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On the lifting and approximation theorem

for nonsmooth vector fields∗

Marco Bramanti, Luca Brandolini, Marco Pedroni

February 9, 2010

Abstract

We prove a version of Rothschild-Stein’s theorem of lifting and approx-

imation and some related results in the context of nonsmooth Hörmander’s

vector fields for which the highest order commutators are only Hölder con-

tinuous. The theory explicitly covers the case of one vector field having

weight two while the others have weight one.

Introduction

This paper is focussed on the well-known “lifting and approximation” theorem
proved by Rothschild-Stein in [14], and related topics. To describe the context
and aim of this paper, we have therefore to recall what that theorem is about.
(Here we will be rather sketchy, while precise definitions will be given later).

Let us consider a family of real smooth vector fields X0, X1, ..., Xn defined
in some domain of R

p, and the corresponding second order differential operator

L =

n∑

i=1

X2
i + X0. (1)

If the Xi’s satisfy Hormander’s condition, then L is hypoellitptic (Hörmander’s
theorem, [10]).

If there exists in R
p a structure of “homogeneous group” such that L is

left invariant (with respect to the group translations) and homogeneous of de-
gree two (with respect to the group dilations), then L possesses a homoge-
neous fundamental solution (Folland, [7]) which allows one to apply fairly stan-
dard techniques of singular integrals, in order to prove a-priori estimates and
other interesting properties of L. If such a group structure does not exists, then
Rothschild-Stein’s theory tells us that it is still possible to reduce, in a suitable

∗2000 AMS Classification: Primary 53C17. Keywords: nonsmooth Hörmander’s vec-

tor fields, Lifting, Subelliptic distance
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sense, the study of L to the study of a homogeneous left invariant operator.
This requires a three-step process. First, one “lifts” the original vector fields

Xi =

p∑

j=1

aj (x) ∂xj
, x ∈ R

p

which are assumed to satisfy Hörmander’s condition at some step r, to some
new vector fields

X̃i = Xi +

m∑

j=1

bij (x, t) ∂tj
, (x, t) ∈ R

p+m

so that these lifted vector fields still satisfy Hörmander’s condition at the same
step r, and are free up to step r.

Second, one proves that in R
p+m there exists a structure of homogeneous

group G and a family of left invariant homogeneous vector fields Yi which locally
approximate the X̃i’s. More precisely, for every point η = (x, t) there is a local
diffeomorphism

u = Θη (ξ)

from a neighborhood of η onto a neighborhood of the origin in G, such that
with respect to these local coordinates,

X̃i = Yi + Rη
i

where the “remainder” Rη
i is a vector field, smoothly depending on the param-

eter η, such that its action on the fundamental solution Γ of

n∑

i=1

Y 2
i + Y0

gives a function which is less singular than YiΓ. The map Θη (·) , a key object
in this theory, also possesses other interesting properties:

(1) it depends smoothly on η;
(2) the function

ρ (ξ, η) = ‖Θη (ξ)‖

(where ‖·‖ is a homogeneous norm on the group G) is a quasidistance (which
also turns out to be equivalent to the distance induced by the vector fields);

(3) the change of variables u = Θη (ξ) obeys to

dξ = c (η) (1 + O (‖u‖)) du

where the function c (η) is smooth and bounded away from zero.
The set of results just described allows one to prove suitable a priori estimates

for the lifted operator L̃. Once these are proved, it is not difficult (third step) to
derive the corresponding estimates for the original operator, exploiting the fact
the L is the projection of L̃ on R

p. All these results have been proved in [14].
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Over the years, the lifting and approximation technique has showed to be
useful also for other purposes. In particular, sometimes the lifting theorem is
enough (without need of the approximation part of the theory), in order to
reduce problems for a general family of Hörmander’s vector fields to problems
for free vector fields, which for algebraic reasons are easier to be studied.

Since the original proof of the lifting and approximation theorem given in [14]
is long and difficult, several authors have given alternative proofs: Hörmander-
Melin [11], Folland [8] and Goodman [9] prove the lifting theorem and a point-
wise version of the approximation theorem, without dealing with the map Θη (·)
and its properties; Folland restricts to the particular case when the starting vec-
tor fields are already left invariant and homogeneous with respect to a group
structure (but are not free); more recently, Bonfiglioli-Uguzzoni [4] have proved
that under Folland’s assumptions, the original vector fields can be lifted di-
rectly to free left invariant homogeneous vector fields (in other words, in this
case the “remainders” Rη

i can be taken equal to zero). Coming back to the
case of general Hörmander’s vector fields, Christ-Nagel-Stein-Weinger [5] prove
a somewhat more general version of the lifting theorem, because they consider
“weighted” vector fields (we will explain this feature in a moment); on the other
hand, they do not prove any approximation result.

Although Rothschild-Stein state their main results for a Hörmander operator
(1), all their proofs are written for the “sum of squares” operator

L =

n∑

i=1

X2
i .

The issue in handling Hörmander’s operators (1) consists in the fact that the
vector field X0 has “weight” 2, while X1, X2, ..., Xn have weight 1; this fact
requires to modify in a suitable way all the basic definitions appearing in this
context (free vector fields, weight of a commutator,...); due to the complexity
of the theory, this adaptation is not trivial. Nevertheless, as far as we know,
a detailed proof of lifting, approximation, and properties of the map Θη (·),
adapted to the case of weighted vector fields has not been written yet (as we
have already pointed out, the paper [5] considers weighted vector fields but only
contains a proof of the lifting result).

A first aim of this paper is to present a detailed proof of the aforementioned
results, explicitly covering the case of weighted vector fields.

Second, we are interested in extending these results to the case of nonsmooth
vector fields, that is, vector fields which only possess the number of derivatives
involved in the commutators which are necessary to check Hörmander’s condi-
tion, with Hölder continuous derivatives of the maximum order. This is part
of a larger project which we have started in [2], where we have proved in this
nonsmooth context a Poincaré’s inequality, together with the basic properties
of the distance induced by the Xi’s: Chow’s connectivity theorem, the doubling
condition, the equivalence between different distances induced by the Xi’s, etc.
We refer to the introduction of [2] for a survey of the existing literature about
nonsmooth Hörmander’s vector fields.
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We point out that the lifting theorem which we prove here has already been
used in [2], as one of the tools in the proof of a Poincaré’s inequality. Moreover,
the whole set of results proved in this paper allows to establish, for the operator
L, the existence of a local fundamental solution. This result, obtained by a
suitable adaptation of the Levi’s parametrix method, will be accomplished in
the forthcoming paper [3].

The main results about nonsmooth weighted vector fields proved in this
paper are: lifting (Thm. 5, §1.2), approximation (Thm. 32, §3.3), and properties
of the map Θη (·) (Prop. 31, §3.3, Prop. 33 and Prop. 34, §3.4), which are the
analog of the properties (1), (2), (3) quoted at the beginning of the Introduction.

We now describe the general strategy that we have followed and the structure
of the paper.

In §1 we prove the lifting theorem for weighted nonsmooth Hörmander’s
vector field. Here and in the following section we adapt and detail the arguments
in [11]. However, in order to prove the approximation result for nonsmooth
vector fields, it is not possible to proceed further in the line of [11]. The reason is
that a basic idea of this theory is that of rewriting the vector fields in “canonical
coordinates”; this means to apply a suitable change of variables, which however
turns out to be just Hölder continuous if the vector fields have the limited
smoothness that we assume, so that this way is closed.

Therefore, in §2, we pass to consider free smooth vector fields, proving for
them the approximation result, a ball-box theorem, and the desired properties
of the map Θη (·). As a by-product we also get, in the particular case of free
vector fields, a quite simple proof of the results due to Nagel-Stein-Wainger [12]
about the volume of metric balls and the doubling condition.

Then, in §3, we come back to nonsmooth free vector fields. Now the natural
idea is to approximate nonsmooth vector fields with smooth ones, obtained tak-
ing suitable Taylor’s expansions of the coefficients. This idea, firstly introduced
in [6], has been used also in [2]. To these approximating smooth vector fields
we can apply the theory developed in §2, in order to derive the corresponding
results in the nonsmooth case. We stress the fact that, in the nonsmooth con-
text, the properties of the map Θη (·) hold in a weaker form: the dependence on
η is only Hölder continuous. However, this is enough to get the aforementioned
existence result for a fundamental solution for L.
Acknowledgement. We wish to thank Professor A. Melin, who kindly ac-
cepted to clarify to us some arguments contained in his paper [11].

1 Lifting of nonsmooth Hörmander’s vector fields

1.1 Assumptions and notation

Let X0, X1, ..., Xn be a system of real vector fields, defined in a domain of R
p.

Let us assign to each Xi a weight pi, saying that

p0 = 2 and pi = 1 for i = 1, 2, ...n.
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The following standard notation, will be used throughout the paper. For
any multiindex

I = (i1, i2, ..., ik)

we define the weight of I as

|I| =

k∑

j=1

pij
.

Sometimes, we will also use the (usual) length of I,

ℓ (I) = k.

For any vector field X, we denote by adX the linear operator which maps Y
to [X, Y ] , where Y is any vector field and [·, ·] is the Lie bracket. Now, for any
multiindex I = (i1, i2, ..., ik) we set:

XI = Xi1Xi2 ...Xik

and

X[I] = adXi1adXi2 ...adXik−1
Xik

=
[
Xi1 ,

[
Xi2 , ...

[
Xik−1

, Xik

]
...
]]

.

If I = (i1) , then
X[I] = Xi1 = XI .

As usual, X[I] can be seen either as a differential operator or as a vector
field. We will write

X[I]f

to denote the differential operator X[I] acting on a function f , and

(
X[I]

)
x

to denote the vector field X[I] evaluated at the point x.

Assumptions (A). We assume that for some integer r ≥ 2 and some
bounded domain (i.e., connected open subset) Ω ⊂ R

p the following hold:
The coefficients of the vector fields X1, X2, ..., Xn belong to Cr−1 (Ω) , while

the coefficients of X0 belong to Cr−2 (Ω) . Here and in the following, Ck stands
for the classical space of functions with continuous derivatives up to order k.

These assumptions are consistent in view of the following

Lemma 1 Under the assumption (A) above, for any 1 ≤ k ≤ r, the differential
operators

{XI}|I|≤k

are well defined, and have Cr−k coefficients. The same is true for the vector
fields

{
X[I]

}
|I|≤k

.
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Proof. By induction on k. For k = 1, the assertion is part of the assumption
(A). Assume the assertion holds up to k − 1, and let

I = (i1, i2, ..., im) , with |I| = k.

Set I ′ = (i2, ..., im) so that XI (x) = Xi1XI′ (x) . If Xi1 has weight pi1 , then
|I ′| = k−pi1 ≥ 0; by inductive assumption, XI′ has Cr−k+pi1 coefficients, hence
Xi1XI′ (x) has Ch coefficients, with h = min (r − k + pi1 − 1, r − pi1) ≥ r − k,
and we are done.

1.2 Hörmander-Melin procedure

We are now going to define the concept of free vector fields. Clearly, any vector
field X[I] with |I| ≤ r can be rewritten explicitly as a linear combination of
operators of the kind XJ for |J | = |I|:

X[I] =
∑

J

AIJXJ

where {AIJ}|I|,|J|≤r is a matrix of universal constants, built exploiting only
those relations between X[I] and XJ which hold automatically, as a consequence
of the definition of X[I], regardless of the specific properties of the vector fields
X0, X1, ..., Xn. In particular, we see that

AIJ = 0 if |J | 6= |I|

and
AIJ = δIJ if |J | = |I| = 1.

Also, note that if {aI}I∈B is any finite set of constants such that

∑

I∈B

aIAIJ = 0 ∀J , then
∑

I∈B

aIX[I] ≡ 0 (2)

for arbitrary vector fields X0, X1, ..., Xn. Reversing this property we get the
definition of a key concept which will be dealt with in the following:

Definition 2 For any positive integer s ≤ r, we say that the vector fields
X0, X1, ..., Xn are free up to weight s at 0, if, for any family of constants
{aI}|I|≤s, ∑

|I|≤s

aI

(
X[I]

)
0

= 0 =⇒
∑

|I|≤s

aIAIJ = 0 ∀J.

Comparing this definition with (2) shows that X0, X1, ..., Xn are free up to
weight s at 0 if, roughly speaking, the only linear identities relating the X[I]’s for
|I| ≤ s (at 0) are those which hold for any possible choice of X0, X1, ..., Xn, as a
consequence of the formal properties of the Lie bracket, namely antisymmetry
and Jacobi identity. However, the different weights of the vector fields make
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this property not so easy to state more explicitly. For instance, saying that
X0, X1, ..., Xn are free up to weight 1 at 0 just means that X1, ..., Xn are linearly
independent (without any requirement on X0); saying that X0, X1, ..., Xn are
free up to weight 2 at 0 means that:

i) X1, ..., Xn are linearly independent;

ii) X0 is not a linear combination of vector fields of the kind [Xi, Xj ] for
i, j = 1, 2, ..., n;

iii) the only linear relations between the [Xi, Xj ]’s (for i, j = 1, 2, ..., n) are
those following from antisymmetry.

Clearly, for a general s the explicit description of this property becomes
cumbersome.

Proposition 3 The vector fields X0, X1, ..., Xn are free of weight s at 0 if and
only if for any family of constants {cI}|I|≤s ⊂ R there exists a function u ∈
C∞ (Rp) such that XIu(0) = cI when |I| ≤ s.

Proof. To show that the “if” condition holds, let us suppose that
∑

|I|≤s aIX[I](0) =
0. Then

0 =
∑

|I|≤s

aIX[I]u(0) =
∑

|I|≤s

aI

∑

|J|≤s

AIJXJu(0) =
∑

|I|,|J|≤s

aIAIJcJ ,

and this implies that
∑

|I|≤s aIAIJ = 0 when |J | ≤ s, since the cJ ’s are arbitrary.
Thus X0, X1, ..., Xn are free of weight s at 0.

Now we need some notations to prove the “only if” condition. We consider
polynomials in the noncommuting variables ξ0, ξ1, ..., ξn and we assign to ξ0 the
weight p0 = 2, and to ξi, for i = 1, ..., n the weight pi = 1. As we did with
the vector fields X0, X1, ..., Xn, for any multi-index I = (i1, i2, ..., ik) we put
ξ[I] = ad ξi1 ...ad ξik−1

ξik
, where ad ξi ξj = ξiξj − ξjξi. Finally, we let V be

the vector space spanned by the monomials ξI , with |I| ≤ s, and V ′ be its
dual space. Every function u ∈ C∞ (Rp) gives rise to the linear map Λu ∈ V ′

defined by Λu(p) = p(X0, ..., Xn)u(0), where p ∈ V . (Notation: if p = ξI , then
p(X0, ..., Xn)u(0) = (XIu) (0)). Thus we have a mapping

Λ : C∞ (Rp) → V ′

Λ : u 7→ Λu

and our aim is to show that it is surjective. More precisely, if L ∈ V ′ is defined
by L(ξI) = cI , we have to find u ∈ C∞ (Rp) such that Λu = L. Let us denote
with Vj the subspace of V spanned by the products ξ[I1] · · · ξ[Iν ], with ν ≤ j
(and |I1|+ · · ·+ |Iν | ≤ s). Notice that Vs = V . We will show by induction with
respect to j, with 1 ≤ j ≤ s, that there exists u ∈ C∞ (Rp) such that Λu = L
on Vj , that is to say,

X[I1] · · ·X[Iν ]u(0) = L(ξ[I1] · · · ξ[Iν ]) (3)
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if ν ≤ j and |I1| + · · · + |Iν | ≤ s.
If j = 1, then ν = 1 and (3) can be written as

X[I]u(0) = L
(
ξ[I]

)
for any |I| ≤ s.

Since the Xi’s are free of weight s at 0, we have that

∑

|I|≤s

aI

(
X[I]

)
0

= 0 =⇒
∑

|I|≤s

aIξ[I] = 0. (4)

Namely,
∑

|I|≤s aI

(
X[I]

)
0

= 0 implies that
∑

|I|≤s aIAIJ = 0 for any J, hence

∑

|I|≤s

aIξ[I] =
∑

|I|≤s

aI

∑

J

AIJξJ =
∑

J



∑

|I|≤s

aIAIJ


 ξJ = 0.

By (4), there is a (unique) linear form defined on the span of the tangent vectors
{
(
X[I]

)
0
}|I|≤s by (

X[I]

)
0
7→ L

(
ξ[I]

)
.

We can extend this form to R
p and then find a function u ∈ C∞ (Rp), e.g., a

first degree homogeneous polynomial, such that the differential u(1)(0) = du(0)
of u at 0 coincides with such an extension. Since u(1)(0)

(
X[I]

)
0

= X[I]u(0), the
case j = 1 is done.

Assume now that for any L ∈ V ′ there exists u0 ∈ C∞ (Rp) such that
Λu0

= L on Vj−1. This means that

X[I1] · · ·X[Iν ]u0(0) = L(ξ[I1] · · · ξ[Iν ]) (5)

when ν ≤ j − 1 and |I1|+ · · ·+ |Iν | ≤ s. If u = u0 + v, with v vanishing of order
j at 0 (in the usual sense), then Λu = L on Vj−1, meaning that we must find v
in such a way that (3) is solved for ν = j. In this case, the equation takes the
form

v(j)(0)
((

X[I1]

)
0
, . . . ,

(
X[Ij ]

)
0

)
= L(ξ[I1] · · · ξ[Ij ]) − X[I1] · · ·X[Ij ]u0(0), (6)

where v(j)(0) is the j-th differential of v at 0, seen as a j-linear form on R
p.

Namely,

X[I1] · · ·X[Ij ]u(0) = X[I1] · · ·X[Ij ]u0(0) + X[I1] · · ·X[Ij ]v(0) = L(ξ[I1] · · · ξ[Iν ])

but X[I1] · · ·X[Ij ]v(0) simply equals v(j)(0)
((

X[I1]

)
0
, . . . ,

(
X[Ij ]

)
0

)
, because all

the derivatives of v of intermediate order (which appears expanding the differ-
ential operator X[I1] · · ·X[Ij ]) actually vanish because v vanishes of order j at
0.

Thus, if we show that the right-hand side of (6) defines a symmetric j-
linear form on the span of the tangent vectors

(
X[I]

)
0
, where |I| ≤ s, then
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we are done, because we can then extend this form to R
p and therefore find a

function v ∈ C∞ (Rp) vanishing of order j at 0, e.g., a j-th degree homogeneous
polynomial, such that its j-th differential v(j)(0) at 0 coincides with the extended
j-linear form.

So, let J be the form defined by

J :
((

X[I1]

)
0
, . . . ,

(
X[Ij ]

)
0

)
7→ L(ξ[I1] · · · ξ[Ij ]) − X[I1] · · ·X[Ij ]u0(0).

The check that this j-linear form is actually well defined amounts to show that

∑
aI1

(
X[I1]

)
0

= 0,
∑

aI2

(
X[I2]

)
0

= 0, ...,
∑

aIj

(
X[Ij ]

)
0

= 0 =⇒
∑

aI1
aI2

...aIj

{
L(ξ[I1] · · · ξ[Ij ]) − X[I1] · · ·X[Ij ]u0(0)

}
= 0

This is almost the same as in the j = 1 case. Indeed, the implication (4) still
holds, and therefore

∑
aIi

(
X[Ii]

)
0

= 0 =⇒
∑

aIi
ξ[Ii] = 0 for i = 1, 2, ..., n;

hence
∑

aI1
aI2

...aIj

{
L(ξ[I1] · · · ξ[Ij ]) − X[I1] · · ·X[Ij ]u0(0)

}
=

= L
(∑

aI1
ξ[I1]

∑
aI2

ξ[I2]...
∑

aIjξ[Ij]

)
+

−
∑

aI1
X[I1]

∑
aI2

X[I2]...
∑

aIjX[Ij ]u0 (0) = 0.

To show the symmetry of J , let us introduce

dI1,...,Ij
= L(ξ[I1] · · · ξ[Ij ]) − X[I1] · · ·X[Ij ]u0(0),

and let us prove that they are symmetric in the (multi-)indices. We first need
to show that for every pair of multi-indices I and J , one has

[ξ[I], ξ[J]] =
∑

|K|=|I|+|J|

bKξ[K],

where the bK ’s are absolute constants, only depending on the multiindices
I, J, K. This is just a consequence of Jacoby identity, as we can show by in-
duction on ℓ (I). First, if ℓ (I) = 1, that is I = (i) , there is nothing to prove,
because

[ξ[I], ξ[J]] = [ξi, ξ[J]] = ξ[K]

with K = (i, J), just by definition of ξ[K]. Assume then the property for ℓ (I) ≤
k, and let I = (i, I ′) with ℓ (I ′) = k; then

[
ξ[I], ξ[J]

]
=
[
ξ[i,I′], ξ[J]

]
=
[[

ξi, ξ[I′]

]
, ξ[J]

]
=

=
[
ξi,
[
ξ[I′], ξ[J]

]]
+
[
ξ[I′],

[
ξ[J], ξi

]]
.

Now the first term in the last sum is already in the proper form, while the
second can be rewritten in the proper form by inductive assumption, so we are
done.
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Let us show now the desired symmetry result. It is clearly sufficient to show
it for consecutive indices. We limit ourselves to verify the symmetry with respect
to the first two indices, the other cases being a straightforward generalization
of it. Indeed, we have that

dI1,I2,...,Ij
− dI2,I1,...,Ij

= L([ξ[I1], ξ[I2]] · · · ξ[Ij ]) − [X[I1], X[I2]] · · ·X[Ij ]u0(0)

=
∑

|K|=|I|+|J|

bK

(
L(ξ[K]ξ[I3] · · · ξ[Ij ]) − X[K]X[I3] · · ·X[Ij ]u0(0)

)
= 0

by the induction hypothesis (5). Now we are (almost) done, because we have
shown that the right-hand side of (6) defines a symmetric j-linear form on the
span of {

(
X[I]

)
0
)}|I|≤s. As we did for j = 1, we can extend this form to R

p and
then find a function v ∈ C∞ (Rp) vanishing of order j at 0, e.g., a j-th degree
homogeneous polynomial, such that its j-th differential v(j)(0) at 0 coincides
with the extended j-linear form. This completes the proof.

Proposition 4 Let X0, X1, ..., Xn be free of weight s− 1 but not of weight s at
0. Then one can find vector fields X̃j in R

p+1 of the form

X̃j = Xj + uj (x)
∂

∂t
(j = 0, 1, ..., n) (7)

with uj ∈ C∞ (Rp) , such that

1. the X̃j’s remain free of weight s − 1;
2. for every r ≥ s,

dim
〈(

X̃[I]

)

0

〉

|I|≤r
= dim

〈(
X[I]

)
0

〉
|I|≤r

+ 1

where the symbol 〈Yα〉α∈B denotes the vector space spanned by the vectors {Yα : α ∈ B} .

Proof. Let us show that condition 1 in the above statement holds for any choice
of the functions uj (x) . To see this, we first claim that (7) implies

X̃[I] = X[I] + uI (x)
∂

∂t
(8)

for any multiindex I and some uI ∈ C∞ (Rp) . Namely, we can proceed by
induction on ℓ (I) . For ℓ (I) = 1, this is just (7); assume (8) holds for ℓ (I) = j−1.
For ℓ (I) = j, let I = (i, J) for some i = 0, 1, ..., n and ℓ (J) = j − 1. Then, by
inductive assumption,

X̃[I] = X̃[i,J] =
[
X̃i, X̃[J]

]
=

=

[
Xi + ui (x)

∂

∂t
, X[J] + uJ (x)

∂

∂t

]
=

=
[
Xi, X[J]

]
+
(
XiuJ − X[J]ui

) ∂

∂t
=

= X[I] + uI (x)
∂

∂t
.

10



Next, we show that (8) implies that the X̃i’s are free of weight s − 1. If

∑

|I|≤s−1

aI

(
X̃[I]

)

0
= 0

for some coefficients aI , then by (8) we have

0 =
∑

|I|≤s−1

aI

(
X[I] + uI (x)

∂

∂t

)

0

=

=
∑

|I|≤s−1

aI

(
X[I]

)
0

+




∑

|I|≤s−1

aIuI (0)


 ∂

∂t
.

Since ∂
∂t is independent from the vectors

(
X[I]

)
0
, this implies that

∑
|I|≤s−1 aIuI (0) =

0 and ∑

|I|≤s−1

aI

(
X[I]

)
0

= 0.

But the Xi’s are free of weight s − 1 at 0, hence

∑

|I|≤s−1

aIAIJ = 0 for any J with |J | ≤ s − 1.

Therefore also the X̃i’s are free of weight s − 1 at 0.
We now show that it is possible to choose smooth functions uj such that

condition 2 in the statement of this proposition holds. To show this, we will
prove that there exist functions uj and constants {aI}|I|≤s such that:

∑

|I|≤s

aI

(
X[I]

)
0

= 0 (9)

∑

|I|≤s

aI

(
X̃[I]

)

0
6= 0 (10)

From (9)-(10), condition 2 will follow; namely,

0 6=
∑

|I|≤s

aI

(
X̃[I]

)

0
=
∑

|I|≤s

aI

((
X[I]

)
0

+ uI (0)
∂

∂t

)
=



∑

|I|≤s

aIuI (0)


 ∂

∂t
= b

∂

∂t

with b 6= 0, hence
∂

∂t
=
∑

|I|≤s

aI

b

(
X̃[I]

)

0

and this shows that

〈(
X̃[I]

)

0

〉

|I|≤r
=
〈(

X[I]

)
0

〉
⊕

〈
∂

∂t

〉
,

11



which implies condition 2.
To prove (9)-(10), we use our assumption on the Xi: since they are not free

of weight s, there exist coefficients {aI}|I|≤s such that (9) holds but

∑

|I|≤s

aIAIJ 6= 0 for some J with |J | ≤ s. (11)

It remains to prove that there exist functions uj such that (10) holds for these
uj ’s and aI ’s. To determine these uj ’s, let us examine the action of the vector
field ∑

|I|≤s

aIX̃[I] =
∑

|I|≤s

aI

∑

|J|≤s

AIJX̃J

on the function t. For any J with |J | ≤ s, let us write J = (J ′j) for some
j = 0, 1, ..., n. Then

X̃J t = X̃J′X̃jt = X̃J′

[(
Xj + uj

∂

∂t

)
t

]
= X̃J′uj = XJ′uj

since uj does not depend on t. We then have:



∑

|I|≤s

aIX̃[I] (t)


 (0) =

∑

|I|≤s

aI

∑

|J|≤s

AIJ

∑

j=0,...,n; J=(J′j)

(XJ′uj) (0) .

Since J = (J ′j) ,

|J ′| =

{
|J | − 1 for j = 1, 2, ..., n
|J | − 2 for j = 0

hence, in any case, |J | ≤ s implies |J ′| ≤ s− 1. Since the Xi’s are free of weight
s−1 at 0, by Proposition 2 for any choice of constants {cJ′}|J′|≤s−1 there exists

a function u ∈ C∞ (Rp) such that (XJ′u) (0) = cJ′ . On the other hand, by (11),
there exists a set of constants {cJ}|J|≤s such that

∑

|I|≤s

∑

|J|≤s

aIAIJcJ 6= 0.

Setting cj
J′ = cJ if J = (J ′j) and applying n+1 times Proposition 2 to the n+1

sets of constants
{

cj
J′

}

|J′|≤s−1
, j = 0, 1, 2, ..., n, we find u0, u1, ..., un such that



∑

|I|≤s

aIX̃[I] (t)


 (0) =

∑

|I|≤s

∑

|J|≤s

aIAIJcJ 6= 0.

Hence (10) holds. This completes the proof of the proposition.
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Theorem 5 (Lifting) Let X0, X1, ..., Xn be vector fields satisfying Hörmander’s
condition of step r at x = 0: the vectors

{(
X[I]

)
0

}
|I|≤r

span R
p. (This clearly implies that such property holds in a suitable neighborhood

of 0). Then there exist an integer m and vector fields X̃k in R
p+m, of the form

X̃k = Xk +

m∑

j=1

ukj (x, t1, t2, ..., tj−1)
∂

∂tj

(k = 0, 1, ..., n) , where the ukj’s are polynomials, such that the X̃k’s are free of

weight r and
{(

X̃[I]

)

0

}

|I|≤r
span R

p+m.

This theorem has an obvious reformulation in any point x0 ∈ R
p, with the

lifted vector fields defined in a neighborhood of (x0, 0) ∈ R
p+m.

Proof. Let
{(

X[I]

)
0

}
I∈B

be a basis of R
p, for some set B of p multiindices of

weight ≤ r. We claim that

rank [AIJ ]I∈B,|J|≤r ≥ p,

because the p vectors (AIJ)|J|≤r, with I ∈ B, are independent. Namely, if for

some constants {aI}I∈B

∑

I∈B

aIAIJ = 0 for any J with |J | ≤ r,

then

∑

I∈B

aI

(
X[I]

)
0

=
∑

I∈B

aI

∑

|J|≤r

AIJ (XJ)0 =
∑

|J|≤r

(
∑

I∈B

aIAIJ

)
(XJ)0 = 0.

But
{(

X[I]

)
0

}
I∈B

is a basis, hence
∑

I∈B aI

(
X[I]

)
0

= 0 implies aI = 0 for any
I ∈ B.

The relation just proved means that

p ≤ rank [AIJ ]|I|,|J|≤r ≡ c (r, n) , (12)

an absolute constant only depending on r, n.
Now, let s ≤ r be such that X0, X1, ..., Xn are free of weight s−1 but not of

weight s, at 0. (If the Xi’s were already free of weight r, there would be nothing
to prove. We also agree to say that the Xi’s are free of weight 0 if they are not
free of weight 1). We can then apply Proposition 4 and build vector fields

X̃j = Xj + uj (x)
∂

∂t
(j = 0, 1, ..., n)
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in R
p+1, free of weight s − 1 and such that

dim
〈(

X̃[I]

)

0

〉

|I|≤r
= dim

〈(
X[I]

)
0

〉
|I|≤r

+ 1 = p + 1

(because by assumption the
{(

X[I]

)
0

}
|I|≤r

span R
p). Hence the

{(
X̃[I]

)

0

}

|I|≤r

still span the whole space R
p+1. Now: either the vector fields

{(
X̃[I]

)

0

}

|I|≤r

are free of weight r, and we are done, or the assumptions of Proposition 4 are
still satisfied, and we can iterate our argument; in this case, by (12), condition
p + 1 ≤ c (r, n) must hold. After a suitable finite number m of iterations,
condition p + m ≤ c (r, n) cannot hold anymore, and this means that the vector

fields X̃j must be free of weight r. The iterative argument also shows that the
ukj ’s are polynomials only depending on the variables x, t1, t2, ..., tj−1.

2 Approximation of free smooth vector fields

In this section we carry out the second part of Rothschild-Stein’s procedure,
that is, the approximation of free vector fields by left invariant vector fields on
a homogeneous group. Here we concentrate on smooth vector fields, while the
nonsmooth theory will be treated in Section 3. We actually prove a somewhat
more general result than that by Rothschild-Stein, in the line of [11]. In §2.5,
we will also prove, for free vector fields, a ball-box theorem and the resulting
estimate on the volume of metric balls, in the spirit of Nagel-Stein-Wainger’s
results.

By the lifting theorem (Theorem 5), starting from any system of smooth

Hörmander’s vector fields in R
p we can define new vector fields X̃0, . . . , X̃n in a

neighborhood of 0 ∈ R
p+m, free up to weight r at 0 and such that

{
X̃[I] (0)

}

|I|≤s

spans R
p+m. Just to simplify notation, throughout this section we will keep

calling Xi and R
p these lifted free vector fields and their underlying space,

respectively.

Therefore, let now X0, X1, ..., Xn be a system of smooth Hörmander’s vector
fields in Ω ⊂ R

p, free up to weight r and satisfying Hörmander’s condition of step
r in Ω. Since the Xi’s are free, it is possible to choose a set B of p multiindices
I with |I| ≤ r, such that

{
X[I]

}
I∈B

is a basis of R
p at any point x ∈ Ω. We

assume this set B fixed once and for all.

2.1 Canonical coordinates and weights of vector fields

Let us recall the standard definition of exponential of a vector field. We set:

exp (tX) (x) = ϕ (t)

14



where ϕ is the solution to the Cauchy problem

{
ϕ′ (τ) = Xϕ(τ)

ϕ (0) = x
(13)

The point exp (tX) (x) is uniquely defined for t ∈ R small enough, as soon as X
has Lipschitz continuous coefficients, by the classical Cauchy’s theorem about
existence and uniqueness for solutions to Cauchy problems. For a fixed Ω′ ⋐ Ω,
a t-neighborhood of zero where exp (tX) (x) is defined can be found uniformly
for x ranging in Ω′.

Equivalently, we can write

exp (tX) (x) = φ (1)

where φ is the solution to the Cauchy problem

{
φ′ (τ) = tXφ(τ)

φ (0) = x.

Now, for any x ∈ Ω, let us introduce the set of local (“canonical”) coordinates

R
p

� u 7−→ exp

(
∑

I∈B

uIX[I]

)
(x) , (14)

defined for u in a suitable neighborhood of 0. Note that the Jacobian of the
map u 7−→ x, at u = 0, equals the matrix of the vector fields

{(
X[I]

)
x

}
I∈B

,

therefore is nonsingular. This allows to define canonical coordinates in a suitable
neighborhood U (x) of x.

Since the basis
{(

X[I]

)
x

}
I∈B

depends continuously on the point x, the radius

of this neighborhood can be taken uniformly bounded away from zero for x
ranging in a compact set.

Henceforth in this section, all the computation will be made with respect to
this system of coordinates defined in a neighborhood of the point x (which has
canonical coordinates u = 0).

Our aim is to establish some basic properties enjoyed by the vector fields
X[I], if they are expressed with respect to canonical coordinates, in particular
Theorem 9, which will be a key tool for the following.

We start with the following:

Lemma 6 If we express the vector fields X[I] with respect to the above coordi-
nates u, then we have that

∑

I∈B

uI
∂

∂uI
=
∑

I∈B

uIX[I]. (15)

(In the following, we will also write eI for ∂
∂uI

).
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Proof. We start noting that, If Y =
∑

I∈B yI (u) ∂
∂uI

and Z =
∑

I∈B zI (u) ∂
∂uI

are two vector fields such that

Z (uJ) = Y (uJ) for any J ∈ B,

(that is, the vector fields act at the same way on the functions u 7→ uJ) then
yI (u) = zI (u) for any I ∈ B, hence Y = Z. Therefore, it will be enough to
show that (

∑

I∈B

uIX[I]

)
(uJ) =

(
∑

I∈B

uI
∂

∂uI

)
(uJ) .

Now, for any vector field Y,

Y f (x) =
d

dt
(f (exp (tY ) (x)))/t=t0

where x = exp (t0Y ) (c) .

Hence, if Y =
∑

I∈B uIX[I], then

(
∑

I∈B

uIX[I]

)
(uJ) =

d

dt

(
uJ

(
exp

(
t
∑

I∈B

uIX[I]

)
(x)

))

/t=t0

just by definition of the coordinates uI

=
d

dt
(tuJ)/t=t0

= uJ =

(
∑

I∈B

uI
∂

∂uI

)
(uJ) .

Definition 7 (Weights) We now assign the weight |I| to the coordinate uI

and the weight − |I| to ∂
∂uI

. (Note that this is the convention made in [11], and
is different from that made in [7] and [14]: in the last two papers, the authors
assign positive weight also to derivatives). In the following we will say that a
C∞ function f has weight > s if the Taylor expansion of f at the origin does not
include terms of the kind auI1

uI2
· · ·uIk

with a 6= 0 and |I1|+|I2|+. . .+|Ik| < s.
A vector field Y =

∑
I∈B fIeI has weight > s if fI has weight > s + |I| for

every I ∈ B.

Note that the weight of a function is always ≥ 0, while the weight of a vector
field is ≥ −r, where r is as above.

We want to stress that the definition of weight relies on the canonical coor-
dinates, therefore it depends on the choice of a particular basis B of R

p.
In the following we shall denote with F q

s the set of functions such that in
their Taylor expansion of degree 6 q (in the standard sense), all terms have
weight ≥ s. Also V q

s will denote the set of the vector fields with a similar
property. The subset of F q

s and V q
s of elements that vanish at u = 0 will be

denoted by F̊ q
s and V̊ q

s .
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Lemma 8 The following inclusions hold

F q
s F q

t ⊂ F q
s+t F̊ q

s F q−1
t ⊂ F̊ q

s+t

F q
s V q

t ⊂ V q
s+t F̊ q

s V q−1
t ⊂ V̊ q

s+t F q−1
s V̊ q

t ⊂ V̊ q
s+t

V q−1
s (F q

s ) ⊂ V q−1
s+t V̊ q

s (F q
t ) ⊂ F̊ q

s+t

[V q
s , V q

t ] ⊂ V q−1
s+t

[
V̊ q

s , V q−1
t

]
⊂ V q−1

s+t

with the obvious meaning of the symbols.

Proof. If f ∈ F q
s and g ∈ F q

t , then all terms of the product of their Taylor
expansion of degree 6 q have weight ≥ s+ t. Therefore, the same is true for the
Taylor expansion of degree 6 q of fg, so that fg ∈ F q

s+t. This shows that the
first inclusion holds, and the second one is an immediate corollary. The other
inclusions can be proved by means of similar arguments.

For any vector field X[J] with |J | ≤ s, we can express X[J] in terms of the

basis
{
X[I]

}
I∈B

, writing

X[J] =
∑

I∈B

cJI (u) X[I]

for suitable functions cJI .

Theorem 9 For every multiindices I the vector field X[I] has weight > − |I| .

Proof. Throughout the proof we will assume the X[I] written in canonical
coordinates. In particular, the point x corresponds to u = 0. We shall prove by
induction on q > 0 the following two facts:

i) For every multiindex I we have X[I] ∈ V q
−|I|;

ii) For every positive integer α, if for every m 6 q + 1 and for every multi-
indices I1, . . . Im ∈ B such that |I1|+. . . |Im| < α we have X[Im] · · ·X[I1]f (0) =
0, then f ∈ F q+1

α .

First of all we observe that it is enough to show that X[I] ∈ V q
−|I| when

I ∈ B. Indeed let us fix a certain q > 0 and assume to know that X[I] ∈ V q
−|I|

for every I ∈ B and that ii) holds. Let J be a multiindex, J /∈ B. Then

X[J] =
∑

I∈B

cJIX[I].

Since the vector fields X0, X1, ..., Xn are free up to step r, we can assume that
in the last sum cJI is nonzero only if |I| = |J | . For these constants cJI we then
have

X[J] =
∑

I∈B,|I|=|J|

cJIX[I],

which shows that it is enough to prove i) for I ∈ B.
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Let now q = 0. Observe that composing the operator ad eI with (15) we get

X[I] +
∑

K∈B

uK ad eI

(
X[K]

)
= eI (16)

This implies
(
X[I]

)
0

= eI and therefore that X[I] ∈ V 0
−|I|. Assume now that

f (0) = 0 and that for every multiindex I ∈ B, |I| < α we have X[I]f (0) = 0.

Since X[I]f (0) = ∂f
∂uI

(0) we have f ∈ F 1
α.

Assume now that i) and ii) hold for a certain q and let us prove that the
same is true with q replaced by q + 1. We start with i). We claim that it is
enough to show that

W = adX[J] (eI) ∈ V q
−|I|−|J|

Indeed, uK ad eI

(
X[K]

)
∈ V q+1

−|I| by Lemma 8, and since eI ∈ V q+1
−|I| by (16) we

have X[I] ∈ V q+1
−|I| .

In order to show that W ∈ V q
−|I|−|J| we compose ad X[J] with (16). This

yields

adX[J]eI = W = adX[J]X[I] +
∑

K∈B

uK adX[J] ad eI

(
X[K]

)
+ (17)

+
∑

K∈B

X[J] (uK) ad eI

(
X[K]

)
.

From (16) we also get X[J] (uK) = δJK −
∑

L∈B uL ad eJ

(
X[L]

)
(uK). Since

ad eJ

(
X[L]

)
∈ V q−1

−|J|−|L| we have uL ad eJ

(
X[L]

)
∈ V̊ q

−|J| and therefore

uL ad eJ

(
X[L]

)
(uK) ∈ F̊ q

−|J|+|K|.

This implies that the second summation in (17) is congruent to ad eI

(
X[J]

)
=

−W modulo V̊ q
−|J|−|I|. By Jacobi identity (see the proof of Proposition 3)

adX[J]X[I] =
∑

|L|=|J|+|I|

cLX[L]

for suitable coefficients cL. This implies adX[J]X[I] ∈ V q
−|J|−|I|. Hence

W ≡ −W +
∑

K∈B

uK adX[J] ad eI

(
X[K]

)
modV q

−|J|−|I|. (18)

Since

uK adX[J] ad eI

(
X[K]

)
= −uK adX[J] adX[K] (eI) =

= −uK adX[K] adX[J] (eI) − uK ad
[
X[K], X[J]

]
(eI)

we have

uK adX[J] ad eI

(
X[K]

)
≡ −uK adX[K] adX[J] (eI) modV q

−|I|−|J|.
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By Jacoby identity and substituting in (18) we obtain

2W = −
∑

K

uK adX[K] (W ) modV q
−|I|−|J|.

We now use (15) to replace X[K] by eK . Indeed we have

∑

K

uK adX[K] (W ) =
∑

K

ad
(
uKX[K]

)
(W ) +

∑

K

W (uk) X[K]

= ad

(
∑

K

uKX[K]

)
(W ) +

∑

K

W (uk)X[K]

= ad

(
∑

K

uKeK

)
(W ) +

∑

K

W (uk) X[K]

=
∑

K

uK ad (eK) (W ) +
∑

K

W (uK)
(
X[K] − eK

)
.

Since W = adX[J]eI ∈ V q−1
−|I|−|J| we have W (uK) ∈ F q−1

|K|−|I|−|J|. Also, since

X[K] − eK ∈ V̊ q
−|K| we have W (uK)

(
X[K] − eK

)
∈ V q

−|I|−|J|. Hence

TW ∈ V q
−|I|−|J|

where we set TW = 2W +
∑

K uK ad (eK) (W ). We claim that this implies that
W ∈ V q

−|I|−|J|. To see this, write W =
∑

L fLeL. Then

TW = 2
∑

L

fLeL +
∑

L,K

uK [eK , fLeL] =

= 2
∑

L

fLeL +
∑

L,K

uK
∂fL

∂uK
eL =

∑

L

(
2fL +

∑

K

uK
∂f

∂uK

)
eL.

Let g be a homogeneous function of degree µ, then
∑

K uK
∂g

∂uK
= µg which

shows that the operator f 7→ 2f +
∑

K uK
∂f

∂uK
acts on the Taylor expansion

of a function multiplying a term of degree µ by (2 + µ). This implies that
W ∈ V q

−|I|−|J|.

Now we will show that also ii) holds with q replaced by q + 1. We have to
show that if for every m 6 q + 2 and for every multiindices I1, . . . Im ∈ B such
that |I1| + . . . |Im| < α we have X[Im] · · ·X[I1]f (0) = 0, then f ∈ F q+2

α . By the
definition of the class F q+2

α this amounts to showing that eIm
· · · eI1

f (0) = 0
for every m 6 q + 2 and every I1, . . . Im ∈ B such that |I1| + . . . |Im| < α.

By the induction hypothesis f ∈ F q+1
α , we already know that for every

I ∈ Bx we have X[I] ∈ V q+1
−|I| . By (16) we have

eI1
f = X[I1]f + g1
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with g1 =
∑

K∈B uK ad eI1

(
X[K]

)
f . By Lemma 8 we have g1 ∈ F q+1

α−|I1|
. Iter-

ating this argument yields

eIm···eI1
f = X[Im] · · ·X[I1]f + gm

with gm ∈ F q+2−m
α−(|I1|+···+|Im|). Since α > |I1| + · · · + |Im| this implies gm (0) = 0

and therefore that eIm···eI1
f (0) = 0.

2.2 Pointwise approximation

As in the previous subsection, we assume that the Xi’s are free and a basis{(
X[I]

)
x

}
I∈B

for R
p is chosen once and for all; this choice induces a system of

canonical coordinates u near x such that
∑

I∈B

uIeI =
∑

I∈B

uIX[I] (19)

(where eI = ∂
∂uI

) and that for every multiindex I the vector field X[I] has weight
≥ − |I|.

We can now prove Rothschild-Stein’s approximation theorem for free weighted
vector fields:

Theorem 10 (Approximation, pointwise version) If Y0, Y1, . . . , Yn is an-
other system of vector fields satisfying (with respect to the same canonical coor-
dinates) ∑

I∈B

uIeI =
∑

I∈B

uIY[I] , (20)

then X[I] − Y[I] has weight ≥ 1 − |I|.

(In particular, for I = (i) we have that X0 − Y0 has weight ≥ −1 while
Xi − Yi has weight ≥ 0 for i = 1, 2, ..., n).
Proof. The proof exploits the same techniques as in the proof of Theorem 9.
Let us recall that we are now working in canonical coordinates. We shall prove
by induction on q that

X[I] − Y[I] ∈ V q
1−|I|. (21)

Observe that this is obvious when |I| > s. Indeed, every vector field Z =∑
J∈B fJeJ has a weight > −s since if J ∈ B then |J | 6 s. Next we prove that

it is enough to show (21) when I ∈ B.
Indeed, let I be any multiindex of weight 6 s. Then since

{(
X[J]

)
x

}
J∈B

spans R
p there exist coefficients cIJ such that

(
X[I]

)
x

=
∑

J∈B

cIJ

(
X[J]

)
x

.

Let aJ = δIJ − cIJ where we assume that cIJ = 0 if J /∈ B. Then
∑

aJ

(
X[J]

)
x

= 0.
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Since the vector fields are free of weight s this implies that for every K

∑

J

aJAJK = 0.

Therefore, for any family of vector fields Zi we have

0 =
∑

K, |K|=|I|

∑

J

aJAJKZK =
∑

J, |J|=|I|

∑

K

aJAJKZK =
∑

|J|=|I|

aJZ[J]

and finally

Z[I] =
∑

J∈B,|J|=|I|

cIJZ[J].

In particular we have

X[I] =
∑

J∈B,|J|=|I|

cIJX[J]

and
Y[I] =

∑

J∈B,|J|=|I|

cIJY[J].

These identities show that if (21) hold for I ∈ B, then they hold for every I.
Now we prove that (21) hold for I ∈ B. Let q = 0. We have seen in the

proof of Theorem 9 that (20) implies

X[I] +
∑

K∈B

uK ad eI

(
X[K]

)
= eI (22)

and
Y[I] +

∑

K∈B

uK ad eI

(
Y[K]

)
= eI . (23)

In particular,
(
X[I]

)
x

= eI and
(
Y[I]

)
x

= eI , hence (21) holds for q = 0.
We now assume that (21) holds for a certain q and we prove that the same

is true with q replaced by q + 1. We claim that it is enough to show that

Z = ad
(
X[J] − Y[J]

)
(eI) ∈ V q

1−|I|−|J|.

Indeed, by (22), (23)

X[I] − Y[I] =
∑

K∈B

uK ad
(
X[K] − Y[K]

)
(eI)

and by Lemma 8, uK ad
(
X[K] − Y[K]

)
(eI) ∈ V q+1

1−|I|.
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Now we will show that Z = ad
(
X[J] − Y[J]

)
(eI) ∈ V q

1−|I|−|J|. Composing

(22) with adX[J], (23) with adY[J] and computing the difference gives

Z = adX[J]

(
X[I]

)
− adY[J]

(
Y[I]

)
+

+
∑

K∈B

adX[J]

(
uK ad eI

(
X[K]

))
−
∑

K∈B

adY[J]

(
uK ad eI

(
Y[K]

))

= adX[J]

(
X[I]

)
− adY[J]

(
Y[I]

)
+
∑

K∈B

ad
(
X[J] − Y[J]

) (
uK ad eI

(
X[K]

))
+

+
∑

K∈B

adY[J]

(
uK ad eI

(
X[K] − Y[K]

))

By the Jacobi identity

adX[J]

(
X[I]

)
− adY[J]

(
Y[I]

)
=

∑

|K|=|J|+|I|

cK

(
X[K] − Y[K]

)

and by inductive hypothesis adX[J]

(
X[I]

)
− adY[J]

(
Y[I]

)
∈ V q

1−|I|−|J|.

Also since X[K] ∈ V q+1
−|K| we have ad eI

(
X[K]

)
∈ V q

−|I|−|K| and therefore

uK ad eI

(
X[K]

)
∈ V̊ q+1

−|I| . Since X[J] − Y[J] ∈ V q
1−|J| we have

ad
(
X[J] − Y[J]

) (
uK ad eI

(
X[K]

))
∈ V q

1−|I|−|J|.

This means that modulo V q
1−|I|−|J| we have

Z ≡
∑

K∈B

adY[J]

(
uK ad eI

(
X[K] − Y[K]

))

≡
∑

K∈B

ad
(
Y[J] − eJ

) (
uK ad eI

(
X[K] − Y[K]

))
+

+
∑

K∈B

ad eJ

(
uK ad eI

(
X[K] − Y[K]

))

≡
∑

K∈B

ad eJ

(
uK ad eI

(
X[K] − Y[K]

))

since Y[J] − eJ ∈ V̊ q+1
−|J| and uK ad eI

(
X[K] − Y[K]

)
∈ V q

1−|I|. Finally

Z ≡
∑

K∈B

ad eJ

(
uK ad eI

(
X[K] − Y[K]

))
(24)

≡
∑

K∈B

[
ad eJ ad eI

[
uK

(
X[K] − Y[K]

)]
− ad eJδIK

(
X[K] − Y[K]

)]

≡ ad eJ ad eI

[
∑

K∈B

uK

(
X[K] − Y[K]

)
]
− ad eJ

(
X[I] − Y[I]

)

≡ − ad eJ

(
X[I] − Y[I]

)
≡ ad

(
X[I] − Y[I]

)
(eJ) .
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since
∑

K∈B uK

(
X[K] − Y[K]

)
= 0 by (19) and 20). This shows that for every

multiindex I and J we have ad
(
X[J] − Y[J]

)
(eI) ≡ ad

(
X[I] − Y[I]

)
(eJ). Using

this fact in (24) yields

Z ≡
∑

K∈B

ad eJ

(
uK ad eI

(
X[K] − Y[K]

))

≡
∑

K∈B

ad eJ

(
uK ad eK

(
X[I] − Y[I]

))

≡ ad eJ

(
X[I] − Y[I]

)
+
∑

K∈B

uK ad eJ ad eK

(
X[I] − Y[I]

)

≡ ad eJ

(
X[I] − Y[I]

)
+
∑

K∈B

uK ad eK ad eJ

(
X[I] − Y[I]

)

since eK and eJ commutes. Hence

Z ≡ −Z −
∑

K∈B

uK ad eKZ.

This means
TZ ≡ 0 mod V q

1−|I|−|J|.

which implies Z ∈ V q
1−|I|−|J|.

In order to recover from Theorem 10 the exact statement of Rothschild-
Stein’s “approximation theorem”, some work has still to be done. First, we
have to pass from the pointwise statement of Theorem 10 to an analogous local
statement. This involves the introduction of Rothschild-Stein’s “map Θ” and
the study of some of its properties. Second, we have to apply this theorem to
the case where the vector fields Yi are homogeneous left invariant with respect
to a structure of homogeneous group, and deduce some information on the
“remainders” in this approximation procedure. These tasks will be performed
in the next two subsections, respectively.

2.3 From pointwise to local. The map Θ

We now revise the construction of local coordinates uI made in §2.1. Let Ω be as
at the beginning of §2; we claim that for any Ω′ ⋐ Ω there exists a neighborhood
U (0) ⊂ R

p where the map

E (·, ξ0) : u ≡ (uI)I∈B 7−→ ξ ≡ exp

(
∑

I∈B

uIX[I]

)
(ξ0) (25)

is well defined and smooth, for any fixed ξ0 ∈ Ω′. Namely, by classical results
about O.D.E.’s, E is smooth in the joint variables (u, ξ0) ∈ U (0) × Ω′.

Next, we define
F (u, ξ0, ξ) = E (u, ξ0) − ξ
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on U (0) × Ω′ × R
p. Noting that F (0, ξ0, ξ0) = 0 and that the Jacobian of F

with respect to the u variables, at (0, ξ0, ξ0) , has determinant

det
((

X[I]

)
ξ0

)
,

which does not vanish since
{
X[I]

}
I∈B

span R
p, by the implicit function theorem

we can define a function
u = Θ(η, ξ) ,

smooth in some neighborhood W of (ξ0, ξ0), such that E (Θ (η, ξ) , η) = ξ.
Summarizing the above discussion we can state the following:

Proposition 11 (The map Θ) i) For any ξ0 ∈ Ω there exist a neighbor-
hood W of (ξ0, ξ0) in R

2p, a neighborhood U (0) of 0 in R
p and a smooth

map Θ (·, ·) : W → U (0) such that:

ξ = exp

(
∑

I∈B

uIX[I]

)
(η) for u = Θ(η, ξ) ; (26)

ii) The map Θ satisfies
Θ (η, ξ) = −Θ (ξ, η) ; (27)

iii) for any fixed η, the map u = Θ(η, ξ) is a diffeomorphism from a neigh-
borhood of η onto a neighborhood of 0, in R

p;

iv) analogously, for any fixed ξ, the map u = Θ (η, ξ) is a diffeomorphism
from a neighborhood of ξ onto a neighborhood of 0.

Proof. We have already proved (i) and (iii); (ii) follows form the fact that, for
any vector field X,

ξ = exp (X) (η) =⇒ η = exp (−X) (ξ) ,

as can be checked by definition of the exponential map; (iv) is then a consequence
of (ii) and (iii).

The map Θ allows one to restate Theorem 10 (approximation) in a form
more similar to that of Rothschild-Stein.

Recall that a vector field Z has weight k at some fixed point η if Z, expressed
in terms of the local coordinates u = Θ (η, ξ) , has weight k at u = 0, in the
sense of Definition 7.

It will be useful to recall also the concrete meaning of expressing the same
vector field in different coordinates: if we denote by Zξ and Zu, the vector
field Z written as a differential operator which acts on the variables ξ or u,
respectively, then

Zξ [f (Θ (η, ξ))] = (Zuf) (Θ (η, ξ)) . (28)

for any smooth function f (u).
Then we have:
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Theorem 12 (Approximation, local version) For every multiindex I the
vector field X[I] has weight ≥ − |I| at any point of Ω. If Y0, Y1, . . . , Yn is another
system of vector fields (expressed in the same coordinates u) satisfying

∑

I∈B

uIeI =
∑

I∈B

uIY[I] (29)

then X[I] − Y[I] has weight ≥ 1− |I| at any point of Ω. Moreover, for any point
η ∈ Ω there exists a system of vector fields Rη,[I], of weight ≥ 1−|I| at η (when
expressed in the coordinates u) and smoothly depending on the point η, such that

Xξ
[I] [f (Θ (η, ξ))] =

(
Y[I]f

)
(Θ (η, ξ)) +

(
Rη,[I]f

)
(Θ (η, ξ)) . (30)

Proof. The first part of the theorem is exactly Theorem 9 plus Theorem 10,
stated at any point η. Saying that X[I] − Y[I] has weight ≥ 1 − |I| at η, just by
definition means that the vector field Rη,[I] = Xu

[I] − Y[I] has weight ≥ 1 − |I|
at u = 0. Here the superscript u in Xu

[I] emphasizes that this vector field is

expressed in terms of the coordinates u. By (28), we can rewrite it in terms of
coordinates ξ, getting (30). It remains to check that Rη,[I] depends smoothly
on η. Let

Rη,[I] =
∑

J

bIJ (η, u) ∂uJ
;

then, applying (30) to the function f (u) = uJ we get

bIJ (η,Θ (η, ξ)) = Xξ
[I] [(Θ (η, ξ))J ] −

(
Y[I]uJ

)
(Θ (η, ξ)) .

The right-hand side of this equation is a smooth function of (η , ξ) , since Θ is
smooth (see Proposition 11); hence the functions

(η , ξ) 7−→ bIJ (η,Θ (η, ξ))

are smooth; fixing ξ and composing with the diffeomorphism u = Θ (η, ξ) we
read that bIJ (η, u) are smooth functions, which is what we needed to prove.

Remark 13 The last statement is perfectly analogous of the approximation the-
orem proved by Rothschild-Stein, but somewhat more general, since the vector
fields Y[I] need not be left invariant on a homogeneous group; they only need to
satisfy (29).

2.4 Approximation by left invariant vector fields

The standard application of Theorem 12 requires the construction of a particular
system of vector fields

{
Y[I]

}
I∈B

enjoying special properties.
In the following statement, the numbers p, n, r keep the same meaning they

have in the previous subsections; also the system of multiindices (I ∈ B) is the
same.
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Theorem 14 There exist in R
p a system of smooth vector fields Y0, Y1, ..., Yn

and a structure of homogeneous group G, that is, a Lie group operation u ◦ v
(“translation”) and a one-parameter family {δλ}λ>0 of automorphisms (“dila-
tions”), acting as

δλ

(
(uI)I∈B

)
=
(
λ|I|uI

)

I∈B
,

such that:

(i) the vector fields Y0, Y1, ..., Yn are free up to weight r in R
p and the vectors{(

Y[I]

)
u

}
|I|≤r

span R
p at any point u of the space;

(ii) the Y[I]’s are left invariant and homogeneous of degree |I| with respect to
the dilations in G;

(iii) at u = 0, the Y[I]’s coincide with the local basis associated to the coordi-
nates uI , that is,

(
Y[I]

)
0

=
∂

∂uI
;

(iv) the Y[I]’s satisfy (29);

(v) in the group G, the inverse u−1 of an element is just its (Euclidean)
opposite −u.

We stress that all the previous properties hold simultaneously, with respect
to the same system of coordinates in the space R

p. These coordinates will be
identified with the canonical coordinates u induced by the vector fields X[I] (see
§2.1).

Proof. For the following abstract construction we refer to [13, pp.3-15].
1. Let us consider the Lie algebra g obtained by quotienting the free Lie

algebra with generators Z0, ..., Zn with respect to the ideal spanned by all com-
mutators of weight greater than r (this is called the free nilpotent Lie algebra
of type II in [14]); here Z0, ..., Zn are thought as abstract generators, having
weight 2 (Z0) and 1 (Z1, Z2, ..., Zn) . This abstract Lie algebra is isomorphic to
R

d for some d. We claim that actually d = p. Namely the structure of the free
Lie algebra of type II of step r on n generators can depend only on n, r, and
since the Lie algebra generated by the Xi’s is R

p, p = d.
Hence the Lie algebra g will be identified with R

p from now on.
2. We then introduce in R

p an operation ◦, defined by:

x ◦ y ≡ S (x, y) ≡ x + y +
1

2
[x, y] +

1

12
[[x, y] , y] −

1

12
[[x, y] , x] + ... (31)

In the previous formula, [x, y] denotes the commutator in the Lie algebra g

(whose elements have been identified with points of R
p); the sum is finite because

the Lie algebra is nilpotent, and the precise definition of S is given by

S (·, ·) = S′ (1, 1, ·, ·)
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where S′ is the function appearing in the Baker-Campbell-Hausdorff formula:

exp (sX) exp (tY ) = exp (S′ (s, t,X, Y )) (32)

which holds, for s, t small enough, for any couple of smooth vector fields X, Y
which generate a finite dimensional Lie algebra. More precisely, it is known that

S (x, y) =
∑

j+k≥1

Zj,k (x, y) (33)

where each Zj,k (x, y) is a fixed linear combination of iterated commutators of
x and y, containing j times x and k times y. In terms of coordinates in R

p, this
function can be written as

S (x, y) = (S1 (x, y) , S2 (x, y) , ..., Sp (x, y))

where each Sj is a polynomial in x, y. Then (see Theorem 4.2 in [13]) the
operation ◦ defines in R

p a structure of homogeneous Lie group G, whose Lie
algebra Lie(G) is isomorphic to g.

3. The isomorphism of g with Lie(G) , explicitly, means that if we define Y[I]

as the left invariant (with respect to G) vector field in R
p which agrees with ∂uI

at the origin, then the Lie algebra generated by
{
Y[I]

}
I∈B

is isomorphic to g;

in particular, it is free up to weight r and the vectors
{(

Y[I]

)
u

}
|I|≤r

span R
p at

any point. Clearly, this isomorphism logically depends on the definition of ◦ in
terms of the Baker-Campbell-Hausdorff formula.

4. It remains to show (iv) and (v). Both follow from taking a look inside
the operation S (x, y). As to (v), from (31) we read that

S (x,−x) = x − x +
1

2
[x,−x] +

1

12
[[x,−x] ,−x] −

1

12
[[x,−x] , x] + ... = 0

since [x, x] = 0. Therefore the Euclidean opposite is also the inverse in the
group. To prove (iv), we start writing, for any smooth function f ,

(
Y[I]f

)
(x) =

d

dt /t=0

f (x ◦ teI)

by (33),

=
d

dt /t=0

f



∑

j+k≥1

Zj,k (x, teI)


 = ∇f (x) ·

∑

j+k≥1

d

dt /t=0

tkZj,k (x, eI)

= ∇f (x) ·
∑

j≥0

Zj,1 (x, eI) .

Then we compute
∑

I∈B

xI

(
Y[I]f

)
(x) =

∑

I∈B

∇f (x) ·
∑

j≥0

Zj,1 (x, xIeI) =

= ∇f (x) ·
∑

j≥0

Zj,1 (x, x) = ∇f (x) · x =
∑

I∈B

xI∂xI
f (x)
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that is (29). The theorem is completely proved.

Theorem 12 can now applied choosing the left invariant vector fields Y[I] as
the approximating system. The map u = Θ (η, ξ) can now be regarded as a
diffeomorphism from a neighborhood of η onto a neighborhood of 0 in the group
G. In other words, Θ (η, ξ) is an element of the group G, and one has:

Θ (η, ξ) = −Θ (ξ, η) = Θ (ξ, η)
−1

.

Remark 15 Before stating their Theorem 5, Hörmander and Melin suggest
how to connect it with Theorem 5 in [14]. We would like now to explain in
more details this link, giving in this way a reformulation of some of the results
of Theorem 14.

Let us consider the Lie algebra g obtained by quotienting the free Lie algebra
with generators X0, ..., Xn with respect to the ideal spanned by all commutators
of weight greater than r. If G is the (unique, nilpotent) connected and simply
connected Lie group having g as its Lie algebra, then the exponential map exp :
g → G is a diffeomorphism, so that R

p ≃ g ≃ G. We denote with Yi ∈ g

the equivalence class of Xi. It can be seen, as usual, as a left-invariant vector
field on G. It is also clear that

{(
Y[I]

)
0

}
I∈B

is a basis of the tangent space

T0G, where 0 here stands for the identity of G. We can thus define a system of
coordinates (uI)I∈B on G by means of

R
p ∋ (uI)I∈B 7→ exp

(
∑

I∈B

uIY[I]

)
(0) = exp

(
∑

I∈B

uIY[I]

)
∈ G, (34)

as we did previously for the vector fields Xi on R
p. (The first exp in (34) is

the exponential of a vector field, while the second one is the exponential map of
the group G). Notice however that in this case the coordinate system is global,
since the exponential map is a diffeomorphism. We used the same notation for
the two sets of coordinates because they will be immediately identified. Indeed,
we can associate with (uI)I∈B ∈ R

p a point in R
p by (14) and an element in

G by (34). This provides a map from G to R
p, and allows us to compare the

vector fields X[I] and Y[I], once they have been written in these coordinates. Put
in a little bit different way, we can use (34) to identify G with the “same” R

p

where the vector fields Xi are defined, so that the Xi and the Yi live in the same
space. At this point, in order to apply Theorem 10 we simply have to notice
that, arguing as in the proof of Lemma 15, one has

∑

I∈B

uIeI =
∑

I∈B

uIY[I],

where eI = ∂/∂uI .

2.5 The ball-box theorem for free smooth vector fields

We now to draw some consequences from the study of weights of vector fields
(Theorem 9) in terms of the geometry of balls induced by vector fields. We will
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get, still in the context of free smooth vector fields, a ball-box theorem which is
enough to get a control of the volume of the balls in this setting. In turn, this
fact will be exploited in the next subsection to compare the distance induced
by lifted vector fields with Rothschild-Stein’s quasidistance.

The subelliptic metric introduced by Nagel-Stein-Weinger in [12], in this
situation, is defined as follows:

Definition 16 For any δ > 0, let C (δ) be the class of absolutely continuous
mappings ϕ : [0, 1] −→ Ω which satisfy

ϕ′ (t) =
∑

|I|≤s

aI (t)
(
X[I]

)
ϕ(t)

a.e.

with
|aI (t)| ≤ δ|I|.

Then define

d (x, y) = inf {δ > 0 : ∃ϕ ∈ C (δ) with ϕ (0) = x, ϕ (1) = y} .

Remark 17 The quantity d (x, y) is finite for any two points x, y ∈ Ω. Namely,
let ϕ : [0, 1] −→ Ω be any C1 curve joining x to y; since the

{(
X[I]

)
x

}
|I|≤r

span

R
p at any point x ∈ Ω, ϕ′ (t) can always be expressed in the form

∑

|I|≤r

aI (t)
(
X[I]

)
ϕ(t)

,

for suitable bounded functions aI (t) ; then the curve ϕ will belong to the class
C (δ) , for δ > 0 large enough, and d (x, y) will be finite and not exceeding this
δ.

Proposition 18 The function d : Ω×Ω → R is a distance. Moreover, for any
Ω′ ⋐ Ω there exist positive constants c1, c2 such that

c1 |x − y| ≤ d (x, y) ≤ c2 |x − y|
1/r

for any x, y ∈ Ω′. (35)

The previous proposition is well known (see [12, Proposition 1.1]; in [2] this
is proved also for nonsmooth vector fields).

We are now in position to state our ball-box theorem.

Notation 19 For fixed x ∈ R
p, R > 0, let

Box (x, R) =

{
x ∈ R

p : x = exp

(
∑

I∈B

uIX[I]

)
(x) : |uI | < R|I| for any I ∈ B

}
;

In canonical coordinates uI , the subset Box (x, R) simply becomes:

Box (R) =
{

u ∈ R
p : |uI | < R|I| for any I ∈ B

}
.
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Let B (x, R) denote the metric ball of center x and radius R in R
p, with respect

to the distance d induced by the vector fields
{
X[I]

}
I∈B

.
Also, let us define the following quantities related to canonical coordinates:

|u|k =
∑

|J|=k

|uJ | for k = 1, 2, ..., s

‖u‖ =
s∑

k=1

|u|
1/k
k .

Theorem 20 (Ball-box theorem for free vector fields) For every Ω′ ⋐ Ω
there exist positive constants C, R0, c1, c2, c3 depending on Ω,Ω′ and the system{
X[I]

}
I∈B

such that, for any x ∈ Ω′, R ≤ R0,

(i)
Box (x, R) ⊆ B (x, R) ⊆ Box (x, CR)

(ii)
c1R

Q ≤ |B (x, R)| ≤ c2R
Q

where Q =
∑

I∈B |I| plays the role of “homogeneous dimension”

(iii)
|B (x, 2R)| ≤ c3 |B (x, R)| .

Proof. (i) Let us show first that

Box (x, R) ⊆ B (x, R) . (36)

For x ∈ Box (x, R) , let us write

x = exp

(
∑

I∈B

uIX[I]

)
(x) with |uI | < R|I| (37)

and set

ϕ (t) = exp

(
∑

I∈B

tuIX[I]

)
(x) .

This ϕ (t) defines an admissible curve belonging to C (δ) for some δ < R, that
is, d (x, x) < R and inclusion (36) is proved.

To prove the reverse inclusion

B (x, R) ⊆ Box (x, CR) ,

we argue as follows. For x ∈ B (x, R) , let ϕ (t) be a curve in C (R), that is,

ϕ′ (t) =
∑

I∈B

aI (t)
(
X[I]

)
ϕ(t)

with ϕ (0) = x, ϕ (1) = x, |aI (t)| ≤ R|I|.
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Then, for any smooth function f (x) we have

f (ϕ (t)) − f (x) =

∫ t

0

d

dt
[f (ϕ (τ))] dτ =

∑

I∈B

∫ t

0

aI (τ)
(
X[I]f

)
ϕ(τ)

dτ.

In particular, reasoning from now on in canonical coordinates, for f (u) = uJ

we get

ϕ (t)J =
∑

I∈B

∫ t

0

aI (τ)
(
X[I]uJ

)
ϕ(τ)

dτ. (38)

From Theorem 9 we read
∣∣∣
(
X[I]uJ

)
ϕ(τ)

∣∣∣ ≤ c ‖ϕ (τ)‖
|J|−|I|

if |I| < |J | ,

provided x ranges in a compact set. Also, by definition of ϕ we have

|aI (τ)| ≤ R|I| ≤ CR|J| if |I| ≥ |J | ,

for any R ≤ R0, any fixed R0, and some C depending on R0. Therefore, (38)
gives

|ϕ (t)J |k ≤ C
∑

I∈B,|I|≤k−1

∫ t

0

R|I| ‖ϕ (τ)‖
|J|−|I|

dτ +
∑

I∈B,|I|≥k

∫ t

0

CR|J|dτ

= C





k−1∑

j=1

Rj

∫ t

0

‖ϕ (τ)‖
k−j

dτ + Rk





≤ C

{
R

∫ t

0

‖ϕ (τ)‖
k−1

dτ + Rk

}
(39)

where the last inequality holds because for j = 1, 2, ..., k − 1

Rj ‖x‖
k−j

≤

{
Rk if ‖x‖ ≤ R

R ‖x‖
k−1

if ‖x‖ ≥ R.

Next, since

R ‖ϕ (τ)‖
k−1

≤ (R + ‖ϕ (τ)‖)
k
≤ c

(
Rk + ‖ϕ (τ)‖

k
)

,

from (39) we get

|ϕ (t)J |k ≤ C

{∫ t

0

‖ϕ (τ)‖
k
dτ + Rk

}
.

31



Recalling the definition of ‖·‖ we then have

|ϕ (t)J |
1/k
k

≤ C

{(∫ t

0

‖ϕ (τ)‖
k
dτ

)1/k

+ R

}

‖ϕ (τ)‖ ≤ C
r∑

k=1

{(∫ t

0

‖ϕ (τ)‖
k
dτ

)1/k

+ R

}

‖ϕ (τ)‖
r
≤ C

r∑

k=1

{(∫ t

0

‖ϕ (τ)‖
k
dτ

)r/k

+ Rs

}

by Hölder inequality, since r/k > 1,

≤ C

r∑

k=1

{∫ t

0

‖ϕ (τ)‖
r
dτ + Rr

}
.

Hence Gronwall’s inequality implies

‖ϕ (τ)‖
r
≤ CRr for any τ < t ≤ 1,

which for τ = 1 gives
‖x‖ ≤ CR.

that is x ∈ Box (CR).
(ii). Let

F (u, x) = exp

(
∑

I∈B

uIX[I]

)
(x) , for (u, x) ∈ U × Ω′

for some neighborhood U of 0 and let J (u, x) be the Jacobian determinant of
the map u 7→ F (u, x). Since

J (0, x) = det
((

X[I]

)
x

)
I∈B

by compactness J (u, x) is bounded and bounded away from zero in U ′×Ω′, for
a suitable open subset U ′ ⊂ U. Therefore,

|B (x, R)| ≤ |Box (x, CR)| =

∫

Box(x,CR)

dy =

=

∫

|uI |<(CR)|I|
|J (u, x)| du ≤ c

∫

|uI |<(CR)|I|
du = cRQ,

and analogously we establish the reverse inequality.
Finally, (iii) immediately follows from (ii).

Remark 21 The above proof basically relies on Theorem 9 and elementary
facts. However, we want also to stress the fact that the uniform control on
the constants is possible since the vector fields are free, so that a basis can be
chosen once and for all, independently from the point.
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2.6 Equivalent quasidistances for free vector fields

Let us consider again the free lifted vector fields X0, X1, ..., Xn, and the map
Θ (ξ, η) , defined for ξ, η belonging to a suitable neighborhood W of a fixed point
ξ0. Recall that u = Θ (ξ, η) can be seen as an element of the group G. A point
u ∈ G is individuated by coordinates {uJ}J∈B . One can define

ρ (ξ, η) = ‖Θ (ξ, η)‖ ,

the Rothschild-Stein’s quasidistance induced by the Xi. It is defined only locally
and satisfies the properties collected in the next:

Proposition 22 For every ξ0 ∈ R
p there exist a neighborhood W of ξ0 and

constants c, c1, c2 > 0 such that for any ξ, η ∈ W,

ρ (ξ, η) ≥ 0

ρ (ξ, η) = 0 ⇐⇒ ξ = η

ρ (ξ, η) = ρ (η, ξ)

ρ (ξ, η) ≤ c {ρ (ξ, ζ) + ρ (ζ, η)} (40)

c1d (ξ, η) ≤ ρ (ξ, η) ≤ c2d (ξ, η) . (41)

Proof. The first three properties follow by definition and by Proposition 11,
while (40) follows by (41), since d satisfies the triangle inequality. So let us
prove (41).

Let us denote by Bρ (ξ, R) the “balls” with respect to ρ. Note that, just by
definition of box and Θ, we have

η ∈ Box (ξ, R) ⇐⇒ ‖Θ (ξ, η)‖ ≤ R,

which implies the inclusions

Bρ (ξ, c1R) ⊂ Box (ξ, R) ⊂ Bρ (ξ, c2R)

for any ξ ∈ W , R ≤ R0, and some positive constants R0, c1, c2. Therefore,
Theorem 20 implies (41).

We also have the following

Proposition 23 The change of coordinate in R
p given by

ξ 7→ u = Θ(ξ, η)

has a Jacobian determinant given by

dξ = c (η) (1 + O (‖u‖)) du

where c (η) is a smooth function, bounded and bounded away from zero.

The above proposition is proved in [14]; see also [1, Thm. 1.7]. Moreover,
this proposition is a particular case of the analogous property which we will
prove for nonsmooth vector fields in subsection 3.4, Proposition 34.
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3 Approximation for nonsmooth Hörmander’s

vector fields

Here we want to prove also for nonsmooth vector fields the approximation the-
orem and the basic results about the map Θη (·). This is made possible com-
bining the previous theory for smooth vector fields with a natural procedure of
approximation of nonsmooth vector fields by their Taylor expansion. To quan-
tify the weight of the “remainders” in the approximation formula, we have to
assume the coefficients of the vector fields in the scale of Hölder spaces, slightly
strengthening the assumptions made in §1.2.

3.1 Assumptions

Assumptions (B). We assume that for some integer r ≥ 2, some α ∈ (0, 1]
and some bounded domain Ω ⊂ R

p the following hold:

(B1) The coefficients of the vector fields X1, X2, ..., Xn belong to Cr−1 ,α (Ω) ,
while the coefficients of X0 belong to Cr−2,α (Ω) . Here and in the follow-
ing, Ck,α stands for the classical space of functions with derivatives up to
order k, Hölder continuous of exponent α.

(B2) The vectors
{(

X[I]

)
x

}
|I|≤r

span R
p at every point x ∈ Ω.

The following easy lemma is proved analogously to that in §1.1.

Lemma 24 Under the assumption (B1) above, for any 1 ≤ k ≤ r, the differen-
tial operators

{XI}|I|≤k

are well defined, and have Cr−k,α coefficients. The same is true for the vector
fields

{
X[I]

}
|I|≤k

.

Dependence of the constants. We will often write that some constant
depends on the vector fields Xi’s and some fixed domain Ω′ ⋐ Ω. (Actually,
the dependence on the Xi’s will be usually left understood). Explicitly, this will
mean that the constant depends on:

(i) Ω′;
(ii) the norms Cr−1,α (Ω) of the coefficients of Xi (i = 1, 2, ..., n) and the

norms Cr−2,α (Ω) of the coefficients of X0;
(iii) a positive constant c0 such that the following bound holds:

inf
x∈Ω′

max
|I1|,|I2|,...,|Ip|≤r

∣∣∣det
((

X[I1]

)
x

,
(
X[I2]

)
x

, ...,
(
X[Ip]

)
x

)∣∣∣ ≥ c0

(where “det” denotes the determinant of the p × p matrix having the vectors(
X[Ii]

)
x

as rows).
Note that (iii) is a quantitative way of assuring the validity of Hörmander’s

condition, uniformly in Ω′.
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As we have seen in §1.2, we can always lift our nonsmooth vector fields to
get a system of free vector fields, still satisfying assumptions (B). In this section
we are interested in proving a Rothschild-Stein type approximation result for
these lifted vector fields. Therefore, just to simplify notation, throughout this
section we will assume that our vector fields Xi’s are already free up to weight
r.

3.2 Regularized canonical coordinates

As we have seen in §2.1, of basic importance in the study of the properties of the
vector fields is expressing them in terms of canonical coordinates. This means
to introduce the local diffeomorphism

R
p

� u 7−→ x = exp

(
∑

I∈B

uIX[I]

)
(x) ∈ U (x)

and then express the vector fields Xx
[I] as differential operators Xu

[I] acting on
the variable u. However, under our assumptions, we cannot expect this map
being more regular than Hölder continuous; even if we strengthened our as-
sumptions asking the coefficients of Xi to be Cr−pi+1,α, we would get a C1,α

local diffeomorphism, which would transform the vector fields Xx
i in Cα vector

fields Xu
i . Therefore it would be impossible to compute the commutators of the

transformed vector fields, and all the arguments of §2.1 would break down. More
precisely, following this line we would be forced to require the coefficients of Xi

to be C2r,α, which is rather unsatisfactory. This discussion leads us to look for
a smooth diffeomorphism, adapted to the system

{
X[I] (x)

}
|I|≤r

, transforming

the vector fields X[I] in vector fields Xu
[I] having the same regularity, and better

properties. This leads to the concept of regularized canonical coordinates, firstly
introduced in [6] and then used by several authors in particular cases.

Fix a point x ∈ Ω; for any i = 0, 1, 2, ..., n, let us consider the vector field

Xi =

p∑

j=1

bij (x) ∂xj
;

let pr
ij (x) be the Taylor polynomial of bij (x) of center x and order r − pi; note

that
bij (x) = pr

ij (x) + O
(
|x − x|

r−pi+α
)

; (42)

set

Sx
i =

p∑

j=1

pr
ij (x) ∂xj

.

From (42) we easily have (see, e.g., [2]):

Proposition 25 The Sx
i (i = 0, 1, 2, ..., n) are smooth vector fields defined in

the whole space, satisfying:

(
Sx

I

)
x

= (XI)x and
(
Sx

[I]

)

x
=
(
X[I]

)
x

for any I with |I| ≤ r.
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Moreover,

X[I] − Sx
[I] =

p∑

j=1

cj
I (x) ∂xj

with cj
I (x) = O

(
|x − x|

r−|I|+α
)

.

Finally, denoting by dX and dSx the distances (see § 2.5) induced by the Xi’s
and the Sx

i ’s, respectively, and by BX and BSx the corresponding metric balls,
there exist positive constants c1, c2, R0 depending on Ω,Ω′ and the Xi’s, but not
on x ∈ Ω′, such that

BSx (x, c1R) ⊂ BX (x, R) ⊂ BSx (x, c2R)

for any R < R0.

Now, fix a point x ∈ Ω, and select a basis of R
p of the form

{(
X[I]

)
x

}
I∈B

.

Clearly, we have {(
X[I]

)
x

}
I∈B

=
{(

S[I]

)
x

}
I∈B

.

We can now introduce, as in §2.1, the canonical coordinates induced by the
smooth vector fields Sx

i ; these will be, by definition, the regularized canonical
coordinates induced by the Xi’s:

R
p

� u 7−→ x = exp

(
∑

I∈B

uIS
x
[I]

)
(x) (43)

for x belonging to some neighborhood U (x) . Note that the Jacobian of the

map u 7−→ x, at u = 0, equals the matrix of the vector fields
{(

Sx
[I]

)

x

}

I∈B
=

{(
X[I]

)
x

}
I∈B

, therefore is nonsingular. Moreover, since the Sx
[I]’s are smooth,

the diffeomorphism is smooth, too.
Next, we express our original vector fields Xi in terms of regularized canon-

ical coordinates u: let us write Xu
[I] to denote the vector field X[I] expressed in

coordinates u. The following facts are immediate:

Proposition 26 (i) The (transformed) vector field Xu
i has Cr−pi,α coeffi-

cients, for i = 0, 1, 2, ..., n;

(ii) the vector field Xu
[I] has Cr−|I|,α coefficients, for any I such that |I| ≤ r;

in particular, all the
{

Xu
[I]

}

I∈B
have C0,α coefficients;

(iii) [
X[I], X[J]

]u
=
[
Xu

[I], X
u
[J]

]

for any I, J such that |I| + |J | ≤ r.
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3.3 Weights and approximation

Using the coordinates u we can give the following

Definition 27 Let X be a vector field with possibly nonsmooth coefficients. We
will say that X has weight ≥ k ∈ R near the point x if, expressing it in regularized
canonical coordinates

Xu =
∑

J∈B

cJ (u) ∂uJ

we have:
|cJ (u)| ≤ c ‖u‖

k+|J|
.

for u in a neighborhood of 0.

Here, as in §2.1,

‖u‖ =
∑

J∈B

|uJ |
1/|J|

.

Note that if X is a smooth vector field of weight ≥ k ∈ Z, in the sense of
Definition 7, then it is also of weight ≥ k in the sense of the above definition.
We will also use the following elementary remark:

if X, Y have weight ≥ kX , kY , respectively, then X ± Y has weight ≥
min (kX , kY ) .

Proposition 28 The vector field X[I] − Sx
[I] has weight ≥ α − |I| near x, for

any |I| ≤ r.

Proof. By Proposition 25, we know that

X[I] − Sx
[I] =

p∑

j=1

cj
I (x) ∂xj

with cj
I (x) = O

(
|x − x|

r−|I|+α
)

. (44)

Let
u = F (x) = (FJ (x))J∈B

be the local smooth diffeomorphism defined as in (43), and let x = F−1 (u) be
its inverse. Then vector fields are transformed according to the law:

∂xj
=
∑

J∈B

(
∂xj

FJ

)
(x) ∂uJ

.

Therefore

Xu
[I] −

(
Sx

[I]

)u

=
∑

J∈B

p∑

j=1

(
cj
I∂xj

FJ

)
(x) ∂uJ

=
∑

J∈B

c̃J
I (u) ∂uJ

with

∣∣c̃J
I (u)

∣∣ =

∣∣∣∣∣∣

p∑

j=1

(
cj
I∂xj

FJ

)
(x)

∣∣∣∣∣∣
≤
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since F is a smooth diffeomorphism and by (44)

≤ c

p∑

j=1

∣∣∣cj
I (x)

∣∣∣ ≤ c |x − x|
r−|I|+α

≤ c ‖u‖
r−|I|+α

≤ c ‖u‖
|J|−|I|+α

.

This ends the proof.

Proposition 29 For any |I| ≤ r we have:

(i) the vector field X[I] has weight ≥ − |I| near x.

(ii) If Y0, Y1, . . . , Yn is any system of smooth vector fields satisfying (with re-
spect to regularized canonical coordinates)

∑

I∈B

uIeI =
∑

I∈B

uIY[I]

then X[I] − Y[I] has weight ≥ α − |I|.

Proof. We can apply to the system of smooth vector fields
{

Sx
[I]

}

I∈B
the

theory developed in Section 2 and say that:

(i) the vector field Sx
[I] has weight ≥ − |I|.

(ii) Sx
[I] − Y[I] has weight ≥ 1 − |I|.

Assertion (ii) exploits the fact that the Sx
i ’s are free up to weight r at x, if

the Xi’s are so, because the Xi’s and the Sx
i ’s satisfy the same commutation

relations, up to weight r, at x.
Therefore, by Proposition 28, we conclude that:

(i) X[I] = Sx
[I] +

(
X[I] − Sx

[I]

)
has weight ≥ min (− |I| ,− |I| + α) = − |I|

(ii) X[I]−Y[I] =
(
X[I] − Sx

[I]

)
+
(
Sx

[I] − Y[I]

)
has weight ≥ min (α − |I| , 1 − |I|) =

α − |I| .

We can now deduce from the previous proposition a local approximation
result, analogous to Theorem 12:

Theorem 30 If Xu
[I] denotes the vector field X[I] expressed in regularized canon-

ical coordinates centered at x, and Y[I] are left invariant homogeneous vector field
on the group G, as above, then

Xu
[I] = Y[I] + Rx,[I],

where Rx,[I] is a Cr−|I|,α vector field of weight ≥ α − |I| near x, depending on
x in a Cα continuous way.
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Proof. Fix a point x ∈ R
p, and define the smooth approximating vector fields

Si,x. Here it will be more convenient to denote by the subscript x the dependence
on the center x of the approximation. We know that, expressing the vector fields
with respect to the canonical coordinates u of S[I],x at x (regularized canonical
coordinates of X[I] at x),

Xu
[I] − Su

[I],x has weight ≥ α − |I| near u = 0, for any |I| ≤ r.

More explicitly, this means that we can write

Xu
[I] = Su

[I],x + O[I],x , (45)

where O[I],x are Cr−|I|,α vector fields (in the variables u) of weight ≥ α − |I|
near u = 0, and their coefficients are Cα functions of x, because the same is
true for Su

[I],x. This last assertion follows directly by the definition of Si,x and
our assumptions, in view of the following remark:

If Xi =

p∑

j=1

bij (x) ∂xj
then Si,x =

p∑

j=1




∑

|α|≤r−pi

∂α
x bij (x)

α!
(x − x)

α


 ∂xj

.

Since we are assuming bij ∈ Cr−pi,α, from the above formula one reads that:

(i) the coefficients of Si,x are Cα functions of x;

(ii) the same is true for commutators S[I],x for |I| ≤ r;

(iii) the same is true if we express S[I],x with respect to new variables u which
are smooth functions of x.

This completes the proof of Cα dependence of O[I],x on x.
We now consider the Si,x’s as smooth vector fields defined in the whole space

R
p and, for any fixed η ∈ R

p, we apply Rothschild-Stein’s local approximation
theorem to the smooth Si,x’s, writing

Sv
[I],x = Y[I] + R̂x

η,[I], (46)

where Y[I] are left invariant vector fields on the group, R̂x
η,[I] are smooth vector

fields of weight ≥ 1−|I| , smoothly depending on the point η, and the superscript
v in Sv

[I],x means that these vector fields are expressed with respect to the

canonical coordinates v of S[I],x centered at η. The vector fields R̂x
η,[I] also

depend on x, because a different x means a different set of vector fields Sv
[I],x.

Since, by point (iii) here above, Sv
[I],x depend on x in a Cα-continuous way, the

same is true for R̂x
η,[I].

Next, we set η = x in (46); then v = u (canonical coordinates of S[I],x

centered at x), so we can write

Su
[I],x = Y[I] + R̂x

x,[I]
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where R̂Rx
x,[I] is a smooth vector field of weight ≥ 1− |I| near x, depending on

x in a Cα continuous way. This fact, together with (45), allows us to write:

Xu
[I] = Y[I] + Rx,[I]

where Rx,[I] is a Cr−|I|,α vector field of weight ≥ α − |I| near x, depending on
x in a Cα continuous way.

To make more usable the previous theorem we have to construct, as in the
smooth case, a map u = Θ (ξ0, ξ) , allowing to compute the derivative X[I]f (ξ)
without passing to variables u.

Let:

ξ = E (u, ξ0) = exp

(
∑

I∈B

uIS[I],ξ0

)
(ξ0) . (47)

Clearly, for any fixed ξ0, the map u 7−→ E (u, ξ0) is smooth. Moreover, its
Jacobian determinant at u = 0 equals

det
(
S[I],ξ0

)
(ξ0) 6= 0

because
{(

S[I],ξ0

)
ξ0

}

I∈B
is a basis of R

p. Therefore there exists a smooth inverse

function, which we denote by

u = Θξ0
(ξ) .

A basic difference with the smooth theory is that Θξ0
(ξ) is not simply −Θξ (ξ0).

This is due to the fact that if ξ = E (u, ξ0) then

E (−u, ξ) = exp

(
−
∑

I∈B

uIS[I],ξ

)
exp

(
∑

I∈B

uIS[I],ξ0

)
(ξ0) 6= ξ0

because the vector fields in the first exponential are S[I],ξ while those in the
second one are S[I],ξ0

. Due to this asymmetry, we cannot expect Θξ0
(ξ) to be as

smooth in the ξ0 variable as it is in the ξ variable. Instead, since the vector fields
depend on ξ0 in a Cα continuous way, the best we can hope is Cα continuity
with respect to ξ0 also for Θξ0

(ξ) . This is actually the case:

Proposition 31 For any fixed ξ, the map ξ0 7→ Θξ0
(ξ) is Cα.

Proof. We start noting that the function ξ0 7→ E (u, ξ0) is Cα continuous.
This follows from (47) by continuous dependence estimates on the exponential,
keeping in mind that ξ0 7→ S[I],ξ0

is Cα.
We are now going to revise the proof of the inverse function theorem, showing

that in this case a Cα dependence on the parameter ξ0 of the function u 7→
E (u, ξ0) implies a Cα dependence on the same parameter ξ0 for the inverse
function ξ 7→ Θξ0

(ξ) .
Let Aξ0

be the Jacobian matrix ∂uE (u, ξ0) evaluated at u = 0, and, for a
fixed ξ, set

ϕξ0
(u) = u + A−1

ξ0
(E (u, ξ0) − ξ) .
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To find the inverse function of u 7→ E (u, ξ0) we look for a fixed point of ϕξ0
.

Since E (u, ξ0) is a smooth function of u and E (0, ξ0) − ξ0 = 0, for u in a
suitably small neighborhood of 0 and ξ in a suitable neighborhood of ξ0, ϕξ0

is
a contraction; under these assumptions, we can write

|ϕξ0
(u1) − ϕξ0

(u1)| ≤ δ |u1 − u2|

for some δ ∈ (0, 1) . For any two points ξ1, ξ2 in a small neighborhood of ξ0, let
us define the sequence: {

uξi

n+1 = ϕξi
(un)

uξi
0 = 0

for i = 1, 2. Clearly, uξi
n → E (·, ξi)

−1
(ξ) ≡ uξi and

uξ1

n+1 − uξ2

n+1 = uξ1

n − uξ2

n + A−1
ξ1

(
E
(
uξ1

n , ξ1

)
− ξ
)
− A−1

ξ2

(
E
(
uξ2

n , ξ2

)
− ξ
)

=

=
{

uξ1

n − uξ2

n + A−1
ξ1

(
E
(
uξ1

n , ξ1

)
− E

(
uξ2

n , ξ1

))}
+
{(

A−1
ξ2

− A−1
ξ1

)
(ξ)
}

+

+
{

A−1
ξ1

(
E
(
uξ2

n , ξ1

)
− E

(
uξ2

n , ξ2

))}
+
{(

A−1
ξ1

− A−1
ξ2

)
E
(
uξ2

n , ξ2

)}

≡ {A} + {B} + {C} + {D} .

Now,
|{A}| =

∣∣ϕξ1

(
uξ1

n

)
− ϕξ1

(
uξ1

n

)∣∣ ≤ δ
∣∣uξ1

n − uξ1

n

∣∣

while
|{B}| + |{C}| + |{D}| ≤ c |ξ1 − ξ2|

α

(where we used the fact that E (u, ξ0) is Cα in ξ0, uniformly in u, for small u).
Hence ∣∣∣uξ1

n+1 − uξ2

n+1

∣∣∣ ≤ δ
∣∣uξ1

n − uξ1

n

∣∣+ c |ξ1 − ξ2|
α

.

Passing to the limit for n → ∞ we get

∣∣uξ1 − uξ2

∣∣ ≤ δ
∣∣uξ1 − uξ2

∣∣+ c |ξ1 − ξ2|
α

and so ∣∣uξ1 − uξ2

∣∣ ≤ c

1 − δ
|ξ1 − ξ2|

α

which is the desired Cα continuous dependence.

Finally, by Theorem 30 and Proposition 31 we immediately get:

Theorem 32 Let Y[I] be the left invariant homogeneous vector field on the
group G. Then

Xξ
[I] (f (Θη (ξ))) =

(
Y[I]f + Rη,[I]f

)
(Θη (ξ)) , (48)

where Θη (·) is a smooth diffeomorphism, depending on η in a Cα continuous
way, and Rη,[I] are Cr−|I|,α vector fields of weight ≥ α− |I| , depending on η in
a Cα continuous way.
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3.4 Equivalent quasidistances and properties of the nons-

mooth map Θ

Here we will prove two useful properties of the map Θη (·).

Proposition 33 For every ξ0 ∈ R
p there exist a neighborhood W of ξ0 and

constants C1, C2 > 0 such that for any ξ, η ∈ W, the following local equivalence
holds:

C1d (ξ, η) ≤ ρ (ξ, η) ≤ C2d (ξ, η) .

Proof. By the boll-box theorem for free smooth vector fields, we have

ρ (ξ, η) = ‖Θη (ξ)‖ ≃ deSη (η, ξ) .

In turn, by Proposition 25,

deSη (η, ξ) ≃ d eX (η, ξ)

and we are done.

Proposition 34 The change of coordinate in R
p given by

u = Θη (ξ)

has a Jacobian determinant given by

dξ = c (η) (1 + O (‖u‖)) du

where c (η) is a Cα function, bounded and bounded away from zero. More ex-
plicitly, this means that dξ = [c (η) + ω (η, u)] du with |ω (η, u)| ≤ c ‖u‖ and c (η)
as above.

Proof. We will compute the Jacobian determinant of the inverse mapping
ξ = Θ−1

η (u). To do this, set

X[I] =

N∑

k=1

cIk(ξ)
∂

∂ξk
for every I ∈ B

and rewrite the left hand side of (48) as

∑

k

cIk(ξ)
∑

j

∂f

∂uj
(Θη (ξ))

∂

∂ηk

[
(Θη (ξ))j

]
.

Then (48), evaluated at ξ = η, becomes:

∑

k

cIk(η)
∑

j

∂f

∂uj
(0)

∂

∂ηk

[
(Θη (ξ))j

]

ξ=η
=
(
Y[I]f + Rη

[I]f
)

(0).
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Choosing f(u) = uJ (J ∈ B),

∑

k

cIk(η)
∂

∂ηk

[
(Θη (ξ))J

]
η=ξ

=
(
Y[I]uJ + Rη

[I]uJ

)
(0) = δIJ

where the last equality follows recalling that

Y[I] [f ] (0) =
d

dt
f
(
exp tY[I]

)
/t=0

and that exp tY[I] equals, in local coordinates, (0, . . . , t, . . . , 0) with t in the [I]-
th position. As to Rη

[I]uJ , by Theorem 32 it has weight ≥ α − |I| , which by

definition means that

Rη
[I] =

∑

J∈B

aIJ (u)
∂

∂uJ
with |aIJ (u)| ≤ C ‖u‖

α−|I|+|J|
.

Then

Rη
[I]uJ = δIJaIJ (u) ;

∣∣∣Rη
[I]uJ

∣∣∣ ≤ C ‖u‖
α

;
(
Rη

[I]uJ

)
(0) = 0.

Defining the square matrix

C(η) = {chk(η)}hk

and letting J(η) be the Jacobian determinant of the mapping u = (Θη(ξ)) at
ξ = η, we get

Det [C(η)] · J(η) = 1.

Hence the Jacobian determinant of the mapping ξ = Θ−1
η (u) at u = 0 equals

Det[C(η)] ≡ c(η), which is a Cα function, as the coefficients of the vector
fields X[I] are. Moreover c (η) is bounded away from zero since the X[I]’s are
independent.

Since the determinant of ξ = Θ−1
η (u) is a smooth function in u, it equals

c (η) + ω (η, u)

with |ω (η, u)| ≤ c ‖u‖ and we conclude

dξ = c(η) · (1 + O (‖u‖)) du.
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