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ABSTRACT. In this article, various issues relatedhe implementation of the usual
Bayesian Information Criterion (BIC) are criticallgxamined in the context of
modelling for finite populations. A suitable desigased approximation to the BIC
is proposed in order to avoid the derivation of th@ct likelihood of the sample
which is often very complex in a finite populatisampling. The approximation is

justified using a theoretical argument and a M@aelo simulation study.

1. Introduction

Survey researchers frequently use statistical nsodbwever, such models, known
as a superpopulation models (Deming and Stephefil)l@re generally used to
describe the finite populations of interest and basn used earlier for evaluation,
sampling design development and making inferences egher the relevant
superpopulation or the finite population parametehs the analytic use of survey
data (Deming 1953) where the main goal is to addwasious scientific questions,
inference for the superpopulation parameters irmaportant than that for the finite
population parameters. Graubard and Korn (2008fudised the importance of
inference for superpopulation parameters usingeyudata and cited a number of
practical examples such as the estimation of sopelption means, linear regression
and logistic regression coefficients using com@ervey data from the U.S. National
Health Interview Survey, the third National Headitnd Nutrition Examination Survey
and the 1986 National Hospital Discharge Survey.

Selection of a model among different plausible n®des received considerable
attention in the statistical literature. The Ing#t of Mathematical Statistics (IMS)
monograph on model selection edited by Lahiri (306@ntains four long review
articles that critically examine various classieald Bayesian approaches to model

selection. For further important developments hie Bayesian literature on the



subject see also Spiegelhaléeal. (2002). The impact of the superpopulation model
misspecification has been studied by Holt et @8(Q), Hansen et al. (1983), among
others. However, to our knowledge the relatedeissiumodel selection, especially
the well-known likelihood based methods such aBii@zhas received little attention
in the survey research literature.

If the full specification of the superpopulatiokélihood for the finite population is
possible, there is conceptionally no problem iniuieg the likelihood for the
complex sample and so an extension of the BICnitefpopulation sampling in such
a situation is quite straightforward. Finite pogidas studied in many social and
economic surveys are in general very complex ardrbgeneous. For this reason
some survey researchers feel “that most statisticatiels in finite population
inference are either wrong or (at best) incompl€k&itt, 1989). Also, the public-
use file for the sample may not contain all thesvaht information required to
specify the complete likelihood of the sample. this paper, we discuss a simple
approach to approximate the BIC for the analysisashplex survey data that avoids
the complete specification of the sample likelihood

In Section 2, we review the Bayes factor and itati@n to the BIC for hypothetical
infinite population. In Section 3, we criticallx@mine two possible ways to adapt
the BIC in the context of the finite population gdimg. The first approach consists
in finding a formula for the BIC based on the syogulation likelihood for the finite
population and then estimating this finite popwatBIC. We argue that this model
selection criterion does not even work for a simpyg@othesis testing problem, a
special case of model selection, with data coltedig a simple random sampling
with replacement. This approach makes the disaggeebetween the data and the
null hypothesis look more than it really is. T$exond approach is the BIC based on
the sample likelihood. This certainly provides aiameaningful model selection
criterion. However, quite often we do not have twmnplete information in the
public-use file to specify the complete likelihotat the sample. In Section 3, we
discuss the impact of model misspecification on BI€ based on the sample
likelihood.



In Section 4, we propose a new model selectiorerait which is essentially the
Wald’s statistics based on the weighted surveymedtir of the superpopulation
parameter of interest and its randomization-basaiance estimator. Our model
selection criterion is robust and can be usedexample, to test the significance of a
regression coefficient with unspecified distribatifor the error term using complex
survey data. We show that under certain regulactpditions, the new model

selection criterion is indeed an approximation e BIC for a large sample. In
Section 5, we verify the regularity conditions favo commonly used sampling
designs. We provide results from a Monte Carlousation studies in Section 6. Our
simulation results demonstrate the good performaofceghe new criterion in a

complex situation involving clustered binary datdthwunknown intra-cluster

correlation and in a regression problem with hefleedastic errors and unequal

selection probabilities.

2. The Bayes Factor and the BIC

The Bayesians frequently use the Bayes factor (BRypothesis testing and model

selection problems. To illustrate the BF, Iy;t:(yl,...,yn) be an independent and
identically distributed i{d) sample from a distribution belonging to a famdy
probability distributions parameterized by(3,6) with dim(/3,6)=mand
dim(,B) =m,. Consider the following hypothesis testing prolalem

M,:8=6, versus M GOR™™ (1)

The BF is defined to be the ratio of tlgosteriori and theapriori odds in favour of
the larger modeM:

£ = Prob(M1y,) / prob(M) _ [ P(¥|8.6) (5.6)dpde
prob(M,|y,)/ prob(M,) Ip(yswﬁo)ﬂo(ﬂ)dﬁ '

(@)



The calculation of the BF requires a full specitica of the prior distributions for the
parameters in botiv, andM. In many applications rules for “objectively” sefimg

priors have been proposed (see Berger and PeB66ii). Alternatively, one can use
a suitable approximation to the logarithm of the. BBne popular approximation is

the Bayes Information Criterion (Schwartz, 1978)egi by:
s=-M-T

logn,
whereA =€(,@,é)—€0([§’,90), the logarithm of the likelihood ratio, and([?,@),
EO([)’, 490) denote the log-likelihood undét and M, evaluated at the corresponding

maximum likelihood estimator(s,@’, 67) and (,5’ 6?0) of (B,8)respectively.

The statisticSis based on the Laplace approximation to the mtegppearing in the
numerator and denominator of (2). See Kass and &kassin (1995) for details. The
guality of the approximatio® to the logarithm of the Bayes Factor depends en th
prior distributions of the unknown parameters unifigrandM. In general, it is rather
crude since it neglects terms up to a constantrordslonetheless, Kass and

Wassermann (1995) showed that for a suitable chafitlee prior distributions (e.g.,

unit information prior)

S=logBF +0, (n‘”z).
Moreover, the Bayes Information Criterion is alsgpplar among the frequentists
because it incorporates a penalized deviance ionitert should also be stressed that

S is a consistent model selection method, i.e.,oné of the hypotheses (models)
being tested is true, the BIC selects the true thgsis with probability 1 as the

sample size tends to infinity. For the problem ($)goes to +© (—oo) with
probability one ifM (M,)) is true.

In a hypothesis testing probler8,can be compared against the scale of evidence

introduced by Jeffreys (1961) as an alternativéhto frequentist scale of evidence



introduced by R.A. Fisher in the 1920s. For a dss@an and comparison between the
Jeffreys’ and Fisher’s scales of evidence, seenEdral Gous (2001).

3. Two possible approachesto adapt bic to the finite population sampling

For this section and the rest of the paper, we seeatk notations. Leéd ={1,---, N}
denote the units of a finite population of knowmedN. Let :(yl,...,yN), where
y, is the value of a characteristic of interest foe ith unit of the finite population
(i=1,---,N). Let p(s) be the probability of drawing a particular samplkeom the

universe of all possible sample§ Thus, p(s)=0 ande(s):l Let
sas

d, ={d.:i0g , whered. contains all possible design and other auxiliafgrimation
on the unitiOs. For example,d may contain information on the label and

sampling weightw; for the unitids . The sampling weighty; is defined as the
inverse of the inclusion probability for the uniénd represents a certain number of
units in the finite population. Define ={y,:i0g and z =[d,, y,] .

In the following two subsections, we shall disctygs possible approaches to extend

the BIC to select model for the superpopulationyforand point out possible

difficulties in implementing them in complex survegta analyses.

3.1.An estimator of the finite population BIC

Let the observationyg, (i =1,---,N) of the finite population be generated randomly
fromN(H,l). Consider the following hypothesis testing promlea special case of
model selection:

M,:8=0 M,:8%0. 3)
If all units of the finite population were obseryeden it is easy to see that the BIC
based on all the observations in the finite pojpartais given by

N_, 1
Spop(yu)=5y5—5|09N- (4)



We call S.p (Y, ) the finite population BIC. Of course, we cannoé B (Y, )

sincey, is unknown. Lety, be a design consistent estimatogpf An estimator is

design consistent estimator of the correspondingefipopulation parameter if the
estimator approaches in the probability inducedh®sy sampling design to the true

finite population parameter Bs- . Replacing ¥, by a design-consistent

estimator?U , the following naive model selection criteriorolstained:

N

2, 1
SPIugm(Zs):Eyj _ElogN (5)

Remark: We observe that, sinoe< N, the limit n - .o makes sense only in a
setting in which the population siZ¢ is also allowed to increase. We assume a
mathematical definition of the limit fom — o which is consistent with most
literature on inference in finite population sampli A description of this framework
may be found in Isaki and Fuller (1982).

We note that the simple plug-in approach as desdrébove does not work even for
a simple random sampling with replacement. Underdampling design, whey is
very large compared to (the sample size), one would expect a reasonabit fi
population sampling implementation & to be very close to the following standard
BIC S,; obtained under the assumption of independentlyidewtically distributed
observations from a normal population:

Sio(Ys) = nf -lzlog n. 6) (

This is a reasonable expectation since in this saeple random sampling from a

finite population can be regarded as a random s&fnph the assumed hypothetical
superpopulation.

But, if we replacey, in (5) by the usual design-consistent estimgtorve obtain:

P Gl EER TN
Sun(@) S () = g2 =Zin[ @)



This difference tends to 0 whem - N but, forn fixed, it diverges to infinity as
N - o and not to 0 as we would like. This implies that N large enough, (5)

provides stronger evidence againt, than (6) does. The reason is that (5)

approximates th8 we would have obtained if all the units in theitBnpopulation
were observed and thereby making the disagreenmewebn the data and the null

hypothesis look more than it really is.

3.2.The BIC based on the exact likelihood for the sample

Like in the standard BIC calculation for a hypotbait infinite population, this
approach is also based on the sample likelihoocdhweder, we must obtain the
sample likelihood using the superpopulation modelthe finite population and the
sampling design used. For an informative samplihig, is quite complicated since
under such sampling the sample likelihood couldvery different from the finite
population likelihood. Even for non-informative nggling, spcification of a
reasonable sample likelihooh could be a formidabik for a variety of reasons.
Survey populations usually have complex structuaed misspecification of the
assumed model is quite likely (see Kott 1991). Algaite often the analyst may not
have all the necessary information in the publie-tit,e which makes modeling
difficult. We now illustrate this point through argle example.

Let the observations in the finite population benmally distributed with common
mean d. We assume that the observations within the saluster are equally
correlated, the common intra-cluster correlatiomtpe. Furthermore, observations
from two different clusters are assumed to be uetated. We consider the same
testing problem on the overall population méas in (3).

For the finite population described in the previgasagraph, a cluster sampling is
often employed. Suppose we have a finite populatibrsize N divided into M

clusters each of sizél,. A sample ofm clusters is selected by simple random

sampling (with replacement) and all the units o #ampled cluster are selected.

Thus,n=mN,. In this case a suitable model fgris given by



y; =0+a; +g;,
wherea;and g;’s are all uncorrelated With/(aj)=r<1andv(qj)=( tr) for

j=1,...m i=1..N, Note that marginallw(yi) =1 so we are consistent with the

model assumed in thel case. This leads tg, as the maximum likelihood estimator

of 8 and to the following BIC:

_1 oy _1
S(ZS)_2{1+(NC—1)T} 29" o)

We note that

Sip (yS) -S(z) = nzsz {15_'2";:?]31-} '

whereS, (V,), given in (6), is the appropriaBC when there is no clustering of the

population units. The error increases within other words, if we neglect the
clustering of the population units, we shall rejgna null hypothesis more often than
we really should.

Unfortunately, unlike the previous example thelllkeod for the sample may be very
complicated and in some cases it may be even inipess write down. To this end,

reconsider the same hypothesis testing problem3dfbased on a probability

proportional to size with replacement sampling ihick the size variableX is

positively correlated with the target variabfe One can consider a model for
f(yS |d, = xs) However, we are interested in testing a hypothdsir the
superpopulation meafthat characterizes the marginal distributionYaind not the
mean conditional oiX. Since the sampling design is not simple randampding
and larger values of are more likely to be observed, we need to oldamarginal

likelihood for y, by integrating outx;:

F(y) = [ F(ys %) T (%) x,
This is certainly not as simple as the previousv@la. Actually, when analyzing

data from complex surveys we observe a sample Yrpulp. A researcher may not



be interested inf (y|ds) but may be interested in an appropriate margiradeh-

one that averages out some of the population festimcorporated in the sampling
design. For instance, one may be interested imgestypothesis about the overall
population mean, ignoring possible differences agndhe means of different
subgroups of the population. In general, someeaiegf aggregation in modelling
may be necessary in complex surveys from a firofgufation (see Holt, 1989).

In any case, the calculation of the BIC based enstimple likelihood requires that
we use all information needed to specify a suitabtelel forf (y,|d,). This may
not be the case in many applications. It is typibat the analyst may not be provided
with all the information about the sample desigh @oly with the survey weights,
defined as the inverse of the inclusion probabsitand adjusted for post-stratification

and non-response.

4. A Robust Design-Based Approximation to the BIC.

Let y, be a realization from an underlying superpoputatsstribution characterized

by a parameted. We are interested in testing,:8=6, vsM_ :6#6,. In this
case theBIC is given byS=A —%Iogn, where A :f(é)—ﬁ(eo) is the logarithm of

the likelihood ratio.

As noted in the previous section, it is often difft or even impossible to obtain an
exact expression of the sample likelihood due toraplex population structure. In
this section, we shall consider a design-based oappation to theS The
approximation essentially involves an estimatofatfising the following method and

its design consistent variance estimator.

Let U(yU,H):O be an estimating equation #r The squtionT(yU) of the
equationU (y,,T(y,))=0 is known as the corresponding descriptive popusati

quantity (CDPQ) of. We can estimaf®(y,) by a design-based estimaiqrz,).

1C



For example, f(zs) could be obtained using the pseudo-maximum likelth

approach. A thorough discussions of this clasa@thods can be found in the book
of Sarndal, Swensson and Wretman (1992).
We propose the following model selection criterion:

1 1
SDB :EWDB _El()gn’ (9)

where W, :{\7D ('Ic(zs))}_l(‘lc(zs)—670)2 and V, ('I:(zs)) is a design-consistent
estimator ofV, ( A(zs)) , the variance of(zs) under the randomization distribution.
In sample surveys, the design effect is define®e$ =V, (‘f(zs)){vSRS (‘f(ys))} -
where VSRS('I:(yS)) is the randomization variance of the un-weightetingator

'f(ys) of T(y,) under a simple random sampling of size The design effect

corrects the variability of the survey estimator the complexities in the survey
design. For, example, both weighting and clustetisually increase the variability
of a survey estimator and in such cases the dedfgot helps inflating the simple

random sampling variance. See Lynn and Gabler (200t effective sample size is
defined asn" =n/Deff and it can be interpreted as the sample size simple
random sampling that is as efficient as the comerdmg sample size for a complex
survey. Usuallyn'is smaller tham.

We obtain a different model selection criteriorny Sg,(n"), when we replace byn’

in (9). However, we note that the order Iog(Deff) is often small compared to
ﬁ(é)—f(ﬁo). Thus, asymptotically S,;(n') 0S,z(n) in most cases since
Iog(n*) = log(n) - log( Deff ) .

The following proposition shows tha&,; approximatesS well, the error of

approximation being lower than the one used to@pprate logBF by S.

Proposition 1: Assume the following regularity conditians

11



(i) (@—90) =0, (n‘l’z) under modelM,, whereO; (n'l’z) denotes a stochastic order
with respect to the superpopulation distributn

(i) the log-likelihood function, i.e., ¢(8) is twice differentiable with

0% (z.6)
06?

—f"(é)=l(90)+05(n‘1’2), where I(90)=—E{ } is the Fisher
6=6,

information matrix evaluated & ;
(iii) T(z)=8+0,(n™?), whereo,, (n™'?) denotes a stochastic order with respect

to the compound model/randomization distributioé ;

Moreover assume that
(i) Vo (T(2)) ={1 (&)} +0p¢ (n7).
Under regularity conditions (i)-(iii) and assumpti¢v) we have
S-S =on(n'1’2).
Proof. Using the Taylor series expansion&(@) aroundd,, we have
A=1(8)-0(8)=-21(8,)(6-8,) +o1(6-8,)]
0 2 0 0 (3 0
so that regularity conditions (i) and (ii) imply
1. - 2 _ 1 - 2 _
A== (6)(8-8,) +o,(n vz (6,)(6-8,) +o, (n2).
Now using regularity conditions (iii) and (iv), wave
~ 2
Wog =1 (6,)(8-6,) +05¢ ().

The theorem now follows from the fact thaSDB=%WDB—%Iogn and

1
S=A1-=logn.
> g

Remark: We note that the regularity conditions of Kass &Mdssermann (1995),
given in their section 2, are analogous to our mgsions i) and ii). Thus, we can

conclude that under i) and ii) and unit informatmiors

12



log BF =S, +O0,p, (n'”z).

5. Two examples
In this section, we shall verify the regularity ditions needed to prove Theorem 1

for two well-known sampling designs and the asdediauperpopulation models.

Example 1: One stage cluster sampling and the associated one-way random effects
model (asin Sinner 1989, p. 37).

Consider a clustered finite population describedthry following superpopulation
model

y; =0+a; +e;,
wherea; and g are uncorrelated WithV(aj):ra§ and V(qj):(l—r)aj,

j=1..M, i=1..N Note thatr can be interpreted as the intra-cluster

¢t

correlation coefficient.

Suppose we are interested in testig: 6 =6, vsM, :6 =6, based on a one-stage
cluster sample in whicin clusters are selected by a simple random sampleouti
replacement.

For the one-way random effects model, we Iﬁv@s. Condition (i) is a standard

property of the maximum likelihood estimator in uéay problems. In order to verify

)= [1+(N. -1 7)o}

condition (ii), note thatI(H0 , (see Searle, Casella and

McCullogh, p. 80) and the fact that the log-likelihofehction is a quadratic form

with —6(9) free from @ and y,. Under the sampling desigf,(z)=6 so

condition (iii) is trivially verified.

Turning to condition (iv), we note that under théuster sampling design:

T(Y)=%, T(z)=V,. Thus,8=T(y,) and

13



v, (5.)= N,\In [1+(N, =1 7] 2

n

wheres] = (n—l)_lz:(yi ~y.)?. Condition (iv) can now be verified by showingth

E{\?D(VS)} ={1(a)" +o(n) andv{ (ys)} o(n), whereE andV denote the

expectation and the variance with respect to dehsampling design and the model.

Example 2. Two-stage sampling and the associated one-way random effects model
We consider the same one-way random effects modellae same testing problem
for a two-stage sampling wherma primary stage units (psu) are first selected by a

simple random sample without replacement and thesecondary stage units are

randomly selected from each sampled psu. In téecit can be shown theat Y.

and | (50) = [:|_.|.(nC fl) T]U§ .

Verification of conditions (i)-(iii) is similar tahat of the one-stage cluster sampling

case. To verify condition (iv), we first note th'E\( Yo ) =V, 'I:(z) =Y., and

_ N-n 1( N
V(7)== ﬁ(gljsy

where s} :mnilz(yj —75)2 ands;, = (
=1

m N _
)ZZ(M;‘Y,-) (see Cochran,

=1 i=1

1977, Theorem 10.2). Noting thsf -n—li[1+ (n.-1)7]s; we have

vV, (V.) =

2, L[N, 2
1)T:|Sy +N(n—c_1JSye.

Verification of condition (iv) is now similar to #t of Example 1.

6. Monte Carlo simulation

14



As mentioned in the introduction, the main advaetay our proposed model
selection criterionS,; is that it can be applied even when the eB€t(S;.) cannot

be obtained because of the unavailability of th@cesample likelihood. However, it
is important to understand its performance whenstraple likelihood can be fully
specified so we can compare with the exact BIC gibld standard. In this section,
we achieve this goal using a Monte Carlo simulatitmorder to understand the role

of the sampling design, we include a naive B&;), a BIC that ignores the sampling

design, in our simulation study.

6.1 Effect of Clustering
We consider two artificial finite populations, eamtnsisting of M =200 clusters of

equal sizeN,=10. Thus, the size of each finite populationNis 2000. We

generate the finite populations using the followmngdel:

ind

vy |, ~Ber (7m);
_ (10)
ind —_
= Beta[ﬁ,l_ﬂj,
vy rv

i=1---,N.;j=1:-- M . Note that the above model implies that the common

marginal proportion and the common intra-cluster rredlation are u

andp = y( y+ 1)_1, respectively. The parametgr affects the skewness of the finite

population. The parameterindicates the level of the intra-cluster correlati Both

the populations are fairly skeweduE&0.25). The second population is more

clustered ¢ =0.3 or p=0.25) than the first populatioryE1 or p=0.5.)

As far as the sampling design is concerned, wenassa simple random sampling
(with replacement) of clusters and consider twdedgnt sample sizes=30and
n=60 (i.e., a sample of 3 and 6 clusters).

In summary, we consider four different settings raebterized by the values

summarized in Table 1.

15



Table 1: Different settings

Setting P (n,m)

1 0.5 (30,3)
2 0.5 (60,6)
3 0.25 (30,3)
4 0.25 (60, 6)

Let us consider the following hypothesis testinghpem:

My: =025 M, :u#0.25
If we completely ignore the clustering of the olysgions, we can specify a binomial
likelihood and compute our maximum likelihood esttmof i asiz=n"y, wherey
is the number of ones observed in the sample. Tetitic based on this incorrect
likelihood is referred to &,. On the contrary, if we consider the clustered
population model given by (10), we can specify ¢éixact Beta-Binomial likelihood
for the parameter vect(),u, y). In this case, the maximum likelihood estimé,fef/)
cannot be obtained in a closed form, but can bepatea using a numerical method
(see Griffiths, 1973 for details). THgstatistic based on this exact likelihood at the

sample level is referred to &s. The performances of5, and S,; are compared

with S .

In order to summarize the evidence provided byuagous statistics in favour or

against the null hypothesis, we consider the Idigewriof the scale of evidence
proposed by Jeffreys (1961) and the same cut-offtwd 1.1. Values lower than 1.1

are supposed to provide “positive” evidence in favof the model suggested by the
null hypothesis.

The entries in Table 2 represent the percentagamples with statistics lower than

1.1 over 1000 simulated samples, each drawn indigmely according to the

16



sampling design described above. Clearly, the efééaclustering onS is very
severe for all the three cases, the acceptance batieg considerably lower than
those using our gold stand&d The difference betwee, and S. increases with
the increase of the intra-cluster correlation. Tiherease in the sample size
contributes very little in resolving the differen@ur approximationS,;tracks S
very well even for this non-normal situation and domoderate sample size. Needless
to say, bothS,; and S are not affected by the variation of the intrastéu

correlation.

Table 2: Percentage of Sstatistics lower than 1.1 under M,

Sy S Sos
Setting 1 57 97 87
Setting 2 51 96 93
Setting 4 75 99 86
Setting 5 77 99 93

We also compare the behaviour of the three proesdunder a few selected

alternatives:ty ;, =0.5, ty+,=0.6, t,+5=0.75 iy, =0.9.

The entries of Table 2 and Table 3 have similarpretations.

Table 3: Percentage of the various S statistics lower than 1.1 under different null

hypotheses
SNajve SE SDB

Null Setting 1 64 75 71
Hypothesis 1: Setting 2 54 63 67
1, =05 Setting 3 37 64 69

AT Setting 4 23 49 58
NUl| Setting 1 51 59 65
Hypothesis 2: Setting 2 35 49 49
U, =0.6 Setting 3 23 51 51

ALT2 Setting 4 7 39 41
Null Setting 1 18 35 45
Hypothesis 3| Setting 2 8 31 27

17



HUn s =0.75 | Setting 3 4 27 4
Setting 4 0 9 12

Null Setting 1 4 7 26
Hypothesis 4: Setting 2 0 1 5
e, =0.9 Setting 3 0 6 17
AT Setting 4 0 0 2

Under all null hypotheses consideres},, and S. perform quite closely. They both
seem to be rather conservative in rejecting thé mypgothesis compared & . We
stress that sinc&; underestimates the variability in the data it eséimates the

evidence against the model suggested by the nuylothesis. Settings 1,2,3
correspond to high intracluster correlation coéfiits that reduce the effective

sample sizes substantially. For this reason &thand S. have problems in finding

positive evidence against the wrong model whes \tery close to the true one (e.g.,
null hypothesis 1). This effect is somewhat weakesettings 4 and 5 that correspond

to relatively lower intra-cluster correlation caefénts.

6.2 Effect of weighting and model misspecification
We shall now consider a situation when we hameragpsum sampling and study the
effect of weighting. In the same example, we shlb study the effect of model
misspecification. To this end, we a finite popwatigenerated using the following
superpopulation model:

Y, =B *¢

& ~[0,0°%*] 1<i<N 1D
with S=1, o® =1, N =100,00C. Population size is set to be large in order tkena

the effect of replacement negligible with all saenpdizes considered in this
simulation.

We are interested in testing

18



Ho:B=8, vs H,:B%p, (12)
based on a sample of simedrawn using a probability proportional to size §P
sampling with replacement, in which the size vdgab given byx’ 1<i<N.We

consider different sample sizes ranging fram 30 to n =500.
In this simulation study, we consider the followimgpdel selection criteria:
(@) The BIC based on the correct specification of theodel:

SNIB_ Az(ﬁMB :30) —Iogn

whereg,, = n‘lz ,andd?=n 1ZM

i0s )ﬂ i0s )ﬂ

(b) The BIC based on the iid model:

n

Sid:0~_2 (ﬂud ,Bo) —Iogn,
2 XY

whereB,, = ‘Di v and = n'lz( ud>§)
N i0s
i0s

(c) The proposed design-based BIC:

(éDB _ﬁo) _

V(B)

-1
whereB,, = (XSTV\/SXS)_1 X Wy, = (Z Yi ](Z X j '

iOs iOs

=logn,

Soe =

where v(éDB) is a design-consistent estimator of randomizati@riance

VDB( DB) obtained using either the linearization methodroller (1975) or the
jackknife. It can be shown that that under certedgularity conditions:
EMB[V(I%DB)} :VMB(B )+0( ) (Eys, Vys being moments with respect to

(11)). Kott (1991) showed that the result holds #orfairly general class of
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sampling designs that include the stratified mstiige sampling (with unequal

probability of selection at all stages).

We are interested in assessing the model-baseckntiexp of the proposed design-
based model selection criterion. Thus, for each tel@arlo replicate we generate a
finite population from model (11), draw a samplenir it using the PPS design and
then compute the three model selection criteria.

We consider two different null hypotheseg, =1 (i.e. the “null hypothesis” is
exactly true) andg, =1.3 (i.e. the “null hypothesis” is false). In both easthe null
model is compared against an unrestricted altemafis in previous simulations, the
cutoff point of 1.1 is used to discriminate betwdba two models, i.e. the models
corresponding to the “non rejection” and “rejectiar the null hypothesis. For a
given model selection criterion, if the statisticgreater than 1.1., we reject the null

hypothesis. Thus, fofs, =1, the smaller the rejection rate the better. Tpyosite is
true wheng, =1.3. In evaluating different model selection criteriane must
compare the rejection rates for bofy =1and £, =1.3 simultaneously. This is
because the rejection rate f@ =1can be small and even zero for some nonsensical

model selection criterion (e.g., for a model seterstatistics which is a constant less

than 1.1 will always produce a rejection rate erioz.

Table 4: Simulation results fgf, =1. Rejection rate over R=1,000 MC replicates

n Sue Soe Sia

30 0.120| 0.114| 0.033
100 | 0.070 0.068| 0.022
200 | 0.056 0.051| 0.010
300 | 0.046 0.040| 0.008
500 | 0.026 0.021| 0.004

Table 4 suggests th&,, has the lowest rejection rate. But, we explainatiezathis

table alone is not conclusive — we need to anal#e 4 and Table 5 together. Note
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that S;;has a small rejection rate simply because the vegi@stimator is severely

positively biased, leading to a very conservativedel selection criterion. A similar

argument can be used to explain why the rejecttanfor S,; is smaller than that for
Swe - The model-based estimator is more efficient thee design-based since its

variance is approximately 30% lower on the aver@ge Table 6) . For this reason

Sos appears to be more conservative tBan

Table 5. Simulation results fg§, =1.3. Rejection rate over R=1,000 MC replicates

n Sue Soe Sia
30 0.53| 042 0.14
100 0.87| 0.74 0.26
200 0.99| 0.93 0.42
300 1 0.99 0.59
500 1 1 0.76

Table 5 reports the rejection rates for the thredehselection criteria whe) =1.3.

In this case,S,; and S,; have both rejection rates converging to 1 with filst

being faster than the second. This is consistétft the fact that the model-based
estimation based on a correctly specified modapismal, and thus more efficient
than the design-based alternative. The effect afehmisspecification on the model-

based BIC, i.e.S,,, is now transparent — this model selection coterhas an

extremely low convergence. In fact, neglecting teteedasticity (and not correcting

by weights) leads to overestimation af .
It is interesting to note that in both case(éDB), the variance estimate based on the

linearization method of Fuller (1975), is approxteig unbiased for the model
variance ofB,,. This is consistent with the theory. The perfonoes of variance

estimators are described in Table 6:
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Table 6: MC comparison of f3,,,, Byg, V,, (/S’MB) : V( I§DB) , 1,000 replicates
" Ve (’;MB) |: ( )} Euc [VMBA(ﬁMB)} ~ Evc [V(AéDB)} _
VMC (BDB) |: :| VMC (ﬂMB) VMC (BDB)
30 0.74 0.71 -0. 072 -0.018
100 0.66 0.67 0.005 0.049
200 0.67 0.67 -0.005 -0.011
300 0.72 0.69 -0.025 0.012
500 0.71 0.70 -0.006 -0.001

Note that in Table &, (. ). Vi ( .) are the moments obtained from the empirical
distributon of Monte Carlo replicates andVMB(,BMB) AZ(X Q 1X)

Q:diagjsisn(xz) is the usual model-based variance @J{B under the correctly

specified model. Second column describes the velatariance of model-based and
design-based estimators: the model-based one is efficient, as expected. Third
column is the ratio between their variances asmestid by the method described
above. The second and the third columns are proyidonsistent results. Fourth and

fifth columns provide the relative biases of the delebased and design-based

variance estimators — it is clear thm(éDB)is performing very well in terms of

model-unbiasedeness criterion.

7. Concluding remarks

We have presented a robust approximation to thetB#€can be used with complex
survey data. Our method is expected to be usefituations where it isot possible
to obtain theexact likelihood for the sample since our proposed methoerely
requires an estimator of the superpopulation pat@meith good design-based
properties (e.g., pseudo-maximum likelihood) arsl design consistent variance
estimator. Thus, this paper fills in an importaegearch gap in the analytic use of

survey data.
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