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Abstract

In many engineering fluid dynamics problems, the prescription of defective boundary
conditions, such as the flow rate, on artificial boundaries can be source of numerical
inaccuracies. At the practical level, in the engineering literature this problem has been
solved by choosing a velocity profile fitting the given defective datum (practical approach).
After a brief description of this method and of its limitations, we review two strategies
based on the introduction of Lagrange multipliers. In particular we focus on the derivation
and the analysis of the continuous formulations and on the algebraic properties of the
related linear systems. We describe two algorithms for their solution which are modular,
that is could be solved by using pre-existing fluid solvers. Finally, we present some realistic
numerical results showing the effectiveness of the strategies considered in comparison with
the practical approach.

Keywords: Navier-Stokes equations, Flow rate condition, Lagrange

multipliers.

AMS Subject Classification: 65M12, 65M60, 76D05

1. Introduction.

The mathematical modelization of many fluid-dynamics phenomena
leads to Partial Differential Problems, like the Navier-Stokes or the Euler

equations. In view of the solution of these problems, it is very important
to specify a suitable domain in which the equations are solved. In many
engineering fluid dynamics problems, this computational domain is part
of a system or a network. In this case, a part of the boundary does not
correspond to a physical wall, and it is just introduced to limit the do-
main of interest. The prescription of boundary conditions on such artificial
boundaries can be source of numerical inaccuracies. In particular, in dif-
ferent contexts of internal fluid-dynamics there is sometimes the need of
managing numerically defective boundary data sets, namely data that are
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not enough to have a mathematically well posed problem.
A fluid dynamic field in which it is usually necessary to manage with

defective boundary problems is haemodynamics (see [2,3,13]). In fact, it
is quite typical in this case to have only average data from the clinical
measurements. For instance, it can be happen in solving fluid problems
in a network of pipes to have at the inlet only the flow rate (flow rate

problem). In this context, the problem of the defective boundary data has
been analyzed at the mathematical and numerical levels since about ten
years (see [4,12]).

In this work, we describe the Augmented formulation introduced in
[3,13] for the numerical treatment of the flow rate problem. In particular,
we review two algorithms for its numerical solution, which are modular,
that is which can be solved by using pre-existing fluid-dynamics classical
codes. The aim of this work is to highlight the differences of the solutions
obtained by using these schemes and the classical practical approach in a
realistic numerical simulation obtained in the human carotid.

The outline of the work is as follows. In Section 2.1 we introduce the
Navier-Stokes equations for incompressible, Newtonian fluids. In Section 2.2
we define the flow rate boundary value problem, whilst in Section 2.3 we de-
scribe the practical approach commonly used in the engineering community.
In Section 3 we introduce the Augmented formulation, whilst in Section 4
we present two modular numerical strategies for its solution. Finally, in
Section 5 we present some numerical results coming from biomedical appli-
cations.

2. Navier-Stokes equations, flow rate and boundary conditions

2.1. General settings

Referring to the computational domain Ω ⊂ R
d, d = 2, 3, in Figure 1, let

us consider the Navier-Stokes equations for a homogeneous incompressible
Newtonian fluid (see [9,5]):

(1)





ρ
∂u

∂t
− µ△u+ ρ(u · ∇)u+ ∇p = ρf , (t,x) ∈ YT

∇ · u = 0, (t,x) ∈ YT

u|t=0 = u0, x ∈ Ω

where u(t,x) is the velocity field, µ is the dynamic viscosity (assumed to
be constant), p(t,x) the pressure, ρ the constant density, T the final time,
u0(x) the initial condition and f(t,x) a forcing term. When we neglect
the convective term ρ(u · ∇)u, we recover the so called Stokes equations.
Otherwise, when the convective term is replaced by ρ(β · ∇)u, with β a
given velocity field, we have the Oseen equations.

2
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Fig. 1. Reference computational domain Ω.

From the mathematical viewpoint, the 3D (2D) fluid-dynamics problem,
described by the incompressible Navier-Stokes equations, requires the as-
signment of three (two) scalar conditions on each boundary point. Namely,
referring to Figure 1, we can prescribe the velocity field (Dirichlet boundary
condition):

(2) u|ΓD
= g, t ∈ (0, T ],

or the stress tensor (Neumann/natural boundary condition):

(3) (−pn+ µ∇u n)|ΓN
= h, t ∈ (0, T ],

where g(t,x) ∈ H1/2(ΓD) and h(t,x) ∈ H−1/2(ΓN ) are given boundary
functions and n(x) is the unit normal vector to ∂Ω.

In view of the numerical discretization of equations (1), (2) and (3), we
introduce a suitable variational formulation (see [9]). Let us set:

(v,w) =

∫

Ω
v ·w dω, b(q,v) = −

∫

Ω
q∇ · v dω

and the following space

V = H1
ΓD

(Ω) = {v ∈H1(Ω) : v|ΓD
= 0},

H1(Ω) being the usual Sobolev space. Moreover, given a generic Hilbert
space W , let us denote

W ∗ = {v ∈W : ∇ · v = 0}.

We obtain the following (see [9]):

Problem 1. Given u0 ∈ L2(Ω)∗, f ∈ L2(0, T ;L2(Ω)), find u ∈
L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)) and p ∈ L2(0, T ;L2(Ω)), such that, for each
t ∈ (0, T ]:
{

ρ
(∂u

∂t
,v

)
+ a(u,v) + ρ((u · ∇)u,v) + b(p,v) = ρ(f ,v) + (h,v)L2(ΓN )

b(q,u) = 0

for all v ∈ V and q ∈ L2(Ω) and with the initial condition u|t=0 = u0.

In Problem 1, we have set a(v,w) = µ
∫
Ω ∇v : ∇w dω.

3
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2.2. Flow rate boundary conditions

In many fluid-dynamics problems the numerical simulations aim at ob-
taining some quantitative informations on a local phenomenon, confined
in a domain that is part of a complex system or a network. Therefore, in
order to obtain numerical results with a reasonable computational cost, it
is necessary to consider a bounded domain including the zone of interest.
In this computational domain a subset of the boundary corresponds to a
real/physical wall. For example, in the domain in Figure 2 (right), Γw is a
physical boundary. For what concernes this portion of boundary, we assume
the hypothesis of no-slip condition, i.e. the complete adherence of the fluid
on the wall. This hypothesis, if the motion occurs in rigid domains, leads
to the homogeneous Dirichlet boundary condition:

u|Γw = 0, t ∈ (0, T ]

On the other hand, another part of the boundary (Γ0∪Γ1∪Γ2 in Figure 2,

Fig. 2. An example of a truncated domain Ω: a tipical vascular district. We detect the
“physical” boundary (the vascular wall Γw) and the “artificial” boundaries Γ0, Γ1 and
Γ2 (courtesy of A. Veneziani).

right) does not correspond to a physical boundary but it is just introduced
to limit the domain of interest. The surfaces belonging to this part of the
boundary are called artificial sections, since they are the interface of the
district with the other parts of the circulatory system. For example, this
situation occurs often in haemodynamics, where the computational domain
is a truncated part of the complex vascular tree. In Figure 3 an example of
such domain in haemodynamics is shown.

As already pointed out in the Introduction, the prescription of suitable
boundary conditions on the artificial sections is a major issue in many

4
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Fig. 3. Carotid bifurcation geometry: it is possible to detect the “physical” and the
“artificial” boundaries (cast by D. Liepsch - FH Munich)

fluid-dynamics problems. Sometimes it is just difficult to obtain realistic
informations on such boundaries and furthermore, when available, they
are often referred to an average datum. Namely, let us suppose to have
m + 1 artificial section Γi, i = 0, . . . ,m. For example, if we refer to the
computational domain Ω in Figure 2, right, we have m = 2. It is worth
considering flow rate conditions on such surfaces

(4) ρ

∫

Γi

u · n dγ = Qi, ∀i = 0, . . . ,m, t ∈ (0, T ]

where Qi = Qi(t) are given. Since we refer to a rigid domain Ω, let us
notice that we can prescribe arbitrarily the flow rates (4) on all but one the
artificial sections, for example on Γ1, Γ2, . . . , Γm. Indeed, due to the mass
conservation and the rigidity of the walls, on Γ0 we have:

(5) Q0 = ρ

∫

Γ0

u · n dγ = −

m∑

i=1

ρ

∫

Γi

u · n dγ = −

m∑

i=1

Qi.

Moreover, for the sake of simplicity, let us suppose here and in the sequel of
this work that ρ = 1. Conditions (4) are clearly not sufficient to achieve a
well-posed mathematical problem that needs pointwise conditions like (2)
or (3). Specific strategies in order to fill this gap are therefore mandatory.

5
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2.3. State of the art of the flow rate problem: A practical approach

The most common strategy used in the engineering literature in order
to complete these defective boundary data consists in choosing a priori a
velocity profile gi on each section Γi where the flux is prescribed, fitting
the given flow rate Qi. Therefore, we make use of a Dirichlet boundary
conditions like (2), such that (see Figure 4):

∫

Γi

gi · n dγ = Qi, ∀i = 0, . . . ,m, t ∈ (0, T ],

with the values Qi satisfying the constraint (5). This approach is not al-

Fig. 4. Example of a selected velocity profile prescribed at the artificial sections.

ways feasible, for istance for real geometries when an analytical expression
for the profile is not available. In particular let us notice that an analytical
solution is available only for a cylindrical domain perfused by a steady or a
sinusoidal flow rate. In these cases we refer to the Poiseuille and the Wom-

ersley solution, respectively (see [17]). For a different flow rate perfusing a
cylinder, a feasible approach is to decompose the wave form of the flow rate
into its Fourier components and to combine basic Womersley solutions cor-
respondly to each frequency component. Strictly speaking, this approach
is exact only if the problem at hand is linear. Therefore, when the Navier-
Stokes equations are considered and, in particular, for increasing values of
the Reynolds number Re = ρV L/µ, with V and L a characteristic velocity
and a characteristic length respectively, this approach gives an approximate
”feasible” solution. In general, for a realistic computational domain it is not
possible to know a priori the exact velocity profile to be prescribed on the
boundaries neither in the steady nor in the periodic case. Nevertheless, in
these cases, if the artificial sections are circular, it is a common practice to
impose anyway a parabolic, a Womersley or a flat velocity profile. Since the

6
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numerical solution is strongly affected by the arbitrary selected profile, the
computational domain is quite often enlarged letting the profile to develop,
in order to reduce the effect of the profile prescription in the zone of interest.
Obviously, this approach presents the drawback of increasing the compu-
tational costs. In particular, the higher is the Reynolds number the larger
has to be the extra zone as the fluid needs more space to develop fully. In
particular, for steady flows in a cylindrical domain, it is possible to define a
characteristic length equal approximately to 0.058 ·D ·Re (where D is the
diameter of the inlet section) at which a centreline velocity is within 1% of
its final value (see [16]). A similar dependence on Re is recognized also for
a non cylindrical domain and for unsteady flows. However, in the unsteady
case the development of the profile can be problematic. For example, it has
been shown in [10] that for high Reynolds numbers, in a cylindric domain
perfused by a periodic flux, the enlargement of 40 diameters may not be suf-
ficient to recover the analytical (Womersley) solution if a parabolic profile is
prescribed as boundary condition at the inlet. If the section where the flow
rate is prescribed is not circular, some authors proposed to use anyway the
Womersley solution as boundary condition, extending the computational
domain by some arterial diameters, such that the cross-section transition
leads to a perfectly circular artificial section in the actual geometry. Finally,
we highlight that in some realistic cases, a wrong choice of the prescribed
velocity profile, could lead to an error also in the computation of global
quantities, such as the flow division (see e.g. [7]). Although quite simple
and popular, this approach can be therefore source of serious inaccuracies,
beside leading to an increased computational effort.

3. Augmented formulation of the flow rate problem

Let us consider the domain Ω ⊂ R
d, d = 2, 3, represented in Figure 5

and the following unsteady Oseen problem:

(6)





∂u

∂t
− µ△u+ (β · ∇)u+ ∇p = f , (t,x) ∈ YT

∇ · u = 0, (t,x) ∈ YT

u|t=0 = u0(x), x ∈ Ω

together with the boundary conditions:

(7)





u|Γw = 0, t ∈ (0, T ]
(pn− µ∇u n)|Γ0

= 0, t ∈ (0, T ]∫

Γi

u · n dγ = Qi, i = 1, 2, . . . ,m, t ∈ (0, T ].

7
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Γ3

Γ1

Γ2

Γ4

Ω Γ0

Γw

Fig. 5. Domain Ω of interest in the flow rate problem. In this case we have m = 4.

It is worth noticing that fluxes are imposed on all the artificial sections
apart from Γ0. Let us consider the following functional:

(8) F (v) =
(∂v

∂t
,v

)
+

1

2
a(v,v) +

1

2
((β · ∇)v,v) − (f ,v).

By minimizing this functional in the space V ∗ (where ΓD ≡ Γw), we ob-
tain a variational formulation of problem (6) with the following boundary
conditions:





u|Γw = 0, t ∈ (0, T ],
(pn− µ∇u n)|Γ0

= 0, t ∈ (0, T ],
(pn− µ∇u n)|Γi

= 0, i = 1, . . . ,m, t ∈ (0, T ].

This corresponds to a free minimization of the functional (8). On the other
hand, if we want to take into account the supplementary information given
by the flow rate boundary conditions (7)3, we can think to minimize the
previous functional with the constraint given by these conditions. With this
aim, let us introduce the following definition:

< φi,v >:=

∫

Γi

v · n dγ, ∀i = 1, . . . ,m,

where φi ∈ V ′, i = 1, . . . ,m and < ·, · > denotes the duality between V ′ and
V . With the previous definition we can formulate the flow rate condition
in terms of a continous and linear functional. In particular, let us consider
the following constrained minimization problem:

Problem 2. Find u ∈ V ∗ such that
{

min{w∈V ∗} F (w)

< φj,w >= Qj, j = 1, . . . ,m.

8
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In order to solve this problem we make use of a Lagrange multipliers ap-
proach, i.e. we minimize the Lagrangian functional obtained by adding to
the functional F the constraints (7)3 multiplied by the Lagrange multipliers
(see [9]). In this way, the Lagrangian functional associated to Problem 2
becomes:

L(w, ξ1, . . . , ξn) =
1

2

(∂w

∂t
,w

)
+

1

2
a(w,w) +

1

2
((β · ∇)w,w)+

−(f ,w) +

m∑

j=1

ξj(< φj,w > −Qj),

As usual for constrained minimization problems, we can make use of a
saddle point formulation:

Problem 3. Find u ∈ V ∗ and λ1, . . . , λn ∈ R such that, for each t:

L(u, λ1, . . . , λm) = min
{w∈V

∗}
max

{ξ1,...,ξm∈R}
{L(w, ξ1, . . . , ξm)},

where λj are the Lagrange multipliers associated to constraints (7)3. Let
us consider the function Ψ obtained evaluating L in (u+ εv, λj +αjηj , j =
1, . . . ,m), with v and ηj the variations (costant in time) from the solution
(u, λi):

Ψ(ε, α1, . . . , αm) = L(u+ εv, λ1 + α1η1, . . . , λn + αnηm).

Differentiating with the respect to ε, we obtain:

dΨ(ε, α1, . . . , αm)

dε
=

(∂u

∂t
,v

)
+ε

(∂v

∂t
,v

)
+a(u,v)+εa(v,v)+((β·∇)u,v)+

+ε((β · ∇)v,v) − (f ,v) +

m∑

j=1

λj < φj ,v > +

m∑

j=1

αjηj < φj ,v >

and with the respect to αj :

dΨ(ε, α1, . . . , αm)

dαj
= ηj(< φj,u > −Qj) + ηjε < φj,v > .

By forcing 



dΨ(0, 0, . . . , 0)

dε
= 0,

dΨ(0, 0, . . . , 0)

dαj
= 0, j = 1, . . . ,m,

9
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we obtain:




(∂u

∂t
,v

)
+ a(u,v) + ((β · ∇)u,v) +

m∑

j=1

λj < φj ,v >= (f ,v), ∀v ∈ V ∗

ηj(< φj,u > −Qj) = 0, for j = 1, . . . ,m, ∀ηj ∈ R.

By proceeding in a similar way, with an explicit treatment of the incom-
pressibility constraint, we obtain the following augmented variational for-
mulation for the problem given by (6) and (7):

Problem 4. Given u0 ∈ V ∗, f(t) ∈ L2(0, T ;L2(Ω)), β ∈
L∞(0, T ;L∞(Ω)) and Q(t) ∈ (C0([0, T ]))m (with

∫
Γj
u0 · n dγ = Qj(0)),

find u(t) ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)), p ∈ L2(0, T ;L2(Ω)) and λ ∈
(L2(0, T ))m such that

(9)





(∂u

∂t
,v

)
+ a(u,v) + ((β · ∇)u,v) + b(p,v) +

m∑

j=1

λj

∫

Γj

v · n dγ =

= (f ,v), (t,x) ∈ YT

b(q,u) = 0, (t,x) ∈ YT ,
u|t=0 = u0, x ∈ Ω,∫

Γi

u · n dγ = Qi ∀i = 1, . . . ,m, t ∈ (0, T ],

for all v ∈ V and q ∈ L2(Ω).

The Lagrange multipliers λi have the physical meaning of normal stress
on the artificial sections (see [3]).

Remark 3.1. Among all the possible Neumann boundary conditions fit-
ting the desired flow rate, the augmented formulation prescribes the one
which is parallel to the normal direction and which is constant. Therefore,
for the effectiveness of this strategy, it is crucial that the computational
domain is cut such that the outward normal is parallel to the axial axis and
far from branches.

We point out that Problems 4 share the good property, in view of the
numerical simulations, of requiring the discretization of a ”standard” space
V .

We have the following result (see [13]):

Proposition 3.1. For sufficiently smooth data Qi with
∑

i |Qi| and ‖u0‖V

small enough, Problem 4 is locally well-posed, i.e. there exists a time T ∗ > 0
such that a solution (u, p, {λi}i=1,...,m) exists in [0, T ∗].

10
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The proof of the previous result is based on proving the following inf-sup

condition:
(10)

∃β > 0 : ∀µ ∈ R
m,∃v ∈ V : b(µ,v) =

∣∣∣
m∑

j=1

µj

∫

Γj

v · ndγ
∣∣∣ ≥ β‖µ‖‖v‖V

Moreover, let us set m = 1 and Q1 = 0. Then, we have the following

Proposition 3.2. The Lagrange multiplier λ satisfies the following a priori

estimate

|λ1(t)| ≤
1

β

(
CP‖f‖ + CP

∥∥∥
∂u

∂t

∥∥∥ + µ‖u‖V + CP‖β‖L
∞(Ω)‖u‖V

)
.

Proof. Let us set v = u in the momentum equation and let us integrate
in time. Exploiting that

∫
Γ1
u · n dγ = 0, we obtain the classical regularity

results (see [11]):

(11) u ∈ L2(0, T ∗;H2(Ω)), u′ ∈ L2(0, T ∗;L2(Ω))

From the inf-sup condition (10) we obtain (considering the free-divergence
subspace):

|λ1(t)| ≤
1

β
sup

v∈V
∗

λ1

∫
Γ1
v · n dγ

‖v‖V

=

1

β
sup

v∈V
∗

(f ,v) −
(∂u

∂t
,v

)
− µ(∇u,∇v) − ((β · ∇)u,v)

‖v‖V

≤

≤
1

β
sup

v∈V
∗

‖f‖ ‖v‖ +
∥∥∥
∂u

∂t

∥∥∥ ‖v‖ + µ‖u‖V ‖v‖V + ‖β‖L
∞(Ω)‖u‖V ‖v‖

‖v‖V

where with ‖ · ‖ we indicate the L2(Ω) norm and where ‖w‖V = ‖∇w‖.
Exploiting the Poincaré inequality (with constant CP ) and from the re-
golarity results (11), we obtain that all the terms at the right hand side
are in L2(0, T ∗) and therefore the thesis follows and we conclude that
λ1 ∈ L2(0, T ∗).

The extension of the previous results to the case m > 1 and Qj 6= 0 is
straightforward.

11
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4. Numerical algorithms

We want now to investigate some modular numerical methods for the
approximation of the augmented problems. In the sequel, we refer to a
finite element discretization of the Oseen equations, featuring the inf-sup
compatible elements (see [1,9]). In particular, let us denote V h and Qh

the subspaces of V and L2(Ω) of dimension Nu and Np and with basis
functions denoted by ψj and ζk, respectively. Moreover, let us denote with
Ωh the numerical computational domain obtained with a partition τh of Ω
in elements Kj .

Let us introduce a partition of the time interval [0, T ] into subintervals.
For the sake of simplicity, we refer to a uniform subdivision with size ∆t.
Among the other methods for the time advancing, we consider a discretiza-
tion of the time derivatives based on the Backward Difference Formulas
(BDF) (see [6]). Setting tn = n∆t, for n = 0, 1, . . ., we have the following:

Problem 5. Given u0,h suitable approximation of the initial guess u0 and
posing fn = f(tn,x), βn = β(tn,x) and Qn

j = Qj(t
n), j = 1, . . . ,m, find

un+1
h (t) ∈ V h, pn+1

h ∈ Qh and λn+1
h ∈ R

m such that, for each n:





α

∆t

(
un+1

h ,vh

)
+ a(un+1

h ,vh) + ((βn+1 · ∇)un+1
h ,vh) + b(pn+1

h ,vh)+

+

m∑

j=1

λn+1
j,h

∫

Γj

vh · n dγ = (fn+1,vh) +

r≤n∑

j=0

τj

∆t

(
u

n−j
h ,vh

)
, x ∈ Ωh

b(qh,un+1
h ) = 0, x ∈ Ωh

u0
h = u0,h, x ∈ Ωh∫

Γi

un+1
h · n dγ = Qn+1

i ∀i = 1, . . . ,m,

for all vh ∈ V h and qh ∈ Qh and where α and τj, j = 0, . . . , r, are the
coefficients of the time discretization.

The algebraic form of the augmented discrete problem is therefore given
by:

(12)




K Bt Φt

B 0 0
Φ 0 0






Un+1

P n+1

Λn+1


 =



F̃

n+1

0

Qn+1




whereUn+1 and P n+1 are the vectors of the nodal values of the velocity and
of the pressure field respectively and Λn+1 is the vector of the approximated

Lagrange multipliers at time step n + 1, K = Kn+1 =
α

∆t
M + A + C sums

up the discretization of the time derivative (mass matrix M = [mij] =

12
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[(ψi,ψj)]), of the viscous term (stiffness matrix A = [aij ] = [a(ψi,ψj)]) and

of the convective one (matrix C = Cn+1 = [cij ] = [((βn+1 ·∇)ψi,ψj)]. In all
these three cases we have i, j = 1, . . . , Nu. Finally, B = [bil] = [b(ζl,ψi)],
for l = 1, . . . , Np and i = 1, . . . , Nu, Φ = [φrj ] = [

∫
Γr
ψj · n dγ], for

r = 1, . . . ,m and j = 1, . . . , Nu, and F̃
n+1

= F n+1 +
∑r≤n

j=0

τj

∆t
MUn−j,

with F = [Fi] = (f ,ψi). We have the following result:

Proposition 4.1. Under the same regularity assumptions of Proposition
3.1, Problem 5 admits a unique solution if

(13) ∆t < min
{wh 6=0}

α|wt
hMwh|

|wt
hCwh|

.

Proof. In order to prove the well posedness of Problem 5, it is sufficient
to prove that under condition (13), matrix K is positive definite, i.e. that

wt
hKwh > 0, ∀wh 6= 0,

Since A is positive definite (see [9]), we require that:

α

∆t
wt

hMwh +wt
hCwh > 0, ∀wh 6= 0

yielding the thesis.

For the approximation of the augmented Navier-Stokes problem, we con-
sider, if not differently specified, a semi-implicit discretization. In particular,
we set βn+1 = un

h in Problem 5 and in (12).

4.1. Schur complement scheme + GMRes (Scheme I)

We rewrite (12) in a more compact form:

(14)

[
N Φ̃t

Φ̃ 0

][
Xn+1

Λn+1

]
=

[
Hn+1

Qn+1

]

where N =

[
K Bt

B 0

]
. Since the discrete inf-sup condition holds, N is non-

singular, so we can reduce system (14) by eliminating Xn+1 as:

Φ̃N−1Φ̃tΛn+1 = Φ̃N−1Hn+1 −Qn+1,

where N−1 indicates the solution of a Oseen or of a linearized Navier-
Stokes problem. Matrix R = Φ̃N−1Φ̃t is the Schur complement associated

13
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to (14). In [3], the previous problem for the Lagrange multipliers has been
introduced for the steady Stokes problem and a Coniugate Gradient method
has been proposed for its soution. Nevertheless, since N is not symmetric in
the general case, we make use of the GMRes method as iterative solver for
the computation of Λn+1 (see [13]). We notice that a system in N has to be
preliminarily solved for the computation of the initial residual. Then, since
GMRes converges in at most m iterations (recall that m is the number of
sections where flow rate conditions are prescribed, so it is usually a small
number), further m systems in N are solved to compute the residual at
each iteration. Finally, once Λ has been computed, a further system in
N should be solved for the computation of the velocity and the pressure
fields. However, the residual computation in the last GMRes step on the
converged solution already entails the solution of the latter system in N ,
so that the final velocity-pressure computation actually makes use of an
algebraic manipulation of vectors. This means that m + 1 systems in N at

each time step are required for this scheme. Moreover, to solve a system
for N actually corresponds to the solution of a Oseen or of a linearized
Navier-Stokes problem with Neumann conditions on the sections where the
flow rate is prescribed. This can be pursued, for example, by means of a
given (generic) solver and makes Scheme I modular.

4.2. Inexact splitting (Scheme II)

The drawback of Scheme I is that the computation of the solution is
obtained by using an iterative procedure: the iterative solver (GMRes) for
the resolution of the linear system in Λ. Therefore the computational costs
of this strategy could be quite expensive in practical applications. In this
section we propose an approximate (inexact) algorithm for the solution
of the augmented problem, introduced in [14]. Since this approach does
not require an iterative approach, it yields a significant reduction of the
computational costs. This strategy is based on an exact continuous splitting
of the augmented formulation. In the sequel, we firstly introduce the exact
splitting. Then, we propose its approximation that leads to Scheme II. We
refer to the augmented Oseen problem (9). More precisely, consider the
following scheme:

1. Solve for i = 1, . . . ,m the following steady Neumann problems in the
unknowns wi and πi:

(15)





a (wi,v) + b (πi,v) = −

∫

Γi

v · ndγ

b (q,wi) = 0,

14
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∀v ∈ V ,∀q ∈ L2(Ω).
2. Solve the following unsteady Neumann homogeneous problem in the un-

knowns s and ξ:

(16)





(
∂s

∂t
,v

)
+ a (s,v) + ((β · ∇) s,v) + b (ξ,v) = (f ,v)

b (q, s) = 0,

∀v ∈ V ,∀q ∈ L2(Ω), with the initial condition s|t=0 = u0.
3. Solve a linear system. Let B be the matrix given by

Bij =

∫

Γi

wj · ndγ,

and S the vector with elements

Si =

∫

Γi

s · ndγ.

Let us denote with Q the vector with components Qi (i = 1, . . . ,m). We
find therefore the vector η(t) by solving

Bη = Q− S.

4. Solve the following unsteady augmented homogeneous problem. Find e ∈
L2(0, T,V ) ∩ L∞(0, T,L2(Ω)), ε ∈ L2(0, T, L2(Ω)) and ν ∈ (L2(0, T ))m

such that for all v ∈ V , q ∈ L2(Ω):
(17)




(
∂e

∂t
,v

)
+ a (e,v) + ((β · ∇)e,v) + b (ε,v) +

m∑

i=1

νi

∫

Γi

v · ndγ =

= −
m∑

j=1

dηj

dt
(wj ,v) −

m∑

j=1

ηj ((β · ∇)wj,v)

b (q,e) = 0∫

Γi

e · ndγ = 0 i = 1, 2, . . . m

,

with the initial condition: e|t=0 = 0.

15
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It is possible to verify by linear combination that solution of problem (9)
can be written as:





u = s+ e+

m∑

j=1

ηjwj ,

p = ξ + ε +
m∑

j=1

ηjπj ,

λi = νi + ηi ∀i = 1, 2, . . . m.

It is worth noting that all the subproblems are well posed under suitable
assumptions (see [14]). The steady problems are obviously to be solved once
at all at the beginning of computations.

Remark 1. If f = 0 and u0 = 0 problem (16) admits the trivial solution
s = 0 and ξ = 0. By exploiting this circumstance, in this case numerical
solution of (16) can be dropped.

In the previous splitting, we compute separately the contributions to the
solution given by the forcing term and the flow rates. The latter still requires
the solution of an augmented (homogeneous) problem, and it is expensive
to solve. We therefore approximate problem (17) with the following one.
Let us set Γ̂ ≡ Γw ∪ Γ1 ∪ . . . ∪ Γm ≡ ∂Ω \ Γ0.

Problem 6. Find ê ∈ L2(0, T,H1
Γ̂
(Ω)) ∩ L∞(0, T,L2(Ω)) and ε̂ ∈

L2(0, T, L2(Ω)) such that for all v ∈H1
Γ̂
(Ω), q ∈ L2(Ω):

(18)





(
∂ ê

∂t
,v

)
+ a (ê,v) + ((β · ∇) ê,v) + b (ε̂,v) =

= −
m∑

j=1

dηj

dt
(wj ,v) −

m∑

j=1

ηj ((β · ∇)wj,v)

b (q, ê) = 0

with the initial condition: ê|t=0 = 0.

This is a standard Oseen problem with homogeneous Dirichlet conditions
on Γ̂.

Remark 2. Observe that in the steady Stokes case, namely for
dηj

dt
= 0 for

each j = 1, 2, . . . ,m, problem (17) and (18) both have the unique solution
e = ê = 0. In this case, therefore, Scheme II yields the exact solution.

16
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We observe that Scheme II does not make use iterative strategies
anymore and that the computation is obtained by solving just 2 (1 if
f = u0 = 0) Oseen problems. Again, we have obtained a modular al-
gorithm.

The price to pay is the following: the null flux problem is still an aug-
mented problem and therefore, in solving it approximatively, we introduce
an error in a small neighborhood of the artificial sections where the flow
rate is prescribed. From the practical viewpoint, this means that correct
numerical results can be obtained in the region of interest by working in a
slightly extended computational domain. Even when working with a larger
domain, in fact, the computational times of the present method are signifi-
cantly reduced with respect to the “exact” Lagrange multiplier approaches
(Scheme I), yielding comparable numerical results in the region of interest
(see Section 5).

Observe that since the error in Scheme II has been introduced by forcing
a null velocity profile (Dirichlet condition) in (18) instead of a null flow
rate, as a matter of fact, we are prescribing a ”wrong” velocity profile.
Therefore, we can refer to the error analysis proposed in [14], where it has
been proved that the error introduced in prescribing an arbitrary velocity
profile increases for an increasing Reynolds number. Then, as the numerical
results in [14] highlight, the errors made with this strategy are less than
the ones done by imposing directly a parabolic or a flat profile fitting the
desired flow rate (as in the practical approach). Indeed, in problem (18) we
are imposing a null Dirichlet boundary condition, i.e. we are considering
a problem with small Reynolds number near the boundary. Therefore, the
error is smaller than the one made imposing directly a non-null velocity
profile (as in the practical approach), where Re could be very big.

The present proposal could therefore be considered as an intermediate
and reliable approach between the engineering one (practical approach),
requiring a relevant expansion of the domain for loosing the effects of the
arbitrary velocity profile selection, and the exact one based on the aug-
mented reformulation.

Remark 3. As an alternative, in order to save computational times, it
would be possible to treat system (12) monolithically, by studying other
splitting schemes which group the Lagrange multipliers with the velocity or
the pressure unknowns. However, these schemes would lead to non-classical
Oseen or Stokes problem, and therefore they would be non-modular. For
this reason, we do not consider them in this work.
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5. Numerical results

Scheme I and Scheme II have been used to simulate a carotid domain
starting from real data of a patient (see Figure 7). We observe that the
geometry was cut such that the normal is parallel to tha axial axis, so
that the Augmented formulation should be effective (see Remark 3.1). The
viscosity has been setted equal to 0.035 g/(cm s). We have used the 3d Finite
Element Library LifeV, developed at M.O.X - Dipartimento di Matematica

- Politecnico di Milano, at CMCS - EPFL of Lausanne and at INRIA -

Paris and written in C++. We have imposed the physiological flow rates
depicted in Figure 6 at the inlet and at the internal outlet of the domain,

Fig. 6. Prescribed physiological flow rates.

which corresponds to the internal carotid (that is the outlet at the right
in Figure 7). We consider the Navier-Stokes equations. For the non linear
term, we have used a semi-implicit treatment, where the convective term
un+1 has been approximated by the velocity field at the previous time step
un. The time discretization parameter is ∆t = 0.008 s, which leads to stable
solutions, so that we can argue that condition (13) is satisfied.

Figures 7 shows the velocity fields obtained with Scheme I, with Scheme
II and imposing a parabolic velocity profile at the inlet and a flat velocity
profile at the internal outlet (both fitting the prescribed flow rates), respec-
tively. It is evident that the error made with Scheme II is confined near the
boundary and that the enlarged zone requested by the latter is smaller than
the one needed by the practical approach. Moreover, the latter approach
seems to give a numerical solution that does not agree very well with the
one obtained using Scheme I. In particular, we point out big differences
also far from the artificial sections, in particular at the bifurcation near the
wall.

It is worth pointing out the influence of the geometry on the solution
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Fig. 7. Computations in 3D: carotid solution. Velocity field obtained with Scheme I
(left), Scheme II (middle) and with the practical approach (right). t = 0.225 s, ∆t =
0.0075 s

of the Navier-Stokes problem. Figure 8 shows the velocity field at the inlet
of the carotid bifurcation computed by using Scheme I (left) and imposed
as parabolic (right). Let us notice the asymmetry of the velocity profile re-
covered without prescribing it using Scheme I. We think that this solution
is more realistic that the one obtained with the practical approach, which
cannot be asymmetric. Therefore, for a non-cylindrical domain, the pre-
scription of a parabolic velocity profile or even of the Womersley solution
as Dirichlet boundary condition leads anyway to an error due to the effect
of the geometry.

Fig. 8. Computations in 3D: carotid solution. Velocity field at the inlet prescribed with
Scheme I (left) with the practical approach (right). t = 0.195 s, ∆t = 0.0075 s.

6. Conclusions

In this paper we have reviewed two modular algorithms for the solution
of the flow rate boundary value problem. We have shown the differences of
the solutions obtained with these schemes and with the classical practical
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approach, in a realistic domain, namely the human carotid. The application
of such techniques for clinical purposes seems to be very promising, as
already shown in the first two studies in this direction, namely for the
estimation of the flow rate measure (see [8]) and in the study of the fluid-
dynamics in the bicuspid valve’s configuration (see [15]).
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