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Abstract

Empirical and Hierarchical Bayes methods are often used to improve
the precision design-based estimators in Small Area estimation problems.
By the way, when posterior means are used to estimate an ’ensemble’
of parameters, a poor estimate of the empirical distribution function of
the ensemble typically results. Several adjusted estimators have been
proposed in the literature in order to obtain better estimates of nonlinear
function of an ensemble of parameters. In this paper we discuss a set of
adjusted estimators with reference to the univariate and multivariate Fay-
Herriot models within the framework of Hierarchical Bayesian modeling.
The repeated sampling properties of the considered estimators and the
associated measures of uncertainty are evaluated by means of a simulation
exercise.

1 Introduction

In recent years sample surveys have been characterized by a growing demand
for estimates of population descriptive quantities of domains (or ’areas’) ob-
tained cross-classifying the target population according to multiple criteria. As
the sample portion pertaining to domains is often too small to produce reliable
estimates using standard design-based estimators, Small Area methods have be-
come a relevant research topic (see Ghosh and Rao, 1994, Mukhopadhyay, 1998
or Rao, 2003 for a general introduction). Empirical and Hierarchical Bayes
methods are an important chapter of Small Area Estimation theory and are
also widely applied in practice (see Rao, 2003 chapters 9 e 10 and the references
therein). The basic idea behind these methods is to treat domain descriptive
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quantities of interest (e.g. means, totals, proportions) as random and to ’esti-
mate’ them using some summary of their posterior distribution, typically the
posterior means, often referred to as ’Bayes estimators’ (Ghosh, 1992).
Bayes estimators may be very effective in improving the precision of ’direct’
design-unbiased (or design-consistent) estimators, but this improvement is of-
ten achieved at the cost of shrinking the estimates toward a synthetic estimator
which is obtained pooling together data from all areas under study. For this
reason, Bayesian estimators may be proven to be poor estimators of the actual
distribution function of a population of Small Area parameters (Louis, 1984,
Heady and Ralphs, 2004). The interest in the distribution function may be cru-
cial when Small Areas estimates are used, for instance, in the analysis of regional
disparities (Fabrizi et al., 2005). These studies are particularly relevant for ap-
plied economists and policy makers in the European Union as the reduction of
the territorial disparities in the distribution of income and the promotion of an
homogeneous economical development have become a priority for the European
Union (European Commission, 2004).
In this paper we discuss the popular Fay-Herriot model (Fay and Herriot, 1979)
and a set of alternative adjusted estimators associated to it. With adjusted
estimators we mean estimators of the Small area parameters that enjoy also
acceptable properties with respect to the estimation of Empirical Distribution
Function (EDF) or other nonlinear functionals of the population (’ensemble’)
of Small Area parameters.
The main goal of the paper is to review adjusted estimators within the frame-
work of Hierarchical Bayesian modeling and to compare their frequentist prop-
erties by means of a Monte Carlo exercise. Although we consider Bayesian
methods to obtain estimators, we focus on their frequentist properties since
these are usually relevant for practitioners. Secondly, we will use the same sim-
ulation exercise to evaluate whether posterior Mean Square Errors, a natural
measure of uncertainty associated to adjusted Bayes estimators, are also good
frequentist measure of variability.
A third goal is that of extend the reviewed adjusted estimators to the mul-
tivariate Fay-Herriot model (Rao, 2003, section 5.4) and to apply a parallel
comparison exercise to the multivariate estimators. Multivariate models are
of practical relevance as they allow to exploit the correlations between vari-
ous target variables in the population to enhance the estimation of Small Area
parameters. An example of multivariate models applied to poverty-related pa-
rameters is provided by Ghosh, Nangia and Kim, (1996).
The paper is organized as follows. In section 2, we shortly discuss Bayes esti-
mators associated to the Fay-Herriot model and their failure as estimators of
the variance (and thus of the EDF) of the ’ensemble’ of parameters. Among the
many adjusted estimators discussed in the literature we focus on Constrained
Bayes estimators (Ghosh, 1992), Constrained Linear Bayes estimators (Spjøtvoll
and Thomsen, 1987) and a simultaneous estimation method recently proposed
by Zhang (2003). These estimators are reviewed in section 3. In section 4 mul-
tivariate extensions are discussed. The simulation exercise and the tools used in
comparisons are introduced in section 5. Although all simulations use popula-
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tions generated under normality, we focus on the accuracy of EDF and not just
on mean and variance (as in Judkins and Liu, 2000) since with a finite number
of areas, the EDF of the population of area parameters may show some slight
deviation from normality. Results of the simulations are discussed in section 6,
while section 7 offers some concluding remark.

2 Failure of Bayes estimators as ensemble esti-
mators in the Fay-Herriot model

The Fay-Herriot model may be described by the following set of assumptions:

yi = θi + ei (1)

θi = xt
iβ + vi (2)

ei
ind∼ N(0, ψi) (3)

vi
ind∼ N(0, σ2

v) (4)

where {yi} 1 ≤ i ≤ m is a collection of ’direct’ design-unbiased (or approxi-
mately design-unbiased) estimators of a set of Small Area Population parameters
{θi}; {ψi} is the set of assumed known design-based variances associated to di-
rect estimators and xi a k× 1 vector of auxiliary information accurately known
for area i. Moreover it is assumed that E(eivi) = 0.
Small Area analyses are somewhat idiosyncratic as they mix randomization and
model based probability spaces. More precisely, once denoted ED(), VD() the
expectation and variance with respect to the randomization (design) distribu-
tion and EM (), VM () the moments related to the model or data generating
process, assumptions (1) and (3) imply that EM (yi|θi) = ED(yi) = θi and
VM (yi|θi) = VD(yi) = ψi, that is the first two moments of yi according to the
model (conditional on θi) and randomization distribution are the same. To be
consistent in notation let’s also write EM (θi) = xt

iβ and VM (θi) = σ2
v .

To keep things simple let’s assume that ψi = ψ and, for the moment, that
xt

iβ = µ. Moreover let’s assume β and σ2
v are known.

For the considered simplified model, the Bayes estimator (posterior mean) of θi

is given by θ̂B
i = γyi +(1−γ)µ where γ = σ2

v(σ2
v +ψ)−1. It is easy to show that

EMED

[
1

m− 1

m∑

i=1

(yi − ȳ)2
]

= ψ + σ2
v =

σ2
v

γ
(5)

As γ ∈ [0, 1], we have that direct estimates {yi} are overdispersed with respect
to the {θi} whose expected variance is σ2

v . the amount of overdispersion grows
with ψ: the more {yi} are imprecise estimate the more they are overdispersed.
On the other hand we have that

EMED

[
1

m− 1

m∑

i=1

(θ̂B
i − ˆ̄θB)2

]
= σ2

vγ (6)
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The {θi} are therefore underdispersed, with underdispersion proportional to the
amount of shrinkage, that is to the weight given to the synthetic component µ
in the Bayes estimator θ̂B

i . We may also observe that normality of (3) and (4)
is not needed to prove (6) as shown in Ghosh (1992); assuming quadratic loss
to summarize the posterior distribution and

∑m
i=1(θ̂

B
i − ˆ̄θB)2 > 0 are sufficient

conditions for the θ̂B
i to be underdispersed.

The underdispersion of Bayes estimators is caused by shrinkage toward a com-
mon mean µ. If we relax the assumption xt

iβ = µ we may have either over- or
under- dispersion. To see this, let’s note first that θ̂B

i = γyi + (1 − γ)xt
iβ and

that (5) continues to be true. By the way, the equivalent of (6) is a little more
complicated:

EMED

[
1

m− 1

m∑

i=1

(
θ̂B

i − ˆ̄θB
)2

]
= γσ2

v + (1− γ)2βtΣxxβ + 2γ(1− γ)Σxθβ (7)

with Σxx = (m − 1)−1
∑m

i=1(xi − x̄)(xi − x̄)t, x̄ =
∑m

i=1 xi, Σxx = (m −
1)−1

∑m
i=1(xi − x̄)(θ̂B

i − ˆ̄θB).
Expression in the right hand of (7) may be less or more than σ2

v . In practical
situations it will be only occasionally approximately equal to σ2

v , so the variance
of the population of small area parameters will be under or overstated to some
extent (see also Heady and Ralphs, 2004). The case with unequal sampling
variances and unknown β and σ2

v is more complicated to deal with analytically
but leads to the very same conclusions.

3 Univariate Adjusted Bayes Estimators

We consider three different adjusted Bayes estimators associated to the Fay-
Herriot model (1) - (4): i) the constrained Bayes approach, ii) the Spjøtvoll
and Thomsen method (constrained Linear Bayes approach), iii) the ’ensem-
ble estimation’ method proposed by Zhang (2003). These estimators will be
reviewed within a Hierarchical Bayes framework; that is we do not assume
the hyperparameters β,σ2

v as known but specify a prior distribution for them.
In what follows we denote the data on which the analysis is conditioned as
z = {yi, ψi,xi, }1≤i≤m.
We anticipate that all adjusted estimators θ̂?

i represent summary of the poste-
rior distribution p(θi|z) different from the posterior mean θHB

i = E(θi|z) and
are therefore suboptimal with respect to quadratic loss. Uncertainty associated
to this alternative posterior summaries may be measured by the posterior Mean
Square Error:

PMSE
(
θ̂?

i

)
= V (θi|z) +

(
θ̂?

i − θHB
i

)2 (8)
We denote E() the expectation with respect to the model distribution omitting
the deponent M , since randomization moments are not involved anymore.
Of course, PMSE

(
θ̂?

i

)
> V (θi|z). This highlights how the better representa-

tion of the Empirical Distribution Function of the population of Small Area
parameters is paid at the price of some loss of efficiency.
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3.1 The Constrained Hierarchical Bayes Estimator

Constrained Bayes estimators have been introduced and discussed by Louis
(1984) under normality and by Ghosh (1992) for arbitrary distributions. To
illustrate these estimators, let’s note that the aim is that of obtaining a set of
estimators {ti}, 1 ≤ i ≤ m, optimal under quadratic loss and satisfying the
following constraints:

1. t̄i = ˆ̄θHB

2. (m− 1)−1
∑m

i=1

(
ti − t̄

)2 = E
[∑m

i=1(θi − θ̄)|z
]

The Constrained Hierarchical Bayes (CHB) estimators are given by:

θ̂CHB
i = ˆ̄θHB + a(z)

(
θ̂HB

i − ˆ̄θHB

)
(9)

where

a(z) =

[
1 +

(
∑m

i=1 V (θi − θ̄)|z)
(m− 1)−1

∑m
i=1

(
θ̂HB

i − ˆ̄θHB
)2

] 1
2

(10)

The posterior mean square error PMSE
(
θ̂CHB

i

)
may be used to evaluate un-

certainty associated to this estimator.

3.2 The Constrained Hierarchical Linear Bayes Estimator

Let’s suppose, for the moment, that the hyperparameters β, σ2
v are known.

The Constrained linear Bayes estimator of θi is a summary of the posterior
distribution of the form θ̂L

i = aiyi+bi satisfying the constraints: i) E(θ̂L
i ) = xt

iβ,
ii) E(θ̂L

i − xt
iβ)2 = σ2

v . Note that when the posterior mean is in linear form
we say the distribution enjoys posterior linearity (Goldstein, 1975), a conditions
that holds for a variety of distributions. The Constrained Linear Bayes estimator
is given by:

θ̂CLB
i = γ

1/2
i yi + (1− γ

1/2
i )xt

iβ (11)

with γi = σ2
v(σ2

v + ψi)−1 (see Spjøtvoll and Thomsen, 1987 and Rao, 2003,
section 9.8).
This estimator owes its popularity to its similarity to θ̂B

i : it is still a linear
combination of yi and xt

iβ that, with respect to θ̂B
i , puts more weight on the

’direct’ estimator yi, whereby leading to a set of estimates less shrunken toward
the synthetic component.
The estimator (11) may be thought as conditional on (β, σ2

v). We simply
propose to define the Constrained Hierarchical Linear Bayes (CHLB) estimator
as

θ̂CHLB
i = E(β,σ2

v|z)
(
θ̂CLB

i

)
(12)

where E(β,σ2
v|z) is the expectation taken with respect to the posterior distribu-

tion of β,σ2
v . An explicit formula for (12) depends on the chosen prior distri-

butions and may be in general difficult to work out. Nonetheless (12) may be
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easily approximated using the output of Markov Chains Monte Carlo (MCMC)
algorithms of common use for the analysis of hierarchical models.

3.3 The simultaneous estimation method of Zhang

Given the set {θi}, 1 ≤ i ≤ m of the area parameters of interest, let {θ(i)} be
the associated set ordered set (θ(1) ≤ θ(2) ≤ ... ≤ θ(m)). Then ηi = E(θ(i)|z) is
the best predictor of θ(i) under quadratic loss and {ηi} is the best ’ensemble’
estimator of {θi} in the same sense. The set of estimators {ηi} is not area
specific in the sense that its elements are not associated to specific areas. To
match the {ηi} with the small areas Zhang (2003) proposes, in the context of an
Empirical Bayes estimation approach, to estimate the ranks of {θi} using those
of the {E(θi|z)}. By the way, the ranks of the posterior means may be poor
estimators of actual ranks, especially if there is much variability in the posterior
variances. Following Ghosh and Maiti (1999) and differently from Zhang (2003),
we propose r̂i = E

(
rank(θi|z)

)
, 1 ≤ i ≤ m, the posterior expectation of ranks,

as the estimator needed to match the ensemble estimator {ηi} with the areas.
In the context of Hierarchical Bayes modeling, this estimator of ranks may be
easily approximated from the output of MCMC algorithms. More in detail, we
can rank the θi(s)|z from any draw s of the Markov Chain after convergence.
Then we can approximate r̂i averaging the ranks rank(θi(s)|z) over all draws,
obtaining r̂MC

i = S−1
∑S

s=1 rank(θi(s)|z) where S is the number of iterations
of Markov Chain after convergence used for the estimation of the posterior
distribution.
To summarize, the estimator based on Zhang ideas implemented in the context
of hierarchical Bayes modeling is given by:

θ̂ZHB
i = ηr̂i (13)

with r̂i approximated by r̂MC
i when the posterior distributions are obtained

using MCMC algorithms.

4 Multivariate Adjusted Bayes Estimators

A multivariate extension of the Fay-Herriot model (1) - (4) may be described
as follows:

yi = θi + ei (14)

θi = Xiβ + vi (15)

ei
ind∼ N(0,Ψi) (16)

vi
ind∼ N(0, Σv) (17)

1 ≤ i ≤ m. The p−vector yi contains a set of design-unbiased estimators with
mean θi and (design-based) variance-covariance matrix Ψi. All p × p matrices
Ψi are assumed to be positive definite matrices of known constants. The means
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of the area parameters θi are functions of a p× k matrix of auxiliary variables
Xi; their common variance-covariance matrix Σv assumed to be positive def-
inite. Moreover it is assumed that E(et

ivi) = 0. To complete the Bayesian
specification of the model a prior for β and Σv should be specified.
The Bayes estimators associated to multivariate Fay-Herriot model face the
same failure as estimators of the distribution of the population of area parame-
ters illustrated for the univariate case. In the following sections we discuss the
extension of methods introduced in section 3 to the multivariate case.
The posterior Mean Square Error introduced in (8) may also be easily general-
ized to the multivariate case. If θ̂

?

i is the generic multivariate adjusted estimator
its posterior MSE is given by:

PMSE
(
θ̂

?

i

)
= V (θi|Z) +

[(
θ̂

?

i − θ̂
HB

i

)(
θ̂

?

i − θ̂
HB

i

)|Z
]

(18)

where Z = {yi,xt
i, Ψi}1≤i≤m denotes the data available in the multivariate

problem and θ̂
HB

i = E(θi|Z).

4.1 Multivariate Constrained Hierarchical Bayes estima-
tors

The extension of Constrained Bayes estimators to problems in which a p−vector
of area parameters is to be estimated is worked out by Ghosh and Maiti (1999).
The problem is that of finding a set of estimators {ti} minimizing E

[ ∑m
i=1(θi−

ti)(θi − ti)t|Z]
under the constraints:

1. E(θ̄|Z) = m−1
∑

ti

2. E
[ ∑m

i=1(θi − θ̄)(θi − θ̄)t|Z]

The multivariate Constrained Hierarchical Bayes estimator is given by:

θ̂
CHB

i = ˆ̄θCHB + (H1 + H2)1/2H−1/2
2

(
θ̂

HB

i − ˆ̄θHB
)

(19)

where H1 =
∑m

i=1 V (θi|Z)−mV (θ̄|Z) and H2 =
∑m

i=1(θ̂
HB

i − ti)(θ̂
HB

i − ti)t
]
.

The square roots of H1 and H2 are well defined since the two matrices are
semi-positive definite.

4.2 Multivariate Constrained Hierarchical Linear Bayes
estimators

We do not know of a multivariate generalization of the Spjøvoll and Thomsen
estimator. By the way, it is straightforward to obtain. In parallel with section
3.2, let’s assume temporarily that β and Σv are known. We look for an estimator
in the form θ̂

L

i = Aiyi + bi where Ai is a p× p matrix and bi a p× 1 vector of
constants, to be determined satisfying the constraints:
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1. E(θ̂
L

i ) = Xiβ

2. E
(
θ̂

L

i −Xiβ
)(

θ̂
L

i −Xiβ
)t = Σv

It may be easily shown that bi =
(
Ip −Ai

)
Xiβ and Ai = Σ1/2

v

(
Σv + Ψi

)−1/2

since E
(
θ̂

L

i − Xiβ
)(

θ̂
L

i − Xiβ
)t = Ai

(
Σv + Ψi

)
At

i. As a consequence, the
multivariate Constrained Linear Bayes estimator is given by:

θ̂
CLB

i = Γ1/2
i yi +

(
Ip − Γi)1/2Xiβ (20)

where Γi = Σv

(
Σv + Ψi

)−1 (the estimator is written as function of Γi to em-
phasize the parallel with (11). As (20) is conditional on β, Σv the Hierarchical
Linear Bayes estimator of θi is given by:

θ̂
CHLB

i = E(β,Σv|Z)

(
θ̂

CLB

i

)
(21)

where E(β,Σv|Z) is the expectation taken with respect to posterior distribution

of β, Σv. The estimator θ̂
CHLB

i can be easily be computed on the basis of
the output of MCMC algorithms, while an explicit formula will in general be
dependent on the chosen prior distributions and generally complicated to obtain.

4.3 A multivariate extension of simultaneous estimation
method proposed by Zhang

The extension of Zhang’s method to the estimation of multiple area parameters
we consider in this paper is rather simple. Let θh, 1 ≤ i ≤ m be the set of of
estimates for the h-th parameter over all areas.
After the posterior distribution of θ = {θi} have been obtained using the multi-
variate Fay-Herriot model, the univariate Zhang’s method is applied separately
for each θh, thus obtaining ηhi = E(θhi|Z). The same procedure illustrated in
section 3.3 is then used to estimate ranks and match the ensemble estimators
to the small areas. As a result the Hierarchical Zhang estimator is given by:

θ̂
ZHB

i = {ηr̂hi
}1≤h≤p (22)

with r̂hi approximated by r̂MC
hi when computations are carried out using MCMC

methods.

5 The simulation experiment

In this section we discuss two different, although parallel, simulation exercises for
the comparison of univariate and multivariate ensemble estimators introduced
in previous sections. In both exercises codes are written in R (R Development
Core Team, 2006). For MCMC calculations we used the Brugs package (Thomas
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and O’Hara, 2006) which recursively calls the MCMC dedicated software Open-
BUGS (Thomas et al., 2006).
As for technical details concerning MCMC calculations we generate samples of
size 20,000 for all chains deleting a conservative ’burn in’ sample of size 5,000.
In fact, the relatively simple normal models employed in the simulations have
all shown very fast convergence rates. Convergence has been checked by means
of visual inspection of chains and standard convergence statistics (Cowles and
Carlin, 1996).

5.1 The univariate simulation experiment

The aim of this simulation exercise is to compare the direct estimators θ̂DIR =
{yi}, the posterior means θ̂HB = {θ̂HB

i } and the various adjusted estimators
θ̂CHB = {θ̂CHB

i }, θ̂CHLB = {θ̂CHLB
i } and θ̂ZHB = {θ̂ZHB

i } both in terms of
their ability to estimate the EDF of the {θi} and their efficiency as measured
by the empirical Mean Square Errors over Monte Carlo replications. The simu-
lation is also aimed at assessing whether posterior MSEs have good frequentist
properties. The simulation is based on R=1,000 Monte Carlo samples, and all
comparisons are referred to the empirical distribution of the various estimators
in this replication space.
Data are generated according to the Fay-Herriot model (1) - (4) setting
xt

iβ = µ = 0. With this simplification we may predict that the effect of Bayes
estimation will be that of overshrinkage thus making interpretation of results
easier.
We consider both the case of moderate and large number of areas setting
m = 30, 100. Larger values of m are not considered because of computation
burden. We set σ2

v = 1 and consider three different configurations of design
variances. They are set in the following way: we divide the set of areas in
five groups. Variances vary across groups but are constant within them. The
considered configurations are illustrated in Table 1. They differ in terms of in-

Table 1: Different configurations design variances considered in univariate sim-
ulation

ψ1,..., m
5

ψm
5 ,...,2 m

5
ψ2 m

5 ,...,3 m
5

ψ3 m
5 ,...,4 m

5
ψ4 m

5 ,...,m

Population 1 0.1 0.33 1 3 10
Population 2 1 1.33 2 4 10
Population 3 0.1 0.25 0.5 0.75 1

formativeness of direct estimators, that may be measured by γi = σ2
v(σ2

v +ψi)−1.
Population 1 describes a situation where direct estimators show a wide range
of informativeness (γ ∈ [0.11, 0.91]); Population 2 a situation in which direct
estimators are poorly informative (γ ∈ [0.11, 0.5]), while in Population 3 we
study the case or rather strongly informative direct estimators (γ ∈ [0.5, 0.91]).
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We note that considering equal sampling variances, i.e. ψi = ψ does not make
much sense, first because this is seldom the case in practice and secondly be-
cause it may be proved that, for xt

iβ = µ and µ, σ2
v known, θ̂CHB

i −→ θ̂CHLB
i

for m → ∞ (Rao, 2003, section 9.6). As a consequence even if do not assume
µ and σ2

v as known and work with a finite number of areas we may expect the
two estimators to show close performances.
When modeling, it is assumed that µ is unknown. As regards the prior distri-
butions we assume p(µ, σ2

v) = p(µ)p(σ2
v) with µ ∼ N(0,K), σv ∼ Unif(0, L)

where K = 100 and L = 20 are large constants with respect to the scale of the
data. This priors warrant properness of the posterior distributions, very mild
impact on posterior distributions and good behavior (fast convergence and good
mixing) of MCMC algorithms (Gelman, 2006).
To compare the various estimators, we consider the indicators described below.
i)Overshrinkage correction. Let’s define

AV (θ̂?) = R−1
R∑

r=1

v2(θ̂?
r ) (23)

where v2(θ̂?
r) =

∑m
i=1(m−1)−1

(
θ̂?

r,i− ˆ̄θ?
r

)2, ? = {DIR, HB, CHB, CLHB,ZHB}.
We expect this indicator to be larger than 1 for θ̂DIR, less for θ̂HB and close to
1 for the remaining estimators.
ii) Kolmogorov-Smirnov distance. For each iteration r, the Kolmogorov-Smirnov
distance between the EDF of the estimator and that of the {θi} is calculated as
Dr(θ̂?, θ) = maxx |EDFθ̂?(x) − EDFθ(x)| where EDFθ̂?(x) = m−1[#(θ̂?(x) ≤
x)], x ∈ R. The distances calculated at each iteration are then averaged over MC
replications. For the ease of comparison we report D̃(θ̂?, θ) = D̄(θ̂?, θ)/D̄(θ̂HB , θ),
whereby assuming the non adjusted Hierarchical Bayes estimators as a bench-
mark.
iii) Anderson-Darling distance. Anderson and Darling (1954) introduced a
goodness of fit statistic that can be used to evaluate the distance of an EDF from
a continuous reference distribution. With respect to the Kolmogorov-Smirnov
distance is known to be more influenced by the discrepancies in the tails of
the distribution. For our purposes the ’empirical’ Anderson-Darling distance is
given by A2

m(θ̂?, θ) = −∑m
i=1(2i − 1)[log(EDFθ(θ̂?

i ))− log(1 − EDFθ(θ̂?
i ))]. It

may happen that EDFθ(θ̂?
i )) takes value 0 or 1 for some θ̂?

i . To avoid A2
m(θ̂?, θ)

to go to ∞ we use the fact that the {θi} are generated from N(0, σ2
v) and re-

place EDFθ(θ̂?
i ) with N0,σ2

v
(θ̂?

i ) in these cases. A2
m(θ̂?, θ) is computed for each

MC repetition, the average is taken over all R replications, and Ã2
m(θ̂?, θ) =

Ā2
m(θ̂?, θ)/Ā2

m(θ̂HB , θ) is reported in results.
iv) Efficiency. Adjusted estimators are sub-optimal by construction. We want
to evaluate the average impact of the adjustment on the unconditional frequen-
tist MSE of small area predictors defined as MSE(θ̂?

i ) = V
(
θ̂?

i − θi

)
(see Rao,

2003, section 6.2). We estimate these MSE(θ̂?
i ) by means of their Monte Carlo

approximations mseMC(θ̂?
i ) = R−1

∑m
r=1(θ̂

?
r,i − θr,i)2. These quantities vary

across areas. In particular we focus on the mean of their distribution across
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areas: amseMC(θ̂?) = m−1
∑m

i=1 mseMC(θ̂?
i ).

v) Properties of Posterior MSE. Frequentist properties of (8) are evaluated
using the following measure of relative bias:

apmse(θ̂?) =
1
m

m∑
m=1

R−1
∑R

i=1 pmseMC(θ̂?
i )

mseMC(θ̂?
r,i)

where pmseMC(θ̂?
r,i) is pmse(θ̂?

i ) calculated using data from the rth draw of the
Monte Carlo exercise. Moreover note that pmse(θ̂HB

i ) error reduces to posterior
variance.

5.2 The multivariate simulation experiment

The simulation exercise for the comparison of multivariate adjusted estimators is
similar under many respect to that introduced for the univariate case. The main
goal of the simulations is to compare the direct θ̂

DIR
= {yi}, the hierarchical

Bayes θ̂
HB

= {θ̂HB

i } and the various adjusted estimators θ̂
CHB

= {θ̂CHB

i },
θ̂

CHLB
= {θ̂CHLB

i } and θ̂
ZHB

= {θ̂ZHB

i } with respect to the estimation of the
EDF of the population of Small Area parameters and in terms of efficiency. For
simplicity, we will consider a bivariate problem, that is one in which we have
two parameters to be estimated for every Small Area. We will consider how
well the various competitors estimate the two univariate EDF but we will not
consider the joint EDF. Nonetheless, we will pay attention to the ability of the
adjusted estimators to reproduce the actual correlation between the components
of θ = {θi}, 1 ≤ i ≤ m. Frequentist properties of PMSE(θ̂

?

i ) will also be
considered.
Data are generated according to the multivariate Fay-Herriot model (14) - (17)
in which we set p = 2 and Xiβ = µ on the basis of an argument parallel to that
of section 5.1. In particular µ = (−1, 1).
The experimental factors are, in the case of this second simulation exercise, given
by i) the number of areas, ii) the assumed known sampling variances associated
to direct estimates, iii) the sampling correlation between direct estimates (that
is the off diagonal elements of Ψi, iv) The assumed constant correlation between
the two components of θ: ρ = Corr(θhi, θh′,i).
To avoid an excessively complicated experimental design we make the choices
described below. The number of areas m is set to 30 and 100 as in section 5.1.
The diagonal elements of the matrixes (ψhh,i) are assigned following a strategy
similar to that of section 5.1: we divide, for each component, the set of areas in
five groups, each characterized by a different value of ψhh,i. The configurations
considered are listed in Table 2. We note that the ratio of sampling variances
associated to different components for the same area is constant, an assumption
consistent with the fact that in applications we have usually the same sample size
to estimate all the parameters of an area. Direct estimates associated to the first
component are rather precise, while those associated to the second component
are three times larger thus simulating a situation the two study variables show
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Table 2: Different configurations design variances considered in multivariate
simulation experiment

ψ1,..., m
5

ψm
5 ,...,2 m

5
ψ2 m

5 ,...,3 m
5

ψ3 m
5 ,...,4 m

5
ψ4 m

5 ,...,m

θ1i 0.2 0.4 0.6 0.8 1
θ2i 0.6 1.2 1.8 2.4 3

different variability in the population. Off diagonal elements ψhh′,i are set in
order to have ρy = Corr(yhi, yh′i) = 0.5. We choose this rather high correlation
level because the case of correlated direct estimators is more interesting for the
multivariate estimators; moreover some non-negligible correlation is realistic
since the different components of θ are estimated using the same sample data.
We note that, similarly to the univariate case, if we choose equal sampling
variances (Ψi = Ψ), θ̂

CHB

i and θ̂
CHLB

i are approximately identical since it can
be shown that in this situation

lim
m→∞

θ̂
CB

i = θ̂
CLB

i (24)

where θ̂
CB

i is the estimator (19) for Σv and β known and θ̂
CLB

i is defined in
(20). A proof of (24) may be found in the Appendix.
As regards the variance-covariance matrix we set the two variances on the main

diagonal equal to 1 (σ2
v1 = σ2

v2 = 1) while three different values are considered
for ρ (ρ = 0, 0.25, 0.75) corresponding to independence, mild and strong corre-
lation between the components of θ.
When modeling, it is assumed that µ is unknown, and is given a diffuse Normal
prior µ ∼ N(0,KI2) where K = 100 is ’large’ with respect to the scale of the
data. Other hyperparameters are assumed a priori independent and given the
following priors p(σv1)p(σv2) = Unif(0, L), L = 20 and p(ρ) = Unif(−1, 1).
For comparison purposes we consider a set of indicators parallel to those intro-
duced in section 5.1: i) the average variance across areas defined in (23), cal-
culated separately for {θ?

h1} and {θ?
h2}, ? = {DIR, HB,CHB, CLHB,ZHB};

ii) the indicators based on the Kolmogorov-Smirnov and the Anderson-Darling
distances averaged over MC replications, D̃(θ̂?

h, θh) and Ã2
m(θ̂?

h, θh), h = 1, 2; iii)
amseMC(θ̂?

h) is used to compare the efficiency of estimators; iv) acorr(θ̂
?
) =

R−1
∑R

i=1 Corr
(
θ̂?
1(r), θ̂?

2(r)
)

is introduced to see whether the set of estimates
generated from various estimators reproduce the actual correlations between the
components of θ.

12



Table 3: Variance across areas averaged over MC replications (AV (θ̂?)) uni-
variate simulation

m Population θDIR θHB θCHB θCLHB θZHB

100 1 3.87 0.54 1.11 1.05 1.04
100 2 4.67 0.38 1.14 0.98 0.97
100 3 1.55 0.72 1.04 1.02 1.00

6 Simulations results

6.1 Univariate simulation experiment

The indicators we use to describe simulation results are described in section 5.1.
For brevity, we tabulate results for the case m = 100 and show those related to
the case m = 30 only whenever differences between the two cases are remark-
able.
Results about the shrinkage correction are displayed in table 3. It is apparent
that ordinary direct estimates are overdispersed with overdispersion increasing
with the average variance of direct estimates; Hierarchical Bayes estimators are
underdispersed in all situations and more seriously so when the direct estimates
convey little information (Population 2). More important, all adjusted estima-
tors approximately eliminate the overshrinkage. Fluctuations of related values
around 1 do not seem to follow any significant pattern. The correction of over-
shrinkage do not seem to be influenced by the number of areas. Table 4 shows
results related to Kolmogorov-Smirnov distance. θHB appear to be the poorest
estimators of the true EDF. All other estimators clearly improve the perfor-
mances of θZHB , and the improvement is larger when m = 100 with respect
to the case of m = 30. Among adjusted estimators, θHB emerges clearly as
best. In fact, given the size of MC errors, all observed differences appearing in
table 3 can be taken as 95% significant. Moreover, note that the advantage
of θZHB over the other adjusted methods is less pronounced for Population 2
(poorly informative direct estimates). θCHB and θCHLB perform closely and
none of the two seems preferable. Table 5 presents the results related to the
Anderson-Darling distance. According to this distance we may note that θHB

is in an intermediate position between the direct estimators (that are the worst
performers over all settings) and the adjusted estimators that are better. Among
adjusted estimators θZHB is clearly better than the other two except for Pop-
ulation 2 characterized by poorly informative direct estimates where, by the
way, it still performs a little better. We may then conclude that the estimation
method suggested by Zhang turns out to be best with respect to both measures
of distance we have considered and it gives its best when the number of areas is
large (as explicitly noted in Zhang, 2003) and the direct estimates are not too
imprecise.

The results related to the repeated sampling efficiency, as measured by the

13



Table 4: Ratio of Kolmogorov-Smirnov distances between estimated and actual
EDF averaged over MC replications over the same quantity calculated for the
θ̂HB estimators (D̃(θ̂?, θ)) univariate simulation

m Population θDIR θHB θCHB θCLHB θZHB

30 1 0.92 1 0.80 0.79 0.66
30 2 0.80 1 0.69 0.73 0.64
30 3 0.92 1 0.89 0.89 0.74
100 1 0.96 1 0.66 0.62 0.49
100 2 0.86 1 0.57 0.73 0.50
100 3 0.96 1 0.80 0.80 0.64

Table 5: Ratio of Anderson-Darling distances between estimated and actual EDF
averaged over MC replications over the same quantity calculated for the θ̂HB

estimators
(
Ã2

m(θ̂?, θ)
)

- univariate simulation

m Population θDIR θHB θCHB θCLHB θZHB

30 1 2.12 1 0.62 0.63 0.48
30 2 1.67 1 0.51 0.55 0.50
30 3 1.03 1 0.74 0.73 0.56
100 1 2.63 1 0.34 0.31 0.22
100 2 2.04 1 0.30 0.30 0.28
100 3 1.20 1 0.50 0.49 0.37
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Table 6: amseMC(θ̂?) - univariate simulation

m Population θDIR θHB θCHB θCLHB θZHB

100 1 2.819 0.511 0.601 0.678 0.613
100 2 3.591 0.724 0.907 0.936 0.899
100 3 0.511 0.314 0.341 0.347 0.345

empirical unconditional Mean Square Error are shown in Table 6. We can ver-
ify that the adjustment of θHB has, as expected, a cost in terms of efficiency.
The increase in posterior Mean Square Error appear to depend on the preci-
sion of direct estimators. When the precision is high (Population 3), the rise
is around 10%, but when it is low, amseMC(θ̂?) are 20% or even 30% (in the
case of θCHLB) higher than in the case of posterior variances. Nonetheless we
may note that the improvement with respect to the direct estimators remains
substantial. Moreover we may observe that θCHB , θZHB show similar perfor-
mances, while θCHLB turns out to be a little less efficient. A more detailed
analysis of the distribution of amseMC(θ̂?

i ) across areas (for which we show no
tables) highlights the very different behavior of θCHLB with respect to θCHB

and θZHB : it performs clearly better when direct estimates are more precise
than the average and far worse in the case of areas characterized by the most
imprecise direct estimates. This behavior depends on the nature of the esti-
mators. From (11) we may note that, with respect to posterior mean, these
estimators work giving less weight to the synthetic component and more to the
direct one. When yi is very precise this leads to estimators more efficient es-
timators than other adjusted methods; unfortunately yi receives more weight
even when it is unreliable, thus producing a large loss in efficiency with respect
to and the other adjusted methods.
Table 7 reports an evaluation of frequentist properties of this uncertainty mea-
sure as defined in (8). It is apparent that posterior MSEs, which are Bayesian
uncertainty measures remain sensible measures of variability also with respect
to repeated sampling; in fact they are approximately unbiased ’on average (with
respect to set of areas being studied). This property, that was known to hold for
the posterior variances as frequentist variability measures of θHB under careful
choice of the priors (Datta, Rao and Smith, 2002), is extensible to the case of
posterior mean square errors and the prior chosen in our simulation exercise.

6.2 Multivariate simulation experiment

We will report results concerning the multivariate simulation exercise accord-
ing to the indicators introduced in Section 5.2, focusing for brevity on the case
m = 100 and omitting those results that do not add anything relevant to the
findings of the univariate simulation exercise.
For instance, the comparison of the various estimators with respect to the cor-
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Table 7: amseMC(θ̂?) - univariate simulation

m Population θHB θCHB θCLHB θZHB

100 1 1.02 1.01 1.02 1.02
100 2 10.96 0.99 0.99 0.98
100 3 11.01 1.02 1.02 1.01

Table 8: Ratio of Kolmogorov-Smirnov distances between estimated and actual
EDF averaged over MC replications over the same quantity calculated for the
θ̂HB

h estimators: D̃(θ̂?
h, θh) - multivariate simulation

m θhi ρ θDIR
h θHB

h θCHB
h θCLHB

h θZHB
h

30 θ1i 0 0.90 1 0.85 0.87 0.75
30 θ2i 0 0.84 1 0.56 0.75 0.69
100 θ1i 0 0.97 1 0.89 0.82 0.68
100 θ2i 0 0.88 1 0.52 0.62 0.56
30 θ1i 0.25 0.90 1 0.84 0.86 0.74
30 θ2i 0.25 0.79 1 0.53 0.73 0.68
100 θ1i 0.25 0.96 1 0.87 0.81 0.68
100 θ2i 0.25 0.86 1 0.51 0.60 0.55
30 θ1i 0.75 0.85 1 0.79 0.84 0.71
30 θ2i 0.75 0.81 1 0.54 0.75 0.69
100 θ1i 0.75 0.90 1 0.83 0.77 0.63
100 θ2i 0.75 0.94 1 0.57 0.66 0.58

rection of overshrinkage yields results that parallel perfectly those illustrated
for the univariate experiment: direct estimates θ̂

DIR
are overdispersed, pos-

terior means θ̂
HB

underdispersed, adjusted estimators substantially show a
substantially correct sample variance. Moreover the correction appear to be
independent of the number of areas and the level of correlation between the two
components of θ̂.
From table 8 (which reports results about the Kolmogorov-Smirnov distances)
we may note that adjusted estimators improve direct estimators and posterior
means. When direct estimates are more precise (h = 1, θhi = θ1i), θ̂ZHB

h

(h = 1, 2) are clearly better than other adjusted methods, both when m = 100
and that is more interesting, when m = 30. On the contrary when direct esti-
mates are less precise (h = 2, θhi = θ2i) the picture is different with θ̂CHB

h clearly
better than θ̂ZHB

h when m = 30 and still somewhat better when m = 100. The
θ̂CHLB

h ensemble estimators never appear to be the best choice.
If we turn to the Anderson-Darling distance (table 9), the performance of di-
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Table 9: Ratio of Anderson-Darling distances between estimated and actual EDF
averaged over MC replications over the same quantity calculated for the θ̂HB

h

estimators: Ã2
m(θ̂?

h, θh) - multivariate simulation

m θhi ρ θDIR
h θHB

h θCHB
h θCLHB

h θZHB
h

30 θ1i 0 1.24 1 0.80 0.80 0.66
30 θ2i 0 9.55 1 0.68 0.71 0.62
100 θ1i 0 1.56 1 0.59 0.60 0.49
100 θ2i 0 10.33 1 0.38 0.38 0.34
30 θ1i 0.25 1.18 1 0.77 0.76 0.63
30 θ2i 0.25 8.62 1 0.62 0.65 0.59
100 θ1i 0.25 1.42 1 0.55 0.56 0.46
100 θ2i 0.25 9.29 1 0.36 0.36 0.33
30 θ1i 0.75 1.05 1 0.73 0.72 0.58
30 θ2i 0.75 9.17 1 0.63 0.66 0.60
100 θ1i 0.75 1.25 1 0.51 0.51 0.41
100 θ2i 0.75 12.91 1 0.41 0.42 0.37

rect estimators θ̂DIR
h deteriorates and also that the adjusted estimators improve

them more sensibly than in the case of the Kolmogorov-Smirnov. Focusing on
the adjusted estimators, we observe that θ̂ZHB

h are best in all situations. By the
way, their advantage over the competitors is larger when the number of areas
is 100 and when direct estimates are more precise. Moreover, we may also note
that different levels of correlation between the components of θ have a minor
impact on comparisons for both distances.

As regards sampling efficiency of estimators as estimated by amseMC(θ̂?
h),

a picture very similar to that of the univariate case can be obtained. θHB
h are

by far more efficient than direct estimators: their amseMC is about 1/2 int
case of θ1 and 1/3 in the case of θ2, regardless of ρ. Adjusted estimators show
amseMC about 10% higher than θHB

h and this increase is not sensitive to the
number of areas and the correlation level ρ. All adjusted estimators perform
closely in terms of amseMC , even though considerations about the distribution
of amseMC(θCHLB

h ), similar to those already illustrated in Section 6.1 could be
made. Moreover the approximate unbiasedeness of the posterior Mean Square
Error (18) as estimator of the frequentist MSE that held in the univariate case
continues to hold in the multivariate one. Tables concerning these results are
not shown to save space.
Table 10 illustrates whether the considered multivariate adjusted estimators
are able to reproduce the true correlation between the components of θ. We
may observe that θCHB

h and θCHLB
h achieve this result, even if with a some

approximation when m = 30. This may in part ascribed to the MC error (about
0.02 for this case) inflated by the fact that the sample correlation coefficient
computed on 30 items is more unstable than that computed on 100. On the
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Table 10: Actual correlation ρ between the components of and acorr(θ̂
?

- mul-
tivariate simulation

m ρ θDIR
h θHB

h θCHB
h θCLHB

h θZHB
h

30 0 0.24 -0.25 -0.03 -0.03 -0.25
100 0 0.25 -0.24 -0.05 -0.02 -0.25
30 0.25 0.36 0.05 0.17 0.18 0.05
100 0.25 0.37 0.13 0.22 0.23 0.13
30 0.75 0.59 0.69 0.59 0.62 0.70
100 0.75 0.60 0.83 0.73 0.73 0.83

contrary θZHB
h behaves under this respect just like the ensemble of posterior

means, thus failing to recover the actual correlation between the components of
in the case of linear independence or low correlation. Nonetheless it should be
noted that when ρ is high (a situation in which recovering the actual correlation
is really important) the posterior means and all the adjusted estimators show
an empirical correlation between the components not far from its true value.

7 Concluding remarks

In this paper we discuss and compare three different methods for adjusting a
set of small area estimates in order to make them better estimators of the EDF
of the ’ensemble’ of Small Area parameters. Two of these methods (CHB and
CLHB) are well known in the literature, while the third (ZHB) is more recent.
In all cases we consider also their extensions to the multivariate case, as multi-
variate models are widely employed in Small Area estimation and may provide
further gains in efficiency when the vector of parameters being estimated in-
volves correlated variables.
The evaluation of the performances of the three estimators is mainly based on
a simulation exercise covering a range of situations hopefully relevant for small
area practitioners. All simulations are carried out assuming normality of resid-
uals and random effects. A first conclusion from this analysis is that all the
methods considered meet the goal of substantially correcting the overshrinkage
and leading to more realistic estimates of EDF of the ’ensemble’ of Small Area
means. On the other hand, adjusted estimators are less efficient than posterior
means, but the gain in precision with respect to direct estimators remain sub-
stantial.
In the univariate case, the Zhang seems as better than the other two. The com-
parisons based on the bivariate simulation exercise provide a little more blurred
picture. All adjusted estimators still appear very effective, but there is no a so
clear edge of one method over the others as in the univariate case. The Zhang
method in this case seems better in terms of the distance measures considered
but fails to recover the actual correlation between the components of the vectors
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of small area means being estimated for the cases of moderate or null correla-
tion. This was in part to be expected, given the fact that the generalization
of the Zhang’s method is more difficult and deserves further investigation and
refinements.
Eventually we also studied the frequentist behavior of measure of uncertainty
associated to adjusted Hierarchical Bayes estimators, notably finding that, at
least for the prior distributions chosen in the simulation exercise, the posterior
MSEs have good frequentist properties.
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A Proof of (24)

To prove that
lim

m→∞
θ̂

CB

i = θ̂
CLB

i

when Ψi = Ψ, note first that θ̂
CB

i = ˆ̄θB + (H1 + H2)1/2H−1/2
2 (θ̂

B

i − ˆ̄θ) with

θ̂
B

i = Γyi+(Ip−Γ)µ, Γ = Σv(Ψ+Σv)−1, ˆ̄θB = m−1
∑m

i=1 θ̂
B

i = Γȳ+(Ip−Γ)µ.
It can be shown (Ghosh and Maiti, 1999) that H1 = (m−1)(Ψ−1 +Σ−1

v )−1 and
H2 = Γ

[ ∑m
i=1(yi− ȳ)(yi− ȳ)t

]
Γt. From standard matrix algebra we have that

(Ψ−1 + Σ−1
v )−1 = Σv − Σv(Ψ + Σv)−1Σv = (Ip − Γ)Σv

As a consequence H1 = (m− 1)(Ip − Γ)Σv.
Moreover limm→∞(m−1)−1

∑m
i=1(yi−ȳ)(yi−ȳ)t = (Ψ+Σv) so, for large m we

may write that, approximately H2 = (m− 1)Γ(Σv +Ψ)Γt and as a consequence
(H1 + H2)1/2H−1/2

2 = Γ−1/2.

This implies that θ̂
CB

i = Γ1/2yi + (Ip −Γ1/2)µ = θ̂
CLB

i and as limm→∞ ȳ = µ,

limm→∞ θ̂
CB

i = θ̂
CLB

i .
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