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Abstract

Hidden Markov models (HMMs) are sequences of conditionally independent ran-
dom variables and every observed variable depends only on the contemporary state
of an unobserved Markov chain. Here we examine HMMs in which the probability
density function of every observed variable, given a state of the Markov chain, is
gaussian. The aim of this paper is to show how the maximum likelihood estima-
tors of the parameters of these models may be suitably obtained performing the
EM algorithm. These estimators can be used also when the sequence of observa-
tions contains unrecorded data. An application about a time series of hourly mean
concentrations of sulphur dioxide with unrecorded data will be shown.

Keywords: discrete time stochastic processes, Markov chains, maximum likelihood
estimators, EM algorithm, unrecorded data.

Introduction!

Air quality control includes the study of data sets recorded by air pollution testing sta-
tions. We consider one of the five stations situated in Bergamo (a town in Northern Italy,
with 116.000 inhabitants). It records seven types of pollutants and each hour we have the
mean concentration of every pollutant. We are interested in the analysis of the dynamics
of hourly mean concentrations of sulphur dioxide (SOs). SO, measured in pg/m?, is a
gas with a characteristic pungent and choking smell: it is produced by the combustion
of substances containing sulphur (coal, fuel oil, diesel oil). The principal sources of SO,
are the industries that need a lot of energy (refineries, steelworks, thermoelectric power
stations), the domestic heating (even if the use of methane drastically reduced the SO,
emissions), the traffic of the heavy transport (diesel vehicular traffic). SO is responsible,
with the nitrogen oxides (NOx), for the acid rains. It can cause the onset and the wors-
ening of the respiratory tract diseases (persistent cough, bronchitis, sinusitis); very high
concentrations can cause tissues destruction, giving rise to emphysema. Figure 1 shows
the series of the hourly mean concentrations of SO recorded by the air pollution testing
station placed in Via Goisis, Bergamo, from Monday the 16th of November to Sunday the
13th of December, 1998. The series is characterizad by an asymmetric cyclic behaviour,
increasing at a faster rate than decreasing. As Chatfield remarks “a non-linear model is
much more compelling for describing series with properties such as ‘going up faster than
coming down’” (Chatfield (1996), p. 195). Figure 2 shows the logarithmic transformation
of the series, that has been applied to reduce its variability: the same asymmetric features
of the original series may be seen in the plot. Hence we will study the series of the loga-
rithms of the hourly mean concentrations of SOy by a non-linear model, which assumes
the existence of an unobserved process, modelled by a Markov chain, whose dynamics
affects the dynamics of the observed process. Notice that in Figures 1 and 2 some obser-
vations are missing, either because the station must be stopped every twenty-four hours
for automatic calibration, because of occasional mechanical failure, ordinary maintenance,
or because some data are clearly anomalous and so are removed by the technicians.
Hidden Markov models (HMMs) are discrete-time stochastic processes {V;; X;} such
that {Y;} is an observed sequence of random variables and {X;} is an unobserved Markov
chain. {Y;}, given {X;}, is a sequence of conditionally independent random variables

"Work partially supported by MURST 1998 Grant “Statistical Methods for the Analysis of the Envi-
ronment and the Health-Environment Interactions”



60 -~

30

T

1 672

Figure 1: Series of the hourly mean concentrations of SOZ2, recorded by the air pollution
testing station placed in Via Goisis, Bergamo, from Monday the 16th of November, 1998,
1:00 a.m. (t=1), to Sunday the 15th of December, 1998, 12:00 p.m. (1=672).
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Figure 2: The logarithmic transformation of the series plotted in Figure 1.



(conditional independence condition) with the conditional distribution of Y; depending on
{X¢} only through X; (contemporary dependence condition).

A useful way to show the dependence structure of HMMs is the following simple graph
in which the edges between the vertices representing the Markov chain {X;} indicate the
Markov dependence condition; the edges between the vertices representing the observed
process {Y;} and the vertices of the contemporary states of the chain indicate the con-
temporary dependence condition; the lack of edges between the vertices representing the
observed process {Y;} indicates the conditional independence condition:

In this paper we examine HMMs in which the probability density function (pdf) of
every observation at any time, determined only by the current state of the chain, is
gaussian; so we have those special models {Y;; X;} said gaussian hidden Markov models
(GHMMs).

The aim of this paper is to show how the maximum likelihood estimators of GHMMs
may be suitably obtained using the EM algorithm. The basic model used to study uni-
variate stationary non-linear time series will be introduced in Section 1; then, in Section
2, we consider some joint pdfs of the process {Y;; X;} that will be used in Section 3 to
obtain, by means of the EM algorithm, the explicit formulae of the maximum likelihood
estimators of the unknown parameters of GHMMs; finally, in Section 4, an application of
GHMDMs will be shown: we will examine the data set about the hourly mean concentra-
tions of SOg, where within the series of 672 observations, we have 33 means that have not
been recorded or validated.

1 The basic Gaussian Hidden Markov Model

Let {Xt}te(l,...,T)cN be a discrete, homogeneous, aperiodic, irreducible Markov chain on

a finite state-space Sx = {1,2,...,m}. The transition probability from state i, at time

t — 1, to state j, at time ¢, is denoted by ~;, ;, for any state i, j and for any time t: v, ; =

P(Xy=j|Xi1=1)=P(Xy=j| Xy =1). The transition probabilities (m x m) matrix

is I' = [y;], with XS: v,; = 1, for any ¢ € Sx. The initial distribution is the vector
JESX

6= (61,62,...,6m)", where §; = P(X; = i), forany i =1,2,... ,m, with Y. & = 1. Since

1€Sx



{X;} is a homogeneous, irreducible Markov chain, defined on a finite state-space, it has
an initial distribution § which is stationary, that is, for any time ¢, §; = P(X; = i), for
any statei =1,2,...,m. Since § is a stationary distribution, the equality § = §'T holds:
6 is the left eigenvector of the matrix I', associated with the eigenvalue one, which always
exists, because I' is a stochastic matrix. Finally, the hypothesis characterizing HMMs is
that the Markov chain {X;} is unobservable.

Let {Yt}te(l,...,T)cN be some discrete stochastic process, on a continuous state-space
Sy = R. The process {Y;} must satisfy two conditions: (1) conditional independence
condition - the random variables (Y7,...,Yr), given the variables (Xi,..., Xr), are con-
ditionally independent; (2) contemporary dependence condition - the distribution of any
Y}, given the variables (X,..., Xr), depends only on the contemporary variable X;. By
these two conditions, given a sequence of lenght T of observations 41, ¥s,...,yr and a se-
quence of lenght T of states of the unobserved Markov chain i1, 4y, ..., 77, the conditional
pdf of the observations given the states results

T

T
f(yl;y2;---;?JT | i17i2;---;’iT) :H f(yt ’ 2'1;3’2;---;’6&) :H f(yt’it);
t=1

t=1

where the generic f(y | i) is the pdf of the gaussian random variable Y;, when X; = i,
henceforth denoted Yy, for any 1 <t < T

Yio) NN’(M; 03) yforanyi=1,... m.

The so-defined model {Yy; X}y pycy is called gaussian hidden Markov model (GHM
M) and is characterized by the stationary initial distribution , by the transition proba-
bilities matrix I" and by the state-dependent pdfs f(y | 7). The model is called Markov
because the unobserved sequence of states is the realization of a Markov chain; the model
is called hidden because the sequence of realizations of the stochastic process {Y;} is
observed, but not the sequence of states of the Markov chain, which is hidden in the
observations; the model is called gaussian because f(y | i) is a gaussian pdf.

The GHMM can equivalently be written as a “signal plus noise” model:

Yioy = s + By,

where ;) denotes the gaussian random variables I, when X; = i, with zero mean and
variance o7 (Et(z-) ~ N (0; J?)), for any i € Sx, with the discrete process { Fi¢}, given { X;},
satisfying the conditional independence and the contemporary dependence conditions.

Given that {X,} is a homogeneous, irreducible Markov chain, defined on a finite state-
space, it is a strongly stationary process and also the observed process {Y;} is strongly
stationary; hence Y}, for any t, has the same marginal distribution, obtained by applying
the definition of conditional probability:

Fly) =22 fly | )PXp=1d) =3 &if(w | i),

1€ Sx 1€ Sx

which is a mixture of gaussian pdfs.

In this paper the procedure to estimate the unknown parameters of GHMMs {Y}; X;}
will be studied. The parameters to be estimated are the m? — m transition probabilities
Vi, foranyi=1,...,m;j=1,... m—1 (the entries of the m column of T are obtained
by difference, given that I is a stochastic matrix and therefore each row sum equals one),
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the m entries of the vector 8, the m parameters p; and the m parameters o7 of the m
gaussian random variables Y;(;y. The initial distribution é will be estimated by the equality
8 = §'T, after the estimation of the matrix I' (being é the stationary distribution). Hence
the vector of the m? + m unknown parameters is:
/
¢ = (’71,1; s Mym—15 00 Ymyly - e o Ymom—1, By - - ,Mm,o_%, s 70_7277,) )
which belongs to the parameter space ®. The estimator of the vector ¢ will be obtained

by the maximum likelihood method, not in the direct analytic way, but in a numerical
way by the EM algorithm.

2 Some joint probability density functions of the pro-
cess

Our initial step is the examination of some joint pdfs of the process {Y;; X;} . First we shall
obtain the joint pdfs of the observed variables (Y7, ..., Yr), both for a complete sequence
of data and for a sequence with unrecorded data; then we shall obtain the joint pdfs of
the observed variables and one or two consecutive states of the Markov chain. These pdf's
will be used in Section 3 to obtain, by means of the EM algorithm, the explicit formulae
of the parameters estimators.

2.1 The joint pdf of (Yi,...,Yr)
Given a sequence of observations y1,¥s,...,yr and a sequence of states of the Markov
chain iy,1y,...,ip from a HMM {Y;; X;}, we may obtain the joint pdf
f(y17y27' .- JyT7i17i27' .- JiT) =
= 61'1%1,1'2 et ’ViTA,in(yl | 'il)f(y2 | i2) et f(yT | 'iT) = (1)
T
=6 f (1 | i) I Virrif W | ),

applying the conditional independence, the contemporary dependence and the Markov
dependence conditions. Summing over i1, s, ..., ir the equality (1), we have the joint pdf

f(ylayQJ"';yT):
=2 X o X GV Yigoaan S i) (ye [ d2) - fyr | ir) =

11€S8xi2€Sx ir€Sx - (2)
= Z ‘ Z cee Z 6i1f(y1 ’ 21) H fyitq,itf(yt ’ Zt)
11€Sxi2€Sx ir€Sx t=2

Setting Fy = diag(f(y: | 1), f(ye | 2),..., f(ye | m)), for any t =1,..., T, we obtain
f,y2, ... yr) = 8 FiTFy - ... - T Frl(m), (3)

where 1(;) is the m-dimensional vector of ones. Replacing §" with §'T', given that the
initial distribution 6 is stationary, and setting I'F; = G, we have

T
f(yla s 7yT) = (H Gt) 1(m)
t=1



We can observe that the joint pdf f(y1,...,yr) may be computed even if some data
are not available. If, for example, a subsequence of w — 1 observations, ¥, 1, ., Yo1w_1,
is not available within a sequence 1,...,yr, with 1 <v+1<v+4+w—1<T, the pdf (2)
becomes

f(yla"'ayvayv+w7"'ayT) =

:‘ Z et Z . Z ctt Z 67:1’)/111,112 et /yivflyiv’yiv,iv+w (w)/yiv+w,iv+w+1 '
11€8x twESx tuvtwESX ir€Sx
o Vi i f W L) o W 1 80) F Yorw | o) - flyr i) = (4)

=6Fy ... - TFI"F, ... -TFpl, =
v T

= (‘)7 (H Gt) wal ( H Gt) 1(m)7
=1

t=v+w
where ; j(w) is the w-step transition probability, v, j(w) = P(Xy4w = j | Xo = 1) =
P(Xi4w = j | X1 = i); the w-step transition probabilities matrix is I'(w) = [; ;(w)] and,
by Chapman-Kolmogorov equation, we have I'(w) = ',
The difference between formulae (3) and (4) lies in replacing the matrix F, for any
t=v+41,...,v+w— 1, with the identity matrix.

2.2 The joint pdf of the observations and one state of the Markov
chain

Now we want to obtain the joint pdfs of the observations %y,...,yr and the state 7 at
time t of the Markov chain, i.e. f(yy,...,yr,X; = i), for any ¢t = 1,...,T. Notice the
two different notations for the joint pdfs of the observations and the states of the chain:
if we have a complete sequence of states, we use f(y1,...,yr,%1,...,i7), while, when we
want to highlight one or two states, i or j, we use f(yi,...,yr, Xy = i, X¢y1 = j) or
flys,...,yr, Xy = iq,..., Xy =4, X401 = J,..., X = ir). In the former case, time ¢
appears only in the subscript of the states, while, in the latter, time t appears in the
subscript of the variables X; which have a generic realization 4, j or .
The joint pdf f(yi1,...,yr, Xt =1) can be written as

Z Z Z z f(yl;---;yT;Xl:il;---;Xt:i;---;XT:iT)-

11€Sx t1_1€Sxt4+1€Sx irE€Sx

We separately analyze the following three situations: t =1, 1 <t < T, t = T; henceforth
we shall denote the i row of I' with I';, and the i** column of I" with T;.

(a) t =1:

f(yl; e ;yT,Xl = ’L) = 6Zf(y1 ’ ’L)FZ.FQFF?, et FFTl(m)
In fact: summing f(yy,...,yr, X1 =i, Xo =iy,..., X7 = i) over is,...,i7 and applying
the conditional independence, the contemporary dependence and the Markov dependence
conditions, we obtain

f(y17"'JyTJX1:i):
= o X Mg Vipan S (W [0 f(ye | i2) - f(yr | ir) =

29€Sx ir€Sx



(b)1<t<T:
fyi,o o yr Xe=14) =8 FiTFy - ... - TF_ Ty f (4 | )TieFig1 - ... - TFrlgy.

In fact: summing f(yl; Ce ;yT;Xl = i], Ce ,Xt,1 = Z.tfl,Xt = ’i,Xt+1 = it—i—l; . ;XT = ’LT)
over iy,...,% 1,%1,---,ir and applying the conditional independence, the contemporary
dependence and the Markov dependence conditions, we obtain

f(yl; e ;yT,Xt = Z) =

= Z Z Z Z 61'1%1,1'2 Cee e Va1, Viieer o0 Yiroq i

11€Sx tt-1€Sx%4+1€Sx ir€Sx

Sy lin) - flyea i) f(ye 1S Yorn Vo) - flyr i) =
= 6/F1FF2 et FFt,lI‘.Z-f(yt | i)FioE+1 el FFTl(m) O

(e)t="T:
ft, ..., yr Xr =) =8 FiTFy- ... - TFr 1T f(yr | 9).

In fact: summing f(y1,...,y7, X1 = i1,...,Xp_1 = ir_1, X7 = i) over iy,..., i7_1 and
applying the conditional independence, the contemporary dependence and the Markov
dependence conditions, we obtain

f(yla"'JyTaXT:i) =

= > o X b Y Yiraaf L) o flyra i) flyr [ ) =

11€Sx ir_1€Sx

= 6’F1FF2 et FFT*IFOif(yT ’ ’L) O

2.3 The joint pdf of the observations and two consecutive states
of the Markov chain

Finally we want to obtain the joint pdfs of the observations 71, ..., yr and the consecutive
states 7, at times t,¢ + 1 of the Markov chain, i.e. f(yq,...,y7, Xy = i, X411 = J), for
any t =1,...,T — 1. The joint pdf f(y1,...,yr, X¢ =1, X1 = j) can be written as

Y Y Y ey Xo =i Xy = Xy =g Xy = i),

i1€Sx  #4-1€Sxiti2€Sx  ireSx
We separately analyze the following three situations: t =1,1<t<T —1,t=T — 1.
(a) t =1:
- yr X =14, X = j) = 6if (1 | 1)7ig f (w2 | D)Tje 50 Fy - .- TPl
In fact: summing f(y1,...,yr, X1 =1, Xe = j, X3 = i3,..., X7 = ir) over i3,...,ir and

applying the conditional independence, the contemporary dependence and the Markov
dependence conditions, we obtain

Ty, yr, Xhi =i, Xy = j) =



= > o Y 6 Vias e Yirar W | ) f (e | 5)f(ys [ ds) - oo flyr i) =

13€Sx iT7€Sx

=6if (1 | 9)%i i f (2 | )T je 3Ty - ... - TFrl(yy O
b)l<t<T-1:
f(y17"'7yT,Xt :iJXt-i-l :j) =

=0T Ey .. - TFH AT f(ye | )% f Wera | )T jeFtaa - oo - TFpl(m.

In fact: summing f(yi,..., 90, X1 = d1,..., Xp 1 = 41, X = 4, Xep1 = §, X402 =
419y, X =1i7) OvVeriy,..., iy 1,%¢y9,...,i7 and applying the conditional independence,
the contemporary dependence and the Markov dependence conditions, we obtain

. yr Xe =1, X401 =7) =

= 3 e XX e X bV Y Yii Vs e+ Yiroasiet

11€Sx 11— 1€Sxt442€Sx i7ESx

Sy lin) oo fly—n Vi) f(ye | ) S Wern | ) Wer2 | der2) - fyr i) =
=8ITFy - - TF aTef (e | i)vif (Y1 | )0 lig2 - - TPl O
(e)t=T—1:

fy, ...,y Xr1 =0, Xp =5) =8 FATFy - ... - TFr_oTeif(yr—1 | i)y f(yr | J)-

In fact: summing f(v1,...,yr, X1 = i1,..., X192 = ir_9, X7 1 = i,X7r = j) over
i1,...,i7_9 and applying the conditional independence, the contemporary dependence
and the Markov dependence conditions, we obtain

f(yla---;yT;XTfl =i, Xp :j) =

= Z - Z 62’1 Yirjio * oo Vir_g,iVig

11€Sx ir_2€Sx

Sy Vi) oo flyr—e [ ir—2) f(yr—1 | ) f(yr | J) =

=0T Fy ... -TFr oleif(yr—1| i)y f(yr | j) O

3 Parameters estimation of GHMMs

To obtain the estimators of unknown parameters by the maximum likelihood method, the
likelihood function, or equivalently the log-likelihood function, must be maximized with
respect to the parameters. Hence we must determine the roots of the likelihood system.
Because in practice this system cannot be constructed in an analytic closed form and
directly solved, given that the data are incomplete, we perform an iterative numerical
method of maximization: the EM algorithm.

The name EM was given by Dempster, Laird, Rubin (1977) because the algorithm
is based on an iterative procedure with two steps at each iteration: the first step, E



step, provides the computation of an FExpectation; the second step, M step, provides a
Mazimization (for details on the EM algorithm, see McLachlan and Krishnan (1997)).

Let ¥ = (y1,...,yr) be the vector of the observed data, that is the sequence of the
realizations of the stochastic process {Y;}; the vector y is incomplete because the sequence
of the states of the chain {X;} is missing (or hidden). Let x = (iy,...,ir) be the vector
of the unobserved states of the chain {X,}; hence z = (i1,v1,...,ir,yr) is the vector of
the complete data. Moreover let L.(¢) be the likelihood function of complete data and
Lr(¢) be that of observed data:

T
Le(@) = f(yr,- - yriin, . i) = 6, fyn | 41) 22 Yirryind (Ve | 1);

Lr(p) = flyr,...,yr) = X X ... X 6 f(y ] in) tli Yie_rif Wt | 3¢).

11€S8xi2eSx reSx

The EM algorithm finds the value of ¢ that maximizes the log-likelihood of incomplete
data In L7 (@), that is the maximum likelihood estimator based on the observations. The
iterative scheme is the following. Let ¢(® be some starting value of ¢; at the first iteration,
the E step requires the computation of the conditional expectation of the complete data

log-likelihood, given the observed data, in ¢ = ¢(©):
Q () = Eyo (in L5:(0) | );

the M step provides the search for that special value ¢(!) which maximize Q (¢, ¢(0)) ,
that is the special ¢, such that

Q(¢0:60) > Q (¢ 6?),

for any ¢ € ®. At the second iteration, the E and M steps must be repeated, replacing
»© with ¢M). In general, at the (k 4+ 1)™ iteration, the E and M steps are so defined:
E step - given ¢, compute

Q (¢; ¢(k)) = Eym (In L3(9) | v);

M step - search for that ¢**1) which maximize Q (qb, qﬁ(k)) , i.e. such that

Q (¢%1;6M) > Q (¢:0),

for any ¢ € .
The E and M steps must be repeated in an alternating way until we have the conver-
gence of the sequence of the log-likelihood values {ln Ly ?(]ﬁ(k)) }, i.e. until the difference

In Ly (¢(k+1)) —Inlyp (¢(’“))
is not greater than a sufficiently small arbitrary value. The entries of the vector ¢®*+1)
are then the maximum likelihood estimators.
The main property of the EM algorithm is the monotonicity of the log-likelihood func-
tion for incomplete data, with respect to the iterations of the algorithm: Dempster, Laird,
Rubin proved In L(¢) is not decreased after any EM iteration, i.e.

In Ly (¢*9) > In Ly (o)
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for any £ =0,1,2,... (Dempster, Laird, Rubin (1977), Theorem 1).

Nevertheless, if the likelihood surface is multimodal, the convergence of the EM algo-
rithm to the global maximum depends on the starting value ¢(%. To avoid the convergence
to a stationary point which is not a global maximum, the best strategy is to start the algo-
rithm from several different, possibly random, points in & and to compare the stationary
points obtained at each run.

Now the two steps of the EM algorithm at the (k4 1) iteration are analyzed in detail,
remembering that at the k** iteration the vector of estimates ¢ has been obtained:

¢(k) = ('791); T nygc?)nflﬂ e 777(::,)17 e 777(:,)mfl:/"‘gk): te ;MSS); Uf(k)J e ’Oﬁik))/ '

Henceforth the superscript (k) will denote a quantity obtained at the k' iteration
as a function of the vector ¢*): notice that §(*) is the left eigenvector of the matrix
'k = [’yz-(f;)] , associated with the eigenvalue one, such that §®) = §*ITE),

Proposition 1 - The function @ (¢; ¢(k)> obtained at the E step of the (k + 1)™
iteration of the EM algorithm is

Q(¢6®) = By (InL5(9) | y) =
=3 ) 1,eyr, X1 =9) In &;+

i€Sx f(k)(ylz-“ayT)
T-1
ST B ey, Xe=4,X 11 1=5) (5)
t=1 In~; .
+ iezijjezij f(k)(y1,...,yT) fyZ’J—l_

T
Zf(k)(yly"'nyth:i)
+ 3 = OIS, In f(y: | 7),

1€ Sx

1 1y — pi\2
f(yt’i):malexp[_§<ytgiu)];

where

foranyi=1,... m.
Proof - See Appendix O

This analytic expression of @) (qb, qﬁ(k)) is the sum of three terms: the first two are
functions only of the parameters of the Markov chain, while the third is a function only
of the parameters of the gaussian pdfs. This separation of parameters makes the global
maximization of @ ((b, qb(k)) into a simple closed form. At the M step of the (k + 1)

iteration, to obtain ¢**+1 the function Q (¢, ¢(k)) must be maximized with respect to
the m? — m parameters Vi, for any i = 1,...,m;j = 1,...,m — 1, the m parameters
p; and the m parameters o2, for any i € Sx. We shall not maximize Q (¢, ¢(k)) with
respect to the m parameters §;, for any ¢ € Sx, because, as we said previously, the
initial distribution & will be estimated by the equality ¢ = &§'T", after the estimation of
the matrix I'. But, by the stationarity assumption, é contains informations about the

transition probabilities matrix I', since §; = Y. 6;7;4, for any j € Sx. However, for large
1€ Sx

T, the effect of § is negligible; so the first term of the function Q(¢; $*)) can be ignored
searching for the maximum likelihood estimator of ~; ;, for any i, j (Basawa and Prakasa

Rao (1980), pp. 53-54).
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Now the explicit formulae of the estimators of 7; ;, /15, 07 are introduced.

Proposition 2 - Given a generic HMM {Yy; X}, the expression of the unknown tran-
sition probability v; ; of the Markov chain {X;}, obtained at the (k + 1) iteration of the
EM algorithm, is, for large T,

®yyy oo yr, Xe =4, Xe11 =7 (k)
(k+1) Z f (y].J y YT, At ) “rt41 j) (T 1)A

3, (k)’
Zl f(k)(yla"'ayT;Xt ZZ) 1/(T71)Bi
Pa

(6)

for any state i =1,... mand j=1,... m—1 of the Markov chain {X.}, where

[ 60 O gy | iy TO (o | TR FEITO RS - TOED1 ) ]
A0 — §OFETOED . TOFESTE 10 (y, | i)y
7 'f(k) (?Jt+1 ’ J)F(k)Ft(g F(k)Fj(“k)l(m)
| 6O FT® FD -...-F<k>F}’?2P£’z)f<k>(y S e | 5) |
and k k k k k 7
§E B (yy | ) TW EPTO R . TE RO,
B _ ‘S'(k)Fl(k)F(ki,f}(kzk;' . P““)Fi‘“)l(kr)i’?f(k) (w1 | )-
T Fy - - TR,
| OFPTERP . O EO DD O gy | )T F 1y |

Proof - See Appendix O

Notice that the explicit expression of the estimator ’yz(kﬂ) holds for the generic HMM,
not only for the gaussian case.

Proposition 3 - Given a GHMM {Y};; X;}, the expressions of the unknown parameters
p; and o? of the gaussian random variable Yiw), for any t, obtained at the (k+1)™ iteration
of the EM algorithm, are

(k) oy, Xy =1 (%)
(k+1) f (y17 , yr, t ) yt (T) (C @ y)

(%)
lf(k)(yl;"'ayTathi) :V(T)CVZ
=

and

T
(k) , — (k+1) ) o (k+1) 2
2(k+1) _ t; f (y17 e JyTJ Xt - Z) ( /’LZ ) 1I(T) (CZ (y /,l/z 1(T)> )

' I . (k)
tzjl f(k)<y17"'7yT7Xt:Z) (T)C

3

(8)
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for any state i of the Markov chain {X,}, where

o® _ BM 1
7 - c(k) j

) = §0 TR O R, 10 109y |3
and the symbol ® denotes the Hadamard product.

Proof - See Appendix O

In the case of convergence of the algorithm at the (k+1)"" iteration, (¢(k+l); In Ly (¢(k+1)>>

is a stationary point of In Lz (¢), and therefore ¢p(*+1) = (’y§k+l) (k1) (k1)

,1 7"'771,m—17"'7 m,l s
E+1 E+1 (k+1) k+1)\' . . 1 .
’y,(njnzl, /Lg + ), e gfﬂ), 0% yene ,07271 ) is the maximum likelihood estimator of the

unknown parameter ¢. This fundamental result holds because the four regularity condi-
tions on the convergence of the EM algorithm to a stationary point (Wu (1983), conditions
(5), (6), (7), p- 96; (10), p. 98) are satisfied.

Propositions 2 and 3 give the explicit formulae of the parameters estimators when the
sequence of the observed data ¥q,...,yr is complete, i.e. no missing observations are
in the sequence. The sequence of hourly mean concentrations of SOy we are studying,
however, contains missing observations; so expressions (6), (7), (8) must be modified.
As related in Subsection 2.1, we must use the w-step transition probabilities matrices
and change the structure of the various joint pdfs, obtaining new versions of the explicit

formulae of the estimators. Besides, for the estimators in (7) and (8), we must multiply

2
every y; and every (yt — /LZ(-kH)) by the indicator function Iy, so defined

7 1 if y; has been recorded at time ¢
71 0 if y has been unrecorded at time ¢ -

4 Application to air pollution data

The foregoing iterative procedure for the identification of the parameters of GHMMSs has
been implemented in a GAUSS code.

As we have already observed, the choice of the starting values is a matter of primary
importance to identify the global maximum, given that the log-likelihood surface for
HMMs is often irregular and characterized by many local maxima. Therefore the code
repeates more than once the iterative procedure, starting from several different points,
randomly chosen in the parameter space & and we compare the stationary points obtained
at each run, choosing that with the largest log-likelihood value. Furthermore § has been
assumed known and fixed for any iteration of the EM algorithm, given that the initial
distribution is non-informative about the transition probabilities.

The variance-covariance matrix of the parameters estimates are obtained from the
inverse of a numerical approximation of the Hessian matrix with reverse sign.

To estimate the dimension m of the state-space of the Markov chain, according to
Leroux and Puterman (1992), we use two maximum penalized likelihood methods, that
is we search for that special value m* which maximizes the difference In qum)(qﬁ) — Qm, T,

where In ngm)(é) is the log-likelihood function maximized over a HMM with an m-state
Markov chain, while a,, r is the penalty term depending on the number of states m and

13



the length T of the observed sequence. Depending on the value of a,, 7, we have two
special maximum penalized likelihood criteria. If a7 = dy,, where d, is the dimension
of the model, that is the number of the parameters estimated with the EM algorithm
(i.e., m* + m), we have the Akaike Information Criterion (AIC); if amr = (InT)dm/2,
we have the Bayesian Information Criterion (BIC).

As m increases, also the risk that the Hessian matrix is not invertible increases; hence
the optimal model we will consider is that maximizing the AIC and the BIC under the
constraint that the standard errors of the estimates exist.

Now we examine in detail the sequence of the time series about the hourly mean concen-
trations of SOy in the 46th, 47th, 48th, 49th weeks of 1998, recorded by the air pollution
testing station placed in Via Goisis, Bergamo. As Figure 1 and 2 (in Introduction) show,
some data have not been recorded or validated, but, as we saw in Subsection 2.1, it is not
difficult to estimate the parameters of the model because the likelihood function may be
obtained even if some data are not available. In the series of hourly mean concentrations
Y1, .-, Yer2, the values yg o4y (T = 0,...,27), Yuss, Yaso, Y100, Y101, Ys92 have not been
recorded; so we have to consider the w-step transition probabilities ;. ,,. 5,04 (2), for
any T and 7., is0s(6). Hence the likelihood function of the observed data, according to

(4), is
487 505
(1L o) (1L, o)
7=0 t=3+241 t=483 t=493

5 520247 672
I {r ( I G)] r( I Gt> Lo,
=0 t=507-1247 t=651
In the same way, the w-step transition probabilities will be adopted to obtain the
explicit formulae of the estimators %(,’;H)’ Z(-kﬂ), Uf(kﬂ) replacing in vectors AZ(-,kj), BZ-(k),
CZ-(k), in expressions (6), (7), (8), the matrices F2(-k+)247 (r =0,...,27), Fgg, Fgg, Fg(),,
Fﬂf}, Fg% with the identity matrix.
Performing the EM algorithm we obtain the following values of log-likelihood, as a
function of the number of states m, and the corresponding values of AIC and BIC:

L672 (¢) _ (SlFl ﬁ |:I‘ (25ﬁ4q— Gt)

m | log-likelihood AIC BIC

1 —777.417 —779.417  —783.927
2 —591.713 —597.713 —611.243
3 —598.808 —610.808 —637.869
4 —580.997 —600.997 —646.099

Considering both the AIC and the BIC as model selection criteria, we choose a two-
states Markov chain. The sequence {ln Legro (¢(k+1))} converges at the 20 iteration to

In Lg7o ((/5(20)> = —591.713, starting from In Lgyo (q5(0)> = —1172.107. The estimates of the

parameters (standard errors in brackets) of the two gaussian pdfs are

) 1 2
00 | 1.0676 2.5660
: (0.2001) (0.0890)
52(20) 0.2666 0.2760
' (0.0406) (0.0514)
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The estimate of the transition probabilities matrix of the Markov chain (standard errors
in brackets) is
0.9039 0.0961
r(20) _ (0.0315)  (0.0315)
0.0294 0.9706
(0.1095)  (0.1095)

from which we have the estimate of the stationary initial distribution
60 = (0.2344;0.7656) .

From the diagonal entries of the transition probabilities matrix, it is also possible to
compute the time spent in state ¢ of the Markov chain upon each return to it, which has
a geometric distribution with mean 1/(1 — 7;;); hence the expected time spent in state i,
is:

7 1 2
hours | 10.4102 34.0053

Conclusions and extensions

In this paper special hidden Markov models (HMMs) {Y;; X;} used to study univariate
non-linear time series have been introduced. They are called gaussian hidden Markov
models (GHMMs), because every observed variable Y}, given a special state i of the
Markov chain at time ¢, is a gaussian random variable with unknown parameters p; and

0?. The attention has been focused on the estimation of the parameters &;,; ;, its, 07

3

for any state i, of the Markov chain state-space. The estimators of ; ;, s, 02 have
been obtained by the maximum likelihood method performing the EM algorithm, while
the estimators of §; have been obtained by means of the equality §' = §'I". The use of
explicit formulae of the maximum likelihood estimators of the parameters simplifies the
optimization problem, because it allows us to solve the M step exactly, without using
a numerical maximization algorithm, such as the Newton-Raphson method. Hence the
procedure is more stable and converges faster in the neighborhood of the maximum.
Furthermore an application of GHMMs to air pollution data have been shown and the
estimates of the parameters of the model, togheter with their standard errors, computed.
In this application, the dimension m of the Markov chain state-space has been estimated
by two maximum penalized likelihood methods, the Akaike Information Criterion (AIC)
and the Bayes Information Criterion (BIC).

We are currently studying how to reinforce the dependence among the observed vari-
ables by adding an autoregressive feature: we replace the conditional independence con-
dition of HMMs with an order-p dependence condition. Hence the present observation
depends also on the p past observations, the autoregressive coefficients depend on the
current state of the Markov chain and, as in the HMMs case, every observation depends
on the contemporary state of the chain. These hidden Markov autoregressive models are
often used by econometricians (Hamilton, 1994, Chapter 22 and the references therein)
and they are also said Markov-switching autoregressive models.
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Appendix - Prooves of Propositions 1, 2, 3

Proof of Proposition 1 - The E step of the EM algorithm, at the (k + 1) iteration,
is so defined:
Q(¢;¢™) = E ) {In Ls:(9) | y} =

:ZZ{[lnf(yl;;yT;ll;;ZT)] (9)
i1 i
'P(Xl =1y, Xy =i | yl;---;yT3¢(k)>}-
Consider only the log-likelihood of (9):

h'lf(yl,---,yT,il,--- JiT) =
. T .
=1In[6;, f (v | i1) 11 Yio vinf (e | ie)] = (10)
T-1 B T _
= ].1’1 6z1+ tg:l ]'nq/it,it+1+ tzl ].Ilf(yt ’ ’Lt).

Replacing the right-hand side of (10) in (9), we have

(k)Y — P @1y iitgesit) 1 6 T711 . - 1 iV =
Q(¢7 ¢ ) _Z cee Z F® (1, 1) n z1+ t; n’yu,zt+1+ t; nf(yt | Zt) -

21 T

I f(k)(y1,...,yT,i1,..~,iT) .
_Z e %; f(’“)(y1,---,yT) 11’1 621+

i1

f(k)(yly---,yT,i1,...,iT) o
+ 121: o %,: FE) (y1,eyr) In 711,124‘

+ Z Y AL (TR AR In Yigsia & - -+
i1

f(k)(yly'“ny)

f(k)(yly“'nyyily“-yiT)
- 121: > FE (yt,esyr) In%Yig_yint

() 81,0008 .
+ 30 Sl ttesdn) 1y (g | )+
21

(%) T1y0end .
_I_Z___ka(yhm,ymh zT)lnf(y2’22)+_“+
21

FE (y1,.97)

(%) 1,008 .
T3S st f(yr | in).
21

iT

Marginalizing with respect to the states of the Markov chain, we have

Q(¢’ ¢(k)) :Z f(k)(yly“-nyyil) 1n 611+
11

f(k) (yly-“ny)

(k) o0 !‘ !‘
+ Ny Lt T0) Iy,

i1 92 f(k)(yly-“ny)
(k) bl ] 7. 7‘
+ 3 S Y, Yrst 13)11,1,%271,3 4.+

f(k)(yly"'ny)

(k) ] ,' — ,'
+ Z Z IS Wi,y i _1,57) ln%T,l,iT‘l‘

&) (yy,...
i1 f (yla 7yT)

(k) i .
+ Z P (W1,yriin) 1nf(y1 | 21)_+_

f(k) (yly-“ny)

B (Y1098 .
+ 3 ltetin (i) 4t

19 13
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> ﬂwunf(w | ir) =

k
i f( )(yly"'ny)

:Z f(k)gylanyall ! 11,1 6

f(k)(ylz'“:yT) Zl_l_

T—-1
+ >
t=

B) (Y1, YT it 15
1 [Z Z . ;gllj),(yllfT!Z;)t+1) 1n /yitait+1‘| —I_

it 41

A ) (g1 ,
+ 5[5 i 0] -
— 2t

— f(k)(yla-“yy 5X1:7:)
_zi: f(k)(yl,in) In &4

T-1
ST ey, Xe=4,X 14 1=4)
t=1 ‘
+ Z’L:z‘]: f(k) (yly"'ny) 1n /Y'La]_l_
T

ST B Y1,y Xi=1)
t=1
+ z’L: f(k)(yh"

lnf(yt ’ 2) U

'7yT)

Proof of Proposition 2 - According to Basawa and Prakasa Rao (1980), to get the es-
timators of v, ;, we assume that for large T the initial distributions ¢; are non-informative
about the transition probabilities 7, ;: the function Q(¢; #*)) (formula 5) must be differ-
entiated with respect to the parameter ; ;, under the m constraints

S =1, for 1<i<m, (11)
JESX

setting the derivative equal to zero.

To solve this constrained maximization problem, we resort to Lagrange’s multipliers
method. Let G®*) be the Lagrangean function of Q(¢; ¢*)) with respect to the constraints
(11), being A; the Lagrange’s multipliers:

G(k):Q(@(ﬁ(k))_)\l(.Z ’Yl,j—1> _---_)\m< > ’Ym,j—l) =

j€Sx j€Sx

= Q¢ ¢M)— ¥ A ( > Vig — 1) .

2€Sx jESX

Differentiating G® with respect to v:,; and setting the derivative equal to zero, we have

T = [@(qﬁ;qﬁ(’“))— > Ai( 5 m—l)] -

1€Sx jESX

T-1
Z f(k) (ylz"-nyth:i,Xt+1 :J)

_ _0 t=1 1 _
- nvial S — o=
3.5 ;XJ: FE (y,eur) Vi E
T-1
Zf(k)(yl7-'-7yT7Xt:i7Xt+1:j)
— =1 1 A\ =
T (y1,ey7) Yi,j i=0,
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from which it follows

1 ' _

tzl f( )(y17"'JyT7Xt = 2;)(t—i-l :j)

— :)\z 4,7+
f(k)(yl;---;yT) 7]

Summing over j both sides of (12), we obtain

T—1
tZ:l f(k)(yb e JyTJXt = Z.JXt-i-l = .7)
Z f(k)(yla

JjE€Sx

Replacing (13) in (12), we have

. ;?JT) jeSx

T-1
> F B W1y, Xe=1, X e 11=5)
t=1

f(k) (yly 7yT)

Zf(k)(yly 7yTth ZXt+1_])
o =1
=g 2 TG )

jeSx ’ "7yT)

from which it follows

pa f (y1;---;yT;Xt=@;Xt+1=])
/Yi,j - 7T . . ’
Z f(k)(yl;---;yT;Xt:Z;Xt-i-l:])
jESX t=1

that, by definition, is the value 7( ),

Hence, marginalizing with respect to j, we have

(k+1)

f(k)(yla R JyT7Xt = ?:JXt+1 = j)
Vi, .

tzjl f(k)(yh tee ;Z/T;Xt = Z)

=N\ Z Vi = M-

(12)

(13)

(14)

Let A( ) be the vector whose entries are the pdf's f(k)(yl, ooy, Xe =i, Xyy1 = j), for any

t=1,...,T7—1,and BZ( ) be the vector whose entries are the pdfs f®) (yq, ...

JyTJXt =

i),

for any t =1,...,T — 1. Using the matrix notation introduced in Subsections 2.2 and 2.3,

the numerator and the denominator of the (14) may be written as

T-1 ) _
tz:l f( )(yla---;yT;Xt =1, Xy 1 :J) =

=1 5/(k) Fl(’“)l“(’“) F2(k) _ p(k) F(k) (k) 9 rE (y, | )%

_5’(k)F1(k)F(’“)F2('“)-----F(’“)Fﬁ)aFf’?f(’“)(y 2 1) £ (g
Lr 1AL
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and

jgl f(k)(yh oy, Xy =) =
8 0 (yy | )T EOTEO R . T® RO, ]
| T
e Lg41 " T 1(m)
§OFPITOE® .. F(’“)F}'“):QFE'?f(’“) (yr—1 | DT P 1m) |

L(k
= 1/(T71)Bz'( );
which ends the proof O
(k+1) 0_2(k+1) the

Proof of Proposition 3 - To obtain the expressions of the estimators p;

(3 ) 2 )
function @ (¢, ¢(k)), as in (5), must be differentiated with respect to p;, 07 (i =1,...,m),
setting the derivatives equal to zero.

The derivative of ((b, qb(k)) with respect to p; is:

T
Zf(k)(yls-"nyth:i)

5@ (¢5 ¢(k)> = B 2 S e el ) || =

T

Zf(k)(yly'“ayTth:i)
_t=1 i _ ()
f(k)(yly-“ny) 01'2 !

from which it follows

L e . L ]
Z f( )(yla' .. 7yT7Xt = Z)Mz :tzl f( )(yl,.. . ;yT;Xt = Z)yt

t=1 =

T

tzjl f(k)(yla s ;yT;Xt = l)yt
M’i = 7T . (15)
tzjl f(k)(yla cee ;yT;Xt = Z)

Let C'Z-(k) be the vector whose entries are the pdfs f® (yi,...,yr, Xy = i), for any t =
1,...,T. Using the matrix notation introduced in Subsections 2.2, the numerator and the
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denominator of the (15) may be written as

T
tzjl f(k)(yb e JyTJXt = Z)yt ==

[ 6 f®) (yy | TR ERTE S . r® P ]
o || e s, g |
= 4 k) (% k
@ B B
| e®ROTORED . TOED 1O 0y | i)
R
' k
Ol u ||=1m (@ o).
L Y7 |
where the symbol ® denotes the Hadamard product, and
T _
t; f( )(yIJ ;yT:Xt = Z) =
[ 68 f®) (yy | )T RO S . r® P ]
_ 6/(k)F1(k)1“(k)F2(k) . F(k)ﬂ(f)lrslz?)f(k)(yt | l) _ 1 C(k)
@) TEEE . TOEP,, @

The derivative of @ (¢, ¢(k)) with respect to o7 is:

T
) “ ) STF® (y1,eyr, Xe=5)
. _ t=1
2@ (410%) = 3 |5 | S

In f(y | 9) =

----- yT)

T
FE 1,y X =i)

_ t; *Uer(yt*Mi)Q =0
F®) (1,97) 253 o

from which it follows

G~ £(F) Vo2 S F() : 2
t;f (yla"'JyTJXt:Z)O_i:tZ:lf (yla"'JyTJXt:Z)(yt_Mi)
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T % . 9
9 tZ:I f( )(yly"'JyTJXtZZ) (yt_ﬂz)

g;

- (16)
t; f(k)(yla s ;yT;Xt = 2)

Using the matrix notation introduced in Subsections 2.2 and the vectors Ci(k) previously
defined, the numerator of the (16) may be written as

T
tgjl f(k)(yla R ayTaXt = Z) (Z/t - MZ)Q =
[ 6 f®) (yy | TP ERTE S . r® ]

§ORPTOED - TOFRBTE Oy, | i)

=1 ©
(1) THFE . TORE®,
| O FETEE® . r® RS 1O 0 )
(2/1 - Mz‘)Q
: & 2
o 6w {0 o)
i (yr — /M)2 i
Hence (k)
(k+1) _ ,(T) (Ci © y)
i = ®)
LG
and 2
(%) (k+1)
(1) B 1I(T) (CZ @ (y - /‘l‘z 1(T)> ) O
i - (k)
LinCi
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