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Abstract: Analysis of regional and global mean temperatures based on instru-
mental observations has typically been based on aggregating temperature measure-
ments to grid cells. Due to the uneven data coverage, this makes analysis of the
associated uncertainties difficult. We here present an alternative model based ap-
proach, where the climate and weather are modelled as random fields generated by
a stochastic partial differential equation. Using the efficient Markov representations
developed by Lindgren et al. (2011), direct numerical optimisation and integration
with the R-INLA software provides Bayesian temperature reconstructions and asso-
ciated uncertainties.
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1 Introduction

When analysing past observed weather and climate, the Global Historical Climato-
logy Network (GHCN) data set (Peterson and Vose, 1997) is commonly used. The
data spans the period 1702 through 2010, though counting, for each year, only sta-
tions with no missing values, yearly averages can be calculated only as far back as
1835. The GHCN data is used to analyse regional and global temperatures in the
GISS (Hansen et al., 1999) and HadCRUT3 (Brohan et al., 2006) global temperature
series, together with additional data such as ocean based sea surface temperature
measurements. Differing in detail, the analyses aggregate the data into grid boxes,
which are combined into global averages. To reduce the influence of station spe-
cific effects, the methods are based on the temperature anomalies, defined as the
difference in weather to the local climate, the latter defined as the average weather
over a 30 year reference period. Due to the difficulty of assessing the statistical
uncertainty of the resulting estimates, we instead choose to construct a stochastic
model for the climate and anomalies, based on a non-stationary stochastic partial
differential equation.
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2 Model

I order to avoiding the computational difficulties associated with calculations based
on covariance matrices, we use the link between the stochastic partial differen-
tial equation (SPDE) formulation of Matérn fields and Gaussian Markov random
fields (GMRFs), as developed by Lindgren et al. (2011). Together with the INLA
method (Rue et al., 2009) this allows us to perform a fully Bayesian analysis in a
fraction of the time required by a traditional MCMC approach.

The climate (or expected weather) is µ, the yearly anomalies are xt, and the
observations are yt. The anomalies are taken as solutions to the SPDE

(

κ2(u)−∆
)

(τ(u)xt(u)) = W(u), u ∈ S
2, (1)

where W is a white noise process, ∆ is the Laplacian, and κ and τ are spatially
varying parameters. The prior distribution for the climate field is chosen as approx-
imate solutions to the SPDE ∆µ(u) = σµW(u), which are intrinsic random fields.
The model is governed by a parameter vector θ = {θκ,θτ ,θs, θǫ}, where θκ and θτ

controls the non-stationary dependence structure of the anomalies.
Introducing observation matrices At, that extract the nodes from xt for each

observation, the full model is given by

(µ|θ) ∼ N(0,Q−1

µ
), (2)

(xt|θ) ∼ N(0,Q−1

x
), (3)

(yt|µ,xt,θ) ∼ N(At(µ+ xt) + Stθs,Q
−1

y|µ,x
), (4)

where Stθs are station specific effects (elevation), and the Q· matrices are the pre-
cision matrices corresponding to each conditional distribution, obtained with the
finite element method (Lindgren et al., 2011).

3 Results

We implemented the model using R-INLA. The Bayesian analysis draws all its con-
clusions from the properties of the posterior distributions of (θ|y), (µ|y), and (x|y),
so that all uncertainty about the weather anomaly xt is included in the distribution
for the model parameters θ, et cetera. Since (x|y,θ) is Gaussian, the Bayesian
integration results are only approximate with regards to the numerical integration
of the covariance parameters (θκ,θτ ,θǫ). Due to the large size of the data set, the
initial analysis is based on data only from the period 1970 through 1989, and the
analysis took approximately one hour on a 12 core Linux system.

The spatial covariance parameters are harder to interpret individually, but we
instead show the resulting spatially varying field standard deviations and correlation
ranges in Figure 1, including pointwise 95% credible intervals. Both curves show a
clear dependence on latitude, with both larger variance and correlation range near
the poles, compared with the equator.
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Figure 1: Three transformed B-spline basis functions of order 2 (a), and approximate
95% credible intervals for (b) standard deviation and (c) correlation range of the
yearly weather, as functions of latitude.
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Figure 2: Posterior means for the empirical 1970–1989 climate (a) and for the em-
pirical mean anomaly 1980 (b), together with the corresponding posterior standard
deviations in (c) and (d). The climate includes the estimated effect of elevation. An
area-preserving cylindrical projection is used.
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In Figure 2(a) and (b), the posterior expectation of the empirical climate, E(µ|y),
is shown (with the estimated effect of elevation added), together with the posterior
expectation of the temperature anomaly for 1980, E(x1980|y). The spatial depend-
ence model was based on the GHCN data, but these Kriging estimates also include
ocean-based data. A preliminary analysis indicates that the dependence structure
is different for land and ocean, which can be handled by adding appropriate basis
functions to the κ and τ models. The pre-gridded ocean data is also a good example
of how the observation matrix At can solve the problem of “misaligned” data, since
it decouples the spatial model from the data locations, allowing arbitrary linear
measurement equations from one spatial model.
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