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The theory of gates in quantum computation has suggested new forms of quantum logic,

called quantum computational logics, where the meaning of a sentence is identified with a

system of qubits in a pure or, more generally, mixed state. In this framework, any formula
of the language gives rise to a quantum circuit that transforms the state associated to

the atomic subformulas into the state associated to the formula and vice versa. On this

bases, some holistic semantic situations can be described, where the meaning of whole
determine the meaning of the parts, by non-linear and anti-unitary operators. We prove

that the semantics with such operators and the semantics with unitary operators turn

out to characterize the same logic.
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1. Introduction

The theory of quantum gates has suggested new forms of quantum logic that have

been called quantum computational logics1. The main difference between orthodox

quantum logic (first proposed by Birkhoff and von Neumann2) and quantum com-

putational logics concerns the meanings of the sentences of a given language. In

Birkhoff and von Neumann the meanings have to be regarded as determined by

convenient sets of states of quantum objects which satisfy some special closure con-

ditions and so the elementary experimental sentences of quantum theory can be

adequately interpreted as closed subspaces of the Hilbert space associated to the

physical systems under investigation3. Interesting applications of orthodox quantum

logic (and of its weaker variant, orthologic) have been recently investigated4,5,6,7,8.

Mateus and Sernadas consider an exogenous quantum propositional logic based on

superpositions of classical models as the model of the logic, leading to a natural

extension of the classical language and allowing quantitative reasoning about am-

plitudes and probabilities9. Engesser et al. introduce a holistic logic where a state

is a logical entity that encodes other states and also itself10.

In quantum computational logics we use a different approach where the meaning

of a sentence is identified with a quantum information quantity: a quregister or,

more generally, a mixture of quregisters (briefly, a qumix )11.

Quantum information is encoded in qubits and transformations follow the laws

of quantum mechanics. This fundamental requirement implies theoretical limita-
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tions in making some transformations such as cloning and flipping. The Poincare-

Bloch sphere provides a geometric representation of a qubit and De Martini et al.12

suggest to consider the antipode point as representative of the flipped state instead

of the point obtained as a π-rotation around the x or y axis. This assumption in-

volves the adoption of the u-not operator which is anti-unitary (that is, it is not

completely positive). It is exactly this property that makes the spin-flip operation

so important in all criteria of inseparability for two qubit systems. Why do we have

to look at anti-unitary and non-linear operators instead of the unitary forms? The

reason is because unexpectedly an experimental realization of the universal optimal

quantum cloning machine and of the u-not gate has been presented13 by slightly

modifying the protocol of quantum state teleportation. Anti-operators have gained

increasing importance and it is interesting to understand what quantum computa-

tional logic is obtained by replacing unitary operators.

We will show that the semantics with bounded additive operators characterize

the same logic.

2. Quregisters and qumixes

We will first sum up some basic concepts of quantum computation that are used

in the framework of quantum computational logics. Consider the two-dimensional

Hilbert space C2 (where any vector |ψ〉 is represented by a pair of complex numbers).

Let B(1) = {|0〉, |1〉} be the canonical orthonormal basis for C2, where |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
. Recalling the Born rule, any |ψ〉 = c0|0〉+ c1|1〉 (with |c0|2 + |c1|2 =

1) can be regarded as an uncertain piece of information, where the answer NO

has probability |c0|2, while the answer YES has probability |c1|2. The two basis-

elements |0〉 and |1〉 are usually taken as encoding the classical bit-values 0 and

1, respectively. From a semantic point of view, they can be also regarded as the

classical truth-values Falsity and Truth.

An n-quregister is represented by a unit vector in the n-fold tensor prod-

uct Hilbert space H(n) := C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
n−times

. We will use x, y, . . . as variables rang-

ing over the set {0, 1}. At the same time, |x〉, |y〉, . . . will range over the ba-

sis B(1). Any factorized unit vector |x1〉 ⊗ . . . ⊗ |xn〉 of the space H(n) will be

called an n-configuration (which can be regarded as a quantum realization of

a classical bit sequence of length n). Instead of |x1〉 ⊗ . . . ⊗ |xn〉 we will also

write |x1, . . . , xn〉. Recall that the dimension of H(n) is 2n, while the set of all

n-configurations B(n) = {|x1, . . . , xn〉 : x1, . . . , xn ∈ {0, 1}} is an orthonormal

basis for the space H(n). We will call this set a computational basis for the n-

quregisters. Since any element of the computational basis can be labeled by a bi-

nary string which represents a natural number j ∈ [0, 2n − 1] in binary notation

(where j = 2n−1x1 + 2n−2x2 + . . . + xn), any quregister can be briefly expressed

as a superposition having the following form:
∑2n−1
j=0 cj |j〉, where cj ∈ C, |j〉 is the
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n-configuration corresponding to the number j and
∑2n−1
j=0 |cj |2 = 1.

For semantic aims, it is useful to distinguish the true from the false in any

space H(n). We assume the following convention (which is a natural generalization

of classical semantics): any n-configuration corresponds to a classical truth-value

that is determined by its last element (i.e. xn = 1 := true and xn = 0 := false

or, in other words, by the parity of j, i.e. odd:=true and even:=false). Let us now

decompose the Hilbert space H(n) into its true and false subspaces H(n)
0 and H(n)

1

respectively, i.e. H(n) = H(n)
0 ⊕H(n)

1 , and denote by P
(n)
1 and P

(n)
0 the pertaining

orthogonal projectors, P
(n)
1 + P

(n)
0 = I(n), where I(n) is the identity operator of

H(n). Therefore, the projectors P
(n)
1 and P

(n)
0 represent the Truth-property and the

Falsity-property in H(n), respectively. Let D(H(n)) be the set of all positive trace

class operators of H(n) and let D :=
⋃∞
n=1 D(H(n)).

A qumix is a density operator in D. Needless to say, quregisters correspond to

particular qumixes that are pure states (i.e. projections onto one-dimensional closed

subspaces of H(n)). Recalling the Born rule, we can now define the probability-value

of any qumix.

Definition 1: Probability of a density operator (qumix).

For any qumix ρ ∈ D(H(n)): p(ρ) = tr(ρP
(n)
1 ).

p(ρ) is the probability that the information stocked by the qumix ρ is true. In

the particular case where ρ corresponds to the 1-quregister |ψ〉 = c0|0〉+ c1|1〉, we

obtain that p(ρ) = |c1|2.

For any quregister |ψ〉, we will write p(|ψ〉) instead of p(P|ψ〉), where P|ψ〉 (also

indicated by |ψ〉〈ψ|) is the density operator represented by the projection onto

the one-dimensional subspace spanned by the vector |ψ〉. In particular, we have

the matching of notions P
(1)
0 ≡ P|0〉 and P

(1)
1 ≡ P|1〉, with the projector also

representing a pure state.

An interesting relation connects qumixes with real numbers in the interval [0, 1].

For any n ∈ N+, any real number λ ∈ [0, 1] uniquely determines a qumix ρ
(n)
λ :

ρ
(n)
λ := (1− λ)knP

(n)
0 + λknP

(n)
1

(where kn = 1
2n−1 is a normalization coefficient). From an intuitive point of view,

ρ
(n)
λ represents a mixture of pieces of information that might correspond to the

Truth with probability λ.

3. Generalized Quantum Gates

Generalized quantum gates (briefly, gates) correspond to some basic logical opera-

tions that admit a reversible behaviour. We will consider here the following gates:

the u-not, the controlled-controlled-u-not, the square root of the u-not and the square

root of the identity.

Let us first describe our gates in the framework of quregisters. For any n ≥ 1,

the u-not gate14 on H(n) is the anti-linear operator UNot(n) such that for every
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element |x1, . . . , xn〉 of the computational basis B(n):

UNot(n)(|x1, . . . , xn−1, xn〉) = (−1)1−xn |x1, . . . , xn−1, 1− xn〉.

In other words, UNot(n) inverts the value of the last element of basis-vector of H(n).

From the formal point of view, this anti-unitary operator satisfies the univer-

sal orthogonality (or flipping) condition ∃U ∀|ψ〉, 〈ψ|Uψ〉 = 0 and the anti self-

reversibility condition U2 = −I, which can be reformulated as U−1 = −U. Start-

ing from the orthogonality condition, recently a certain number of contributions
14,15,16,17,12 has been published about the full complementing requirement: for any

arbitrary vector |ψ〉, UNot(1)(|ψ〉) = |ψ⊥〉 since 〈ψ|UNot(1) ψ〉 = 0 holds.

Anti–linear operators have an indispensable role in quantum field theory18, so

much so that the definition of the adjoint of such an operator can be found in a

textbook on field theory by Itzykson and Zuber19. Basic knowledge about anti–

unitary operators is due to Wigner20.

For any n ≥ 1 and any m ≥ 1 the controlled-controlled-u-not (also Petri-

Toffoli21,22) gate is the anti-linear operator UT(n,m,1) defined on H(n+m+1) such

that for every element |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z〉 of the computational basis

B(n+m+1):

UT(n,m,1)(|x1, . . . , xn〉⊗|y1, . . . , ym〉⊗|z〉) = (−1)xnym(1−z)|x1, . . . , xn〉⊗|y1, . . . , ym〉⊗|xnym � z〉,

where � represents the sum modulo 2.

One can easily show that both UNot(n) and UT(n,m,1) are anti-unitary operators.

Consider now the set R =
⋃∞
n=1H(n) (which contains all quregisters |ψ〉 “living”

in H(n), for an n ≥ 1). The gates UNot and T can be uniformly defined on this set

in the expected way:

UNot(|ψ〉) := UNot(n)(|ψ〉), if |ψ〉 ∈ H(n)

UT(|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉) := UT(n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉), if |ψ〉 ∈ H(n), |ϕ〉 ∈ H(m)and |χ〉 ∈ H(1).

On this basis, a conjunction UAnd, a disjunction UOr can be defined for any pair

of quregisters |ψ〉 and |ϕ〉:

UAnd(|ψ〉, |ϕ〉) := UT(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉);

UOr(|ψ〉, |ϕ〉) := UNot(UAnd(UNot(|ψ〉), UNot(|ϕ〉))).

Notice that our definition of UAnd is reversible and, as such, needs a third an-

cillary system. Indeed, in this framework, UAnd(|ψ〉, |ϕ〉) should be regarded as a

metalinguistic abbreviation for UT(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉). A similar observation holds for

UOr.

One can easily verify that, when applied to classical bits, UNot, UAnd and UOr

behave as the standard Boolean truth-functions.

The gates we have considered so far are, in a sense, “semiclassical”: a quantum

logical behaviour only emerges in the case where our gates are applied to superpo-

sitions. When restricted to classical registers, such operators turn out to behave as
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classical (reversible) truth-functions. We will now consider two important genuine

quantum gates that transform classical registers (elements of B(n)) into quregisters

that are superpositions: the square root of the u-not and the square root of the

identity.

Now, if one wants to describe a possible square root of u-not operator, i.e., some

operator U such that U ◦ U = UNot, then such an operator cannot be either unitary

or anti-unitary. Thus, it is necessary to seek inside non-linear operators. For any

n ≥ 1, the square root of the u-not on H(n) is the additive operator
√
UNot

(n)
such

that for every element |x1, . . . , xn〉 of the computational basis B(n) and for any

complex number c :
√
UNot

(n)
(c |x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗

1√
2

(c |xn〉+ c∗(−1)1−xn |1− xn〉).

Obviously, the basic property of
√
UNot

(n)
is the following:

for any |ψ〉 ∈ H(n),
√
UNot

(n)
(
√
UNot

(n)
(|ψ〉)) = UNot(n)(|ψ〉).

In other words, applying twice the square root of the u-not means negating.

This operator can be expressed in pure operator notation as
√
UNot

(n)
=

1√
2

(
I(n) + UNot(n)

)
Thus, the operator

√
UNot

(n)
describes the transformation which satisfies the

universal condition to take an arbitrary (unknown) qubit and to transform it into

an equally superposition of the same qubit and the qubit orthogonal to it. In the

Bloch-Poincaré sphere the corresponding points are antipodes. Clearly, this operator

is neither homogeneous nor anti-homogeneous.

This result can be inserted in an investigation about non-linear quantum me-

chanics 23,24,25,26,27,28,29,30,31,32,33. In these contributions the non-linearity is ap-

plied to the case of observables, which in general are not additive (∃|ψ〉, |φ〉
s.t. A(|ψ〉+ |φ〉) 6= A|ψ〉+A|φ〉), but satisfies either the homogeneity (∀|ψ〉, ∀α ∈ C,

Aα|ψ〉 = αA|ψ〉), or the anti-homogeneity (∀|ψ〉, ∀α ∈ C, Aα|ψ〉 = α∗A|ψ〉), or the

absolute homogeneity (∀|ψ〉, ∀α ∈ C, Aα|ψ〉 = |α|A|ψ〉) (see for instance 34).

From a logical point of view,
√
UNot

(n)
can be regarded as a “tentative partial

negation” (a kind of “half negation”) that transforms precise pieces of information

into maximally uncertain ones. For, we have:

p(
√
UNot

(1)
(|1〉)) =

1

2
= p(
√
UNot

(1)
(|0〉)).

As expected, the square root of the u-not has no Boolean counterpart. Clearly,

there exists no function f : {0, 1} → {0, 1} such that for any x ∈ {0, 1} : f(f(x)) =

1− x, since such a function in none of the possible four.

Interestingly enough,
√
UNot also does not have a continuous fuzzy counterpart.

Lemma 2: There is no continuous function f : [0, 1] → [0, 1] such that for any

x ∈ [0, 1] : f(f(x)) = 1− x35.
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For any n ≥ 1, the square root of the identity on H(n) is the additive operator√
UI

(n)
such that for every element |x1, . . . , xn〉 of the computational basis B(n)and

for any complex number c :

√
UI

(n)
(c |x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗

1√
2

(c (−1)xn |xn〉+ c∗|1− xn〉).

The basic property of
√
UI

(n)
is the following:

for any |ψ〉 ∈ H(n),
√
UI

(n)
(
√
UI

(n)
(|ψ〉)) = |ψ〉.

As happens in the case of
√
UNot

(n)
, also

√
UI

(n)
can be regarded as a “tenta-

tive partial assertion” (a kind of “half assertion”) that transforms precise pieces of

information into maximally uncertain ones. Apparently, one application of
√
UI

(n)

to a precise information produces a maximal disorder, while two applications of√
UI

(n)
lead back to the initial information.

This operator can be expressed as follows

√
UI

(n)
=

1√
2

(
I(n) − UNot(n)

)
(I(n−1) ⊗ σz)

where σz is the Pauli operator.

Thus, the operator
√
UI

(1)
describes the transformation which satisfies the con-

dition to take an arbitrary (unknown) qubit and to transform it into an equally

superposition of a suitable qubit and its orthogonal. Note that if the Bloch-Poincaré

representation of the pure state |ψ〉 is the triple (ux, uy, uz), then the representation

of the above pure state σz|ψ〉 is the triple (−ux,−uy, uz), i.e., the antipodal with

respect to the z axis of the representation of |ψ〉. Of course, the representation of

the pure state UNot(1)σz|ψ〉 is the triple (ux, uy,−uz).
As before, also the gates

√
UNot,

√
UI can be uniformly defined on the set R of

all quregisters. The gates considered so far can be naturally generalized to qumixes.

For any qumix ρ ∈ D(H(n)),

G(n)(ρ) = G(n)ρ G(n)†,

where G(n)† is the adjoint of G(n).

When our gates will be applied to density operators, we will use capital letters.

Like in the quregister-case, the gates UNOT,
√
UNOT,

√
U I, UAND can be uniformly

defined on the set D of all qumixes.

Theorem 3:

(i) p(UNOT(ρ)) = 1− p(ρ);

(ii) p(UAND(ρ, σ)) = p(ρ)p(σ);

(iii) p(
√
UNOT(UAND(ρ, σ))) = 1

2 ;

(iv) p(
√
U I(UAND(ρ, σ))) = 1

2 .
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Proof:

(i) p(UNOT(ρ)) = tr(P
(n)
1 UNot(n)ρUNot(n) †) = tr(UNot(n) †P

(n)
1 UNot(n)ρ)

= tr(−UNot(n)P (n)
1 UNot(n)ρ) = tr(P

(n)
0 ρ) = tr((I(n) − P (n)

1 )ρ) = 1− p(ρ).

(ii) p(UAND(ρ, σ)) = tr(P
(n+m+1)
1 UT(n,m,1)(ρ⊗ σ ⊗ P (1)

0 )UT(n,m,1) †)

= tr(P
(n)
1 ρ∗P

(n)
1 ⊗ P (m)

1 σ∗P
(m)
1 ⊗ P (1)

1 P
(1)
1 ) = tr(P

(n)
1 ρ∗)tr(P

(m)
1 σ∗)tr(P

(1)
1 )

= p(ρ)p(σ).

(iii) p(
√
UNOT(UAND(ρ, σ)))

= tr(P
(n+m+1)
1

√
UNot

(n+m+1)
UT(n,m,1)(ρ⊗ σ ⊗ P (1)

0 )UT(n,m,1) †
√
UNot

(n+m+1) †
)

= tr((I(n+m) − P (n)
1 ⊗ P (m)

1 )(ρ∗ ⊗ σ∗)(I(n+m) − P (n)
1 ⊗ P (m)

1 )⊗ P (1)
1

√
UNot

(1)
P

(1)
0√

UNot
(1) †

+ P
(n)
1 ρ∗P

(n)
1 ⊗ P (m)

1 σ∗P
(m)
1 ⊗ P (1)

1

√
UNot

(1)
P

(1)
1

√
UNot

(1) †
)

= tr((I(n+m) − P (n)
1 ⊗ P (m)

1 )(ρ∗ ⊗ σ∗))tr(P
(1)
1

√
UNot

(1)
P

(1)
0

√
UNot

(1) †
)

+ tr(P
(n)
1 ρ∗)tr(P

(m)
1 σ∗)tr(P

(1)
1

√
UNot

(1)
P

(1)
1

√
UNot

(1) †
)

= (1− p(ρ∗)p(σ∗))p(
√
UNOT(P

(1)
0 )) + p(ρ∗)p(σ∗)p(

√
UNOT(P

(1)
1 )) = 1

2 .

(iv) Similarly.

An interesting preorder relation can be defined on the set D of all qumixes.

Definition 4: Preorder.

ρ � σ iff the following conditions hold:

(i) p(ρ) ≤ p(σ);

(ii) p(
√
UNOT(σ)) ≤ p(

√
UNOT(ρ));

(iii) p(
√
U I(ρ)) ≤ p(

√
U I(σ)).

One immediately shows that� is reflexive and transitive, but not antisymmetric.

From an intuitive point of view, ρ � σ means that the information σ is “closer to

the truth” than the information ρ.

An equivalence relation can be then defined on D: σ ≡ τ iff σ � τ and τ � σ.
One can prove that ≡ is a congruence relation with respect to the operations

UAND,
√
UNOT,

√
U I. On this basis, we introduce two structures: the quantum compu-

tational structure and its quotient, the contracted quantum computational structure.

Definition 5: The quantum computational structure.

The structure

(D, UAND,
√
UNOT,

√
U I, P (1)

0 , P
(1)
1 , ρ

(1)
1/2),

where P
(1)
0 , P

(1)
1 , ρ

(1)
1/2 represent respectively the Falsity, the Truth and the indeter-

minate truth-value, is called the quantum computational structure. The structure

([D]≡, UAND,
√
UNOT,

√
U I, [P (1)

0 ]≡, [P
(1)
1 ]≡, [ρ

(1)
1/2]≡),

where the operations UAND,
√
UNOT,

√
U I are defined on the equivalence classes be-

longing to the quotient [D]≡ in the expected way, is called the contracted quantum

computational structure.
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4. Poincaré Sphere Considerations

Let ~u = (ux, uy, uz) be a fixed vector on the unit surface S1(R3), with polar repre-

sentation ~u = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) , and let us consider the orthonormal

basis of C2

|↑~u〉 =

(
e−i

ϕ
2 cos ϑ2

ei
ϕ
2 sin ϑ

2

)
|↓~u〉 =

(
e−i

ϕ
2 sin ϑ

2

−ei
ϕ
2 cos ϑ2

)
These are eigenvectors corresponding respectively to the eigenvalues +1 and −1 of

the spin 1/2 observable along the ~u direction

σ~u = σ(ϑ, ϕ) = ux σx + uy σy + uz σz =

(
cosϑ e−iϕ sinϑ

eiϕ sinϑ − cosϑ

)
Denoting the first eigenvector also as |ϑ, ϕ〉 := |↑~u〉 then trivially |↓~u〉 = |ϑ− π, ϕ〉
i.e., the antipodal of the original unit vector ~u. Thus, as to the 1/2 spin interpre-

tation we have that |↓~u〉 = |↑−~u〉, the spin down eigenvector along ~u coincides with

the spin up eigenvector along its antipodal −~u.

In this context, the quantum realization of the classical Not gate is given by

the unitary operator depending from the polar angles ϑ, ϕ:

Not(ϑ, ϕ) :=

(
sinϑ −e−iϕ cosϑ

−eiϕ cosϑ − sinϑ

)
Indeed, if one set |0〉 := |↑~u〉 and |1〉 := |↓~u〉, then this operator realizes the transi-

tions required to the quantum Not gate. In particular, we have Not(0, 0) = −σx.

From the unitary point of view, the operator more similar to UNot is the following

Not1(ϕ) :=

(
0 e−iϕ

−eiϕ 0

)
In particular, we have Not1(0) = iσy which applied to a generic vector |ϑ, ϕ〉 pro-

duces the transition |ϑ, ϕ〉 → |ϑ− π,−ϕ〉. The outgoing vector is the antipodal

of the incoming one, not with respect to the origin of the space R3 in which the

Poincaré sphere is embedded, but with respect to its y axis. The inner product

< ϑ,ϕ|ϑ − π,−ϕ >= i sinϕ sinϑ is trivially 0 (orthogonality) under the condition

ϕ = 0, i.e., for any pure state whose Poincaré surface representation is on the xz

plane. Setting ϑ = 2α, the vector |α〉 = |2α, 0〉 describes the quantum (pure) state

of light linear polarized along direction α with respect to the reference axis A1 of

the analyzer Nicol prism which constitute the preparation part. In this interpre-

tation the unitary realization iσy of the classical Not gate performs an antipodal

transformation of all possible pure states of linearly polarizations light. These con-

siderations can be extended to the case of states obtained as mixture of linear

polarized pure states.

Of course, they are not unitary descriptions of a gate which satisfies the univer-

sal orthogonality condition, but it is possible to unitary flip an arbitrary state

whose Poincaré representation is on a known plane. Indeed, let us consider a
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vector (sinϑ cosϕ, sinϑ sinϕ, cosϑ) and suppose the Poincaré representation of

an arbitrary state ρ(r, ω) lies on a plane determined by the orthogonal vector

r(− cosϑ cosϕ sinκ+ sinϕ cosκ, − cosϑ sinϕ sinκ− cosϕ cosκ, sinϑ sinκ):

ρ(r, ω) =
1

2

(
1 + r(cosω cosϑ− sinω sinϑ cosκ) re−iϕ(cosω sinϑ+ sinω(cosϑ cosκ+ i sinκ))
reiϕ(cosω sinϑ+ sinω(cosϑ cosκ− i sinκ)) 1 − r(cosω cosϑ+ sinω sinϑ cosκ)

)
where ω ∈ [0, 2π) and r ∈ [0, 1]. The unitary operator that realizes the partial

universal flipping condition is the following:

Not1(ϑ, ϕ, κ) =
(

−i sinϑ sinκ e−iϕ(cosκ+ i cosϑ sinκ)
−eiϕ(cosκ− i cosϑ sinκ) i sinϑ sinκ

)
The corresponding unitary realization of the square root of the u-not and of the

square root of the identity is the following:

√
Not1(ϑ, ϕ, κ) =

1√
2

(
1 − i sinϑ sinκ e−iϕ(cosκ+ i cosϑ sinκ)

−eiϕ(cosκ− i cosϑ sinκ) 1 + i sinϑ sinκ

)
√
I(ϑ, ϕ, κ) =

1√
2

(
cosϑ− sinϑ cosκ e−iϕ(cosϑ cosκ+ sinϑ+ i sinκ)

eiϕ(cosϑ cosκ+ sinϑ− i sinκ) − cosϑ+ sinϑ cosκ

)
As particular cases, one can find the Hadamard transformations for an unknown

qubit chosen either from the polar or equatorial great circles36 as well as the unitary

operators for the square root of the not and of the identity35. In particular, for states

of linearly polarizations light, we have

√
Not1(0, 0, 0) =

1√
2

(
1 1

−1 1

) √
Not1(0, 0, π) =

1√
2

(
1 −1

1 1

)
√
I(0, 0, 0) =

1√
2

(
1 1

1 −1

) √
I(0, 0, π) = − 1√

2

(
−1 1

1 1

)
and for states whose Poincaré representation is on the yz plane, we obtain

√
Not1(0, 0,−

π

2
) =

e−i
π
4

2

(
1 + i 1 − i

1 − i 1 + i

) √
Not1(0, 0,

π

2
) =

ei
π
4

2

(
1 − i 1 + i

1 + i 1 − i

)
√
I(0, 0,−π

2
) =

1√
2

(
1 −i
i −1

) √
I(0, 0,

π

2
) =

1√
2

(
1 i

−i −1

)
Moreover, by using the unitary operators

√
Not1(ϑ, ϕ, 0) and

√
I(ϑ, ϕ, 0) one can

realize the following transformations of the vector ~v = r(sinϑ cosϕ, sinϑ sinϕ, cosϑ)

of the Poincaré sphere:

(vx, vy, vz)→
√
Not1

{
(−vz, 0, 0) if vx = vy = 0
sign(vx)√
v2x+v

2
y

(−vzvx,−vzvy, v2x + v2y) otherwise

(vx, vy, vz)→
√
I

{
(vz, 0, 0) if vx = vy = 0
sign(vx)√
v2x+v

2
y

(vzvx, vzvy, v
2
x + v2y) otherwise

Note that the probability of the qumix ρ univocally associated to ~v is p(ρ) = 1−vz
2 .
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5. Quantum Trees

We consider a minimal quantum propositional language L that contains a privileged

atomic formula f (whose intended interpretation is the Falsity) and the following

primitive connectives: the square root of the negation
√
¬, the square root of the

identity
√
id, a ternary conjunction

∧
(which corresponds to the Petri-Toffoli gate).

In this framework, the negation ¬α and the usual conjunction α∧β are dealt with as

metalinguistic abbreviation for
√
¬
√
¬α and the ternary conjunction

∧
(α, β, f) of

L respectively. We will use the following metavariables: q, r, . . . for atomic formulas

and α, β, . . . for formulas. The connective disjunction (∨) is supposed to be defined

via the de Morgan law (α ∨ β := ¬(¬α ∧ ¬β)).

Any formula α of L can be naturally decomposed into its parts, giving rise to the

syntactical tree of α and describes a quantum circuit that can be applied to an input,

represented by a qumix living in a Hilbert space H(At(α)) whose dimension depends

on the number At(α) of occurrences of atomic formulas in α. The syntactical tree

of α uniquely determines the qubit tree, a sequence of gates (Gα1 , . . . , G
α
Height(α)−1)

that are all defined on the semantic space of α, where Height(α) is the number of

levels. Each j-th node of the i-th level Levelji (α) can be naturally associated to an

operator Opji , according to the following operator-rule:

Opji :=


I(1) if Levelji (α) is an atomic formula;
√
UNot

(r)
if Levelji (α) =

√
¬β and At(β) = r;

√
UI

(r)
if Levelji (α) =

√
id β and At(β) = r;

UT(r,s,1) if Levelji (α) =
∧

(β, γ, f), At(β) = r and At(γ) = s.

On this basis, one can associate a gate Gαi to each Leveli(α) (such that 1 ≤ i <

Height(α)): Gαi :=
⊗|Leveli(α)|

j=1 Opji , where |Leveli(α)| is the length of the sequence

Leveli(α). The notion of qubit tree can be naturally generalized to qumixes defining

the following sequence of functions: Gα
i (ρ) = Gαi ρG

α†
i .

Consider now a formula α and let (Gα
1 , . . . , Gα

k−1) be the qumix tree of α. Any

choice of a qumix ρ in H(At(α)) determines a sequence (ρk, . . . , ρ1) of qumixes of

H(At(α)), where ρk = ρ and ρi−1 = Gα
i−1(ρi) with 1 < i ≤ k. The qumix ρk can be

regarded as a possible input-information concerning the atomic parts of α, while ρ1
represents the output-information about α, given the input-information ρk. Each

ρi corresponds to the information about Leveli(α), given the input-information

ρk. Apparently, all qumix gates are bijections and represent reversible information

processes. Thus, any choice of a qumix ρ1 determines a sequence (ρk, . . . , ρ1) of

qumixes and in particular the input-information ρk, given the output-information

about α.

How to determine an information about the parts of α under a given state ρ1?

It is natural to consider redj(ρi), the reduced state of ρi with respect to the j-th

subsystem. From a semantic point of view, this state can be regarded as a contextual

information about the subformula of α occurring at the j-th position of the i-th

level under the global information ρ1.
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An interesting situation arises when the qumix ρ1 is an entangled pure state,

representing a global information about the atomic parts of α. As an example,

consider the formula α = ¬
∧

(q,¬q, f) (which represents an example of the non-

contradiction principle formalized in the quantum propositional language). The

global information might be the following entangled state:

|ψ4〉 =
1√
2
|110〉+

1√
2
|000〉 ! Level4(α) = (q,q, f)

The reduced states turn out to be the following:

red1(P|ψ4〉) =
1

2
P

(1)
0 +

1

2
P

(1)
1 = red2(P|ψ4〉), red

3(P|ψ4〉) = P
(1)
0

Hence, the contextual information about both occurrences of q is the (proper)

mixture 1
2P

(1)
0 + 1

2P
(1)
1 . At the same time, the contextual information about f is

projection P
(1)
0 (representing the Falsity). Hence, the information about the whole

is more precise than the information about the parts.

6. Compositional and holistic quantum computational semantics

Two kinds of quantum computational semantics have been investigated35: a compo-

sitional and a holistic semantics. In the compositional semantics, the meaning of a

molecular formula is determined by the meanings of its parts (like in classical logic).

In this framework, the input-information about the top level of the syntactical tree

of a formula α is always associated to a factorized state ρ1 ⊗ . . . ⊗ ρAt(α), where

ρ1, . . . , ρAt(α) are qumixes of C2. As a consequence, the meaning of a molecular

α cannot be a pure state, if the meanings of some atomic parts of α are proper

mixtures.

We can now introduce the basic definitions of the holistic semantics. The main

concept is the notion of holistic model : a function UHol that assigns to any formula α

of the quantum propositional language a global meaning, which cannot be generally

inferred from the meanings of the parts of α. Of course, the function UHol shall

respect the logical form of α like in the standard semantic approaches.

Definition 6: Holistic model.

An holistic model is a map UHol that associates a qumix to any formula α of L,

satisfying the following conditions:

(1) UHol(α) is a density operator in H(At(α));

(2) Let Levelji (α) and Levelkh(α) be two nodes of the syntactical tree of α, ρi and

ρh the corresponding information about Leveli(α) and Levelh(α) determined

by ρ1 = UHol(α) and by the qumix tree. Then,

(2.1) if Levelji (α) = f , then redj(ρi) = P0;

(2.2) if Levelji (α) and Levelkh(α) are two occurrences in α of the same formula,

then redj(ρi) = redk(ρh).
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Conditions (2.1) and (2.2) guarantee that UHol(α) is well behaved: the contextual

meaning of f is always the Falsity, while two different occurrences in α of the

same atomic formula have the same contextual meaning. Given a formula α, UHol

determines the contextual meaning of any occurrence of a subformula β in α with

respect to the context UHol(α). Let β be a subformula of α occurring at the j-th

position of the i-th level of the syntactical tree of α. Let (ρk, . . . , ρ1) be the sequence

of qumixes determined by ρ1 = UHol(α) and by the qumix tree of α. The contextual

meaning of β with respect to the context UHol(α) is defined as follows:

UHolα(β) = redj(ρi).

Apparently, UHolα is a partial function that only assigns meanings to the subfor-

mulas of α. Given a formula α, we will call the partial function UHolα a contextual

holistic model of the language. Suppose now that β is a subformula of two differ-

ent formulas γ and δ. Generally, we have UHolγ(β) 6= UHolδ(β). In other words,

formulas may receive different contextual meanings in different contexts!

From the computational point of view, the unique possibility to determine the

contextual meanings of the subformulas of a given formula is by non-linear and

anti-unitary operators.

In this framework, compositional models can be described as limit-cases of holis-

tic models.

Definition 7: Compositional model.

Let (ρk, . . . , ρ1) be the sequence of qumixes determined by UHol(α) and by the

qumix tree of α. A model UHol is called compositional iff the following condition is

satisfied for any formula α: ρk = UHol(q1) ⊗ . . . ⊗ UHol(qt), where q1, . . . ,qt are

the atomic formulas occurring in α.

As expected, unlike holistic models, compositional models are context-independent.

Suppose that β is a subformula of two different formulas γ and δ. We have

UHolγ(β) = UHolδ(β) = UHol(β).

Moreover, in the compositional context one can use an exact unitary strategy

in order to compute the output-information about α, given the input-information

about the atomic parts of α, by setting the rotation axis of the devices which

implement the gates. In particular, for arbitrary states of linearly polarizations

light, one can use the unitary operators
√
Not1(0, 0, 0),

√
I(0, 0, 0) and the usual

CCNot35.

The notion of logical consequence in the framework of the holistic quantum

computational semantics represents a reasonable variant of the standard notions

of logical consequence. Let us first define the notion of consequence in a given

contextual model.

Definition 8: Consequence in a given contextual model and Logical consequence.

A formula β is a consequence of a formula α in a given contextual model UHolγ

α |=UHolγ β) iff α and β are subformulas of γ and UHolγ(α) � UHolγ(β) (where �
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is the preorder relation defined in 4). A formula β is a consequence of a formula α

in the holistic semantics iff for any formula γ such that α and β are subformulas of

γ and for any UHol, α |=UHolγ β.

We call UHQCL the logic that is semantically characterized by the logical

consequence relation and UCQCL the logic that is semantically characterized by

the class of all compositional quantum computational models. One is dealing with a

nonstandard forms of unsharp quantum logic, where the noncontradiction principle

breaks down (2 ¬(α ∧ ¬α)), while conjunction is not idempotent (α 2 α ∧ α).

Interestingly enough, distributivity is here violated “in the wrong direction” with

respect to orthodox quantum logic. For, α ∧ (β ∨ γ) |= (α ∧ β) ∨ (α ∧ γ), but not

the other way around!

We will now prove that UHQCL is strictly weaker than UCQCL.

Theorem 9: α |=UHQCL β y α |=UCQCL β, but not the other way around.

Proof: α |=UHQCL β y α |=UCQCL β, because compositional models are special

examples of holistic models.

α |=UHQCL β 6y α |=UCQCL β, Consider the following counterexample. Let

α =
∧

(q,¬q, f), β =
∧

(
√
idf ,
√
idf , f), γ =

∧
(α, β, f). We define a holistic UHol

that assigns to the top level of the syntactical tree of γ a pure state, whose first

component is entangled.

|ψ4〉 =
1√
2

(|10〉+ |01〉)⊗ |00000〉 ! Level4(γ) = (q,q, f , f , f , f , f)

|ψ3〉 =
1√
2

(|000〉+|110〉)⊗1

2
(|000〉+|010〉+|100〉+|110〉)⊗|0〉 ! Level3(γ) = (q,¬q, f ,

√
idf ,
√
idf , f , f)

|ψ2〉 =
1√
2

(|000〉+|111〉)⊗1

2
(|000〉+|010〉+|100〉+|111〉)⊗|0〉 ! Level2(γ) = (α, β, f)

|ψ1〉 ! Level1(γ) =
∧

(α, β, f)

Hence, p(UHolγ(α)) = 1
2 , p(UHolγ(β)) = 1

4 . Consequently, α 6|=UHolγ β. At the same

time, one can easily show that for any compositional model UHol, α |=UHol β.

The counterexample clearly shows how entanglement is responsible for the cre-

ation of somewhat pathological holistic models in comparison with the composi-

tional semantics.

In Dalla Chiara et al.35 the following unitary operators were used instead of√
UNot,

√
UI and UT:

For any n ≥ 1, the square root of the not on H(n) is the linear operator
√
Not

(n)

such that for every element |x1, . . . , xn〉 of the computational basis B(n):
√
Not

(n)
(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗

1√
2

((1 + i)|xn〉+ (1− i)|1− xn〉).
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For any n ≥ 1, the square root of the identity on H(n) is the linear operator
√
I
(n)

such that for every element |x1, . . . , xn〉 of the computational basis B(n):
√
I
(n)

(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗
1√
2

((−1)xn |xn〉+ |1− xn〉).

For any n ≥ 1 and any m ≥ 1 the controlled-controlled-not gate is the linear

operator T(n,m,1) defined on H(n+m+1) such that for every element |x1, . . . , xn〉 ⊗
|y1, . . . , ym〉 ⊗ |z〉 of the computational basis B(n+m+1):

T(n,m,1)(|x1, . . . , xn〉⊗ |y1, . . . , ym〉⊗ |z〉) = |x1, . . . , xn〉⊗ |y1, . . . , ym〉⊗ |xnym � z〉,

where � represents the sum modulo 2.

Lemma 10: Let UHol be a model and let Hol be a model with the above unitary

operators35 such that for any atomic sentence q: UHol(q) = Hol(q). Then, for any

sentence α of L:

p(UHol(α)) = p(Hol(α)).

Proof: The proof is by induction on the length (i.e. the number of connectives) of

α.

Corollary 11:

(i) For any model UHol, there exists a model Hol such that for any α of L:

p(UHol(α)) = p(Hol(α)).

(ii) For any model Hol there exists a model UHol such that for any α of L:

p(Hol(α)) = p(UHol(α)).

Theorem 12: α |=UHQCL β iff α |=HQCL β

Proof: The theorem is a direct consequence of the above Corollary.

Hence, each UHQCL and its corresponding HQCL with the above unitary

operators35 are the same logic.

7. Acknowledges

We wish to thank F. De Martini, G. Cattaneo, M.L. dalla Chiara and R. Giuntini

for very useful suggestions and discussions this paper originated from.

References

1. G. Cattaneo, M. L. Dalla Chiara, R. Giuntini and R. Leporini, ”An unsharp logic
from quantum computation”, Int. J. Theor. Phys., 43 (2004), 1803–1817.

2. G. Birkhoff and J. von Neumann, ”The logic of quantum mechanics”, Annals of
Mathematics, 37 (1936), 823–843.

3. M. L. Dalla Chiara and R. Giuntini, ”Quantum logics”, in G. Gabbay and F. Guenth-
ner (eds.), Handbook of Philosophical Logic, vol. VI, Kluwer, Dordrecht, 2002, 129–228.



Quantum logics with bounded additive operators 15

4. J. P. Rawling and S. A. Selesnick, ”Orthologic and quantum logic: Models and com-
putational elements”, Journal of the ACM, 47 (2000), 721–751.

5. S. A. Selesnick, ”Foundation for quantum computing”, Int. J. Theor. Phys., 42 (2003),
383–426.

6. D. W. Qiu, ”Automata theory based on quantum logic: some characterizations”, In-
formation and Computation, 190 (2004), 179–195.

7. M. S. Ying, ”Automata theory based on quantum logic I”, Int. J. Theor. Phys., 39
(2000), 985–995.

8. M. S. Ying, ”Automata theory based on quantum logic II”, Int. J. Theor. Phys., 39
(2000), 2545–2557.

9. P. Mateus and A. Sernadas, ”Exogenous quantum logic”, in W.A. Carnielli, F.M.
Dionisio and P.Mateus (eds.), Proceedings of CombLog’04, Workshop on Combination
of Logics: Theory and Applications, 141-149, 1049-001 Lisboa, Portugal, 2004.

10. K. Engesser, D. Gabbay and D. Lehmann, ”Nonmonotonicity and Holicity in Quan-
tum Logic”, in K. Engesser, D. Gabbay and D. Lehmann (eds.), Handbook of Quantum
Logic and Quantum Structures, North-Holland, 2009, 587–624.

11. S. Gudder, ”Quantum computational logic”, Int. J. Theor. Phys., 42 (2003), 39–47.
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