


Stochastic location aided routing model: a two stage
stochastic second-order cone programming formulation

F. Maggioni1, E. Allevi2 and M.I. Bertocchi1 and F. A. Potra3

Abstract. We study the semidefinite stochastic location-aided routing (SLAR) model de-
scribed in Ariyawansa and Zhu (2006) [2], and formulate it as a two-stage stochastic second-
order cone programming (SSOCP), see Alizadeh, D. Goldfarb (2003) [1] for second-order cone
programming, where the main first-stage decision variables are the position of the destination
node and its distance from the sender node. The random movements of the destination node
are represented by ellipsoid scenarios randomly generated by a uniform distribution in a neigh-
borhood of the starting position of the destination node. The MOSEK solver (under GAMS
environment) allows to solve problems with a large number of scenarios (say 4040) versus the
ten scenarios of MINOS solver. Stability results for the optimal first-stage solutions and the
optimal function value are obtained.

1 Basic facts and notation

Semidefinite programming problems are a class of optimization problems that have been stud-
ied extensively during the past 15 years. Semidefinite programming is naturally related to
linear programming, and both are defined using deterministic data. Semidefinite programming
is concerned with choosing a symmetric matrix to minimize a linear function subject to linear
constraints, and an important additional constraint that requires the matrix to be positive
semidefinitive. Deterministic semidefinite programming (DSDP) generalizes deterministic lin-
ear programming (DLP). DLP has nonnegative decision variables while the decision variable
in DSDP is a positive semidefinite matrix.

We use the following notation: ℜn×n for the vector spaces of real n × n matrices, lower
case boldface letters x, c etc. for column vectors, and uppercase letters A, X etc. for matrices.
Subscripted vectors such as xi represent the ith block of x. The jth component of the vectors
x and xi are indicated by xj and xij. We use 0 and 1 for the zero vector and vectors of all
ones, respectively, and 0 and I for the zero and identity matrices.

A deterministic linear programming problem (DLP) in primal standard form is
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min cTx

subject to Ax = b,
x ≥ 0

(1)

and its dual

maxbTy

subject to ATy ≤ c,
(2)

where A ∈ ℜn×n, b ∈ ℜm and c ∈ ℜn constitute given data, and x ∈ ℜn is the primal
variable and y ∈ ℜm is the dual variable.

Let ℜn×n
s denotes the vector space of real n × n symmetric matrices, for A,B ∈ ℜn×n

s we
write A � 0 (A ≻ 0) to mean that A is positive semidefinite (positive definite) and A � B
(A ≻ B) to mean that A − B � 0 (A − B ≻ 0). For A,B ∈ ℜn×n we denote by A • B the
Frobenius inner product between A and B: A•B = trace(AT B). A DSDP in primal standard
form is

min C • X
subject to Ai • X = bi, i = 1, 2, . . . ,m

X � 0
(3)

where Ai ∈ ℜn×n
s for i = 1, 2, . . . ,m, b ∈ ℜm and C ∈ ℜn×n

s are given and X ∈ ℜn×n
s is the

variable.

A DSDP in dual standard form is

maxbTy

subject to
∑m

i=1 yiAi � C
(4)

where Ai ∈ ℜn×n
s for i = 1, 2, . . . ,m, b ∈ ℜm and C ∈ ℜn×n

s are given data, and y ∈ ℜm

is the variable.
It is possible to convert a problem in the form (4) to an equivalent problem in the form

(3) and vice versa.
Stochastic programming were introduced in the 1950s as a paradigm for dealing with

uncertainty in data related to linear programming. Ariyawansa and Zhu (2006), [2] introduced
stochastic semidefinite programs as a paradigm for dealing with uncertainty in data related
to semidefinite programs.

We recall the structure of two stage stochastic linear programming problem with recourse
(SLPs): a SLPs in primal standard form is

min cTx + E [Q(x, ω)]
subject to Ax = b

x ≥ 0

(5)
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where x ∈ Rn1 is the first-stage decision variable, c ∈ Rn1 is a given vector, frequently
called cost vector, b ∈ Rm1 an other given vector, A ∈ ℜm1×n1 , c, b and A are deterministic
data. Q(x, ω) is the minimum of the problem

min q(ω)T
y

subject to T (ω)x + W (ω)y = h(ω)
y ≥ 0

(6)

and
E [Q(x, ω)] =

∫

Ω
Q(x, ω)P (dω) (7)

where y(ω) ∈ Rn2 is the second-stage decision vector, q ∈ Rn2 , T (ω) ∈ ℜm2×n1 is the
technology matrix, W (ω) ∈ ℜm2×n2 is the recourse matrix, h ∈ Rm2 and ω ∈ Ω is a random
outcome with a known probability distribution P .

We introduce the stochastic semidefinitive programming problem with recourse(SSDP) in
primal standard form

min C • X + E [Q(X,ω)]
subject to Ai • X = bi, i = 1, 2, . . . ,m1

X � 0
(8)

where X ∈ Rn1×n1

s is the first-stage decision variable, C ∈ Rn1×n1

s is a given matrix,
b ∈ Rm1 an other given vector, A ∈ Rn1×n1

s , c, b and A are deterministic data. Q(X,ω) is
the minimum of the problem

min Q(ω) • Y
subject to Ti(ω) • X + Wi(ω) • Y = hi(ω) i = 1, 2, . . . ,m2

Y � 0
(9)

and
E [Q(X,ω)] =

∫

Ω
Q(X,ω)P (dω) (10)

where Y (ω) ∈ Rn2×n2

s is the second-stage decision vector, Q ∈ Rn2×n2

s , Ti(ω) ∈ Rn1×n1

s ,
Wi(ω) ∈ ℜn2×n2

s , h ∈ Rm2 and ω ∈ Ω is a random outcome with a known probability
distribution P .

Furthermore, semidefinite programming (SDP) includes second-order cone programming
(SOCP) as a special case. SOCP problems consist in convex optimization problems in which
a linear function is minimized over the intersection of an affine set and the product of second-
order (Lorentz) cones:

Kn := {x = (x0; x̄) ∈ ℜn : x0 ≥ ‖x̄‖} , (11)

where ‖·‖ refers to the standard Euclidean norm and n the dimension of Kn (see Alizadeh
and Goldfarb, (2003) [1]) .
The second-order cone can be embedded in the cone of positive semidefinite matrices since
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a second-order cone constraint is equivalent to a linear matrix inequality according to the
following relation:

Arw(x) :=

(

x0 −x̄T

−x̄ x0I

)

� 0 ⇔ x0 ≥ ‖x̄‖ . (12)

In fact Arw(x) � 0 if and only if either x = 0, or x0 > 0 and the Shur Complement
x0 − x̄T (x0I)−1x̄ ≥ 0 .

Notice that the computational effort per iteration required by interior point methods to
solve SOCP problems is less of that required to solve SDP’s problems of similar size and
structure. In fact the number of iterations to decrease the duality gap to a constant fraction
of itself using the primal dual method, is bounded above by O(

√
N), where N is the number

of second-order constraints, for the SOCP algorithm, and by O(
√

∑N

i=1 ni), where ni is the

dimension of each second-order cone constraint i = 1, . . . , N , for the SDP algorithm (see Nes-
terov and Nemirovsky (1994) [8]). Furthermore, each iteration is much faster: in the SOCP
algorithm is O(n2

∑N

i=1 ni) and in the SDP O(n2
∑N

i=1 n2
i ) where n is the dimension of the

optimization variable x.

2 Stochastic semidefinite program for modeling networks

with moving nodes

In this section we recall the semidefinite stochastic location-aided routing (SLAR) model
described in Ariyawansa and Zhu (2006) [3]. A sender node S needs to find a route to a
destination node D through broadcasting to its neighbors a route request. Once D receives
the route request (and this should happen within a time-out interval t1, otherwise the route
request has to be reinitiated), D responds by reversing the path followed by the route request
received by D. In this model, while node D is supposed to move at a random speed, S is
supposed to be static. Notice that the communication is successful when the reply message is
sent back to the source node.

Consider an origin node S that needs to find a route to an other destination node D. We
assume that:

• The source node S knows the location l, l ∈ ℜn of the destination node D at time t0 and
vice versa the node D knows the location, that for simplicity we suppose in the origin 0

of node S at time t0;

• The nodes in the network are uniformly distributed.

• The node D moves at a random speed v(ω1), which depends on an underlying outcome
ω1 in an event space Ω1 with a known probability distribution P1;
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• The node D moves towards a (normalized) random direction d(ω2), which depends on
an underlying outcome ω2 in an event space Ω2 with a known probability distribution
P2;

• P1 and P2 are both discrete;

• Let
{(

v(k),d(k)
)

: k = 1, . . . , K ′
}

be the possible realizations of the couple (v(ω1),d(ω2))
given with probability pk := P

(

(v (ω1) ,d (ω2)) =
(

vk,dk
))

, k = 1, . . . , K ′ ;

• At time t1 > t0 the node D will be at location l + (t1 − t0)v
(k)d(k) with probability pk;

• The K ellipsoids

Ek = {x ∈ ℜn : xT Hkx + 2gk
Tx + vk ≤ 0}, k = 1, 2, . . . , K (13)

are the realizations of the random ellipsoid Ẽ = {x ∈ ℜn : xT H̃x + 2g̃Tx + ṽ ≤ 0},
where H̃ ∈ ℜn×n

s , H̃k ≻ 0 g̃(ω) ∈ ℜn and ṽ(ω) ∈ ℜ, for k = 1, . . . , K are random
data depending on the outcome ω in an event space Ω with a known probability P , and
Hk ∈ ℜn×n

s , Hk ≻ 0, gk ∈ ℜn and vk ∈ ℜ for k = 1, 2, . . . , K;

• At time t1 the node D is in Ek with probability pk for k = 1, 2, . . . , K.

Knowing the location of D at time t0, in order to determine the new location of D at time t1
Ariyawansa and Zhu use the following procedure:

Stage 1 Pick a disk C
C = {x ∈ ℜn : xTx − 2x̃Tx + γ ≤ 0} (14)

with center in x̃ and radius
√

x̃T x̃ − γ which contains the disk C0 centered in l with
radius v(t1 − t0), where v is the minimum speed the node D is supposed to move.

Stage 2 If happens that node D is in C, no further action is needed; otherwise D is in Ek for
some k, thus we pick a new disk C∗

k

C∗

k = {x ∈ ℜn : xTx − 2x̃Tx + γ̃k ≤ 0} (15)

with center in x̃ and radius
√

x̃T x̃ − γ̃k which contains the ellipsoids Ek for each k =
1, 2, . . . , K. To be close to reality, we fix an upper bound on the difference γ − γ̃k. We
are sure that at the cost of enlarging the radius we can pick up the new position of D.

The decision variables are given by:

x = [d1, d2, x̃, γ, τ ]T , (16)

y = [z, γ̃ , δ]T , (17)

where x is the first stage decision variable with components:
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• d1: is an upper bound on the distance between the center of the disk

C = {x ∈ ℜn : xTx − 2x̃Tx + γ ≤ 0}
and the source node (S = 0);

• d2: is an upper bound on square of the radius of the disk C;

• x̃ ∈ ℜn: is the center of disk C;

• γ: is a coefficient in the equation of disk C;

• τ : is a nonnegative parameter (see Vandenberghe and Boyed (1996), [11]; Sun and
Freund (2004) [10]).

and y is the second stage decision variables whose components are:

• z ∈ ℜK : is the vector of the upper bounds for scenario k on the distance between the
coefficients γ and γ̃k in

C∗

k = {x ∈ ℜn : xTx − 2x̃Tx + γ̃k ≤ 0};

• γ̃ ∈ ℜK : is the vector of the coefficients γ̃k of the second stage circles

C∗

k = {x ∈ ℜn : xTx − 2x̃Tx + γ̃k ≤ 0} k = 1, . . . , K;

• δ ∈ ℜK : is a vector of nonnegative parameters (see Vandenberghe and Boyed (1996)
[11]; Sun and Freund (2004), [10]).

The unit cost vectors are given by:

c = [c̃, α,0, 0, 0]T , (18)

q = [β,0,0]T ; (19)

Then the SLAR model is given by

min cTx + E [Q(x, ω)]

subject to

(

I −x̃

−x̃T γ

)

� τ

(

I − l

−lT ‖l‖2 − (t1 − t0)
2v2

)

0 ≤ τ

0 �
(

d1I x̃

x̃T d1

)

0 �
(

I x̃

x̃T d2 + γ

)

,

(20)
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where Q(x, ω) is the minimum of the problem

min qTy

subject to

(

I −x̃

−x̃T γ̃k

)

� δk

(

Hk gk

gk
T vk

)

0 ≤ δk , k = 1, . . . , K

0 ≤ γ − γ̃k ≤ zk , k = 1, . . . , K .

(21)

3 Stochastic Second-order cone model for SLAR

As mentioned, before from a computational point of view the effort per iteration required by
interior-point method to solve SOCP problems is less than that required to solve SDP’s of
similar size and structure. The aim of this section is thus to formulate the semidefinite stochas-
tic location-aided routing (SLAR) problem presented in the previous section as a stochastic
second-order cone SSOCP problem.

The constraint
(

I −x̃

−x̃T γ

)

� τ

(

I − l

−lT ‖ l‖2 − (t1 − t0)
2v2

)

(22)

is equivalent to

0 �
(

τI − I −τ l + x̃

−τ lT + x̃T τ ‖ l‖2 − τ (t1 − t0)
2 v2 − γ

)

(23)

and it holds if and only if, by Schur Complements, τI − I > 0, i.e. τ > 1 (or if τ = 1,
−τ lT + x̃T = 0 ), and

τ ‖ l‖2 − τ (t1 − t0)
2 v2 − γ −

(

−τ lT + x̃T
)

(τI − I)−1 (−τ l + x̃) ≥ 0 , (24)

or equivalently

(

τ ‖ l‖2 − τ (t1 − t0)
2 v2 − γ

) (

τ − 1) − (−τ lT + x̃T
)

(−τ l + x̃) ≥ 0 , (25)

that is

τ ‖ l‖2 − τ (t1 − t0)
2 v2 − γ −

n
∑

j=1

(−τ lj + x̃j)
2

(τ − 1)
≥ 0 . (26)

If we define r = (r1, . . . , rn), where rj =
(−τ lj + x̃j)

2

(τ − 1)
for all j such that τ > 1 and rj = 0

otherwise (see Alizadeh and Goldfarb (2003), [1]), then (26) is equivalent to

τ ‖ l‖2 − τ (t1 − t0)
2 v2 − 1T r ≥ γ . (27)
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Since we are minimizing the radius of the circle C,
√

x̃T x̃ − γ, we can relax the definition of
rj replacing it by (τ lj − x̃j)

2 ≤ rj (τ − 1), j = 1, . . . , n. Combining all the above constraints,
(22) is equivalent to the following formulation involving only linear and restricted hyperbolic
first-stage constraints:

(τ lj − x̃j)
2 ≤ rj (τ − 1) , j = 1, . . . , n , (28)

γ ≤ τ ‖ l‖2 − τ (t1 − t0)
2 v2 − 1T r , (29)

τ ≥ 1 . (30)

Notice that the restricted hyperbolic constraint (28) is equivalent to the following n 3-
dimensional second-order cone inequalities:

∥

∥

∥

∥

(

2 (τ lj − x̃j)
rj − τ + 1

)∥

∥

∥

∥

≤ rj + τ − 1⇔





2 (τ lj − x̃j)
rj − τ + 1
rj + τ − 1



∈K3 , j = 1, . . . , n; (31)

and each of the linear constraints (29) and (30) are 1-dimensional second-order cone con-
straints.

On the other hand

0 �
(

d1I −x̃

−x̃T d1

)

⇔ d1 ≥
√

x̃T x̃ ⇔
(

d1

x̃

)

∈ Kn+1 , (32)

and

0 �
(

I −x̃

−x̃T d2 + γ

)

⇔ d2 + γ ≥ x̃T x̃ ⇔
(√

d2 + γ
x̃

)

∈ Kn+1 ; (33)

the second stage constraint
(

I −x̃

−x̃T γ̃k

)

� δk

(

Hk gk

gk
T vk

)

, k = 1, . . . , K , (34)

is equivalent to

Mk :=

(

δkHk − I δkgk + x̃

δkg
T
k + x̃T δkvk − γ̃k

)

� 0 k = 1, . . . , K . (35)

Following Alizadeh and Goldfarb (2003), [1], let Hk = QkΛkQ
T
k be the spectral decomposition

of Hk, Λk = Diag (λk1; . . . ; λkn) and hk = QT
k (δkgk + x̃), for k = 1, . . . , K. Then

M̄k :=

(

QT
k 0

0 1

)

Mk

(

Qk 0

0 1

)

=

(

δkΛk − I hk

hT
k δkvk − γ̃k

)

� 0 (36)

for k = 1 . . . , K, and Mk � 0 if and only if M̄k � 0. It holds if and only if δk ≥ 1
λmin(Λk)

, i.e.
δkλkj − 1 ≥ 0 ∀ k, j, hkj = 0 if δkλkj − 1 = 0 and the Shur complement of the columns and
rows of M̄i that are not zero

δkvk − γ̃k −
∑

δkλkj>1

h2
kj

δkλkj − 1
≥ 0 . (37)
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If we define sk = (sk1; . . . ; skn), where skj =
h2

kj

δkλkj−1
, for all j such that δkλkj > 1 and skj = 0,

otherwise, then (37) is equivalent to

γ̃k ≤ δkvk − 1T sk . (38)

Since we are minimizing the radius of the circle C∗,
√

x̃T x̃ − γ̃k, we can relax the definition
of skj replacing it by h2

kj ≤ skj (δkλkj − 1), k = 1, . . . , K, j = 1, . . . , n. Combining all of
the above constraints (34) is equivalent to the following formulation involving only linear and
restricted hyperbolic second-stage constraints:

hk = QT
k (δkgk + x̃) , k = 1, . . . , K , (39)

h2
kj ≤ skj (δkλkj − 1) , k = 1, . . . , K, j = 1, . . . , n , (40)

γ̃k ≤ δkvk − 1T sk , k = 1, . . . , K, (41)

δk ≥ 1

λmin (Λk)
, k = 1, . . . , K . (42)

Notice that the linear constraint (39) is equivalent to 2nK 1-dimensional second-order cone
inequalities given by

QT
k (δkgk + x̃) − hk ≥ 0 , k = 1, . . . , K , (43)

−QT
k (δkgk + x̃) + hk ≥ 0 , k = 1, . . . , K ; (44)

the restricted hyperbolic constraint (40) is equivalent to the following nK 3-dimensional
second-order cone inequalities:

∥

∥

∥

∥

(

2hkj

skj − δkλkj + 1

)∥

∥

∥

∥

≤ skj+δkλkj−1⇔





2hkj

skj − δkλkj + 1
skj + δkλkj − 1



∈K3 , k = 1, . . . K, j = 1, . . . , n,

(45)
and each of the linear constraints (41) and (42) are K 1-dimensional second-order cone con-
straints. In conclusion the SLAR model (20) and (21) can be formulate as a stochastic second-
order cone SSOCP problem with two (n+1)-dimensional second-order cone constraints (see
eqs. (32), (33)), n(K +1) 3-dimensional second-order cone constraints (see eqs. (31) and (45))
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and with all the other constraints linear, in the following way:

min cTx + E [Q(x, ω)]

subject to





2 (τ lj − x̃j)
rj − τ + 1
rj + τ − 1



∈K3 , j = 1, . . . , n ,

γ ≤ τ ‖ l‖2 − τ (t1 − t0)
2 v2 − 1T r ,

1 ≤ τ ,

(

d1

x̃

)

∈ Kn+1 ,
(√

d2 + γ
x̃

)

∈ Kn+1 ,

(46)

where Q(x, ω) is the minimum of the problem

min qTy (47)

subject to





2hkj

skj − δkλkj + 1
skj + δkλkj − 1



∈K3 , k = 1, . . . K, j = 1, . . . , n ,

hk = QT
k (δkgk + x̃) , k = 1, . . . , K ,

γ̃k ≤ δkvk − 1T sk , k = 1, . . . , K ,

δk ≥ 1

λmin (Λk)
, k = 1, . . . , K ,

0 ≤ δk , k = 1, . . . , K ,

0 ≤ γ − γ̃k ≤ zk , k = 1, . . . , K ,
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or equivalently

min cTx +
∑K

k=1 pkq
Ty

subject to





2 (τ lj − x̃j)
rj − τ + 1
rj + τ − 1



∈K3 , j = 1, . . . , n ,

γ ≤ τ ‖ l‖2 − τ (t1 − t0)
2 v2 − 1T r ,

1 ≤ τ ,

(

d1

x̃

)

∈ Kn+1 ,
(√

d2 + γ
x̃

)

∈ Kn+1 ,

(48)





2hkj

skj − δkλkj + 1
skj + δkλkj − 1



∈K3 , k = 1, . . . K, j = 1, . . . , n ,

hk = QT
k (δkgk + x̃) , k = 1, . . . , K ,

γ̃k ≤ δkvk − 1T sk , k = 1, . . . , K ,

δk ≥ 1

λmin (Λk)
, k = 1, . . . , K ,

0 ≤ δk , k = 1, . . . , K ,

0 ≤ γ − γ̃k ≤ zk , k = 1, . . . , K .

We observe that in the implementation the constraint

(√
d2 + γ
x̃

)

∈ Kn+1 , (49)

has been treated as a rotated quadratic cone (or hyperbolic constraint)

Kn+2 =

{

u ∈ ℜn+2 : 2u1u2 ≥
n+2
∑

j=3

u2
j , u1, u2 ≥ 0

}

(50)

with u2 = d2 + γ, uj = xj−2, j = 3, . . . , n + 2 intersected with the hyperplane u1 = 1/2.
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At first we implement the following model:

min cTx +
∑K

k=1 pkq
Ty =

subject to

(

τ ‖ l‖2 − τ (t1 − t0)
2 v2 − γ

)

(τ − 1) ≥ ‖τ l + x̃‖2 ,

τ ≥ 1 ,

d2
1 ≥ ‖x̃‖2 ,

d2 + γ ≥ ‖x̃‖2 ,

(skj + δkλkj − 1)2 ≥
∥

∥

∥

∥

(

2hkj

skj − δkλkj + 1

)∥

∥

∥

∥

2

,

(51)

hk = QT
k (δkgk + x̃) , k = 1, . . . , K ,

γ̃ ≤ δkvk − 1T sk , k = 1, . . . , K ,

δk ≥ 1

λmin (Λk)
, k = 1, . . . , K ,

δk ≥ 0 , k = 1, . . . , K ,

γ − γ̃k ≥ 0 , k = 1, . . . , K ,

γ − γ̃k ≤ zk , k = 1, . . . , K ,

d1 ≥ 0 ,

d2 ≥ 0 .

4 Ellipsoid scenarios generation

In this section we consider the generation of random ellipsoids

Ek = {x ∈ ℜn : xT Hkx + 2gk
Tx + νk ≤ 0}, k = 1, 2, . . . , K . (52)

In our computational experiment we have considered the case n = 2, that is we have generated
real ellipses in the plane ℜ2.
The general algebraic equation for a second-order curve is of the type:

e11x
2
1 + 2e12x1x2 + e22x

2
2 + 2e13x1 + 2e23x2 + e33 = 0 , (53)
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or equivalently, in matricial notation

(

x1 x2

)

(

e11 e12

e21 e22

) (

x1

x2

)

+ 2
(

e13 e23

)

(

x1

x2

)

+ e33 = 0

In order to be an ellipse, the coefficients of the simmetrix matrix E associated to eq. (53):

E =





e11 e12 e13

e21 e22 e23

e31 e32 e33



 ,

have to satisfy the following conditions on the sign of the invariants (see e.g. Ilyin and Poznyak
(1981), [5]):

I2 =

∣

∣

∣

∣

e11 e12

e21 e22

∣

∣

∣

∣

> 0 , I3 =

∣

∣

∣

∣

∣

∣

e11 e12 e13

e21 e22 e23

e31 e32 e33

∣

∣

∣

∣

∣

∣

< 0 . (54)

We note that for each scenario k the coefficient H, g and ν of eq. (52) correspond to

H =

(

e11 e12

e21 e22

)

, g =
(

e13 e23

)

, ν = e33 ,

and in order to satisfy the condition H ≻ 0 we have to consider also

e11 > 0 . (55)

The center O, x0 = (x0
1, x

0
2) of the second-order curve (53) is obteined as solution of the

following system:
{

e11x
0
1 + e12x

0
2 + e13 = 0 ,

e12x
0
1 + e22x

0
2 + e23 = 0 ,

(56)

the angle ϕ between the x1-axis and the main axis of the conic is such that

cot 2ϕ =
e11 − e12

2e12

, (57)

or equivalently is given by

ϕ = (
π

4
− 1

2
arctan(

e11 − e12

2e12

)) , (58)

and the semiaxes sx1
and sx2

of the ellipse are equal to























sx1
=

√

−I3

I2

(

e12 sin 2ϕ + 1
2
(e11 − e22) cos 2ϕ + 1

2
(e11 + e22)

)

sx2
=

√

−I3

I2

(

−e12 sin 2ϕ − 1
2
(e11 − e22) cos 2ϕ + 1

2
(e11 + e22)

)

(59)
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Thus the parametric equation of the ellipse is given by

{

x1 = sx1
cos ϕ cos ϑ − sx2

sin ϕ sin ϑ + x0
1 , ϑ ∈ [0, 2π]

x2 = sx1
sin ϕ cos ϑ + sx2

cos ϕ sin ϑ + x0
2 , ϑ ∈ [0, 2π] .

(60)

We construct the coefficient ek
ij of random ellipsoid Ek corresponding to scenario k in this

way:

• we extract the coefficient ek
11 by a uniform distribution in the interval (0, 1], the coef-

ficients ek
12 = ek

21, ek
13 = ek

31, and ek
23 = ek

32 by a uniform distribution in the interval
[−1, 1];

• we fix treshold1k :=
(ek

12)
2

e11

and in order to satisfy the condition (54) on I2 we im-

pose ek
22 > treshold1k; thus we extract ek

22 by a uniform distribution in the interval
(

treshold1k, 11 treshold1k
]

;

• we fix treshold2k :=
(

−ek
12e

k
23e

k
13 − ek

13e
k
12e

k
23 + (e2

13)
kek

22 + (e2
23)

kek
11

)

/I2 and in order to

satisfy the condition on I3 of eq. (54) we need ek
33 < treshold2k; thus we extract ek

33 by
a uniform distribution in the interval

(

−treshold2k, treshold2k
)

if treshold2k > 0 and in
(

treshold2k,−treshold2k
)

otherwise.

Furthermore, in order to simulate a real case, the ellipsoid scenarios are generated in such a
way they belong to an area closed to the location l of the destination node D at time t0 and
by imposing upper bounds smax

x1
and smax

x2
on the length of the main semiaxis sk

x1
and sk

x2
of

the ellipsoid, according to the following conditions:











0 ≤
√

(x0,k − l)T (x0,k − l) ≤ dmax , ∀ k = 1, . . . , K ,

0 < sk
x1

≤ smax
x1

, ∀ k = 1, . . . , K ,
0 < sk

x2
≤ smax

x2
, ∀ k = 1, . . . , K ,

(61)

where dmax is an upper bound on the distance between l and the center x0 of the ellipsoid.

5 Numerical results

In this section we present numerical results obtained for the semidefinite stochastic location-
aided routing (SLAR) problem presented in section 2 and stochastic second order cone SSOCP
presented in section 3. The simulation is based on the scenarios randomly generated under
MATLAB 7.4.0 framework, according to the method described in the previous section where
we have set dmax = 3 and smax

x1
= smax

x2
= 3. The problem was implemented in GAMS 22.5

framework. At first we solved the model (51) using the Minos solver, then the stochastic
second order cone SSOCP (48) with the Mosek one.
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In our computational experiment we have supposed that the scenarios are equiprobable; fur-
thermore we have fixed the location l = (1, 1) of the node D at initial time t0 = 0, its average
speed v = 1, and the final time t1 = 1 so that the disk C0 is described by the equation:

C0 = {x ∈ ℜ2 : x2
1 + x2

2 − 2x1 − 2x2 + 1 = 0} (62)

with center in l = (1, 1) and unitary radius.
The first and second stage costs c and q are given by:

c = [0.1, 0.5,0, 0, 0]T , (63)

q = [0.5,0,0]T . (64)

Table 1 refers to the centres (x0
1, x

0
2), the angle ϕ between the x1-axis and the main axis of

the conic and to semiaxes sx1
and sx2

of five ellipsoids Ek, k = 1, . . . , 5 randomly generated
according to the procedure described in the previous section.

k x0
1 x0

2 ϕ sx1
sx2

1 -0.7602 0.0344 1.4161 0.2005 0.6919

2 -1.4598 -0.3381 0.1535 1.8714 0.6180

3 -1.3677 -0.0986 0.2077 1.9617 0.8421

4 -0.56036 -0.1551 1.2429 0.5319 0.9667

5 -1.5149 -0.3629 0.1391 2.2671 0.6893

Table 1: Centre (x0
1, x

0
2), angle ϕ between the x1-axis and the main axis of the conic and

semiaxes sx1
and sx2

of five ellipsoids Ek, k = 1, . . . , 5 randomly generated according to the
procedure described in the previous section.

At first we have considered a sensitivity analysis of the solution according to different
lower bounds of the second stage variable zk; the relative results are reported in Table 2 and
represented in Figure 1 in the case of one scenario (see the first line of Table 1 for the values
of one scenario parameters).

K x̃1 x̃2 d1 d2 γ γ̃1 τ z1 obj. value

1 0.27 0.68 0.73 3.24 -2.7 -2.7 1.8 z1 ≥ 0 1.69

1 0.28 0.69 0.74 3.19 -2.64 -2.74 1.79 z1 ≥ 0.1 1.72

1 0.33 0.71 0.78 2.99 -2.38 -2.88 1.73 z1 ≥ 0.5 1.83

Table 2: Solution in the case of one scenario according to the increasing value for lower bound
on the second stage decision variable z1.

As we can see in Figure 1(a), because we are in the deterministic case, and the future is
completely known, the first stage disc C with centre in (0.27, 0.68) and radius

√

x̃2
1 + x̃2

2 − γ =
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Figure 1: Solution in the case of one scenario with lower bound on z1 respectively given by
(a) z1 = 0, (b) z1 = 0.1 and (c) z1 = 0.5.

1.8 coincides with the second-stage one C∗

1 (γ = γ̃1, see sixth and seventh columns of Table 2).
Figures 1(b)-(c) refer to the cases where the lower bounds are given by z1 = 0.1 and z1 = 0.5
respectively. As expected in all the cases considered the disk C∗

1 contains the ellipse E1, the
disks C and C0 (see eq. (62)).

Furthermore, we want to analyze the convergence of optimal first-stage solutions and
function value as the number of scenarios increases. In this test we set the lower bound for
the second-stage decision variable z1 = 0. Table 3 reports the first-stage decision variables
according to the increasing number of scenarios k = 1, . . . , 5. In particular Figure 2 refers to
the case of five scenarios reported in Table 1. In this case the second-stage decision variables
γ̃k, k = 1, . . . , 5 obtained, related to the radius of the second-stage disks C∗

k with centre in
(x̃1, x̃2) = (−0.64, 0.33) are: γ̃1 = γ̃3 = γ̃4 = −7.18, γ̃2 = −7.52 and γ̃5 = −10.23. As
expected each second-stage disk C∗

k , k = 1, . . . , 5 contain the disks C0, C and the ellipse Ek

of the corresponding scenario k.
Notice that the starting points given to the first-stage decision variables d1, d2, x̃1, x̃2 and τ ,
by using the Minos solver, are: d1 = 0.8, d2 = 2.3, x̃1 = −0.5, x̃2 = 0.3 and τ = 1.5.

K x̃1 x̃2 d1 d2 γ τ obj. value

1 0.27 0.68 0.73 3.24 -2.7 1.8 1.69

2 0.82 0.8 1.15 1.6 -0.28 1.27 0.92

5 -0.64 0.33 0.72 7.70 -7.18 2.77 4.26

Table 3: First stage decision solutions according to the increasing number of scenarios k =
1, . . . , K.
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Figure 2: Solution in the case of five scenarios k = 1, . . . , 5.

The problem we faced to, by using the Minos solver was that, being it a local non linear
solver, by increasing the number of scenarios, the dimension of the initial starting points
of the variables, increases too and it becomes difficult to identify the right points. On the
contrary, the advantage to use Mosek is that we transform non linear conic constraints in linear
ones. Therefore we don’t need to fix initial starting points. Furthermore it allows to solve
problems with a large number of scenarios (say 4040) versus few scenarios of Minos solver (see
Table 4 for the optimal first-stage solutions and the optimal function value obtained by using
the Mosek solver). Notice that, in the case of five scenarios, the execution time by using both
Minos5 and Mosek solvers is 0.016 seconds (cpu time 0.07); in the first case we have 14 blocks
of equations, 52 single equations, 8 block of variables, 42 single variables and the number of
iterations is 1037; on the contrary in the second case we have 25 blocks of equations, 94 single
equations, 19 block of variables and 84 single variables and the optimal solutions is obtained
after just 10 iterations. Notice that the execution time by using the Mosek solver, for the
largest case considered of 4040 scenarios is of 0.718 seconds (cpu time 3.26), it is composed by
25 blocks of equations, 60619 single equations, 19 block of variables and 52539 single variables,
the number of iterations is 47.
By the results shown in Table 4 we deduce that the model gives an in-sample stability, that is
whichever number of scenarios we consider, the optimal objective values are approximately the
same (for a definition of in-sample stability see Kaut and Wallace, (2007) [7]). In particular,
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Figure 3 shows the convergence of the optimal profit value as the number of scenarios increases.
However, we have to remember that the values presented in Table 4 represent in-sample

K x̃1 x̃2 d1 d2 γ τ obj. value

50 0.64 0.48 0.8 2.67 -2.03 1.63 3.24

60 0.46 0.5 0.67 3.03 -2.57 1.74 3.37

70 0.64 0.61 0.89 2.33 -1.54 1.53 3.09

80 0.76 0.58 0.96 2.2 -1.28 1.48 3.38

90 0.55 0.65 0.85 2.47 -1.75 1.57 3.22

100 0.5 0.51 0.72 2.89 -2.38 1.7 3.78

150 0.74 0.53 0.92 2.34 -1.50 1.53 3.72

200 0.53 0.58 0.78 2.66 -2.05 1.63 3.44

250 0.66 0.51 0.84 2.53 -1.82 1.59 3.61

300 0.6 0.48 0.77 2.75 -2.16 1.66 3.43

350 0.66 0.54 0.85 2.47 -1.74 1.57 3.85

400 -0.62 0.49 0.79 2.69 -2.07 1.64 3.6

450 0.53 0.53 0.75 2.76 -2.19 1.66 3.75

500 0.68 0.53 0.87 2.45 -1.7 1.57 3.94

1000 0.59 0.58 0.82 2.54 -1.86 1.59 3.56

1500 0.65 0.55 0.85 2.47 -1.75 1.57 3.64

2000 0.61 0.52 0.8 2.62 -1.98 1.62 3.57

2670 0.63 0.55 0.84 2.50 -1.79 1.58 3.57

3580 0.62 0.53 0.82 2.57 -1.90 1.60 3.52

3800 0.60 0.54 0.81 2.59 -1.94 1.61 3.59

4040 0.63 0.54 0.83 2.54 -1.86 1.59 3.58

Table 4: First stage decision solutions according to the increasing number of scenarios k =
1, . . . , 4040 and optimal profit value.

values, so the costs are not directly comparable. To be able to estimate the effect of using a
better scenario tree, we have to compare the out-of-sample costs (see again Kaut and Wallace,
(2007), [7]). For this purpose, we declare the tree composed by 4040 scenarios to be the true
representation of the real world and use it as a benchmark to evaluate the cost of optimal
solutions obtained using other trees with a smaller number of branches or scenarios. We report
in Table 5 some of the results of the out-of-sample analysis with benchmark the case of 4040
scenarios.

Furthermore, to check the importance of modelling the randomness of the parameters,
we compare the optimal solutions and objective value of the stochastic model with those
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Figure 3: Convergence of the optimal function value for an increasing number of ellipsoid
scenarios.

K in 4040 obj. value

50 in 4040 3.58

100 in 4040 3.60
200 in 4040 3.59
300 in 4040 3.58
400 in 4040 3.58
1000 in 4040 3.59

Table 5: Out-of-sample objective value obtained by substituting the first-stage solutions in
the case of K = 50, 100, 200, 300, 400, 1000 scenarios, into the benchmark tree made by 4040
branches.

obtained from the corresponding deterministic model, where is considered an unique scenario
represented by an ellipse with the centre (xmean

1 , xmean
2 ) = (0.2485, 0.063), the angle ϕmean =

0.786, the semiaxis smean
x1

= 0.7618, smean
x2

= 0.7771 given respectively by the mean of the
centres, of the angles and of the semiaxes of the ellipses Ek, k = 1, . . . , 4040; its parametric
parametric equation is given by

{

x1 = 0.7618 cos (0.786) cos ϑ − 0.7771 sin (0.786) sin ϑ + 0.2485 , ϑ ∈ [0, 2π] ,
x2 = 0.7618 sin (0.786) cos ϑ + 0.7771 cos (0.786) sin ϑ + 0.063 , ϑ ∈ [0, 2π] .

(65)

In literature, this kind of problem is called Expected value problem or Mean value problem,
(see Birge and Louveaux, (1997) [4] and Kall and Wallace (1994) [6]).

Solutions to the deterministic model are reported in Table 6 and shown in Figure 4.
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K x̃1 x̃2 d1 d2 γ τ obj. value

1 0.71 0.65 0.97 2.10 -1.17 1.45 1.15

Table 6: First stage decision solutions and optimal profit value in the case of Expected value
problem with one scenario given by eq. (65).

-0.5 0.5 1 1.5 2

-0.5

0.5

1

1.5

2

C

C0

Emean

Figure 4: Solution in the case of Expected value problem with one scenario ellipse given by eq.
(65).

Because in a deterministic problem the future is completely known, the first stage disk
C coincides with the second stage one C∗

1 (γ = γ̃ = −1.17) and consequently the total cost
is much smaller than in the stochastic case. However, we have to remember that this is an
in-sample objective value (using the terminology from Kaut and Wallace, (2007) [7]) and the
true cost of the solution—or the out-of-sample objective value—is likely to be higher. To see
how much, we can solve the stochastic model with 4040 scenarios and the first-stage variables
fixed to the deterministic solution. The result is a total cost of 3.60, much higher than the
predicted (in-sample) cost of 1.15. Furthermore, we see that the resulting total cost is higher
than the optimal solution for the benchmark tree with 4040 branches. The difference is known
as the Value of stochastic solution (VSS), (see e.g. Birge and Louveaux, (1997) [4]). In our
case, it is

VSS = obj. val. (det. sol. on benchmark tree ) − obj. val.(opt. sol. of benchmark tree)

= 3.60 − 3.58 = 0.02 .
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The low VSS indicates that, because of the high computational effort to solve the stochastic
model, it is safe to save time by rather solving the mean value problem.

Another measure of the role of the randomness of the parameters in the model is given by
the Expected value of perfect information (EVPI) (see again e.g. Birge and Louveaux, (1997)
[4]), given by the difference between the optimal objective value of the stochastic model with
4040 scenarios, also called here-and-now solution and the expected value of the wait-and-see
solution (WS), calculated by finding the optimal solution for each possible realization of the
random variables, as follow:

EVPI = obj. val. (opt. sol. of benchmark tree) − obj. val.(WS)

= 3.58 − 1.91 = 1.67 .

This means that we should be ready to pay 1.67 in return for complete information before,
about the direction and velocity of the destination node D. The large value obtained for EVPI
means that the randomness plays an important role in the problem.

6 Conclusions

We have proposed a two-stage stochastic second order cone programming for the stochastic
location aided routing model. For the uncertainty representation through scenarios, we have
used a simple approach of sampling from a uniform distribution. A convergence both of
the optimal value of the objective function and of the first stage decision variables has been
proved. The computed expected value of perfect information (EVPI) shows that a good
estimate of the stochastic parameters plays an important role in the problem even if the value
of stochastic solution (VSS) is still limited. A possible extension of the work should include a
more sophisticated representation of the uncertainty.
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