is satisfied:

∫ 1

0

√
log N([−∞,∞], ρS,σ; ε)dε < ∞.

Here, when a metric space (T, ρ) is given, N(T, ρ; ε) denotes the smallest number
of closed balls with ρ-radius ε which cover T.

Lemma 1 Assume A1 for (S0, σ), and set ρ = ρS0,σ. Then V T →d G in ℓ∞([−∞,∞]),
where G = {G(x); x ∈ [−∞,∞]} is a zero-mean Gaussian process with co-variance
given by

EG(x)G(y) =

∫ x∧y

−∞

σ(z)2fS0,σ(z)dz.

Almost all paths of G are uniformly ρ-continuous.

Corollary 2 Assume A1 for (S0, σ). Then

sup
x∈[−∞,∞]

|V T (x)| →d sup
t∈[0,Σ2]

|Bt| =d Σ sup
t∈[0,1]

|Bt|,

where t ; Bt is a standard Brownian motion, Σ = ΣS0,σ, and where the notation
“=d” means that the distributions are the same.

In order to obtain an asymptotically distribution free test, we need a consistent
estimator for ΣS0,σ. In the usual context of the continuous observation the diffusion
coefficient is assumed to be known, so we can compute ΣS0,σ for the given S0. Even
if the computation is not possible, we will propose a consistent estimator for ΣS0,σ

in Section 3. In any case, we have the following theorem.

Theorem 3 Assume A1 for (S0, σ). Under H0 : S = S0, suppose that a positive,

consistent estimator Σ̂T for ΣS0,σ be given. Then it holds that

DT :=
supx∈[−∞,∞] |V T (x)|

Σ̂T
→d sup

t∈[0,1]

|Bt|, (2)

where t ; Bt is a standard Brownian motion.

It is well known that the distribution function of the limit is given by

F (x) = P

(
sup

t∈[0,1]

|Bt| ≤ x

)
=

4

π

∞∑

n=0

(−1)n

2n + 1
exp

(
−(2n + 1)2π2

8x2

)
; (3)

see e.g. page 343 of Feller [3].
Negri and Nishiyama [15] further proved the consistency of (a slightly different

version of) DT under the fixed alternative S ∈ S where S is the class of functions
S which satisfies A1 and

∫ xS

−∞

(S(z) − S0(z))fS,σ(z)dz 6= 0 for some xS ∈ (−∞,∞]. (4)
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Theorem 4 Assume A1 for (S, σ). Under H1 : S ∈ S, if Σ̂T = OP (1), then it
holds for any M > 0 that P (DT ≤ M) → 0, where DT is the statistic defined on
(2).

The method of the proof will appear in that for the extension to the tick time
sample case given in the next section, so the proof of the above theorem is omitted
here.

3 Tick time sample case

Now we list up some conditions for the pair of functions (S, σ) which are assumed
in the tick time sample case.

A2. There exists a constant K > 0 such that

|S(x) − S(y)| ≤ K|x − y|, |σ(x) − σ(y)| ≤ K|x − y|.

3

Under this condition, the SDE (1) has a unique strong solution X. Notice also
that there exists a constant K ′ > 0 such that

|S(x)| ≤ K
′

(1 + |x|), |σ(x)| ≤ K
′

(1 + |x|).

To see this, just put y = 0. The constant K ′ depends on the values S(0) and σ(0),
however the constant K itself depends on the choice of the functions (S, σ). So it
is convenient to introduce the notation

KS,σ = K ∨ K ′.

This notation will be used throughout this article.

A3. supz∈(−∞,∞)(1 + |z|2)fS,σ(z) < ∞. 3

A4. supt∈[0,∞) E|Xt|2 < ∞ where X is a solution to the SDE (1) for (S, σ). 3

In this section we consider the situation where the data is obtained in the fol-
lowing way. For every T > 0, let

⋃
p(a

T
p , aT

p+1] be a countable partition of (−∞,∞).

We assume that infp |aT
p+1 − aT

p | > 0 for each T . Define the stopping times τT
i by

τT
0 = 0,

τT
1 = inf{t > 0 : Xt = aT

p for some p},
τT
i = inf{t > τT

i−1 : Xt = aT
p+1 or aT

p−1 where XτT
i−1

= aT
p }, i ≥ 2.

Now we define
N(T ) = sup{i : τT

i < T}.

Lemma 5 Under A2 and A4, it holds that N(T ) < ∞ almost surely.
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Notice that N(T ) may be zero. Including such a case, we re-define τT
N(T )+1 := T

for notational convenience.

Sample Scheme. The process X = {Xt; t ∈ [0,∞)} is observed at the stopping
times 0 = τT

0 ≤ τT
1 < · · · τT

N(T ) < τT
N(T )+1 = T . We suppose that hT = o(T−1/2) as

T → ∞ where hT = supp |aT
p+1 − aT

p |. 3

Now, we introduce an array of constants

−∞ = xT
0 < xT

1 < xT
2 < · · · < xT

m(T ) < xT
m(T )+1 = ∞

such that, as T → ∞,

max
2≤k≤m(T )

|xT
k − xT

k−1| → 0, xT
1 ↓ −∞, xT

m(T ) ↑ ∞.

For example, one may consider xT
k = −[T ] + (k/[T ]) with k = 1, 2, ..., 2[T ]2. Next

we introduce a sequence of functions z ; ψT
k (z) on (−∞,∞) which approximates

the indicator function 1(−∞,xT

k
].

Definition 6 Let a sequence of positive constants bT be given. For every k =
1, 2, ...,m(T ), ψT

k is the continuous, piecewise linear function on (−∞,∞) defined
by

ψT
k (z) =





1, z ∈ (−∞, xT
k ],

line, z ∈ [xT
k , xT

k + bT ],
0, z ∈ [xT

k + bT ,∞).

Also we define ψT
0 ≡ 0 and ψT

m(T )+1 ≡ 1.

This function satisfies the following properties:

|ψT
k (z) − ψT

k (z′)| ≤ b−1
T |z − z′|;

|ψT
k (z) − 1(−∞,xT

k
](z)| ≤ 1[xT

k
,xT

k
+bT ](z).

Now we make the following condition.

A5. In addition to hT = o(T−1/2), we assume the following:
(i) b−1

T hT ·
√

log m(T ) → 0;
(ii) bT log m(T ) → 0. 3

Typically, log m(T ) = O(log Tα) for some α > 0. In this case, the above (i)
and (ii) are satisfied if we take bT = T−1/4.

We approximate V T by UT = {UT (x); x ∈ [−∞,∞]} given by

UT (x) :=
1√
T

N(T )+1∑

i=1

ψT
k (XτT

i−1

)[XτT
i
− XτT

i−1

− S0(XτT
i−1

)|τT
i − τT

i−1|]

for x ∈ (xT
k−1, x

T
k ], 1 ≤ k ≤ m(T ) + 1. Actually, we have the following lemma.

7



Lemma 7 Assume A1 – A5 for (S0, σ). Then it holds that

sup
x∈[−∞,∞]

|V T (x) − UT (x)| →p 0.

A consistent estimator for ΣS,σ is given as follows.

Lemma 8 Assume A1, A2 and A4 for (S, σ). The estimator

Σ̂T
2 =

√√√√ 1

T

N(T )+1∑

i=1

|XτT
i
− XτT

i−1

|2

is consistent for ΣS,σ.

We therefore obtain the following result.

Theorem 9 Assume A1 – A5 for (S0, σ). Under H0 : S = S0, it holds that

DT
2 :=

supx∈[−∞,∞] |UT (x)|
Σ̂T

2

→d sup
t∈[0,1]

|Bt|, (5)

where t ; Bt is a standard Brownian motion.

Now let us turn to study the asymptotic behavior of DT
2 under a fixed alterna-

tive. We consider the class S consists of all functions satisfying A1 – A5 and (4).
The precise description of our problem is testing the null hypothesis H0 : S = S0

versus the alternatives H1 : S ∈ S.
We may write UT = ΨT

2 − ΦT
2 (S0) where

ΨT
2 (x) =

1√
T

N(T )∑

i=1

∫ τT
i

τT
i−1

ψT
k (XτT

i−1

)dXt

and

ΦT
2 (S)(x) =

1√
T

N(T )∑

i=1

∫ τT
i

τT
i−1

ψT
k (XτT

i−1

)S(XτT
i−1

)dt

for x ∈ (xT
k−1, x

T
k ], 1 ≤ k ≤ m(T ) + 1. Fix S ∈ S. Then we have

sup
x∈[−∞,∞]

|UT (x)| ≥ sup
x∈[−∞,∞]

|ΦT
2 (S)(x)−ΦT

2 (S0)(x)| − sup
x∈[−∞,∞]

|ΨT
2 (x)−ΦT

2 (S)(x)|.

Under H1 : S ∈ S, the second term on the right hand side is OP (1) by Lemmas 1
and 7 with S0 replaced by S. As for the first term, we have the following lemma.

Lemma 10 Assume S ∈ S and choose xS ∈ (−∞,∞] as in (4). Assume A2 for
(S0, σ). Then we have

1√
T

(ΦT
2 (S)(xS) − ΦT

2 (S0)(xS)) →p

∫ xS

−∞

(S(z) − S0(z))fS,σ(z)dz 6= 0.

8



Thus we have that for any M > 0

P

(
sup

x∈[−∞,∞]

|ΦT
2 (S)(x) − ΦT

2 (S0)(x)| ≤ M

)
→ 0.

We therefore obtain the consistency of the test.

Theorem 11 Assume A1 – A5 for (S, σ) and A2 for (S0, σ). Under H1 : S ∈ S,
it holds for any M > 0 that P (DT

2 ≤ M) → 0, where DT
2 is the statistic defined on

(5).

4 Bias corrected estimator for ΣS0,σ

In the preceding section, we proposed the estimator Σ̂T
2 which is consistent for ΣS,σ

for any (S, σ). However, one may think that it is better to use the bias corrected

estimator Σ̂T
3 , which is consistent for ΣS0,σ only for the null hypothesis “S0”, given

as follows:

Σ̂T
3 =

√√√√ 1

T

N(T )+1∑

i=1

|XτT
i
− XτT

i−1

− S0(XτT
i−1

)|τT
i − τT

i−1||2.

This estimator satisfies the following; the proofs are not difficult, so they are omit-
ted.

(i) Under H0 : S = S0, it holds that Σ̂T
3 →p ΣS0,σ.

(ii) For general drift S satisfying the Lipschitz condition A2, it holds that

Σ̂T
3 = OP (1).

Based on these facts, we have the same conclusions as Theorems 9 and 11 with
DT

2 replaced by

DT
3 :=

supx∈[−∞,∞] |UT (x)|
Σ̂T

3

.

The performance of this test statistic will be reported in the next section.

5 Simulation study

In this section we observe finite sample performance of our test statistics. We
consider the following stochastic differential equation as true data generating model

Xt =

∫ t

0

S(Xs)ds + Wt (6)

with S(x) = −2x, that is an Ornstein-Uhlenbeck process starting from the origin.
As the null hypotheses, we consider the following two cases: H0 : S0(x) = −2x and
H0 : S0(x) = 2 − 2x.

9



In our experimental design we consider asymptotic for hT → 0, considering the
values for hT respectively equal to 0.2, 0.1 and 0.05. The asymptotics for T → ∞
is considered taking T equals to 1, 5 and 10 respectively. We will consider both the
test statistics DT

2 and DT
3 . We take the significance level to be α = 0.05. We see

that F (x) = 0.95 when x = 2.24, where F is the limit distribution under the null
hypothesis given by (3), hence the critical region is {x > 2.24}. If the asymptotic
conditions are realized P (DT

i > 2.24) should tend to 0.05 under H0 : S0(x) =
−2x and should tend to 1 under H0 : S0(x) = 2 − 2x, for i = 2, 3. For every
configuration in our experimental design we simulate m = 1000 trajectories of (6)
and we compute the empirical size (e.s.) defined by the sampling proportion of
making incorrect rejections of the null H0 : S0(x) = −2x and the empirical power
(e.p.) defined by the sampling proportion of making successful rejection of the null
H0 : S0(x) = 2 − 2x.

For simplicity we consider the case with bT = 0, where bT is the sequence
introduced in condition A5. This case may be more interesting, from a practical
point of view, because our theory cannot confirm the asymptotic results when
the test statistics is based on the more natural random field ŨT = {ŨT (x); x ∈
[−∞,∞]} given by the following

ŨT (x) =
1√
T

N(T )+1∑

i=1

1(−∞,x](XτT
i−1

)[XτT
i
− XτT

i−1

− S0(XτT
i−1

)|τT
i − τT

i−1|].

We conjecture that the same asymptotic results would also hold for ŨT , as the
simulation study will show.

Table 1 and Table 2 summarizes the simulation results. We observe that for a
fixed hT empirical power gains along with increasing T . For a fixed T empirical
power gains along with decreasing hT , but gains less. This suggests that the
ergodicity assumption is important. Moreover the bias corrected estimator for
ΣS0,σ that appear in DT

3 does not seem to give better asymptotic results than the
simpler one. We report the mean number of observation for each sample scheme.

T = 1 T=5 T=10
hT e.s. e.p. e.s. e.p. e.s. e.p.
0.2 0.034 0.376 0.038 0.989 0.041 1.000

(n = 25) (n = 122) (n = 242)
0.1 0.046 0.397 0.038 0.988 0.047 1.000

(n = 97) (n = 481) (n = 962)
0.05 0.059 0.418 0.044 0.998 0.053 1.000

(n = 373) (n = 1862) (n = 3724)

Table 1: Empirical sizes (e.s.) and empirical powers (e.p.) based on 1000 inde-
pendent statistics of DT

2 . Here the significance level is 0.05, and bT = 0. In the
bracket the mean number of observation is reported.
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T = 1 T=5 T=10
hT e.s. e.p. e.s. e.p. e.s. e.p.
0.2 0.019 0.223 0.035 0.987 0.039 1.000

(n = 25) (n = 122) (n = 242)
0.1 0.041 0.367 0.037 0.987 0.047 1.000

(n = 97) (n = 481) (n = 962)
0.05 0.058 0.406 0.044 0.998 0.053 1.000

(n = 373) (n = 1862) (n = 3724)

Table 2: Empirical sizes (e.s.) and empirical powers (e.p.) based on 1000 inde-
pendent statistics of DT

3 . Here the significance level is 0.05, and bT = 0. In the
bracket the mean number of observation is reported.

6 Proofs of Lemmas

Notations: For x, y ≥ 0, the inequality x . y means that there exists a universal
constant C > 0 such that x ≤ Cy. We denote Log m := log(1 + m).

Proof of Lemma 1. This is a special case of Theorem 2 of Negri and Nishiyama
[15] which is an application of the weak convergence theory of Nishiyama [16], [17]
to the family MT = {MT,x; x ∈ [−∞,∞]} of continuous martingales t ; MT,x

t

given by

MT,x
t =

1√
T

∫ t

0

1(−∞,x](Xs)σ(Xs)dWs,

with help from Theorem 3.1 of van Zanten [21]. 2

Proof of Lemma 5. Allowing the possibility N(T ) = ∞, we consider the random
variable

ξT =
∑

i: τT
i
≤T

|XτT
i
− XτT

i−1

|2 =
∑

i: τT
i
≤T

{
|XτT

i
|2 − |XτT

i−1

|2 − 2XτT
i−1

(XτT
i
− XτT

i−1

)
}

.

By Itô’s formula, we have

|XτT
i
|2 − |XτT

i−1

|2 = 2

∫ τT
i

τT
i−1

XsdXs +

∫ τT
i

τT
i−1

σ(Xs)
2ds,

hence

ξT ≤

∣∣∣∣∣∣

∑

i: τT
i
≤T

∫ τT
i

τT
i−1

(Xs − XτT
i−1

)dXs

∣∣∣∣∣∣
+

∫ T

0

σ(Xs)
2ds.

The first term is bounded by

∑

i: τT
i
≤T

∣∣∣∣∣

∫ τT
i

τT
i−1

(Xs − XτT
i−1

)S(Xs)ds

∣∣∣∣∣ +

∣∣∣∣∣∣

∑

i: τT
i
≤T

∫ τT
i

τT
i−1

(Xs − XτT
i−1

)σ(Xs)dWs

∣∣∣∣∣∣

11



The expectation of the first term is bounded by

E

∫ T

0

hT |S(Xs)|ds ≤ KS,σ

∫ T

0

hT E(1 + |Xs|)ds < ∞,

while the expectation of the square of the second term is bounded by

E

∫ T

0

h2
T σ(Xs)

2ds ≤ KS,σ

∫ T

0

h2
T E(1 + |Xs|)2ds < ∞.

Thus ξT < ∞ almost surely. It follows from the assumption infp |aT
p+1 − aT

p | > 0
that N(T ) < ∞ almost surely. Indeed, infp |aT

p+1 − aT
p |2(N(T ) − 1) ≤ ξT . 2

Proof of Lemma 7. Let us introduce the stochastic processes Y T
1 , Y T

2 and Y T
3 given

by Y T
1 (−∞) = Y T

2 (−∞) = Y T
3 (−∞) = 0 and

Y T
1 (x) =

1√
T

N(T )∑

i=1

∫ τT
i

τT
i−1

ψT
k (XτT

i−1

)[dXt − S0(Xt)dt],

Y T
2 (x) =

1√
T

N(T )∑

i=1

∫ τT
i

τT
i−1

ψT
k (Xt)[dXt − S0(Xt)dt],

Y T
3 (x) =

1√
T

N(T )∑

i=1

∫ τT
i

τT
i−1

1(−∞,xT

k
](Xt)[dXt − S0(Xt)dt],

for x ∈ (xT
k−1, x

T
k ], 1 ≤ k ≤ m(T ) + 1. We will prove:

sup
x∈[−∞,∞]

|UT (x) − Y T
1 (x)| →p 0; (7)

sup
x∈[−∞,∞]

|Y T
1 (x) − Y T

2 (x)| →p 0; (8)

sup
x∈[−∞,∞]

|Y T
2 (x) − Y T

3 (x)| →p 0; (9)

sup
x∈[−∞,∞]

|Y T
3 (x) − V T (x)| →p 0. (10)

Proof of (7). We easily have

E sup
x

|UT (x) − Y T
1 (x)|

≤ 1√
T

E

N(T )∑

i=1

∫ τT
i

τT
i−1

|S0(Xt) − S0(XτT
i−1

)|dt

≤ 1√
T

E

N(T )∑

i=1

∫ τT
i

τT
i−1

KS0,σ sup
t∈[τT

i−1
,τT

i
]

|Xt − XτT
i−1

|dt

≤ 1√
T

E

∫ T

0

KS0,σhT dt

≤ KS0,σ

√
ThT → 0.

12



Proof of (8). We introduce the stopping time

τT (H) = inf

{
t > 0 :

supz∈(−∞,∞) lt(z)

T
≥ H

}
, (11)

where lt denotes the local time of X with respect to the speed measure mS0,σ. By
Theorem 3.1 of van Zanten [21], for every ε > 0 there exists a constant H > 0 such
that lim supT P (τT (H) < T ) < ε. So it is enough to see that max1≤k≤m(T )+1 |ξT

k | →p

0 where

ξT
k =

1√
T

n∑

i=1

∫ τT
i
∧τT (H)

τT
i−1

∧τT (H)

(ψT
k (XτT

i−1

) − ψT
k (Xt))σ(Xt)dWt.

Clearly ξT
m(T )+1 = 0. For every 1 ≤ k ≤ m(T ), note that ξT

k is a terminal variable
of a continuous martingale. To apply the exponential inequality for continuous
martingales, let us compute the predictable variation of ξT

k :

1

T

N(T )∑

i=1

∫ τT
i
∧τT (H)

τT
i−1

∧τT (H)

|ψT
k (XτT

i−1

) − ψT
k (Xt)|2σ(Xt)

2dt

≤ 1

T

N(T )∑

i=1

∫ τT
i
∧τT (H)

τT
i−1

∧τT (H)

b−2
T |XτT

i−1

− Xt|2σ(Xt)
2dt

≤ 1

T
b−2
T h2

T

∫ ∞

−∞

lT∧τT (H)(z)σ(z)2fS0,σ(z)dz · mS0,σ((−∞,∞))

≤ b−2
T h2

T HΣ2
S0,σmS0,σ((−∞,∞)).

Hence, by Lemmas 12 and 13, we have

E max
1≤k≤m(n)

|ξn
k | .

√
b−2
T h2

T HΣ2
S0,σmS0,σ((−∞,∞))

√
Log m(T ) → 0.

Proof of (9). We introduce the stopping time τT (H) given by (11). Then, it
is enough to see that max1≤k≤m(T )+1 |ξT

k | →p 0 where

ξT
k =

1√
T

N(T )∑

i=1

∫ τT
i
∧τT (H)

τT
i−1

∧τT (H)

(ψT
k (Xt) − 1(−∞,xT

k
](Xt))σ(Xt)dWt.

Clearly ξT
m(T )+1 = 0. To apply the exponential inequality for continuous martin-

gales, let us compute the predictable variation of ξT
k :

1

T

N(T )∑

i=1

∫ τT
i
∧τT (H)

τT
i−1

∧τT (H)

|ψT
k (Xt) − 1(−∞,xT

k
](Xt)|2σ(Xt)

2dt

≤ 1

T

∫ T∧τT (H)

0

1[xT

k
,xT

k
+bT ](Xt)σ(Xt)

2dt

≤ 1

T

∫ xT

k
+bT

xT

k

lT∧τT (H)(z)σ(z)2fS0,σ(z)dz · mS0,σ((−∞,∞))

≤ bT H sup
z
{σ(z)2fS0,σ(z)} · mS0,σ((−∞,∞))

13



Hence, by Lemmas 12 and 13, we have

E max
1≤k≤m(n)

|ξT
k | .

√
bT HKS0,σ sup

z
{(1 + |z|)2fS0,σ(z)} · mS0,σ((−∞,∞))

√
Log m(T ),

which tends to zero.
Proof of (10). It is sufficient to show that

max
1≤k≤m(T )+1

sup
x∈(xT

k−1
,xT

k
]

|V T (xT
k ) − V T (x)| →p 0.

Notice that the weak convergence result for the random fields x ; V T (x) implies
also the stochastic ρ-equicontinuity, that is, for every ε, η > 0 there exists δ > 0
such that

lim sup
T→∞

P

(
sup

ρ(x,y)<δ

|V T (x) − V T (y)| > ε

)
< η.

Since ρ(x, y) ≤ (supz(σ(z)2fS0,σ(z) + φ(z)))
√
|x − y| ≤ constant

√
|x − y|, we

have max2≤k≤m(T ) ρ(xT
k−1, x

T
k ) → 0. Also, it is clear that ρ(−∞, xT

1 ) → 0 and
ρ(xT

m(T ),∞) → 0. Hence we have (10).

Now (7) – (10) have been proved, and the proof of Lemma 7 is finished. 2

Proof of Lemma 8. By the same reason as that in the beginning of the proof of
Lemma 5, it is enough to show that

1

T

N(T )∑

i=1

∫ τn
i

τn
i−1

(Xs − Xtn
i−1

)dXs →p 0

and
1

T

∫ T

0

σ(Xs)
2ds →p Σ2

S,σ.

The latter is nothing else than the ergodicity. The same computation as the proof
of Lemma 5 yields the former. The proof is finished. 2

Proof of Lemma 10. The proof is similar to and easier than that for Lemma 7,
hence it is omitted. 2

Appendix

We state the exponential inequality for continuous martingales.

Lemma 12 Let M be a continuous martingale, and let τ be a bounded stopping
time. For every x, v > 0 it holds that

P

(
sup

t∈[0,τ ]

|Mt| > x, 〈M〉τ ≤ v

)
≤ 2 exp

(
−x2

2v

)
.
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The following lemma, the maximal inequality for general random variables, is
used in connection with Lemma 12 and plays a key role in our approach.

Lemma 13 Let X1, ..., Xm be arbitrary random variables which satisfy

P (|Xi| > x) ≤ 2 exp

(
−x2

b

)

for all x and i and a fixed constant b > 0. Then there exists a universal constant
C > 0 such that

E

(
max

1≤i≤m
|Xi|

)
≤ C

√
b
√

log(1 + m).

Proof. Use Lemmas 2.2.1 and 2.2.2 of van der Vaart and Wellner [19]. 2
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