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Abstract: In this paper we propose to use a Markov chain in order to price
contingent claims. In particular, we describe a non parametric markovian ap-
proach to price American and European options. First, we discuss the risk
neutral valuation of the non parametric approach. Secondly, we examine the
problems of the computational complexity and of the stability with respect to
the number of the states of the Markov chain. Finally, we propose an ex post
comparison between the Markovian model and the Black and Scholes one.
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1 Introduction
After the Black-Scholes option pricing model many studies have attempted to
cope with the different contradictions emerged in the empirical tests of this
model. While many researchers indicate the lognormal distribution hypothesis
of the financial return as not too satisfying hypothesis, many others find the
constant volatility of the financial price as the great weak point of the model.
There exist a wide literature on the improvements performed on this pioneer
model. Many efforts have been destined to make stochastic the volatility and
others to make the distributional hypothesis more realistic on the price process.
This paper shows a simple non-parametric way to model the contingent

claims without assessing a distributional form a priori for the asset price and
without the necessity of a valuation of parameters such as the volatility. The
methodology presented enters in the class of the Markovian option pricing mod-
els. Among markovian models we essentially distinguish two categories: para-
metric models (see, among others, Duan and Simonato (2001); Duan, et al.
(2003) and among semi-Markovian models see Limnios, Oprisan (2001), Blasi
et al.(2003), D’Amico et al. (2005)), and nonparametric models. In the first
category the Markovian hypothesis is used for diffusive models of the under-
lying returns. In the second category of models only the historical series are
used to estimate the option prices. Thus nonparametric models have the main
advantage in their capacity of adapting to the underlying return distributions.
This paper deals with a nonparametric markovian model, that differently by the
nonparametric derivatives models deal in literature (see, among others, Hutchin-
son, et al.(1994), Ait-Sahalia (1996, 1998), Stutzer (1996)),. explicates directly
the markovian hypothesis assuming that the time evolution of the returns is
described by a Markov chain. Thus our nonparametric approach is different
respect to those based on the parameter estimations, those that use the Markov
Chains to approximate such parameters and those that use neural network or
only the historical series to approximate the option prices. With this model
we are able to price American/ European and path dependent options and us-
ing the Markov chain properties we are able to simplify the computation of the
derivative prices in reasonable times. Generally the resulting prices are different
from those obtained with the Black and Scholes model even if this difference
is strongly reduced when we use simulated log-returns. Therefore the ductility
of the model suggests that one of the main applications should be for energy
derivatives which are strongly influenced by the seasonality of the price.
The paper first presents the model discussing the risk neutral valuation when

we consider either state dependent prices or state independent prices. Secondly
we discuss the computational complexity of the algorithm and the stability of
the prices with respect to the number of the states of the Markov chain. Finally
we examine the empirical differences between the Black and Scholes model and
the nonparametric markovian one.
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2 Nonparametric Markovian Trees
Let us assume the time evolution of underlying asset return follows a Markov
chain with N states. Doing so, we want to construct a multinomial recombining
tree of the asset price with more degrees of freedom than the classical binomial
tree. In particular, we assume that the gross return z has support on the interval
(min

t
zt;max

t
zt), where zt = St+1/St is the t-th return observation and St is the

value of the security at time t. By convention, through all the paper, we count
the states beginning from that with the greatest value. Then we build the
transition matrix as follows:

1. we share in N intervals Ii = (ai; ai−1) (small enough) the return support
(min

t
zt;max

t
zt) where a0 = max

t
zt, ai = uimax

t
zt, u = N

q
min
t

zt/max
t

zt

and i = 1, ..., N ;

2. we assume that inside the interval Ii the return is given by the geometric
mean of the extremes, i.e., z(i) :=

√
ai−1ai = ui−0.5max

t
zt;

3. we build the transition matrix Ps =
£
pi,j;(s)

¤
1≤i,j≤N where the probability

pi,j;(s) points out the probability valued at time s to transit from the state
z(i) to the state z(j) conditional of being in the i-th state.

Since the tree recombines at each step, the number of nodes increases linearly
with the number of the time steps. For this reason we can control and limit the
computational complexity. Thus, after k∆t intervals of time we have (N−1)k+1
nodes (i.e., the multinomial tree growths linearly with the time). Starting to
count from the highest node, after k steps the j-th node has:

• value in the interval: I(k)j = ((uj+
k−1
2 )

³
max
t

zt

´k
, (uj+

k−3
2 )

³
max
t

zt

´k
);

• gross return: z(j)k := uj+
k
2−1

³
max
t

zt

´k
;

• stock price: S0z(j)k j = 1, . . . , (N − 1)k + 1.

Next we consider an homogeneous Markov chain with transition matrix
P = [pi,j ]1≤i,j≤N . In this case we assume the maximum likelihood estimate
of probability pij which is simply given by the ratio of the count of the appro-
priate cells, i.e., pij ' nij

ni
where nij is the number of times the return transit

from the state i-th to the state j-th and ni =
NP
k=1

nik is the number of times

the return is in the i-th state. However, we could consider a non homogeneous
Markov chain taking into account the behavior of the prices in different periods.
Therefore, we can model and value differently the transition matrixes when the
underlined prices change its behavior during the maturity period. For example,
if we have a seasonal price, like those observed in the energy markets, we can
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compute different transition matrixes in order to consider the week-end effect
and/or the season effect.
Once we get the transition matrix, we have to find adequate answers to the

following three issues that should be object of the next sections:

a) how one obtains the risk neutral valuation starting from the market-based
transition probability;

b) what we can say about the valuation procedure for European and American
contingent claims and the main greek letters;

c) discuss the stability of the solutions with respect to the number of the states.

3 Risk neutral valuation
Let us assume the dividend of one unity of wealth invested in a given asset during
the period [t0, t] is given by exp (q(t− t0)) , where q describes the intensity of
the dividend and suppose exp (−r(t− t0)) is one unity of wealth discounted
at time t0 where we assume that r defines a fixed short term interest rate.
With markovian trees we can generally distinguish two possible risk neutral
valuations:

1. a risk neutral price that is state independent;

2. a risk neutral price that is state dependent.

The two cases require a different valuation of the risk neutral transition
matrix, that we should denote respectively with bP and P.

3.0.1 State independent Risk Neutral Valuation

Let us assume no arbitrages are allowed. Then there exists a risk neutral mea-
sure such that the value “today” is equal to the expected value of the future
wealth discounted with the risk-free gross return. With a Markov chain this is
equivalent to write:

NX
i=1

p̂iÊ(z/z ∈ Ii) = exp (r − q) (1)

where t0 = 0, Ê(z/z ∈ Ii) is the risk neutral expected value of the future return
conditional on being in the i-th state, and p̂i is risk neutral probability of being
in the i-th state. Clearly in incomplete markets could exist more than one risk
neutral measure satisfying the no arbitrage criterion. One criterion proposed in
literature considers the minimal entropy martingale measure (see Stutzer (1996),
Frittelli (2000) and the reference therein). On the other hand, the use of the
minimal entropy martingale measure can be motivated by maximum expected
utility arguments (see Frittelli (2000)).
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In our context, we find the minimal entropy martingale measure with respect
to the unconditional probability measure P = {pjpj,k}1≤i,j≤N where pjpj,k is
the unconditional probability to transit from the state j to the state k. As
observed by Frittelli (2000), in order to get the minimal entropy martingale
measure in the discrete case, we have to compute the value θ, unique for all the
states, that is obtained as a solution of the equation:

exp (r − q) =

NP
j=1

pj
NP
k=1

pj,kz
(k) exp

¡
θz(k)

¢
NP
j=1

pj
NP
k=1

pj,k exp
¡
θz(k)

¢ . (2)

Then the risk neutral unconditional probability to transit from the state j to
the state k is given by:

p̂j p̂j,k =
pjpj,k exp

¡
θ∗z(k)

¢
NP
j=1

pj
NP

m=1
pj,m exp

¡
θ∗z(m)

¢ , 1 ≤ i, j ≤ N.

where θ∗ is the solution of equation (2). Therefore, we write the risk neutral
transition matrix considering the following transition probabilities

p̂j,k =
pj,k exp

¡
θ∗z(k)

¢
NP

m=1
pj,m exp

¡
θ∗z(m)

¢ (3)

and the probability of being in the j-th state is given by

p̂j =

pj
NP
k=1

pj,k exp
¡
θ∗z(k)

¢
NP
j=1

pj
NP

m=1
pj,m exp

¡
θ∗z(m)

¢ .
Therefore, once we estimate the transition matrix P = [pi,j ]1≤i,j≤N , we can find

the corresponding risk neutral transition matrix bP = [p̂i,j ]1≤i,j≤N that could be
used in the risk neutral valuation of contingent claims. Let ep = [p̂1, ..., p̂N ] be
the row vector of risk neutral unconditional probabilities of the different states.
Then if we point out with ez = [z(1), ..., z(N)]0 the vector of the possible states
the fundamental theorem of asset pricing after one period is simple given byep bPez = exp (r − q) .

Note that in the discrete case the minimal entropy martingale measure coincide
with the minimal variance martingale measure and with the Esscher trasform
risk neutral measure (see Gerber, Shiu (1994, 1996)) often used to price con-
tingent claims with Levy processes (see Schoutens (2003)). Moreover, since we
apply a risk neutral valuation that is independent on the state, we have not nec-
essarily to correct the transition matrix as we do in the next state dependent
valuation.
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3.0.2 State dependent Risk Neutral Valuation

Let us assume that the gross return z at time t0 = 0 is in the i-th state. When
no arbitrage opportunities are allowed, then

Ê(z/z ∈ Ii) = exp (r − q) (4)

where Ê(z/z ∈ Ii) is the risk neutral expected value of the future return condi-
tional on being in the i-th state. However, we can find a risk neutral measure
that satisfies condition (4) only if

exp (r − q) ∈ [z(ji∗), z(j∗i )], (5)

where ji∗ = max
1≤j≤N

{j/pij > 0} and j∗i = min
1≤j≤N

{j/pij > 0} . In particular, it
could happen that for some extreme states we cannot guarantee condition (4)
holds since we have not enough observations of these extreme states and the
probability approximations in the transition matrix are not sufficiently accurate.
In order to overcome this problem, we can opportunely correct the original
transition matrix P = [pi,j ]1≤i,j≤N such that condition (5) is satisfied. For

example, suppose for the state "i" exp (r − q) /∈ [z(ji∗), z(j∗i )], then we correct
the i-th row of matrix P as follows:

a) Suppose exp (r − q) < z(ji∗). We assume pij =

⎧⎨⎩
εi if j = j∗

pij − εi
mi

if j : pij > 0
0 otherwise

where εi is an opportunely little value belonging to the interval

(0,

min
1≤j≤N

{pij/pij > 0}

mi
),

mi is the number of indexes j in the i-th row of P such that pij > 0 and
j∗ = max

1≤j≤N

©
j/z(j) < exp (r − q)

ª
.

b) Suppose exp (r − q) > z(j
∗
i ). We assume pij =

⎧⎨⎩
εi if j = j∗

pij − εi
mi

if j : pij > 0
0 otherwise

where εi is an opportunely little value belonging to the interval

(0,

min
1≤j≤N

{pij/pij > 0}

mi
),

mi is the number of indexes j in the i-th row of P such that pij > 0 and
j∗ = min

1≤j≤N

©
j/z(j) > exp (r − q)

ª
.

The corrected matrix (that with abuse of notation we call again P) permits to
overcome some misapplications problems deriving by a non sufficiently accurate
approximation of the transition matrix. Once we correct transition matrix P,
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condition (5) is satisfied for every state. Thus, for every state we can determine
the minimal entropy martingale measure that satisfy condition (4). Hence, for
every state i = 1, ..., N, we compute the value θ(i), obtained as a solution of the
equation:

exp (r − q) =

NP
k=1

pi,kz
(k) exp

¡
θ(i)z

(k)
¢

NP
k=1

pi,k exp
¡
θ(i)z(k)

¢ . (6)

Then the risk neutral transition matrix P = [pi,k] should contain the risk neutral
conditional probabilities given by:

pi,k =
pi,k exp

³
θ∗(i)z

(k)
´

NP
m=1

pi,m exp
³
θ∗(i)z

(m)
´ , 1 ≤ i, j ≤ N,

where θ∗(i) is the solution of equation (6). Using this risk neutral transition
matrix we get that

Pez = exp (r − q) 1N ,

where ez = [z(1), ..., z(N)]0 is the vector of the possible states after one period
and 1N is the unity vector column.

4 Valuation procedure for European and Ameri-
can contingent claims and computational com-
plexity

Given an asset with gross return z, then we can build the tree of the underlying
price. Thus starting from a price in a generic node, we could generate N pos-
sible future prices (depending on the N possible future states). On the other
hand, the original price should be conditioned from the state of provenance (N
possible backward states). This aspect is fundamental in the state dependent
valuation because the procedure must take into account of the previous steps.
The state dependent and the state independent risk neutral valuations allow us
to determine a backward computation of contingent claims particularly useful
for American derivatives. However, for European contingent claims, we can
also propose an alternative state dependent forward valuation that is generally
different from the previous ones. Thus, we can generally consider two different
types of valuation procedures: forward and backward. The first one is used
for European contingent claims, whilst the second one is a much more versa-
tile approach that can be used for American, European and path dependent
derivatives.
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4.1 State dependent forward valuation of European con-
tingent claims

Recent studies have proposed a simple algorithm to determine the return dis-
tribution function on a recombining markovian tree after k periods of time (see
Iaquinta and Ortobelli (2006)). Therefore an easy way to compute the value
of European contingent claims consists in using the Iaquinta and Ortobelli’s
recursive algorithm that presents computational complexity of O(N3k2) order.
In this framework we apply the same algorithm to the transition matrix P of
an homogeneous Markov chain in order to obtain the distribution after k pe-
riods of time. The forward procedure of the algorithm builds a sequence of
matrixes Qk of dimension ((N-1)k+1)×N such that, after k periods of time,
the return probabilities in the (N-1)k+1 nodes of the tree are given by the vec-
tor Qk1N where 1N is the unity vector column. Note that each node of the
tree is simultaneously achievable from different states. Thus each node could
be in different states and this depends on the provenance state. In particular
Qk = [q(k)j,i]1≤j≤(N−1)k+1

1≤i≤N
, where q(k)j,i is the probability of being in i-th state

and in the j-th node (counting from the highest node) after k periods of time.
Therefore, if we suppose the initial state is the i-th one, then the first transition
matrix is the diagonal matrix with the discounted probabilities corresponding
to the i-th row of P on the diagonal, i.e., Q1 = diag(pi1, ..., piN ). Instead, the
other matrixes are given by Qk = diagM(Qk−1P ), where the diagM operator
performs a diagonalization process consisting in the following two operations
applied to Qk−1P :
1. shift below the s-th column of s-1 spaces for s=2,. . . ,N, creating a new

matrix ((N-1)k+1)×N ;
2. fill all the new spaces with zeros.
In order to get the minimal entropy martingale measure that is risk neutral

with respect the distribution after k periods of time, we have to compute the
unique value θk, solution of the equation:

exp ((r − q) k) =

(N−1)k+1P
j=1

NP
i=1

q(k)j,iz
(j)
k exp

³
θkz

(j)
k

´
(N−1)k+1P

j=1

NP
i=1

q(k)j,i exp
³
θkz

(j)
k

´ . (7)

Then the risk neutral unconditional probability of being in the j-th node after
k steps is given by:

eq(k),j =
NP
i=1

q(k)j,i exp
³
θ∗kz

(j)
k

´
(N−1)k+1P

j=1

NP
i=1

q(k)j,i exp
³
θ∗kz

(j)
k

´ , 1 ≤ j ≤ (N − 1)k + 1
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where θ∗k is the solution of equation (7). Let f(T ) = [f(T ),1, ..., f(T ),(N−1)T+1]
0 the

vector of contingent claim value at maturity T. Then the price of the European
contingent claim is simply given by:

exp (− (r − q)T ) eq0(T )f(T ).
This is a forward risk neutral valuation of the price with computational com-
plexity of O(N3T2) order.
In this valuation we do not correct the transition matrix as we suggest

in the previous state dependent valuation, since we implicitly assume that
exp ((r − q)T ) belongs to the support of the gross return after T periods of
time i.e.:

z
(k∗)
T ≤ exp ((r − q)T ) ≤ z

(k∗)
T ,

where

k∗ = max
1≤j≤(N−1)T+1

(
j/aj =

NX
i=1

q(T )j,i > 0

)
and

k∗ = min
1≤j≤(N−1)T+1

(
j/aj =

NX
i=1

q(T )j,i > 0

)
.

This inequality is generally verified when T is big enough. Even for this reason
we could expect some differences in the price valuations when we do not correct
the transition matrix before applying the recursive algorithm to compute the
return distribution after T periods of time.

4.2 The backward valuation procedure for American and
European contingent claims

The backwards pricing of derivatives proceeds as any other standard backward
process, distinguishing the state dependent and state independent valuations.
State dependent backward valuation:
In the state dependent valuation each node represents different values in de-
pendence on the previous provenance state. It is the case to observe that this
seemingly complication of a node with multiply values, due to the recombining
purpose of the tree, allows a great advantage in order to save computational
time and the memory usage.
Since the tree is multinomial, the single node considered has N possible final

nodes representing the final payoff of the derivative. A single backward step in
the expected discounted process consists of the matrix multiplication between
the discounted transition matrix transformed (as previously explained) and the
vector of the final payoff. The result is a vector of N elements which represent
the different values of the node in dependence of the provenance state.
The description of the entire European option pricing process is offered

through its algorithm form. Let consider a recombining multinomial price tree
composed by M time steps and N branches for each node. Then we can build
the tree of the contingent claim.
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1. Suppose we have the final payoff atM -th step (the j-th payoff from above
is given by fM :j). Starting to count from the highest node then at the j-th
node (for j = 1, ..., (N − 1) (M − 1) + 1) we consider the vector of payoffs
f̃M :j = [fM :j , ..., fM :j+N−1]

I . Thus, at the (M − 1)-th step we consider
the (N − 1)(M − 1) + 1 vectors of discounted possible prices:

ẽ
fM−1:j = exp (q − r)P f̃M :j .

However, in this step we get more prices than those we have in the tree. In
order to eliminate the prices which are not on the tree, we have to reorder
the vectors that should be discounted in the backward process.

2. We build the new vectors f̃M−1:k =
h
˜̃f
(1)
M−1:k, ...,

˜̃f
(N)
M−1:k+N−1

iI
for k =

1, . . . , (N − 1)(M − 2) + 1 where ˜̃f (i)M−1:s is the i-th component of vector:

ẽ
fM−1:s = exp (q − r)P f̃M :s.

3. After s steps we have at the j-th node (starting from above) the vector:

ẽfs:j = exp (q − r)P f̃s+1:j

and the new recombining (N−1)(s−1)+1 vectors f̃s:k =
h
˜̃f
(1)
s:k , ...,

˜̃f
(N)
s:k+N−1

iI
k = 1, . . . , (N − 1)(s− 1) + 1.

4. At the first step we have only one vector f̃1:1 =
h
˜̃f
(1)
1:1 , ...,

˜̃f
(N)
1:N

iI
. The

value of the contingent claim depends on the state Im we begin from and
it is given by the m-th component of exp (q − r)P f̃1:1.

The complexity of this algorithm is the same of the state dependent for-
ward valuation (i.e., of O(N3k2) order). As a matter of fact, in the back-
ward procedure the algorithm above can be summarized as follows. We build
a sequence of matrixes of payoffs Fk = [f̃k:1, ..., f̃k:(N−1)(k−1)+1] of dimension
N×((N-1)(k-1)+1). Thus, given the final payoff matrix FM the other matrixes
are given by Fk = reductM(exp (q − r)PFk+1), where the reductM operator
performs a reduction process consisting in the following two operations applied
to exp (q − r)PFk+1:
1. at the s-th row, cancel the first s-1 values for s=2,. . . ,N and the last N-s

for s=1,. . . ,N -1 ;
2. shift on the left the s-th row of s-1 spaces for s=2,. . . ,N, creating a new

matrix ((N-1)(k-1)+1)×N (without considering the cancelled spaced of the first
operation).
Finally the contingent claim price is given by them-th component of exp (q − r)PF1

when we suppose that the initial state is the m-th one. Observe that this re-
duction process is in some sense the inverse operation of the diagonalization
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process and it has the same computational complexity. This algorithm can be
easily adapted to compute American options. For example, if we value an Amer-
ican put with exercise price X for every s less than the time to maturity (i.e.,
s ≤M − 1), in the backward procedure, we have to consider the vector

f̃s:k =
h
max

³
˜̃f
(1)
s:k ,X − S0z

(k)
s

´
, ...,max

³
˜̃f
(N)
s:k+N−1,X − S0z

(k+N−1)
s

´iI
,

k = 1, . . . , (N−1)(s−1)+1. Moreover, even if this approach is not parametric
we can also approximate the greek letters which are often used to hedge the
investors’ positions.. However, in this case we take into account the incremental
ratios with their risk neutral probability. Suppose at time zero we are on the m-
th state, then after one period we have the vector of contingent claims f̃1:1 whose
the k-th component is realized with the risk neutral probability pm,k. In order
to estimate the delta (∆ = ∆f

∆S ) of the option, we have
¡
N
2

¢
incremental ratios

∆ij =
1
S0

˜̃
f
(i)
1:i−

˜̃
f
(j)
1:j

z(i)−z(j) with probability estimates qij =
pm,i+pm,j

N−1 for i = 1, ..., N −1,
j = i+ 1, ..., N. Thus, an estimate of delta after one period conditioned by the
starting state m is given by the average

∆(m) =
N−1X
i=1

NX
j=i+1

qij∆ij .

To determine gamma (Γ = ∂2f
∂S2 ) note that we have

¡
N
2

¢
estimates of delta ∆ij

after one period. Therefore after one period we have
¡
N
2

¢ ³¡
N
2

¢
− 1
´
estimates

of gamma Γijsk =
∆ij−∆sk

0.5S0(z(i)+z(j)−z(s)−z(k))
with probability estimates qijsk =

qij+qsk

2((N2 )−1)
for i, s = 1, ...,N − 1, j = i+ 1, ..., N, k = s+ 1, ..., N and i, j 6= s, k.

Thus, an estimate of gamma after one period conditioned by the starting state
m is given by the average:

Γ(m) =
N−1X
s=1

NX
k=s+1

N−1X
i=1

NX
j=i+1

qijskΓijsk,

where we have not considered i, j 6= s, k since when i = s ∧ j = k we get
Γijij = 0.
State independent backward valuation:
With the state independent valuation we get a price at each step instead of

a vector of prices since we have not to take into account the state of provenance.
Let consider a recombining multinomial price tree composed by M time steps
and N branches for each node. Then we can build the tree of the contingent
claim.

1. Suppose we have the final payoff atM -th step (the j-th payoff from above
is given by fM :j). Starting to count from the highest node then at the j-th
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node (for j = 1, ..., (N − 1) (M − 1) + 1) we consider the vector of payoffs
f̃M :j = [fM :j , ..., fM :j+N−1]

I . Thus, at the (M − 1)-th step we consider
the (N − 1)(M − 1) + 1 prices:

fM−1:j = exp (q − r) ep bP f̃M :j ,

and we build the new vectors f̃M−1:k = [fM−1:k, ..., fM−1:k+N−1]
I for

k = 1, . . . , (N − 1)(M − 2) + 1.

2. Thus, after s steps we have at the j-th node (starting from above) the
price:

fs:j = exp (q − r) ep bP f̃s+1:j
and we build the new (N −1)(s−1)+1 vectors f̃s:k = [fs:k, ..., fs:k+N−1]I
k = 1, . . . , (N − 1)(s− 1) + 1.

3. At the first step we have only one vector f̃1:1 = [f1:1, ..., f1:N ]
I and the

value of the contingent claim is given by exp (q − r) ep bPf̃1:1.
Observe that the complexity of this algorithm is the same of the state de-

pendent one (i.e., O(N3k2) order) and, even in this case, we can easily adapt
the algorithm to value an American contingent claim. So in order to value an
American put with exercise price X for every s less than the time to maturity
(i.e., s ≤M − 1), in the backward procedure, we have to consider the vector

f̃s:k =
h
max

³
fs:k,X − S0z

(k)
s

´
, ...,max

³
fs:k+N−1,X − S0z

(k+N−1)
s

´iI
,

k = 1, . . . , (N−1)(s−1)+1. Similarly to the state dependent valuation of greek
letters we get the

¡
N
2

¢
incremental ratios b∆ij =

1
S0

f1:i−f1:j
z(i)−z(j) with probability

estimates bqij = PN
m=1 p̂m

pm,i+pm,j

N−1 . Thus, an estimate state independent of
delta after one period is given by the average

∆ =
N−1X
i=1

NX
j=i+1

bqij b∆ij

In order to compute a state independent valuation of Gamma we use the
¡
N
2

¢ ³¡
N
2

¢
− 1
´

estimates of gamma bΓijsk = ∆ij−∆sk
0.5S0(z(i)+z(j)−z(s)−z(k))

with probability estimates

bqijsk = qij+qsk

2((N2 )−1)
for i, s = 1, ..., N − 1, j = i + 1, ...,N, k = s + 1, ..., N and

i, j 6= s, k. Thus, an estimate of gamma after one period is given by the average:

Γ =
N−1X
s=1

NX
k=s+1

N−1X
i=1

NX
j=i+1

bqijskbΓijsk.
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Figure 1: This figure reports the values of an European call 
on the S&P500 computed with the nonparametric 
markovian trees varying the number of states of the Markov 
chain. 

5 Stability of the price valuation
From the analysis of the backward valuation procedure we understand that the
stability of the price depend on the opportune number of states N used in the
pricing valuation. From a simple empirical analysis we could observe that the
price of contingent claims do not substantially change with N greater than 50.
In particular, we consider historical data from January 1995 to August 2005
of Dow Jones Industrials, S&P500 and Nasdaq and we compute the price of
several European puts and calls changing the number of the states (from 10 to
200) the strikes (five in the money and five out the money) and the time to
maturity (7) for a total of 210 possible options. We compute the prices with a
state dependent valuation and with a state independent valuation. While there
exist differences in the prices, we generally do not observe differences in stability
between the two procedures. Moreover, for all the experiments we obtain the
stability of the price with N around 40, while, for N lower than 40, we not
always have a stable price.
Figure 1 and 2 summarize two of these experiments for a call and a put on

the S&P500. The graphs show clearly how increasing the number of the states
the prices tend to be stable and it makes sense to consider at least 50 states.
On the other hand, the valuation of the price of contingent claims with

the above algorithms requires few seconds using a notebook dual centrino with
one Gb of Ram. As a matter of fact, Figure 3 reports the graphs with the
seconds necessary to compute the price of an European call with a backward
state dependent valuation and considering the mean of 10 prices with maturity
20, 40, 60, 90, 120 trading days and states varying between (41-50), (51-60)
(61-70) (71-80).
In view of this simple empirical analysis, next we consider as contingent
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Figure 2: This figure reports the values of an European put on 
the S&P500 computed with the nonparametric markovian 
trees varying the number of states of the Markov chain. 
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F igu re 3 : T h is figu re reports the num bers o f seconds 
necessary to  com pute th e m ean  of 10  p rices o f E uropean  
calls w ith  d ifferent m aturities com puted varyin g the 
num ber of the states of th e M arkov  chain . 

14



claim price, the average of the prices obtained with transition matrixes from 40
to 60 states.

6 An empirical comparison

In this section we propose a comparison between nonparametric markovian op-
tion prices and the prices obtained under the Black and Scholes assumptions.
First of all we compute the differences of valuation when we assume the hypothe-
ses of the Black and Scholes model holds. Then we describe the differences of
prices computed using real data.
In order to value the performance of our model when we assume the same

hypotheses of the Black and Scholes model, we propose a MonteCarlo simulation
comparison. In particular, we generate 10000 Gaussian scenarios N(0.002,0.03)
of log returns. We assume that the risk free rate is 4% and the price of the stock
today is 50 USD. Then we compute the prices of call options with 20, 40, 60 days
to maturity considering different exercise prices X (X=42, 44, 46, 48, 50, 52,
54, 56, 58). For all the options we compute the real Black and Scholes price the
Black and Scholes estimated price, the price estimated with the backward state
dependent and state independent valuation. Then we compute the average of the
differences observed by estimated models and the real Black and Scholes prices.
We observe that the estimated Black and Scholes price differs in average of about
0.0001 USD from the real one, while both the backward state dependent and
state independent valuation differ in average of about 0.00025 USD. Therefore,
this analysis confirms that the nonparametric markovian models well fit the
underline distribution and we do not observe significative differences between
the state dependent and state independent valuations. On the other hand,
it is well known that log returns are not Gaussian distributed (see Rachev and
Mittnik (2000)). In an analysis of long time distributions Iaquinta and Ortobelli
(2006) have recently shown that the approximation of the long time return
distributions with a nonparametric markovian tree presents much better fit
than that obtained assuming log-normal distributed returns. Therefore we
expect that the prices computed with markovian trees are more precise than
those obtained with the Black and Scholes model. Using historical data from
January 1995 to August 2005 of Dow Jones Industrials, S&P500 and Nasdaq
we compute some of these differences in Table 1. In particular Table 1 reports
the values of European calls and puts valued in different weeks between July
and August 2005. We assume maturity T = 60; exercise price X = E(ST )
and risk-free rate equal to the Treasury Bill 3 months. Since we have not
observed significative differences between the backward state dependent and
state independent valuation, in this table we consider only the state dependent
one.

As we can observe from the table there exist significative differences between
the pricing models much higher that those observed under the Black and Sc-
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Table 1 
This table summarizes some of the differences we observe on European 
options valued for the Dow Jones Industrials, Nasdaq and S&P500 when we 
consider or the non-parametric Markovian model or the Black and Scholes 
one.   

Price of Options with T=60 days to maturity and Strike price equal to E(ST) 
Dow Jones Industrials 

 1st week 2nd week 3rd week 4th week 5th week 
Call 374.0771 375.2497 375.2559 376.3665 376.4187 Nonparametric 

MKV Put 374.0771 375.2497 375.2559 376.3665 376.4187 
Call 363.3221 364.4487 364.5591 365.516 365.5856 Black and Scholes 

  Put 362.7763 363.8909 363.9958 364.9513 365.0102 
   Nasdaq 

Call 118.6815 119.543 119.456 120.5268 120.4506 Nonparametric 
MKV Put 124.6223 125.524 125.4358 126.5597 126.4811 

Call 117.4822 118.3118 118.2607 119.2999 119.2681 Black and Scholes 
  Put 117.3741 118.2009 118.1488 119.187 119.1531 
   S&P500 

Call 41.96457 42.23176 42.2164 42.39177 42.42173 Nonparametric 
MKV Put 41.96457 42.23176 42.2164 42.39177 42.42173 

Call 41.69187 41.93954 41.929 42.10166 42.13395 Black and Scholes 
  Put 41.63079 41.87694 41.8659 42.03822 42.06927 

holes assumptions. Therefore it makes sense to consider this modelization as
alternative to the classic Black and Scholes one.

7 Concluding remarks
We have proposed a Markovian model to price contingent claims. The model is
nonparametric, ductile and it presents a reasonable computational complexity.
Using the minimal entropy martingale measure as risk neutral valuation, we
have studied the stability of the price with respect to the number of the states.
Moreover we have proposed an ex-post empirical comparison with the Black and
Scholes model showing the ductility of the model with respect to the underline
distribution.
The model here proposed consider only a homogeneous Markov chain to

value European and American derivatives. However, it can be easily extended
assuming non homogeneous Markov chains to value plain vanilla and path de-
pendent options. We also observe that the transition probability matrix asso-
ciated with the Markov chain is usually sparse. It means that many elements
of this matrix are numerically negligible. This property is important because it
deeply reduces the computational cost of the algorithm (see Zlatev (1991) and
Broyden, Vespucci (2004)). Therefore we believe that the computational time
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of O(N3k2) order could be further reduced taking into account this fact.
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