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ABSTRACT. In this article, various issues related to the implementation of the usual 

Bayesian Information Criterion (BIC) are critically examined in the context of 

modelling for finite populations.  A suitable design-based approximation to the BIC 

is proposed in order to avoid the derivation of the exact likelihood of the sample 

which is often very complex in a finite population sampling.  The approximation is 

justified using a theoretical argument and a Monte Carlo simulation study.  

 

 

1. Introduction 

Survey researchers frequently use statistical models. However, such models, known 

as a superpopulation models (Deming and Stephen, 1941), are generally used to 

describe the finite populations of interest and has been used earlier for evaluation, 

sampling design development and making inferences on either the relevant 

superpopulation or the finite population parameters.  In the analytic use of survey 

data (Deming 1953) where the main goal is to address various scientific questions, 

inference for the superpopulation parameters is more important than that for the finite 

population parameters.  Graubard and Korn (2002) discussed the importance of 

inference for superpopulation parameters using survey data and cited a number of 

practical examples such as the estimation of superpopulation means, linear regression 

and logistic regression coefficients using complex survey data from the U.S. National 

Health Interview Survey, the third National Health and Nutrition Examination Survey 

and the 1986 National Hospital Discharge Survey. 

Selection of a model among different plausible models has received considerable 

attention in the statistical literature. The Institute of Mathematical Statistics (IMS) 

monograph on model selection edited by Lahiri (2002) contains four long review 

articles that critically examine various classical and Bayesian approaches to model 

selection.  For further important developments in the Bayesian literature on the 
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subject see also Spiegelhalter et al. (2002). The impact of the superpopulation model 

misspecification has been studied by Holt et al. (1980), Hansen et al. (1983), among 

others.  However, to our knowledge the related issue of model selection, especially 

the well-known likelihood based methods such as the BIC has received little attention 

in the survey research literature. 

If the full specification of the superpopulation likelihood for the finite population is 

possible, there is conceptionally no problem in deriving the likelihood for the 

complex sample and so an extension of the BIC to finite population sampling in such 

a situation is quite straightforward. Finite populations studied in many social and 

economic surveys are in general very complex and heterogeneous.  For this reason 

some survey researchers feel “that most statistical models in finite population 

inference are either wrong or (at best) incomplete” (Kott, 1989).   Also, the public-

use file for the sample may not contain all the relevant information required to 

specify the complete likelihood of the sample.   In this paper, we discuss a simple 

approach to approximate the BIC for the analysis of complex survey data that avoids 

the complete specification of the sample likelihood.   

In Section 2, we review the Bayes factor and its relation to the BIC for hypothetical 

infinite population.  In Section 3, we critically examine two possible ways to adapt 

the BIC in the context of the finite population sampling.   The first approach consists 

in finding a formula for the BIC based on the superpopulation likelihood for the finite 

population and then estimating this finite population BIC.  We argue that this model 

selection criterion does not even work for a simple hypothesis testing problem, a 

special case of model selection, with data collected by a simple random sampling 

with replacement.  This approach makes the disagreement between the data and the 

null hypothesis look more than it really is.   The second approach is the BIC based on 

the sample likelihood.  This certainly provides us a meaningful model selection 

criterion.  However, quite often we do not have the complete information in the 

public-use file to specify the complete likelihood for the sample.  In Section 3, we 

discuss the impact of model misspecification on the BIC based on the sample 

likelihood. 
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In Section 4, we propose a new model selection criterion which is essentially the 

Wald’s statistics based on the weighted survey estimator of the superpopulation 

parameter of interest and its randomization-based variance estimator.  Our model 

selection criterion is robust and can be used, for example, to test the significance of a 

regression coefficient with unspecified distribution for the error term using complex 

survey data. We show that under certain regularity conditions, the new model 

selection criterion is indeed an approximation to the BIC for a large sample.  In 

Section 5, we verify the regularity conditions for two commonly used sampling 

designs.  We provide results from a Monte Carlo simulation studies in Section 6.  Our 

simulation results demonstrate the good performance of the new criterion in a 

complex situation involving clustered binary data with unknown intra-cluster 

correlation and in a regression problem with heteroskedastic errors and unequal 

selection probabilities. 

 

 

2. The Bayes Factor and the BIC 

The Bayesians frequently use the Bayes factor (BF) in hypothesis testing and model 

selection problems. To illustrate the BF, let ( )1,...,s ny y y=  be an independent and 

identically distributed (iid) sample from a distribution belonging to a family of 

probability distributions parameterized by ( ),β θ  with ( )dim , mβ θ = and 

( ) 0dim mβ = . Consider the following hypothesis testing problem: 

0
0 0: versus : m mM Mθ θ θ −= ∈�      (1) 

The BF is defined to be the ratio of the aposteriori and the apriori odds in favour of 

the larger model M: 

( )
( )

( )
( )

( ) ( )
( ) ( )0 0 0 0

| , ,|
.

| | ,

ss

s s

p y d dprob M y prob M
BF

prob M y prob M p y d

β θ π β θ β θ

β θ π β β
= = ∫

∫
 (2) 
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The calculation of the BF requires a full specification of the prior distributions for the 

parameters in both 0M  and M. In many applications rules for “objectively” selecting 

priors have been proposed (see Berger and Pericchi 2001). Alternatively, one can use 

a suitable approximation to the logarithm of the BF.  One popular approximation is 

the Bayes Information Criterion (Schwartz, 1978) given by: 

0 log
2

m m
S nλ −= − , 

where ( ) ( )0 0
ˆ ˆ, ,λ β θ β θ= − �� � , the logarithm of the likelihood ratio, and ( )ˆ ˆ,β θ� ,  

( )0 0,β θ��  denote the log-likelihood under M and 0M  evaluated at  the corresponding 

maximum likelihood estimators ̂ ˆ( , )β θ and ( )0,β θ� of ( , )β θ respectively. 

The statistic S is based on the Laplace approximation to the integrals appearing in the 

numerator and denominator of (2). See Kass and Wassermann (1995) for details. The 

quality of the approximation S to the logarithm of the Bayes Factor depends on the 

prior distributions of the unknown parameters under 0M and M. In general, it is rather 

crude since it neglects terms up to a constant order.  Nonetheless, Kass and 

Wassermann (1995) showed that for a suitable choice of the prior distributions (e.g., 

unit information prior)  

( )1/ 2log pS BF O n−= + . 

Moreover, the Bayes Information Criterion is also popular among the frequentists 

because it incorporates a penalized deviance criterion.  It should also be stressed that 

S is a consistent model selection method, i.e.,  if one of the hypotheses (models) 

being tested is true, the BIC selects the true hypothesis with probability 1 as the 

sample size tends to infinity. For the problem (1), S goes to +∞  ( )−∞  with 

probability one if M ( 0M ) is true.  

In a hypothesis testing problem, S can be compared against the scale of evidence 

introduced by Jeffreys (1961) as an alternative to the frequentist scale of evidence 



 6

introduced by R.A. Fisher in the 1920s. For a discussion and comparison between the 

Jeffreys’ and Fisher’s scales of evidence, see Efron and Gous (2001).  

 

3. Two possible approaches to adapt bic to the  finite population sampling 

For this section and the rest of the paper, we need some notations.  Let {1, , }U N= �  

denote the units of a finite population of known size N. Let ( )1,...,U Ny y y= , where  

iy  is the value of a characteristic of interest for the ith unit of the finite population 

( 1, , )i N= � .  Let ( )p s  be the probability of drawing a particular sample s from the 

universe of all possible samples S. Thus, ( ) 0 and ( ) 1.
s S

p s p s
∈

≥ =∑  Let 

{ : }s id d i s= ∈ , where id  contains all possible design and other auxiliary information 

on the unit i s∈ .  For example, id  may contain information on the label and 

sampling weight wi for the unit i s∈  .  The sampling weight wi is defined as the 

inverse of the inclusion probability for the unit i and represents a certain number of 

units in the finite population.  Define { : } and [ , ]s i s s sy y i s z d y= ∈ = .  

In the following two subsections, we shall discuss two possible approaches to extend 

the BIC to select model for the superpopulation forUy  and point out possible 

difficulties in implementing them in complex survey data analyses. 

 

3.1. An estimator of the finite population BIC 

Let the observations yi ( 1, , )i N= �  of the finite population be generated randomly 

from ( ),1N θ .  Consider the following hypothesis testing problem, a special case of 

model selection: 

0 1: 0 : 0M Mθ θ= ≠ .                                                                   (3) 

If all units of the finite population were observed, then it is easy to see that the BIC 

based on all the observations in the finite population is given by 

( ) 2 1
log

2 2POP U U

N
S y y N= − .                                                           (4) 
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We call ( )POP US y  the finite population BIC. Of course, we cannot use ( )POP US y  

since Uy  is unknown.  Let ̂Uy be a design consistent estimator ofUy .  An estimator is 

design consistent estimator of the corresponding finite population parameter if the 

estimator approaches in the probability induced by the sampling design to the true 

finite population parameter asn → ∞ .  Replacing Uy  by a design-consistent 

estimator̂ Uy , the following naïve model selection criterion is obtained: 

( ) 2 1ˆ log .
2 2Plugin s U

N
S z y N= −                                                                (5) 

Remark:  We observe that, sincen N≤ , the limit n → ∞  makes sense only in a 

setting in which the population size N is also allowed to increase. We assume a 

mathematical definition of the limit for n → ∞  which is consistent with most 

literature on inference in finite population sampling. A description of this framework 

may be found in Isaki and Fuller (1982). 

 

We note that the simple plug-in approach as described above does not work even for 

a simple random sampling with replacement.  Under this sampling design, when N is 

very large compared to n (the sample size), one would expect a reasonable finite 

population sampling implementation of S  to be very close to the following standard 

BIC IIDS  obtained under the assumption of independently and identically distributed 

observations from a normal population:  

 
2 1

( ) log .
2 2

s
IID s

ny
S y n= −                                                   (6) 

This is a reasonable expectation since in this case simple random sampling from a 

finite population can be regarded as a random sample from the assumed hypothetical 

superpopulation. 

But, if we replace Uy  in (5) by the usual design-consistent estimatorsy , we obtain: 

 
( ) 2 1

( ) ( ) ln .
2 2Plugin s IID s s

N n N
S z S y y

n

−  − = −  
 

             (7) 
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This difference tends to 0 when n N→  but, for n fixed, it diverges to infinity as 

N → ∞  and not to 0 as we would like. This implies that for N large enough, (5) 

provides stronger evidence against 0M  than (6) does. The reason is that (5) 

approximates theS  we would have obtained if all the units in the finite population 

were observed and thereby making the disagreement between the data and the null 

hypothesis look more than it really is. 

 

3.2. The BIC based on the exact likelihood for the sample 

Like in the standard BIC calculation for a hypothetical infinite population, this 

approach is also based on the sample likelihood.  However, we must obtain the 

sample likelihood using the superpopulation model for the finite population and the 

sampling design used.  For an informative sampling, this is quite complicated since 

under such sampling the sample likelihood could be very different from the finite 

population likelihood.  Even for non-informative sampling, spcification of a 

reasonable sample likelihooh could be a formidable task for a variety of reasons.  

Survey populations usually have complex structures and misspecification of the 

assumed model is quite likely (see Kott 1991). Also, quite often the analyst may not 

have all the necessary information in the public-use file which makes modeling 

difficult. We now illustrate this point through a simple example.  

Let the observations in the finite population be normally distributed with common 

mean θ.  We assume that the observations within the same cluster are equally 

correlated, the common intra-cluster correlation being τ. Furthermore, observations 

from two different clusters are assumed to be uncorrelated.  We consider the same 

testing problem on the overall population mean θ as in (3). 

For the finite population described in the previous paragraph, a cluster sampling is 

often employed. Suppose we have a finite population of size N divided into M 

clusters each of  size cN . A sample of m clusters is selected by simple random 

sampling (with replacement) and all the units of the sampled cluster are selected.  

Thus, cn mN= .  In this case a suitable model for sy is given by 
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,    ij j ijy eθ α= + +  

where jα and ije ’s are all uncorrelated with ( ) ( ) ( ) <1and 1j ijV V eα τ τ= = −  for 

1,..., 1,..., .cj m i N= =  Note that marginally ( ) 1iV y =  so we are consistent with the 

model assumed in the iid case.  This leads to sy  as the maximum likelihood estimator 

of θ  and to the following BIC:  

( ) ( ){ }
21 1

log
2 21 1

s
s

c

ny
S z n

N τ
= −

+ −
.                                                 (8) 

We note that 

( ) ( )
( )

2 1
( )

2 1 1
cs

IID s s
c

Nny
S y S z

N

τ
τ

 − − =  + −  
, 

where ( )IID sS y , given in (6), is the appropriate BIC when there is no clustering of the 

population units.  The error increases withτ . In other words, if we neglect the 

clustering of the population units, we shall reject the null hypothesis more often than 

we really should.   

Unfortunately, unlike the previous example the likelihood for the sample may be very 

complicated and in some cases it may be even impossible to write down.  To this end, 

reconsider the same hypothesis testing problem of (3) based on a probability 

proportional to size with replacement sampling in which the size variable X is 

positively correlated with the target variable Y.  One can consider a model for 

( )|s s sf y d x= . However, we are interested in testing a hypothesis for the 

superpopulation mean θ that characterizes the marginal distribution of Y and not the 

mean conditional on X.  Since the sampling design is not simple random sampling 

and larger values of X are more likely to be observed, we need to obtain a marginal 

likelihood for sy  by integrating out sx : 

( ) ( ) ( )|s s s s sf y f y x f x dx= ∫ . 

This is certainly not as simple as the previous example.  Actually, when analyzing 

data from complex surveys we observe a sample from| sY d .  A researcher may not 
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be interested in ( )| sf y d  but may be interested in an appropriate marginal model - 

one that averages out some of the population features incorporated in the sampling 

design. For instance, one may be interested in testing hypothesis about the overall 

population mean, ignoring possible differences among the means of different 

subgroups of the population.   In general, some degree of aggregation in modelling 

may be necessary in complex surveys from a finite population (see Holt, 1989).  

In any case, the calculation of the BIC based on the sample likelihood requires that 

we use all information needed to specify a suitable model for ( )|s sf y d . This may 

not be the case in many applications. It is typical that the analyst may not be provided 

with all the information about the sample design but only with the survey weights, 

defined as the inverse of the inclusion probabilities and adjusted for post-stratification 

and non-response. 

 

 

4. A Robust Design-Based Approximation to the BIC. 

Let Uy  be a realization from an underlying superpopulation distribution characterized 

by a parameter θ .  We are interested in testing 0 0 0:  vs :aM Mθ θ θ θ= ≠ .  In this 

case the BIC is given by
1

log
2

S nλ= − , where ( ) ( )0
ˆλ θ θ= −� �  is the logarithm of 

the likelihood ratio. 

As noted in the previous section, it is often difficult or even impossible to obtain an 

exact expression of the sample likelihood due to a complex population structure.  In 

this section, we shall consider a design-based approximation to the S.  The 

approximation essentially involves an estimator of θ  using the following method and 

its design consistent variance estimator. 

Let ( ), 0UU y θ =  be an estimating equation forθ . The solution ( )UT y  of the 

equation ( )( ), 0U UU y T y =  is known as the corresponding descriptive population 

quantity (CDPQ) ofθ . We can estimate( )UT y  by a design-based estimator( )ˆ
sT z .  
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For example,  ( )ˆ
sT z  could be obtained using the pseudo-maximum likelihood 

approach.  A thorough discussions of this class of methods can be found in  the book 

of Sarndal, Swensson  and Wretman (1992). 

We propose the following model selection criterion:  

1 1
log ,  

2 2DB DBS W n= −                                                                        (9) 

where ( )( ){ } ( )( )1 2

0
ˆ ˆ ˆ

DB D s sW V T z T z θ
−

= −  and ( )( )ˆ ˆ
D sV T z  is a design-consistent 

estimator of ( )( )ˆ
D sV T z , the variance of ( )ˆ

sT z  under the randomization distribution.   

In sample surveys, the design effect is defined as ( )( ) ( )( ){ } 1
ˆ ˆ

D s SRS sDeff V T z V T y
−

= ,  

where ( )( )ˆ
SRS sV T y  is the randomization variance of the un-weighted estimator 

( )ˆ
sT y  of ( )UT y  under a simple random sampling of size n.  The design effect 

corrects the variability of the survey estimator for the complexities in the survey 

design.  For, example, both weighting and clustering usually increase the variability 

of a survey estimator and in such cases the design effect helps inflating the simple 

random sampling variance. See Lynn and Gabler (2005). The effective sample size is 

defined as * /n n Deff=  and it can be interpreted as the sample size of a simple 

random sampling that is as efficient as the corresponding sample size for a complex 

survey.  Usually, *n is smaller than n . 

We obtain a different model selection criterion, say *( )DBS n , when we replace n by *n  

in (9). However, we note that the order of ( )log Deff  is often small compared to 

( ) ( )0θ̂ θ−� � . Thus, asymptotically *( ) ( )DB DBS n S n≅  in most cases since 

( ) ( ) ( )*log log logn n Deff= − . 

The following proposition shows that DBS  approximates S well, the error of 

approximation being lower than the one used to approximate log BF  by S . 

Proposition 1:  Assume the following regularity conditions: 
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(i) ( ) ( )1/ 2
0

ˆ O nξθ θ −− = under model 0M , where ( )1/ 2O nξ
−  denotes a stochastic order 

with respect to the superpopulation distribution ξ ; 

(ii) the log-likelihood function, i.e., ( )θ�  is twice differentiable with 

( ) ( ) ( )1/ 2
0

ˆ'' I O nξθ θ −− = +� , where 
( )

0

2

0 2

,
( )

l z
I E

θ θ

θ
θ

θ
=

 ∂ = −  ∂  
is the Fisher 

information matrix evaluated at 0θ ;  

(iii) ( ) ( )1/ 2ˆˆ
s DT z o nξθ −= + , where ( )1/ 2

Do nξ
−  denotes a stochastic order with respect 

to the compound model/randomization distribution Dξ ; 

Moreover assume that  

(iv) ( )( ) ( ){ } ( )1 1
0

ˆ ˆ
D s DV T z I o nξθ − −= + . 

Under regularity conditions (i)-(iii) and assumption (iv) we have 

( )1/ 2 .DB DS S o nξ
−− =  

Proof.  Using the Taylor series expansion of ( )θ̂�  around 0θ , we have  

( ) ( ) ( ) ( ) ( )2 2

0 0 0 0

1ˆ ˆ ˆ'' [ ]
2

oξλ θ θ θ θ θ θ θ= − = − − + −� � �  

so that regularity conditions (i) and (ii) imply 

λ = ( )( ) ( ) ( )( ) ( )2 2
1/ 2 1/ 2

0 0 0 0

1 1ˆ ˆ'' .
2 2

o n I o nξ ξθ θ θ θ θ θ− −− − + = − +�   

Now using regularity conditions (iii) and (iv),  we have 

( ) ( ) ( )2
1

0 0
ˆ .DB DW I o nξθ θ θ −= − +  

The theorem now follows from the fact that 
1 1

log
2 2DB DBS W n= −  and 

1
log

2
S nλ= − . 

Remark: We note that the regularity conditions of Kass and Wassermann (1995), 

given in their section 2, are analogous to our assumptions i) and ii).  Thus, we can 

conclude that under i) and ii) and unit information priors 
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( )1/ 2log DB pDBF S O nξ
−= + . 

 

 

5. Two examples 

In this section, we shall verify the regularity conditions needed to prove Theorem 1 

for two well-known sampling designs and the associated superpopulation models. 

 

Example 1: One stage cluster sampling and the associated one-way random effects 

model (as in Skinner 1989, p. 37). 

Consider a clustered finite population described by the following superpopulation 

model 

,ij j ijy eθ α= + +  

where jα  and ije  are uncorrelated with ( ) 2
0jV α τσ=  and ( ) ( ) 2

01ijV e τ σ= − , 

1,...,j M= , 1,..., ci N= .   Note that τ  can be interpreted as the intra-cluster 

correlation coefficient. 

Suppose we are interested in testing 0 0 0:  vs :aM Mθ θ θ θ= =  based on a one-stage 

cluster sample in which m clusters are selected by a simple random sample without 

replacement. 

For the one-way random effects model, we haveˆ
syθ = . Condition (i) is a standard 

property of the maximum likelihood estimator in regular problems.  In order to verify 

condition (ii), note that ( ) ( )0 2
01 1c

n
I

N
θ

τ σ
=

+ −  
, (see Searle, Casella and 

McCullogh, p. 80) and the fact that the log-likelihood function is a quadratic form 

with  ( )θ̂−�  free from θ   and sy .  Under the sampling design, ( ) ˆˆ
sT z θ=  so 

condition (iii) is trivially verified. 

Turning to condition (iv), we note that under the cluster sampling design: 

( ) ( )ˆ,  U U s sT y y T z y= = .  Thus, ( )ˆ
UT yθ =  and 
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( ) ( ) 2
1 1ˆ ,c

D s y

NN n
V y s

N n

τ+ − −  =   

where ( ) ( )1 22 1y i s
i s

s n y y
−

∈

= − −∑ .  Condition (iv) can now be verified by showing that  

( ){ } ( ){ } ( )1 1
0D̂ sE V y I o nθ − −= +  and ( ){ } ( )2

D̂ sV V y o n−= , where E and V denote the 

expectation and the variance with respect to both the sampling design and the model.  

 

Example 2. Two-stage sampling and the associated one-way random effects model 

We consider the same one-way random effects model and the same testing problem 

for a two-stage sampling where m primary stage units (psu) are first selected by a 

simple random sample without replacement and then cn  secondary stage units are 

randomly selected from each sampled psu.  In this case, it can be shown thatˆ
syθ =  

and ( ) ( )0 2
01 1c

n
I

n
θ

τ σ
=

+ −  
. 

Verification of conditions (i)-(iii) is similar to that of the one-stage cluster sampling 

case.  To verify condition (iv), we first note that ( )U UT y y= , ( )ˆ
sT z y= , and 

( ) 2 20

0

1ˆ 1 ,D s yt ye

NN n
V y s s

Nn N n

 −= + − 
 

 

where ( ) ( ) ( )22 2

1 1 10

 and 
1 1

cnm m
c c

yt j s ye ij j
j j i

n n
s y y s y y

m m n= = =

= − = −
− −∑ ∑∑  (see Cochran, 

1977, Theorem 10.2).  Noting that ( )2 21 1
1 1

1ty c y
c

n
s n s

m n
τ−= + −  −

 we have 

( ) ( ) 2 21ˆ 1 1 1 .c
D s c y ye

c

NN n
V y n s s

Nn N n
τ

 − + − + −    
 

�  

Verification of condition (iv) is now similar to that of Example 1. 

 

 

6. Monte Carlo simulation 
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As mentioned in the introduction, the main advantage of our proposed model 

selection criterion DBS  is that it can be applied even when the exact BIC ( ES ) cannot 

be obtained because of the unavailability of the exact sample likelihood.  However, it 

is important to understand its performance when the sample likelihood can be fully 

specified so we can compare with the exact BIC, the gold standard.  In this section, 

we achieve this goal using a Monte Carlo simulation.  In order to understand the role 

of the sampling design, we include a naïve BIC (NS ), a BIC that ignores the sampling 

design, in our simulation study. 

 

6.1 Effect of Clustering 

We consider two artificial finite populations, each consisting of  200M =  clusters of 

equal size 10cN = .  Thus, the size of each finite population is 2000N = .  We 

generate the finite populations using the following model:  

( )| ~ ;

1
~ , ,

ind

ij j j

ind

j

y Ber

Beta

π π

µ µπ
γ γ

 −
 
 

                                    (10) 

1, , ;  1, , .ci N j M= =� �   Note that the above model implies that the common 

marginal proportion and the common intra-cluster correlation are µ  

and ( ) 1
1ρ γ γ −= + , respectively.  The parameter µ  affects the skewness of the finite 

population.  The parameter γ indicates the level of the intra-cluster correlation.  Both 

the populations are fairly skewed ( 0.25µ = ).  The second population is more 

clustered ( 0.3γ =  or ρ =0.25) than the first population ( 1γ =  or ρ =0.5.)   

As far as the sampling design is concerned, we assume a simple random sampling 

(with replacement) of clusters and consider two different sample sizes: 30n = and 

60n =  (i.e., a sample of 3 and 6 clusters).  

In summary, we consider four different settings characterized by the values 

summarized in Table 1. 
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Table 1: Different settings  

Setting ρ  (n,m) 
1 0.5 (30 ,3) 
2 0.5 (60,6) 
3 0.25 (30,3) 
4 0.25 (60,6) 
 

 

Let us consider the following hypothesis testing problem: 

 0 1: 0.25 : 0.25.M Mµ µ= ≠  

If we completely ignore the clustering of the observations, we can specify a binomial 

likelihood and compute our maximum likelihood estimate of µ  as 1ˆ n yµ −= , where y 

is the number of ones observed in the sample. The S statistic based on this incorrect 

likelihood is referred to asNS .  On the contrary, if we consider the clustered 

population model given by (10), we can specify the exact Beta-Binomial likelihood 

for the parameter vector( ),µ γ . In this case, the maximum likelihood estimate ( )ˆˆ ,µ γ  

cannot be obtained in a closed form, but can be computed using a numerical method 

(see Griffiths, 1973 for details). The S statistic based on this exact likelihood at the 

sample level is referred to asES . The performances of NS  and DBS  are compared 

with ES . 

 

In order to summarize the evidence provided by the various statistics in favour or 

against the null hypothesis, we consider the logarithm of the scale of evidence 

proposed by Jeffreys (1961) and the same cut-off point of 1.1. Values lower than 1.1 

are supposed to provide “positive” evidence in favour of the model suggested by the 

null hypothesis. 

The entries in Table 2 represent the percentage of samples with statistics lower than 

1.1 over 1000 simulated samples, each drawn independently according to the 
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sampling design described above. Clearly, the effect of clustering on NS  is very 

severe for all the three cases, the acceptance rates being considerably lower than 

those using our gold standardES . The difference betweenNS  and ES  increases with 

the increase of the intra-cluster correlation. The increase in the sample size 

contributes very little in resolving the difference Our approximation DBS tracks ES  

very well even for this non-normal situation and for a moderate sample size. Needless 

to say, both DBS  and ES  are not affected by the variation of the intra-cluster 

correlation. 

 

Table 2:  Percentage of S statistics lower than 1.1 under 0M   

 NS  ES  DBS  

Setting 1 57 97 87 
Setting 2 51 96 93 
Setting 4 75 99 86 
Setting 5 77 99 93 
 

We also compare the behaviour of the three procedures under a few selected 

alternatives: 1 0.5ALTµ = , 2 0.6ALTµ = , 3 0.75ALTµ =  4 0.9ALTµ = . 

The entries of Table 2 and Table 3 have similar interpretations. 

 

Table 3:  Percentage of the various S statistics lower than 1.1 under different null 

hypotheses 

       NaiveS         ES        DBS  

Setting 1 64 75 71 
Setting 2 54 63 67 
Setting 3 37 64 69 

Null 
Hypothesis 1: 

1 0.5ALTµ =  
Setting 4 23 49 58 
Setting 1 51 59 65 
Setting 2 35 49 49 
Setting 3 23 51 51 

Null 
Hypothesis 2: 

2 0.6ALTµ =  
Setting 4 7 39 41 
Setting 1 18 35 45 Null 

Hypothesis 3 Setting 2 8 31 27 
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Setting 3 4 27 4 
3 0.75ALTµ =  

Setting 4 0 9 12 
Setting 1 4 7 26 
Setting 2 0 1 5 
Setting 3 0 6 17 

Null 
Hypothesis 4: 

4 0.9ALTµ =  
Setting 4 0 0 2 

 

 

Under all null hypotheses considered, DBS  and ES  perform quite closely. They both 

seem to be rather conservative in rejecting the null hypothesis compared toNS . We 

stress that since NS  underestimates the variability in the data it overestimates the 

evidence against the model suggested by the null hypothesis.  Settings 1,2,3 

correspond to high intracluster correlation coefficients that reduce the effective 

sample sizes substantially. For this reason both DBS  and ES  have problems in finding 

positive evidence against the wrong model when it is very close to the true one (e.g., 

null hypothesis 1). This effect is somewhat weaker in settings 4 and 5 that correspond 

to relatively lower intra-cluster correlation coefficients. 

 

 

6.2 Effect of weighting and model misspecification 

We shall now consider a situation when we have a non-epsum sampling and study the 

effect of weighting.  In the same example, we shall also study the effect of model 

misspecification. To this end, we a finite population generated using the following 

superpopulation model: 

 2 20, 1

i i i

i i

y x

x i N

β ε

ε σ

= +

  ≤ ≤ ∼
       (11) 

with 21,  1β σ= = , 100,000N = . Population size is set to be large in order to make 

the effect of replacement negligible with all sample sizes considered in this 

simulation.  

We are interested in testing  
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0 0 1 0: :H vs Hβ β β β= ≠        (12) 

based on a sample of size n drawn using a probability proportional to size (PPS) 

sampling with replacement, in which the size variable is given by 2 1ix i N≤ ≤ . We 

consider different sample sizes ranging from 30n =  to 500n = .  

In this simulation study, we consider the following model selection criteria: 

(a)  The BIC based on the correct specification of the model:

 ( )02

1ˆ log ,
ˆ 2MB MB

n
S nβ β

σ
= − −  

 where 1ˆ i
MB

i s i

y
n

x
β −

∈

= ∑ , and 
( )2

2 1
2

ˆ
ˆ

i MB i

i s i

y x
n

x

β
σ −

∈

−
= ∑  . 

 
(b) The BIC based on the iid model: 

 ( )02

1ˆ log ,
2iid iid

n
S nβ β

σ
= − −
�

 

 where
2

ˆ
i i

i s
iid

i
i s

x y

x
β ∈

∈

=
∑

∑
   and ( )2

2 1 ˆ
i iid i

i s

n y xσ β−

∈

= −∑� .   

(c) The proposed design-based BIC: 

 
( )

( )
0

ˆ
1

log ,
ˆ 2

DB

DB

DB

B
S n

v B

β−
= −  

where ( )
1

1ˆ T T
DB s s s s s s i i

i s i s

B X W X X W y y x
−

−

∈ ∈

  = =   
  
∑ ∑ .  

where ( )ˆ
DBv B  is a design-consistent estimator of randomization variance 

( )ˆ
DB DBV B  obtained using either the linearization method of Fuller (1975) or the 

jackknife.  It can be shown that that under certain regularity conditions: 

( ) ( ) ( )1ˆ ˆ
MB DB MB DBE v B V B o n−  = +
 

 ( ,  MB MBE V  being moments with respect to 

(11)). Kott (1991) showed that the result holds for a fairly general class of 
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sampling designs that include the stratified multi-stage sampling (with unequal 

probability of selection at all stages). 

 

We are interested in assessing the model-based properties of the proposed design-

based model selection criterion. Thus, for each Monte Carlo replicate we generate a 

finite population from model (11), draw a sample from it using the PPS design and 

then compute the three model selection criteria. 

We consider two different null hypotheses: 0 1β =  (i.e. the “null hypothesis” is 

exactly true) and 0 1.3β =  (i.e. the “null hypothesis” is false). In both cases the null 

model is compared against an unrestricted alternative. As in previous simulations, the 

cutoff point of 1.1 is used to discriminate between the two models, i.e. the models 

corresponding to the “non rejection” and “rejection” of the null hypothesis.  For a 

given model selection criterion, if the statistic is greater than 1.1., we reject the null 

hypothesis.  Thus, for 0 1β = , the smaller the rejection rate the better.  The opposite is 

true when 0 1.3β = .  In evaluating different model selection criteria, one must 

compare the rejection rates for both 0 1β = and 0 1.3β =  simultaneously.  This is 

because the rejection rate for 0 1β = can be small and even zero for some nonsensical 

model selection criterion (e.g., for a model selection statistics which is a constant less 

than 1.1 will always produce a  rejection rate of zero). 

 

Table 4: Simulation results for 0 1β = . Rejection rate over R=1,000 MC replicates 

n MBS  DBS  iidS  

30 0.120 0.114 0.033 
100 0.070 0.068 0.022 
200 0.056 0.051 0.010 
300 0.046 0.040 0.008 
500 0.026 0.021 0.004 

 

Table 4 suggests that iidS has the lowest rejection rate. But, we explained earlier, this 

table alone is not conclusive – we need to analyze Table 4 and Table 5 together.  Note 
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that iidS has a small rejection rate simply because the variance estimator is severely 

positively biased, leading to a very conservative model selection criterion. A similar 

argument can be used to explain why the rejection rate for DBS  is smaller than that for 

MBS . The model-based estimator is more efficient than the design-based since its 

variance is approximately 30% lower on the average (see Table 6) . For this reason 

DBS  appears to be more conservative thanMBS .  

 

Table 5. Simulation results for 0 1.3β = . Rejection rate over R=1,000 MC replicates 

n MBS  DBS  iidS  

30 0.53 0.42 0.14 
100 0.87 0.74 0.26 
200 0.99 0.93 0.42 
300 1 0.99 0.59 
500 1 1 0.76 

 

Table 5 reports the rejection rates for the three model selection criteria when0 1.3β = . 

In this case, MBS  and DBS  have both rejection rates converging to 1 with the first 

being faster than the second.  This is consistent with the fact that the model-based 

estimation based on a correctly specified model is optimal, and thus more efficient 

than the design-based alternative. The effect of model misspecification on the model-

based BIC, i.e. iidS , is now transparent – this model selection criterion has an 

extremely low convergence. In fact, neglecting heteroscedasticity (and not correcting 

by weights) leads to overestimation of 2σ . 

It is interesting to note that in both cases ( )ˆ
DBv B , the variance estimate based on the 

linearization method of Fuller (1975), is approximately unbiased for the model 

variance of ˆDBB .  This is consistent with the theory. The performances of variance 

estimators are described in Table 6: 
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Table 6: MC comparison of ˆ
MBβ , ˆ

DBB , ( )ˆ
M̂B MBV β , ( )ˆ

DBv B , 1,000 replicates 

n 
( )
( )

ˆ

ˆ
MC MB

MC DB

V

V B

β
 

( )
( )

ˆˆ

ˆ

MC MB MB

MC DB

E V

E v B

β 
 
 
 

 
( )

( )
ˆˆ

1
ˆ

MC MB MB

MC MB

E V

V

β

β

 
  −  

( )
( )

ˆ
1

ˆ

MC DB

MC DB

E v B

V B

 
  −  

30 0.74 0.71 -0. 072 -0.018 
100 0.66 0.67 0.005 0.049 
200 0.67 0.67 -0.005 -0.011 
300 0.72 0.69 -0.025 0.012 
500 0.71 0.70 -0.006 -0.001 

 

Note that in Table 6 ( ) ( ) . ,   . MC MCE V  are the moments obtained from the empirical 

distribution of Monte Carlo replicates and ( ) ( )2 1ˆˆ ˆ T
MB MBV X Xβ σ −= Ω , 

( )2
1 i n idiag x≤ ≤Ω =  is the usual model-based variance of ˆ

MBβ  under the correctly 

specified model. Second column describes the relative variance of model-based and 

design-based estimators: the model-based one is more efficient, as expected. Third 

column is the ratio between their variances as estimated by the method described 

above. The second and the third columns are providing consistent results. Fourth and 

fifth columns provide the relative biases of the model-based and design-based 

variance estimators – it is clear that ( )ˆ
DBv B is performing very well in terms of 

model-unbiasedeness criterion. 

 

 

7. Concluding remarks 

We have presented a robust approximation to the BIC that can be used with complex 

survey data.  Our method is expected to be useful in situations where it is not possible 

to obtain the exact likelihood for the sample since our proposed method merely 

requires an estimator of the superpopulation parameter with good design-based 

properties (e.g., pseudo-maximum likelihood) and its design consistent variance 

estimator.  Thus, this paper fills in an important research gap in the analytic use of 

survey data.   
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