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Abstract

In this paper we develop two decision support procedures for the short-
term hydro-thermal resource scheduling problem of a power producer op-
erating in a liberalized market. These procedures, based on mixed integer
LP models, determine the unit commitment of thermal units and the pro-
duction levels of committed thermal units and available hydro plants in
each hour so as to maximize profits, while satisfying constraints describing
the hydro system, the thermal system and the market. The thermal sys-
tem is modelled in great detail as it allows start-up and shut-down manou-
vres in every hour of the planning horizon, taking into account minimum
up-time and down-time constraints as well as ramp-up and ramp-down
constraints. In both models the annual scheduling decisions are given
(optimal maintenance plans of hydro and thermal plants, optimal weekly
discharge of seasonal basins) as well as forecasts on basin natural inflows.
In the first model the power producer is assumed to be a price taker:
energy prices do not depend on his own production decisions, i.e. are
exogenous to the decision model, and the optimal schedule is determined
on the basis of price forecasts. In the second model the power producer is
assumed to be a price maker: assuming that competitors’ supply curves
can be estimated, the model takes explicitly into account the Market Op-
erator activity of choosing the cheapest bids on the basis of the aggregated
supply curve and the hourly energy prices are therefore endogenous vari-
ables.

1 Introduction
In the last decade the electric power industry has undergone a fundamen-
tal transformation from one dominated by a regulated vertically integrated
monopoly to an industry where electricity is produced and traded as a com-
modity. In the liberalized electricity market each power producer, in compe-
tition with other producers, aims at maximizing his own profit; production is
sold by power producers either directly to consumers, on the basis of bilateral
contracts, or by presenting sell bids to the Market Operator for each hour of
the following day. Analogously, electricity is purchased by consumers either on
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the basis of bilateral contracts or by presenting purchase bids to the Market
Operator for each hour of the following day. The Market Operator determines
the aggregated supply and demand curves and the equilibrium point of supply
and demand, taking into account transmission system constraints defined by the
Transmission System Operator. The electricity price is then a "market clearing
price", resulting from the interactions among all market participants.

In the previous monopolistic context, production resource scheduling aimed
at minimising production costs while satisfying given security standards. In
liberalized markets each power producer aims at maximizing his own profit and
resource scheduling must take into account both other producers’ decisions and
the Market Operator’s rules for determining the electricity price.

Different time horizons are considered in the production resource schedul-
ing problem. A time horizon of at least one year (medium-term scheduling)
is considered when determining the optimal maintenance plans of hydro and
thermal plants and the optimal weekly discharge of seasonal basins. A time
horizon of a week (short-term scheduling) is considered for determining the unit
commitment of thermal groups, i.e. the start-up and shut-down manouvres of
the available (not in maintenance) thermal groups, as well as the production
levels of the committed thermal units and of the available hydro plants in each
hour. Authomatic decision support procedures for scheduling production re-
sources have been developed with respect to the different time horizons: for the
monopolistic case see for example Medina et al.(1998), Read (1999), Ouyang
and Shahidehpour (1991), Burelli et al. (1990), Innorta et al. (1997a), Innorta
et al. (1997b), Cazzol et al. (1998); for the case of liberalized market see Gross
and Finlay (1996), Richter and Sheblé (1997), Li et al. (1999), Sheblé (1999),
Zhang et al. (2000), Martini et al. (2001) and Garzillo et al. (2002).

In this paper we develop two decision support procedures for the short-term
hydro-thermal resource scheduling problem of a power producer operating in a
liberalized market. These procedures, based on mixed integer LP models, deter-
mine the unit commitment of thermal units and the production levels of com-
mitted thermal units and available hydro plants in each hour so as to maximize
profits, while satisfying constraints describing the hydro system, the thermal
system and the market. In both models the annual scheduling decisions are
given (optimal maintenance plans of hydro and thermal plants, optimal weekly
discharge of seasonal basins) as well as forecasts on basin natural inflows. In
the first model the power producer is assumed to be a price taker: prices do
not depend on his own production decisions, i.e. are exogenous to the decision
model, and the optimal schedule is determined on the basis of price forecasts. In
the second model the power producer is assumed to be a price maker: assuming
that competitors’ supply curves can be estimated, the model takes explicitly
into account the Market Operator activity of choosing the cheapest bids and
the hourly energy prices are therefore endogenous variables.
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The paper is organized as follows. In Section 2 we describe the hydro system
constraints and in section 3 the thermal system constraints (the start-up and
shut-down manouvres possible in every hour t, the minimum on-time and off-
time constraints and a ramp-up and ramp-down constraints). Moreover we
describe the market constraints and the objective function (in this case the PM
model contains a representation of competitors’aggregate offer function)

The planning horizon is short term (typically a week or 10 days) with a
discretization period of 1 hour. Let T denote the number of periods considered
and let t, 0 ≤ t ≤ T , denote the period index, where t = 0 denotes the last hour
of the planning horizon immediately preceeding the one in consideration.

2 Model of the hydroelectric subsystem
The hydroelectric subsystem consists of a number of sets, called valleys, of
hydraulically interconnected hydro plants, pumped-storage hydro plants and
basins. Each valley is mathematically represented by a directed graph: each
node represents a basin, with a given storage capacity, and each arc may repre-
sent either a hydro plant (power generation) or a hydro pump (power storage)
or a basin spillage (water flow to a downstream basin for keeping water stor-
age within the storage capacity limit). Let J denote the set of nodes and I
denote the set of arcs. An example of valley and of the corresponding arc-node
incidence matrix A is reported in Figure 1.

The following data describe the hydroelectric system: for i ∈ I and j ∈ J

Aij : (i, j)-entry of network arc-node incidence matrix

Aij =

⎧⎨⎩ −11
0

if arc i leaves node j
if arc i enters node j
if arc i and node j are not incident
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Note that vj,0 and vj,T are determined by the annual resource scheduling.

The power producer must schedule the hourly production of each hydro
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plant, which is expressed as the product of the hydro plant energy coefficient
times the turbined volume in hour t, as well as the hourly pumped and spilled

volumes. The decision variable qi,t
h
10

3

m
3

/h
i
represents the water flow on arc

i in hour t (turbined volume, if arc i represents generation, pumped volume,
if arc i represents pumping, and spilled volume, if arc i represents spillage).

Moreover, the decision variable vj,t
h
10

3

m
3
i
represents the storage volume in

basin j at the end of hour t. The decision variables must satisfy the following
constraints that describe the hydroelectric subsystem:

• flow on arc i in hour t is nonnegative and bounded above by the maximum
volume that can be either turbined or pumped or spilled

0 ≤ qi,t ≤ qi i ∈ I , 1 ≤ t ≤ T (1)

• the storage volume in basin j at the end of hour t is nonnegative and
bounded above by the maximum storage volume

0 ≤ vj,t ≤ vj j ∈ J , 1 ≤ t ≤ T (2)

• at the end of hour T the storage volume in basin j is bounded below by the
minimum storage volume required at the end of the current planning hori-
zon, so as to provide the required initial storage volume at the beginning
of the following planning horizon

vj,T ≤ vj,T j ∈ J (3)

• the storage volume in basin j at the end of hour t must be equal to the
basin storage volume at the end of hour t−1 plus the sum of basin inflows
in hour t− ρi minus the sum of basin outflows in hour t− ρi

vj,t = vj,t−1 + Fj,t +
X
i∈I

Ai,j · qi,t−ρi j ∈ J , 1 ≤ t ≤ T (4)

where vj,0 is a data representing the initial storage volume in basin j.
Basin inflows are natural inflows, turbine discharge from upstream hydro
plants, pumped volumes from downstream hydro plants, spilled volumes
from upstream basins. Basin outflows are turbine discharge to downstream
hydro plants, pumped volumes to upstream hydro plants and spilled vol-
umes to downstream basins.

3 Model of the thermal subsystem
Let K denote the set of thermal plants owned by the power producer. For every
thermal unit k ∈ K the power producer must solve
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• a unit commitment problem, i.e. decide in which hours of the planning
horizon start-up and shut-down manouvres have to take place, taking into
account technical constraints, such as minimum up-time and down-time
constraints;

• a scheduling problem, i.e. decide the production level in every hour of the
planning horizon of each committed unit, taking into account technical
constraints, such as ramp-up and ramp-down constraints.

In the unit commitment problem the power producer decisions are repre-
sented by three sets of binary variables:

αk,t =

½
1
0
start-up of thermal plant k in hour t
no start-up of thermal plant k in hour t

βk,t =

½
1
0
shut-down of thermal plant k in hour t
no shut-down of thermal plant k in hour t

γk,t =

½
1
0
thermal plant k is ON in hour t
thermal plant k is OFF in hour t

The following four cases are relevant

1. thermal unit k is OFF in hours t− 1 and t (no manouvre in hour t): the
corresponding values of the binary variables are

γk,t−1 = 0, αk,t = 0, γk,t = 0, βk,t = 0 (5)

2. thermal unit k is ON in hours t − 1 and t (no manouvre in hour t): the
corresponding values of the binary variables are

γk,t−1 = 1, αk,t = 0, γk,t = 1, βk,t = 0 (6)

3. thermal unit k is OFF in hour t − 1 and is started up in hour t: the
corresponding values of the binary variables are

γk,t−1 = 0, αk,t = 1, γk,t = 1, βk,t = 0 (7)

4. thermal unit k is ON in hour t − 1 and is shut down in hour t: the
corresponding values of the binary variables are

γk,t−1 = 1, αk,t = 0, γk,t = 0, βk,t = 1 (8)

The above four cases satisfy constraints

γk,t−1 + αk,t = γk,t + βk,t k ∈ K , 1 ≤ t ≤ T (9)
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where γk,0 is a binary data representing the status of thermal unit k (0: OFF,
1: ON) in the last hour of the planning period immediately preceeding the one
in consideration. Note that constraints (2) are also satisfied by the 4-uples of
binary variables

γk,t−1 = 0, αk,t = 1, γk,t = 0, βk,t = 1 (10)

and
γk,t−1 = 1, αk,t = 1, γk,t = 1, βk,t = 1 (11)

where both start-up and shut-down manouvres in hour t are associated to a
thermal unit k which is ON (or OFF) both in t− 1 and in t. We note, however,
that the 4-uples of binary variables (10) or (11) will never appear in the opti-
mal solution. Indeed, suppose a feasible solution contains the 4-uple (10) and
consider the solution that differs from it only for the values of αk,t and βk,t,
i.e. αk,t = βk,t = 0: sthe producer problem is a profit maximization problem,
therefore the solution with αk,t = βk,t = 1 is more costly than the one with
αk,t = βk,t = 0, because of the presence of start-up and shut-down costs in hour
t.

In order to take into account minimum up-time and minimum down-time
constraints, the following data are needed for every thermal unit k ∈ K:

tak [h] : minimum number of hours unit k must be ON after start-up

tsk [h] : minimum number of hours unit k must be OFF after shut-down

γk,0 [0/1] : unit k was OFF/ON in the last hour of the scheduling period
immediately preceeding the current one

nhk [h] : in the scheduling period immediately preceeding the current one
the last manouvre for unit k took place in hour T − nhk

The minimum up-time constraints are as follows

• if unit k was ON in the last hour of the previous scheduling period, it
must be ON at least for the first tak−nhk hours of the current scheduling
period: this is obtained by the assignment

if γk,0 = 1, γk,t = 1 for 1 ≤ t ≤ tak − nhk (12)

• if a start-up manouvre takes place in hour t, then unit k must be ON
either for tak − 1 subsequent hours, if tak − 1 ≤ T − t, or for the T − t
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subsequent hours, otherwise: this is obtained by constraints

min(t+tak−1,T )X
τ=t+1

γk,τ ≥ αk,t ·min(tak− 1, T − t) k ∈ K , 1 ≤ t ≤ T

(13)

The minimum down-time constraints for unit k are

• if unit k was OFF in the last hour of the previous scheduling period, it
must be OFF at least for the first tsk−nhk hours of the current scheduling
period: this is obtained by the assignment

if γk,0 = 0, γk,t = 0 for 1 ≤ t ≤ tsk − nhk (14)

• γk,t = 0 for 1 ≤ t ≤ tsk − nhk if γk,0 = 0;

• if a shut-down manouvre takes place in hour t, then unit k must be OFF
either for the tsk − 1 subsequent hours, if tsk − 1 ≤ T − t, or for the T − t
subsequent hours, otherwise: this is obtained by constraints

min(t+tsk−1,T )X
τ=t+1

γk,τ ≤ (1−βk,t)·min(tsk−1, T−t) k ∈ K , 1 ≤ t ≤ T

(15)

As regard to the production level pk,t, to be determined for every hour
t, 1 ≤ t ≤ T and every thermal unit k ∈ K, the following constraints are
considered:

1. if unit k is OFF in hour t, its production pk,t must be zero;

2. if unit k is ON in hour t, its production pk,t must be bounded below by a
minimum value p

k
[MWh];

3. if unit k is ON in hour t, its production pk,t must be bounded above by a
maximum value pk [MWh];
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4. if thermal unit k is OFF in hour t − 1 and is started up in hour t, i.e.
values of αk,t, βk,t and γk,t given in (??) apply, power production in hour
t cannot be greater than vsuk [MWh], the maximum production of unit
k at start-up;

5. if thermal unit k is ON in hour t−1 and is shut down in hour t, i.e. values
of αk,t, βk,t and γk,t given in (7) apply, then production in hour t − 1
cannot be greater than vsdk [MWh], the maximum production of unit k
at shut-down;

6. if thermal unit k is ON in hours t − 1 and t, then production in hour t
must satisfy constraints

pk,t−1 − δvk ≤ pk,t ≤ pk,t−1 + δuk,

where δuk and δdk [MWh] denote the maximum power production in-
crease per hour and the maximum power production decrease per hour,
respectively, in unit k.

Constraints 1 and 3 are imposed by the inequalities

0 ≤ pk,t ≤ γk,t · pk k ∈ K , 1 ≤ t ≤ T (16)

impose zero production, if γk,t = 0; if γk,t = 1 power production is nonnegative
and bounded above by pk production, if γk,t = 1.

Constraints 4, 5 and 6 are imposed by the inequalities

pk,t − pk,t−1 > −δdk + βk,t(−vsdk − δdk) k ∈ K , 1 ≤ t ≤ T (17)

and

pk,t − pk,t−1 ≤ δuk + αk,t(vsuk − δuk) k ∈ K , 1 ≤ t ≤ T (18)

where pk,0 [MWh] is a data representing the power production of unit k in the
last hour of the previous scheduling period. Indeed, the left-hand sides of the
inequalities take the following forms, depending on the values of γk,t−1 and γk,t

pk,t − pk,t−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if γk,t−1 = γk,t = 0

pk,t − pk,t−1 if γk,t−1 = γk,t = 1

pk,t if γk,t−1 = 0 and γk,t = 1

−pk,t−1 if γk,t−1 = 1 and γk,t = 0.
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The lower bounds on production variations, i.e. the right-hand sides of inequal-
ities (17), depend on the value of βk,t

−δdk + βk,t · (−vsdk − δdk) =

⎧⎨⎩
−δdk if βk,t = 0

−vsdk if βk,t = 1.

The upper bounds on production variations, i.e. the right-hand sides of inequal-
ities (18), depend of the value of αk,t

δuk + αk,t · (vsuk − δuk) =

⎧⎨⎩ δuk if αk,t = 0

vsuk if αk,t = 1

In the following section we show that constraint 2 can be imposed in the
context of the linearization of thermal generation costs.

3.1 Computing thermal production costs.

Two types of costs are associated to thermal production: costs of manouvres
and generation costs. For every unit k the cost csuk is associated to each start-
up manouvre and the cost csdk is associated to each shut-down manouvre. The
thermal generation cost Ck,t of unit k in hour t is assumed to be a convex
quadratic function of the production level pk,t

Ck,t (pk,t) = c0k + c1k · pk,t + c2k · p2k,t

where c0k, c1k and c2k are the cost coefficients for unit k. Since the model we
develop is of Mixed Integer type, we choose to linearize the thermal generation
costs, so as to obtain a Mixed Integer Linear Programming model.

In order to linearize the generation cost function of thermal unit k, the inter-

val
h
p
k
, pk

i
is divided in H subintervals of width plk,h, 1 ≤ h ≤ H. Let pk,t,h−1

and pk,t,h denote the extreme points of subinterval h: the straight line segment
passing through the points (pk,t,h−1, Ck,t (pk,t,h−1)) and (pk,t,h, Ck,t (pk,t,h)) is
associated to each subinterval h. Let clk,h denote the slope of the line segment
associated to subinterval h: since the quadratic function is convex, it holds that

clk,h−1 < clk,h for 2 ≤ h ≤ H.

Finally, let plk,t,h denote the real variable associated to subinterval h. For each
production level pk,t, pk ≤ pk,t ≤ pk, there exist a unique bh, 1 ≤ bh ≤ H, and a
unique plk,t,h, 0 < plk,t,h ≤ plk,h, such that

pk,t = p
k
+

h−1X
h=1

plk,h + plk,t,h.

10



Given a production level pk,t, the corresponding (linearized) generation costs
are correctly computed if variables plk,t,h take the values

plk,t,h = plk,h for 1 ≤ h ≤ bh− 1. (19)

This is obtained by introducing the constraints

pk,t = p
k
· γk,t +

HX
h=1

plk,t,h k ∈ K , 1 ≤ t ≤ T (20)

and
0 ≤ plk,t,h ≤ plk,h k ∈ K , 1 ≤ t ≤ T , 1 ≤ h ≤ H. (21)

This guarantees that, in the optimal solution, variables plk,t,h take the values
(19).

Summarizing, the linearized generation costs of thermal plant k in hour t
are given by

LCk,t (pk,t) =
³
c0k + c1k · pk + c2k · p2k

´
· γk,t +

X
k,h

clk,h · plk,t,h (22)

and the total thermal generation costs of unit k in hour t are

TCk,t (pk,t) = LCk,t (pk,t) + csuk · αk,t + csdk · βk,t (23)

with LCk,t (pk,t) given by (22).

4 Market constraints and objective function of
the Price Taker model.

In this section we introduce the market constraints and the objective function
for a producer who cannot influence the market price. It is assumed that in
every hour t of the planning period the Price Taker must satisfy the load cart
deriving from his bilateral contracts. If his total production exceeds the load
from bilateral contracts, the Price Taker sells the excess quantity, sellt, on the
spot market; if his total production is less than the load from bilateral contracts,
the Price Taker must buy on the market the amount of energy, buyt, necessary
to meet the load cart. Therefore the market constraints areX

i∈I
ki · qi,t +

X
k∈K

pk,t + buyt − sellt = cart 1 ≤ t ≤ T

The objective function represents the Price Taker profits
TX
t=1

"
λt · sellt − μt · buyt −

X
k∈K

TCk,t (pk,t)

#
where λt is the market sell price in hour t, μt is the market purchase price in
hour t and TCk,t (pk,t) are the total (linearized) thermal generation costs given
by (6).
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5 Market constraints and objective function of
the Price Maker model.

In this section we introduce the market constraints and the objective function for
a producer who can influence the market price. It is assumed that in every hour
t the Price Maker knows the load CARt required by the system and therefore,
depending on his total production, he can determine the residual demand Πt,
to be satisfied by his competitors. The market constraints areX

i∈I
(ki · qi,t) +

X
k∈K

pk,t +Πt = CARt 1 ≤ t ≤ T

It is also assumed that the Price Maker knows (or can estimate) the sell bids
presented in hour t by his competitors. On the basis of the sell bids, the com-
petitors’ aggregated offer function is then constructed and used to determine
the hourly energy price. The Price Maker revenues are therefore computed in
the model by means of electricity prices endogenously determined.

The electricity price in hour t is determined by the following procedure. Let
St denote the number of sell bids presented by the competitors in hour t and
let QVs,t and PVs,t denote quantity and price, respectively, declared in bid s,
1 ≤ s ≤ St. Suppose that sell bids have been reordered in merit order, i.e.

PVs,t ≤ PVs+1,t 1 ≤ s ≤ St − 1.

In order to construct the competitors’ aggregated offer function, we first deter-
mine its Pt = 2 · St points of discontinuity: for 1 ≤ p ≤ Pt

(aqvp,t, apvp,t) =

½
(QVp−1,t, PVp,t) if p = 2 · s− 1
(QVp,t, PVp,t) if p = 2 · s

with QV0,t = 0. For values of Πt such that aqvp,t < Πt < aqvp+1,t, with p
odd (in which the competitors’ aggregated offer function is continuous), the
corresponding price value is

Pricet = apvp,t = apvp+1,t ;

for values of Πt such that Πt = aqvp,t = aqvp+1,t, with p even (in which the com-
petitors’ aggregated offer function is discontinuous), any value between apvp,t
and apvp+1,t may be taken as the price at hour t.

apvp,t ≤ Pricet ≤ apvp+1,t .

In order to model the competitors’ aggregated offer function, a real variable
ηp,t, 0 ≤ ηp,t ≤ 1, is associated to every discontinuity point p for 1 ≤ t ≤ T .
The set of variables ηp,t, 1 ≤ p ≤ Pt, is a special ordered set of type 2 (SOS2),
see Beale and Tomlin (1969), i.e. an ordered set within which at most two
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adjacent variables can be nonzero. We also introduce the convexity constraints,
for 1 ≤ t ≤ T ,

PtX
p=1

ηp,t = 1

The constraints that define Πt, for 1 ≤ t ≤ T , is

Πt =
PX
p=1

aqvp,t · ηp,t (24)

Consider a value of Πt such that

aqvp,t < Πt < aqvp+1,t

with bp odd. Since the variables ηp,t are of SOS2 type and because of the con-
vexity constraints, it follows that the following values are assigned to variables
ηp,t:

ηp+1,t =
Πt − aqvp,t

aqvp+1,t − aqvp,t

ηp,t = 1− ηp+1,t

ηp,t = 0 for p 6= bp, bp+ 1 .
Note that expression (24) is also valid if Πt is a point of discontinuity of the
aggregated offer function, i.e. Πt = aqvp,t = aqvp+1,t, with bp even.
The revenues of the Price Maker in hour t may then be expressed as

Revenuest =
PX
p=1

apvp,t · (CARt − aqvp,t) · ηp,t :

and the objective function, representing the profits of the Price Maker, is

X
t∈T

⎧⎨⎩X
p∈P

£
apvt,p · (CARt − aqvt,p) · ηt,p

¤
−
X
k∈K

[TTGk,t (pk,t)]

⎫⎬⎭ ,
where TTGk,t (pk,t) represents the total thermal generation costs and is given
by (6).

6 Conclusions
We have developed two decision support procedures for the short-term hydro-
thermal resource scheduling problem of a power producer operating in a liber-
alized market. These procedures, based on mixed integer LP models, determine
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the unit commitment of thermal units and the production levels of committed
thermal units and available hydro plants in each hour so as to maximize profits,
while satisfying constraints describing the hydro system, the thermal system
and the market. In both models the annual scheduling decisions are given (op-
timal maintenance plans of hydro and thermal plants, optimal weekly discharge
of seasonal basins) as well as forecasts on basin natural inflows.
The time horizon of the final phase of the planning procedure is the single

hour, for which the Power Producer must decide his own generation units’ sell
bids. In this short horizon it is possible to include in the model a detailed repre-
sentation of bids and of production units’ localisation for each competitor. The
hourly resource planning procedure will require to explicitly introduce in the
Power Producer model the optimality conditions (Kuhn-Tucker conditions) of
the Market Operator problem, which will be modelled under different hypothe-
ses, such as inelastic or elastic energy demand, no transmission constraints or
transmission network with either radial or grid topology. A Mathematical Pro-
gramming problem with Equilibrium Constraints (MPEC) will then have to be
solved. Each producer must define for each hour of the following day the so
called "production bids", i.e. pairs "energy quantity - price".
The power producer decision support procedures will also allow both to

analyse the behaviour of the electricity market, i.e. the process by which the
hourly energy price is determined, and to detect whether a producer has an ex-
cessive market power, incompatible with the aim of the liberalisation. The above
described planning procedures for the weekly, daily and hourly time horizon are
also able to detect the existence of an independent producer with excessive mar-
ket power. Indeed, if one producer turned out to be indispensable to meet the
demand, profit maximisation models would determine energy sell bids with ar-
bitrarily high prices. The planning tools that will be developed in this research
project will make it possible to estimate the maximum dimensions of a single
producer above which genuine competition in the market is hindered.
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