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Abstract

A test procedure to detect a change in the value of the parameter
in the drift of a diffusion process is proposed. The test statistic is
asymptotically distribution free under the null hypothesis that the true
parameter does not change. Also, the test is shown to be consistent
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1 Introduction

Testing on structural change problems has been an important issue in statis-

tics. It originally starts in quality control context, where one is concerned

about the output of a production line and wants to find any departure from

an acceptable standard of the products. Rapidly the problem of abrupt

changes moved to various fields such as economics, finance, biology and envi-

ronmental sciences. From the statistical point of view, the problem consists

in testing whether there is a statistically significant change point in a se-

quence of chronologically ordered data. The problem for an i.i.d sample was

first considered in the paper of Page [18], see also Hinkley [10], and, for a

general survey of the change point detection and estimation, see Chen and

Gupta [4]. The parameter chance point problem became very popular in

regression and time series models. This is because these models can be used

to describe structural changes that often occur in financial and economic

phenomena (due for example to a change of political situation or to a change

of economic policy) or in environmental phenomena (due to sudden changes

in weather situation or the happen of catastrophic natural events). In such

kind of phenomena the first problem one has deal with is to test if a change

of parameter is occurred in the factor of interest. For regression models see

for example Hinkley [9], Quandt [20], Brown, Durbin and Evans [1], Chen

[5]. For time series models, Picard [19] considers the problem of detecting a

change-point occurring in the mean or in the covariance of an autoregressive

process. Ling [14] deals with detecting structural changes in a general time

series framework that includes ARMA and GARCH models between others.

For a general review we refer also to Csörgő and Horváth [6] and to Chen

and Gupta [3] for parametric methods and analysis. Diffusion process can be

considered as the most popular continuos time stochastic process and it has
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been playing a central role in modeling phenomena in many fields, not only

in finance and more generally in economics science, but also in other fields

such as biology, medicine, physics and engineering. Despite the fact of their

importance in applications, few works are devoted to testing change point in

parameter for diffusions. For a complete reference on statistical problems for

ergodic diffusions based on continuous time observations see Kutoyants [12].

In Lee, Nishiyama and Yoshida [13], the cusum test based on one-step esti-

mator is considered and up to our knowledge there are no existing literature

on this subject and on this framework.

In this work a test for detecting if a change of the parameter in the

drift of a diffusion process takes place is proposed. The test is based on the

continuous observation of the process up to time T . The interest for this

test is that it may be used for the most common family of diffusion process

because the conditions on the coefficients of the diffusion process are very

general. Moreover the asymptotic distribution of the test statistics does not

depend on the unknown parameter, so the test is asymptotically distribution

free. It is also proved that the test is consistent against any alternative where

the alternative means that at a certain instant the parameter specifying the

drift coefficient change.

The rest of the paper is organized as follow. In Section 2 the model,

the conditions and some preliminary result needed later are presented. The

main result, consisting in the asymptotic distribution of the test statistic and

the construction of an asymptotically distribution free and consistent test is

given in Section 3. Finally the necessary lemmas needed to prove the main

theorems are proved in the Section 4.
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2 Preliminaries

Let (Ω,A,P) be a probability space and {At}t≥0 a filtration of A. Let

{S(·, θ) : θ ∈ Θ} be a family of R-valued measurable functions on R indexed

by a subset Θ of R
k. With || · || we denote the usual norm in R

k. Let σ : R →

(0,∞) be a measurable function which is known to statisticians. Suppose

that the functions S(·, θ) and σ(·) are such that there exists a solution Xθ

to the stochastic differential equation (SDE)

Xt = X0 +

∫ t

0

S(Xs, θ)ds+

∫ t

0

σ(Xs)dWs, t ≥ 0, (1)

where W = {Ws : s ≥ 0} is a standard Wiener process and the initial

value X0 is independent of Wt, t ≥ 0. Denote by E the expectation with

respect to P. The scale function of the diffusion (1) is defined by pθ(x) =
∫ x

0
exp

{
−2
∫ y

0
S(v,θ)
σ2(v)

dv
}

dy. The speed measure of the diffusion (1) is defined

by

mθ(A) =

∫

A

1

σ(x)2
exp

(
2

∫ x

0

S(y, θ)

σ(y)2
dy

)
dx, A ∈ B(R),

where B(R) is the Borel sigma algebra on R. Furthermore let us suppose that

Xθ is regular, limx→±∞ pθ(x) = ±∞ and the speed measure is finite, that

is, mθ(R) < ∞. Then, the solution process Xθ is ergodic with the invariant

distribution function Fθ(·) given by Fθ(x) = mθ((−∞, x])/mθ(R), that is, it

holds for any dFθ(x)-integrable function g that with probability one,

lim
T→∞

1

T

∫ T

0

g(Xt)dt =

∫

R

g(z)dFθ(z).

See for example Gikhman and Skorohod [8]. For the definition of regular

process see for example Rogers and Williams [21] or Durrett [7].
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Now for a given function θT : [0, T ] → Θ, let us consider the SDE

Xt = X0 +

∫ t

0

S(Xs, θT (s))ds+

∫ t

0

σ(Xs)dWs, t ∈ [0, T ]. (2)

Although the solution X to this SDE may not exist in general, at least it

does exist in the following hypotheses which we wish to test:

H0: there exists a certain θ0 ∈ Θ such that θT (s) = θ0 for all s ∈ [0, T ];

H1: there exist two different values θ0 6= θ1 both belonging to Θ, and a

certain u∗ ∈ (0, 1), such that θT (s) = θ0 for s ∈ [0, Tu∗] and θT (s) = θ1 for

s ∈ (Tu∗, T ].

Let us introduce the following regularity conditions on the functions S

and σ. We denote with a dot the derivative with respect to θ and with a

double dot the second derivative with respect to θ. We suppose that S is two

times differentiable with respect to θ and the derivatives satisfy the following

conditions: ∫

R

||Ṡ(z, θ0)||
σ(z)

dFθ0(z) <∞, ∀θ0 ∈ Θ, (3)

and ∫

R

supθ ||S̈(z, θ)||
σ(z)

dFθ0(z) <∞, ∀θ0 ∈ Θ. (4)

In this paper, we present a very simple method to construct a test statistic

which is asymptotically distribution free under H0, and consistent under H1.

The log-likelihood function of the process (1) observed up to time T , is

given by

LT (θ) =

∫ T

0

S(Xt, θ)

σ2(Xt)
dXt −

1

2

∫ T

0

S2(Xt, θ)

σ2(Xt)
dt. (5)

We define θ̂T the maximizer of (5) over Θ. We suppose that for every
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θi ∈ Θ, θi is the unique local and global minimizer of

θ 7→ g(θ, θi) =

∫

R

(S(x, θ) − S(x, θi))
2

σ2(x)
dFθi

(x), (6)

over Θ. Actually, we suppose that the function

θ 7→ ∂

∂θ
g(θ, θi) =

∫

R

(S(x, θ) − S(x, θi))Ṡ(x, θ)

σ2(x)
dFθi

(x), (7)

is zero if and only if θ = θi. Hereafter, we suppose that the order of integra-

tion and differentiation is exchangeable. Let θ∗ be the minimizer of

θ 7→ G(θ, θ0, θ1) = u∗g(θ, θ0) + (1 − u∗)g(θ, θ1) (8)

over Θ. Here θ0, θ1 and u∗ are the same as specified under H1.

Later on we will suppose that
√
T (θ̂T − θ0) = OP(1) under H0 and that

θ̂T →p θ∗ under H1. Let us explain how natural and mild these assumptions

are. The former is really standard. The latter follows from Corollary 3.2.3

of van der Vaart and Wellner [22] because, under H1, the following almost

sure convergence holds

1

T
LT (θ) →

∫

R

S(z, θ0)
2

σ2(z)
dFθ0(z) +

∫

R

S(z, θ1)
2

σ2(z)
dFθ1(z) −G(θ, θ0, θ1),

and under some mild conditions this convergence is uniform in θ ∈ Θ.

3 Main result

In this section, we construct a test statistic which is asymptotically dis-

tribution free under H0, and consistent under H1. Here on we suppose

that all the conditions stated in previous Section 2 hold. In order to con-
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struct a statistic for this testing problem, we introduce the random field

{V̂T (u, x) : (u, x) ∈ [0, 1] × R} given by

V̂T (u, x) =
1√
T

∫ T

0

(1{s≤Tu} − u)1{Xs≤x}
1

σ(Xs)
(dXs − S(Xs, θ̂T )ds),

where θ̂T satisfies
√
T (θ̂T − θ0) = OP(1) under H0.

Before stating our results, we illustrate our approach. First we will prove

that supu,x |VT (u, x)|, where

VT (u, x) =
1√
T

∫ T

0

(1{s≤Tu} − u)1{Xs≤x}
1

σ(Xs)
(dXs − S(Xs, θ0)ds),

is asymptotically distribution free under H0. In order to prove this result

in Lemma 1 we obtain the weak convergence of VT to the random field

(u, x) B◦(u, Fθ0(x)) where B◦ = {B◦(s, t) : (s, t) ∈ [0, 1] × [0, 1]} is a cen-

tered Gaussian random field with the covariance

E[B◦(s1, t1)B
◦(s2, t2)] = (s1 ∧ s2 − s1s2)(t1 ∧ t2).

The crucial point of our approach then will be to prove that supu,x |V̂T (u, x)−

VT (u, x)| →p 0.

The main result of the paper is the following.

Theorem 1. (i) Under H0, if
√
T (θ̂T − θ0) = OP(1), it holds that

sup
u,x

|V̂T (u, x)| →d sup
(s,t)∈[0,1]2

|B◦(s, t)|

where B◦ is a centered Gaussian random field with the covariance

E[B◦(s1, t1)B
◦(s2, t2)] = (s1 ∧ s2 − s1s2)(t1 ∧ t2).
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(ii) Under H1, if θ̂T →p θ∗, it holds that

P

(
sup
u,x

|V̂T (u, x)| > K

)
→ 1, ∀K > 0.

Proof. The weak convergence of the random field V̂T follows from the weak

convercence of the random field VT to the random field (u, x) B◦(u, Fθ0(x)),

which is proved in Lemma 1 of Section 4 and from the uniform conver-

cence supu,x |V̂T (u, x) − VT (u, x)| →p 0 which is proved in Lemma 2 of

Section 4. Now by the continuous mapping theorem supu,x |V̂T (u, x)| →d

supu,xB
◦(u, Fθ0(x)) and by the following equality in distribution

sup
(u,x)∈[0,1]×R

B◦(u, Fθ0(x)) = sup
(u,t)∈[0,1]×[0,1]

B◦(u, t)

part (i) is proved. Part (ii) follows from Lemma 3 of Section 4.

The distribution of the limit process is well known (see for example

Brownrigg [2]), so we can reject H0 at a fixed level 0 < α < 1 if the test statis-

tics is grater of the critical value cα given by P(sup(s,t) |B◦(s, t)| > cα) = α.

4 Auxiliary results

In this section we prove the lemmas needed in the proof of the main result.

Let start with the behavior of the random field VT .

Lemma 1. The random field VT converges weakly, as T goes to infinity, in

ℓ∞([0, 1] × R) to the centered Gaussian random field B̃◦ = {B◦(u, Fθ0(x)) :

(u, x) ∈ [0, 1] × R}.

Proof. The finite dimensional convergence is immediate from the martingale

central limit theorem. Indeed the random field VT under H0 can be written

8



as VT (u, x) = M
T,(u,x)
T where

M
T,(u,x)
t =

1√
T

∫ t

0

(1{s≤Tu} − u)
1

σ(Xs)
(dXs − S(Xs, θ0)ds), t ∈ [0, T ].

Let us calculate the quadratic variation:

〈MT,(u,x),MT,(v,y)〉T =
1

T

∫ T

0

(1{s≤uT} − u)(1{s≤vT} − v)1{Xs≤x}1{Xs≤y}ds

=
1

T

∫ T

0

(1{s≤(u∧v)T} − v1{s≤uT} − u1{s≤vT} + uv)1{Xs≤x∧y}ds

For the strong law of large number, with probability one it holds

1

T

∫ T

0

(1{s≤(u∧v)T} − v1{s≤uT} − u1{s≤vT} + uv)1{Xs≤x∧y}ds

→ (u ∧ v − uv)Fθ0(x ∧ y).

Hence we have the finite-dimensional convergence of the random field VT (u, x)

to the random fieldB◦(u, Fθ0(x)). For the asymptotic tightness, it is sufficient

to show that there exists a semimetric ρ on [0, 1] × R such that

sup
ρ((u,x),(v,y))>0

√
〈MT,(u,x) −MT,(v,y)〉T
ρ((u, x), (v, y))

= OP(1) (9)

and that ∫ 1

0

√
logN(ε, [0, 1] × R, ρ))dε <∞. (10)

Here, we denote byN(ε,X , ρ) the smallest number of open balls with ρ-radius

9



ε which cover the space X . See Nishiyama [16], [17]. Notice that

〈MT,(u,x) −MT,(v,y)〉T =

=
1

T

∫ T

0

((1{s≤uT} − u)1{Xs≤x} − (1{s≤vT} − v)1{Xs≤y})
2ds

≤ 1

T

∫ T

0

2(1{s≤uT} − u)2(1{Xs≤x} − 1{Xs≤y})
2ds+

+
1

T

∫ T

0

2
(
(1{s≤uT} − u− 1{s≤vT} + v)1{Xs≤y}

)2
ds

≤ 1

T

∫ T

0

2(1{Xs≤x} − 1{Xs≤y})
2ds+

+
1

T

∫ T

0

2(1{s≤uT} − 1{s≤vT} − (u− v))2ds

The first term is bounded by

2

T

∫ T

0

1{x∧y≤Xs≤x∨y}ds =

=
2

T

∫ x∨y

x∧y

lT (z)mθ0(dz) ≤
2

T
sup

z

lT (z)mθ0([x ∧ y, x ∨ y]),

where lT (z) is the local time of X with respect to the speed measure mθ0 .

For the second term

1

T

∫ T

0

2(1{s≤uT} − 1{s≤vT} − (u− v))2ds ≤

1

T

∫ T

0

{4|1{s∈[T (u∧v),T (u∨v)]}|2 + 4|u− v|2}ds ≤ 8|u− v|.

Since supz lT (z) = OP(T ) (see Theorem 4.2 of Van der Vaart and Van Zanten

[23] and also Van Zanten [24]), the above conditions (9) and (10) are satisfied

if we define ρ((u, x), (v, y)) =
√
|u− v| ∨mθ0([x ∧ y, x ∨ y]).
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Lemma 2. Under H0, if
√
T (θ̂T − θ0) = OP(1), then supu,x |V̂T (u, x) −

VT (u, x)| →p 0, as T → ∞.

Proof. Developing S(x, θ) around θ0, and denoting the transpose with a

prime, we can write, for a good choice of θ̃,

S(x, θ) = S(x, θ0) + Ṡ(x, θ0)
′(θ − θ0) + (θ − θ0)

′S̈(x, θ̃)(θ − θ0).

So we have

V̂T (u, x)−VT (u, x) =

=
1√
T

∫ T

0

(1{s≤uT} − u)1{Xs≤x}
S(Xs, θ0) − S(Xs, θ̂T )

σ(Xs)
ds

=
1

T

∫ T

0

(1{s≤uT} − u)1{Xs≤x}
Ṡ(Xs, θ0)

′

σ(Xs)

√
T (θ0 − θ̂T )ds+

+
1√
T

∫ T

0

(1{s≤uT} − u)1{Xs≤x}(θ0 − θ̂T )′
S̈(Xs, θ̃)

σ(Xs)
(θ0 − θ̂T )ds

The second term, remembering the condition (4), is oP(1) as T goes to in-

finity. Let us consider the first term. Let us write Ṡ(l)(x, θ0) = Ṡ(l)(x, θ0)
+ −

Ṡ(l)(x, θ0)
−, where Ṡ(l)(x, θ0)

+ and Ṡ(l)(x, θ0)
− are the positive and the neg-

ative part respectively of the l component of Ṡ(x, θ0), l = 1, . . . , k. Let us

consider the l component.

For every ε > 0 there exists N = N(ε), such that one can choose 0 =

u0 < u1 < . . . < uh < . . . < uN = 1, such that for K =
∫

Ṡ(l)(z,θ0)+

σ(z)
dFθ0(z),

which is finite by (3), it holds εh = |uh−uh−1|K < ε for every h = 1, 2, . . . N .

For the same ε there exists M = M(ε), such that one can choose −∞ =

x0 < x1 < . . . < xj < . . . < xM = +∞, such that εj = |ψ(xj) − ψ(xj−1)| < ε

for every j = 1, 2, . . .M , where ψ(x) =
∫ x

−∞
Ṡ(l)(z,θ0)+

σ(z)
dFθ0(z).
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Let us consider

1

T

∫ T

0

(1{s≤uT} − u)1{Xs≤x}
Ṡ(l)(Xs, θ0)

+

σ(Xs)

√
T (θ0 − θ̂T )ds.

As
√
T (θ̂T − θ0) is bounded in probability, we consider

sup
(x,u)∈R×[0,1]

1

T

∫ T

0

(1{s≤uT} − u)1{Xs≤x}
Ṡ(l)(Xs, θ0)

+

σ(Xs)
ds

≤max
h,j

(
1

T

∫ uhT

0

1{Xs≤xj}
Ṡ(l)(Xs, θ0)

+

σ(Xs)
ds+

−uh−1

T

∫ T

0

1{Xs≤xj−1}
Ṡ(l)(Xs, θ0)

+

σ(Xs)
ds

)

→p max
h,j

((uh − uh−1)ψ(xj) + uh−1(ψ(xj) − ψ(xj−1)))

≤max
h,j

(
(uh − uh−1)

∫ +∞

−∞

Ṡ(l)(z, θ0)
+

σ(Xs)
dFθ0(z) + (ψ(xj) − ψ(xj−1)

)

≤max
h

|uh − uh−1|K + ε < 2ε.

Analogously we obtain a similar bound from below. The same arguments

hold for each component and for the negative part of Ṡ. So, as ε is arbitrary

we get the uniform convergence sup(x,u)∈R×[0,1] |V̂T (u, x)−VT (u, x)| →p 0.

The next Lemma gives the behavior of V̂T under the alternative.

Lemma 3. Under H1, if θ̂T →p θ∗, it holds that

P

(
sup
u,x

|V̂T (u, x)| > K

)
→ 1, ∀K > 0.

Proof. Let θ∗ be the minimizer of (8), then θ∗ has to satisfy the equation

u∗

∫
(S(θ0) − S(θ))Ṡ(θ)

σ2
dFθ0+(1−u∗)

∫
(S(θ1) − S(θ))Ṡ(θ)

σ2
dFθ1 = 0, (11)

12



with obvious notations. Let us introduce the following function

C(x, θ) =

∫ x

−∞

S(z, θ0) − S(z, θ)

σ(z)
dFθ0(z) −

∫ x

−∞

S(z, θ1) − S(z, θ)

σ(z)
dFθ1(z)

and let us consider C(x, θ∗). We state that it exists at least a x∗ such that

C(x∗, θ
∗) 6= 0. Indeed if C(x, θ∗) = 0 for every x, then

(S(x, θ0) − S(x, θ∗))fθ0(x) = (S(x, θ1) − S(x, θ∗))fθ1(x), (12)

for every x ∈ R. Now, taking in account (12) and considering (11), θ∗ has to

satisfy these two equations

∫

R

(S(z, θ0) − S(z, θ∗))Ṡ(z, θ∗)

σ2(z)
dFθ0(z) = 0

and ∫

R

(S(z, θ1) − S(z, θ∗))Ṡ(z, θ∗)

σ2(z)
dFθ1(z) = 0.

This means that θ∗ is the solution of the two following minimizing problems

min
θ∈Θ

∫

R

(S(z, θ) − S(z, θ0))
2

σ2(z)
dFθ0(z)

and

min
θ∈Θ

∫

R

(S(z, θ) − S(z, θ1))
2

σ2(z)
dFθ1(z).

Now (6) has a unique minimizer, so the solution of each of the last two

minimizing problems is unique. This imply that θ∗ = θ0 and θ∗ = θ1 but this

is impossible as θ0 6= θ1.

Let us read θtrue = θ0 when t ≤ u∗T and and θtrue = θ1 when t > u∗T
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Observe that

sup
x,u

|V̂T (u, x)| ≥|V̂T (u∗, x∗)|

=

∣∣∣∣
1√
T

∫ T

0

(1{s≤Tu∗} − u∗)1{Xs≤x∗}
1

σ(Xs)
(dXs − S(Xs, θ̂T )ds)

∣∣∣∣

≥
∣∣∣∣∣

1√
T

∫ T

0

(1{s≤u∗T} − u∗)1{Xs≤x∗}
S(Xs, θtrue) − S(Xs, θ̂T )

σ(Xs)
ds

∣∣∣∣∣+

−
∣∣∣∣

1√
T

∫ T

0

(1{s≤Tu∗} − u∗)
1

σ(Xs)
(dXs − S(Xs, θtrue)ds)

∣∣∣∣

The second term weakly converge to a random variable, so is tight. By (3)

and (4) we can easily prove that the almost sure convergence

1

T

∫ u∗T

0

(1 − u∗)1{Xs≤x}
S(Xs, θ0) − S(Xs, θ)

σ(Xs)
ds+

+
1

T

∫ T

u∗T

u∗1{Xs≤x}
S(Xs, θ0) − S(Xs, θ)

σ(Xs)
ds

→u∗(1 − u∗)C(x, θ)

is uniformly on θ. So, for the first term, it follows that

1

T

∫ T

0

(1{s≤u∗T}−u∗)1{Xs≤x∗}
S(Xs, θtrue) − S(Xs, θ̂T )

σ(Xs)
ds→p u∗(1−u∗)C(x∗, θ

∗).

As u∗(1 − u∗)C(x∗, θ
∗) 6= 0, this complete the proof.
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