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Abstract
In order to assess compliance with air quality standards, European regulations prescribe to
monitoring the concentration of particulate matters and to control both annual and daily
averages.
The measurement accuracy varies according to  monitor type, temperature and pollution level,
often in a complex nonlinear manner. Consequently, comparisons, threshold exceedances
interpretation and compliance assessment are often difficult.
In this paper, we consider the displaced dynamical calibration (DDC) model which is able to
calibrate biased readings by using displaced data obtained by reference instruments.
Moreover, we discuss the uncertainty of annual averages of daily concentrations. An
application to the Northern Italy air quality network allows us to draw some empirical
conclusions.

1. Introduction
The problem of setting and assessing air quality standards has a relatively long history and is
related to health, epidemiological, legal, economical and social motivations.
For example in Europe, this focus is a consequence of the Treaty Establishing the European
Community, Title XIX, in general and, specifically, of Council Directives 96/62/EC, on
ambient air quality, and 99/30/EC, on limit values of air pollutants, including particulate
matters with a diameter inferior to 10 microns (PM10). These Directives are being gradually
adopted by member states, for example in Italy this happened in the year 2002 (DM n. 02/60),
and state both the air quality standards on the daily and yearly scale and the measurement
quality standards for the instruments measuring PM10.
Although it is well recognized that for health protection smaller particles (PM2.5) are very
important, monitoring practices for these particles are not yet well established in the EU, as
only a “method of temporary reference for the measurement” (EC Decision, 16-jan-03) is
available and the related monitoring network is poorly developed for example in the Italian
territory.
In this paper, we will focus on PM10 and consider the annual limit values for the protection of
human health. These are 40 µg/m3 for the annual mean and 50 µg/m3 for the daily mean, not
to be exceeded more than 35 times a calendar year. There are margins of tolerance (20% for
the former and 50% for the latter) starting from year 2000 and decreasing linearly to 0% by
January 1st, 2005.
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It is worth observing that uncertainty is explicitly mentioned in these regulations only with
respect to measurement errors, precision and accuracy. For example, statistical details are
implied in defining the “Reference method for the sampling and measurement of PM10” and
in demonstrating equivalence to the reference method which is based on the collection on a
filter of the PM10 fraction of ambient particulate matter and the gravimetric mass
determination which we will acronymize LVG for “Low Volume sampler Gravimetric”
method and/or instrument.
Contrasting with this, in this paper, while making the exercise of assessing compliance with
air quality standards in Northern Italy, we will show that relevant statistical issues arise.
The first statistical issue of this paper is related to uncertainty on “annual averages” of daily
particulate matters. As a matter of fact, we can see that daily PM10 concentrations are highly
auto-correlated and exhibit an empirical autocorrelation function, which is compatible with
seasonal long range dependence (LRD). This is not new in high frequency air quality data, for
example in ozone hourly data modelling, a seasonally fractionally integrated model has been
considered by Fassò and Negri (2002a and b) and, although in depth LRD modelling of PM10
is out of  the scope of this paper, this problem will be taken into account to some extent in
computing uncertainties for annual averages. Moreover, meteorological normalization  of
daily particulate data is important. In principle, this can be done in various ways, for example
Libiseller and Grimvall (2003) discuss some problems related to meteorological
normalization in the case of tropospheric ozone.
The second and main statistical issue of this paper is related to instrumental heterogeneity and
space-time modelling. From our perspective, this problem is two-folded. On one side, we
have short term space-time statistical modelling for particulate matters concentration, on the
other side, we have the problem of calibrating possibly biased particulate readings using rare
reference instruments.
Short term space-time statistical modelling for PM10 has been recently considered by
Shaddick and Wakefield (2002) and by Sun et al. (2000) from the hierarchical Bayesian point
of view and, for PM2.5, by Kolenikov et al. (2002) and Smith et al. (2003) using a
nonparametric approach.
Moreover, calibration, which has recently been considered by McBride and Clyde (2003)
from the Bayesian point of view for  PM2.5, arises from Northern-Italian data because of the
heterogeneity of the network. As a matter of fact, in some areas, we have relatively dense
networks which are based on the well known automatic monitors based on tapered element
oscillating microbalance (TEOM). These monitors are known to underestimate the “true”
level given by the reference method. A correction factor of 1.3 has been proposed, for
example, by the APEG Report (1999).
Since, in the same area we have “some” LVG monitors, the idea of this paper is to use the
LVG data to perform a dynamical calibration of the spatially displaced TEOM monitors. To
do this, we will propose a state space model which can be estimated without co-located LVG
data. This is of interest because TEOM has many advantages consequent to automatic
operations and the capability of giving hourly data (see e.g. APEG Report, 1999).
The paper is organized as follows. In Section 2, we describe two datasets, the first is used for
model validation and assessment and the second is used for discussing some problems related
to practical implementation. In Section 3, we present both the co-located calibration model,
which is an extension of the standard calibration model for autocorrelated data, and the
displaced dynamical calibration model which is based on the Kalman filter. Section 4
introduces the problem of assessing air quality standards and discusses some problems related
to the uncertainty of annual averages based on daily concentrations. The results for Piemonte
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and the Milan area are presented and discussed in Section 5 and 6, respectively. Section 7
concludes the paper with some comments and open problems.

2. The PM10 data
In this talk we consider daily data for the years 2002 and 2003 from two important urban and
surrounding areas in Northern Italy, namely Turin and Milan.  The data are collected by the
local environmental agencies, namely ARPA Piemonte and ARPA Lombardia.
The Milan network is characterized by six TEOM stations in/around the city of Milan in a
range of 22 ×48 km2 and the Messina Station, which is located in Milan city and is equipped
with a LVG monitor. This is the typical situation where the displaced dynamical calibration
model may be used.
We have some pollutants co-located in the six stations which can be used as covariates. In
particular, we will use nitrogen oxides (NO) because it was found (Fassò and Nicolis, 2004)
that, at least for this pollution network, it has high correlation with PM10. Unfortunately, we
do not have co-located meteorological covariates so we will use partially displaced
temperatures from the Juvara and Trezzo stations.
The Turin dataset is composed of thirteen LVG monitors. In particular, three of them (Rivoli,
Grassi and Consolata) are located in Turin city and one of these, Consolata Station, is also
equipped with a companion TEOM gauge; another two monitors are located in the
surrounding hilly area (Borgaro and Gaidano) and the remaining eight stations are spread all
around the Piemonte region in an area of about 86×170 km2 with most stations on the plain of
the Po River and some in the neighbouring Alpine valleys (e.g. Borgosesia and Verbania)
which are subject to local climatic factors.
Unfortunately, we have few covariates from the Consolata station. We will then use the co-
located nitrogen oxides and Temperature from the CSELT station in Turin city. This second
dataset will be used essentially for validating and testing the displaced dynamical calibration
model.

3. Air quality calibration
Statistical calibration is broadly used in chemistry, in toxicological or immunological assays
and is potentially very useful in several biometric applications (general references are in
Brown 1993; Osborne, 1991; Sundberg 1999). In the standard calibration problem we have
two different types of characteristics, Y and X. The first one, X, is laborious or expensive to
measure and, sometimes, impossible while the other is quicker or cheaper to  measure but is
less accurate. The statistical calibration use X as an indirect measure of Y, that is, through the
estimation of a regression model, it determines the correspondent Y when X has been
measured. 

3.1. The co-located calibration model
In this subsection, we consider the calibration model used as a reference for assessing the
model to be defined in the next subsection.
Let yt,G denote the PM10 concentration measured by the LVG monitor in µg/m3 on day t at the
station s, and let yt,T denote the t-th PM10 measurement of the TEOM monitor at the same
station. In order to study the relation between these two measurements, we extend the
standard linear calibration model for independent observation (see Osborne, 1991) to a time
series with autocorrelated errors.
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We then have

ttTtGt exyy +++= ',, θβα (1)
where α and β represent, respectively, the additive and multiplicative relative bias for the
TEOM measurements on day t, θ is the regression coefficient vector and xt is a vector of
covariates including, in our case, daily averages of temperature and nitrogen oxides
concentration. We then assume that the error et is a Gaussian ARMA process.
After estimating the parameter on a calibration sample (xt,yt,G,yt,T), using this model, the
gravimetric PM10 values may be estimated by the available TEOM and covariates.

3.2. The displaced dynamical calibration model
In this section, we consider the case of practical interest in which yt,G and yt,T are gathered at
two displaced stations, s and s’ say. The Displaced Dynamical Calibration model (DDC) for
the PM10 concentrations is expressed as a state space model (see Harvey, 1989; Durbin and
Koopman, 2001; Brown et al., 2001) with the following measurement equations
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for t = 1,…, T. The quantity µt is the unobserved “true” mean PM10 concentration on day t at
station s and depends on the past? through the coefficient Φ. Similarly, the quantity µt+δt is
the corresponding “true” concentration for station s’. Hence δt, being related to the “local”
covariates xt as above, describes the local features of station s’. When θ is zero we have
Eδ=0, and δ may be interpreted as a random effect; in our case Eδ=θ’x may be interpreted as
the local differential?level. Moreover, α and β have the same calibration interpretation as
equation 1. Finally, we assume the usual normality distribution for the measurement errors.
It follows that the unobserved component

ttty δµ +=ˆ ,
which may be computed using the Kalman filter, represents the “calibrated” TEOM
measurements of PM10 concentration in station s’ and may be computed using displaced
LVG data together with co-located TEOM and covariates.
In many applications, log-transformed data are used in order to fit such data. In this
application we found that, although PM10 data generally have skew distribution, probably
due to the error measure nature of this model, the residuals of both measure and state equation
2 and 3 above show acceptably normal distribution. Moreover, they do not show
autocorrelation nor heteroskedasticity.

4. Annual average uncertainty and standards
When computing annual averages it raises the issue of uncertainty and standard deviation
computation. If we consider daily PM10 data as a purely random time series we are led to
consider the “total variance” of the annual average y . Alternatively, we may be interested in
assessing the uncertainty of y keeping the seasonal effect fixed. In both cases, we have to
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take into account the effect of autocorrelation. To do this, we use the variance formula for the
sample average of stationary correlated data:
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where y is the annual average (n = 365) and  (j) are the autocovariances which can be
estimated on the full data set (in our case N = 730).
By computing the total variance in this way, we get rather large std( y ) between 4 and 10
µg/m3. To improve this, the standard deviations reported in the tables of the following
sections are based on adjusted data. In our case, since we have just two years of data and only
limited data on meteorology, we try to adjust the PM10 with respect to observed daily
temperatures which may be taken as a proxy of seasonal and other meteorological factors.
We then use the regression model with correlated errors previously introduced with the aim of
calibration in equation 1. Here, of course, it is used with generic yt term and without the
calibrating component (β = 0). The variance formula (4) has been applied to the
corresponding correlated residuals giving, say, Var( e ). Using S for seasonality and
meteorology, we than get the approximated relation

Var( y |S) = Var( e ).
Moreover, when yt is the output of a calibration model this quantity is based on the calibration
error variance which, in the DDC case, is an output of the Kalman filter. Finally, uncertainty
on model parameter estimation should be added but this last point has been omitted for
simplicity here and is deferred to a future paper.

5. Fitting and assessing the DDC model
In this section, using the LVG network with a co-located TEOM monitor from ARPA
Piemonte, we discuss the reconstructing capability of the dynamical calibration model in
comparison to the “1.3 rule” and the reference calibration regression equation 1 with
ARMA(1,1) errors and covariates given by temperature and nitrogen oxides.
In particular, we fit a DDC model for each station with TEOM data from Consolata. The
estimated parameters, given in table 1, show that the dynamic parameter Φ is essentially
constant over space. This is consistent with the findings of Shaddick and Wakefield (2002)
based on hierarchical modelling. Differently, but not surprisingly, the intercept α has a
marked variation between stations. We note that α is strictly related to the station average
level.
Examining the Turin-city-stations (Borgaro, Grassi, Rivoli and Gaidano) we see  more
homogenous behaviour, with all but Grassi having similar β coefficients.
Moreover, using LVG data from Consolata, we are able to assess the model performance.
This is done by comparing the behaviour of the “reconstructed data” tŷ and the observed yt,
that is the LVG data taken as the “true PM10 value” and ignoring the error component of
equation 2. The corresponding R2 are reported in table 2 for DDC models with and without
covariates (DDC-X). We see that local temperature and nitrogen oxides together improve  the
fitting substantially. This is especially true when the displaced LVG calibrator is far away (see
Verbania and Borgosesia).
Only the Grassi Station show better fitting without covariates and this may be due to the fact
that different stations have equal or different local levels. We found that working with the
mean deviations still improves fitting and eliminates this anomaly but this approach has not
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been studied in depth here because it requires an estimate of the LVG mean at the calibrating
station s’.

Table 1. Estimated DDC models in Turin and Piemonte

α Std(α) β Std(β) Φ Std(Φ) θ1 (NO) Std(θ1)θ2 (Temp) Std(θ2)
Alba 32.49 2.94 0.46 0.03 0.97 0.01 0.06 0.04 0.27 0.26
TO Borgaro 22.46 2.42 0.58 0.03 0.97 0.01 0.11 0.03 0.51 0.17
Borgosesia 28.41 3.42 0.51 0.04 0.97 0.01 0.18 0.04 0.43 0.25
Bra 24.57 2.77 0.48 0.03 0.97 0.01 0.06 0.04 0.30 0.22
CN II Regg. Alpini 39.79 3.15 0.35 0.04 0.96 0.02 0.26 0.06 -0.70 0.39
Saliceto 41.22 4.08 0.27 0.05 0.97 0.01 0.40 0.11 -0.59 0.69
TO Grassi 21.46 1.16 0.47 0.01 0.96 0.01
TO Rivoli 17.67 2.10 0.56 0.02 0.98 0.01 0.05 0.02 0.94 0.14
TO Gaidano 23.36 2.49 0.57 0.03 0.97 0.01 0.01 0.03 0.90 0.17
VC Gastaldi 41.41 3.80 0.31 0.04 0.98 0.02 0.10 0.08 -1.14 0.51
Verbania 33.88 3.52 0.44 0.04 0.96 0.01 0.29 0.05 -0.29 0.35
NO Leonardi 29.16 2.63 0.38 0.02 0.95 0.01 0.25 0.05 -0.12 0.30

Table 2. Comparison of DDC models with and without covariates in Turin and Piemonte.

100xR2

DDC DDC-X good data
Alba 41.3% 63.7% 71.9%
TO Borgaro 49.8% 82.3% 74.4%
Borgosesia 6.5% 70.4% 58.2%
Bra 69.8% 78.0% 68.8%
CN II Regg.
Alpini 15.4% 30.9% 77.0%
Saliceto 18.2% 25.5% 65.1%
TO Grassi 84.2% 43.0% 75.5%
TO Rivoli 72.9% 82.8% 61.4%
TO Gaidano 45.0% 78.9% 63.7%
VC Gastaldi 64.1% 31.2% 54.9%
Verbania 5.3% 58.9% 65.8%
NO Leonardi 72.4% 75.9% 76.0%

Using the year 2003 as a reference, in table 3, we consider in more detail the behaviour of 
DDC in Turin city. In particular, the number of exceedances of the the annual limit value for
the protection of human health together with the percentages of correct-over-effective and
false-over-predicted exceedances are compared for some alternative models. In the first line,
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we find the “true” data, in the second line the performance of the “1.3 rule” discussed in the
introduction, and in the third line the co-located calibrator from equation 1.
We see that the fitting performance (R2) of the DDC model is between the “1.3 rule” and the
co-located calibration model. Moreover, the annual averages and exceedances are less
extreme than “1.3 rule”.
Finally, we note that the standard deviations of the annual average of DDC and co-located
calibration data are smaller than observed TEOM and LVG. This is due to the use of error
variance from calibration model which filter out not only the seasonal component, but also
components at any frequency and the TEOM component. We recognize that using different
uncertainty assessments in the same table may not be  the best practice for direct comparisons.
Nevertheless, this gives, in some sense, an idea of the extent of the omitted variance
component due to model estimation.

Table 3. Summary of the reconstructing capabilities in Turin, Consolata, year 2003.

Exceedances
Mean std Bias Detected Correct False R2

LVG Consolata 63.6 2.10 166
1.3 rule 73.2 1.30 9.6 265 96.9% 38.0% 75.2%
Co-located
calibration 65.6 0.62 2.0 187 90.3% 13.2% 88.8%
DDC Models:
Borgaro 55.39 0.99 -8.2 134 76.6% 5.0% 82.3%
Grassi 70.7 1.45 7.1 193 94.4% 19.6% 84.2%
Rivoli 61.86 0.89 -1.7 215 92.0% 30.8% 82.8%
Gaidano 51.52 0.82 -12.1 115 67.5% 6.7% 78.9%

6. Data analysis of Milan area
In this section, we apply the DDC model to Milan data in order to assess air quality standard
attainment. In table 4, the reported estimated parameters have interpretations paralleling table
1. Differently from Consolata results, here nitrogen oxide is not useful and we use only
temperature. Although the corresponding p-values are not very small, we keep all covariates
in this case in order to “surrogate” the local mean level which, once again, is not available.
In table 5, where standard deviations are computed similarly to table 3, the annual averages
and exceedances are reported respectively for the raw TEOM data, the “1.3 rule” and the
DDC models of table 4. Moreover, in the last line, the data for the “true” concentrations of
Messina station are reported.
The DDC model gives annual averages which are close to “1.3 rule” in the city center (line
labels prefixed with MI-) and lower values in the surrounding areas. Moreover, the number of
exceedances given by DDC is always less high than “1.3 rule”.
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Table 4. Estimated DDC models in Milan.

α Std(α) β Std(β) Φ Std(Φ) θ1 (temp)Std(θ1)
Magenta 17.61 2.13 0.44 0.02 0.94 0.02 -0.33 0.20
MI Juvara 13.38 1.80 0.53 0.02 0.95 0.02 -0.12 0.13
MI-Verziere 12.60 1.73 0.50 0.02 0.96 0.01 0.09 0.13
Pioltello 17.73 1.94 0.43 0.02 0.96 0.01 -0.61 0.19
Meda 25.70 2.49 0.37 0.03 0.96 0.01 -1.02 0.30
Vimercate 15.51 1.89 0.41 0.02 0.95 0.02 -0.40 0.19

Table 5. Annual averages and exceedances in Milan, year 2003.

Means Exceedances
TEOM Std.Dev. 1.3 rule Std.Dev. DDC Std.Dev. TEOM 1.3 rule DDC

Magenta 47.20 2.03 61.35 2.64 56.50 1.49 93 171 137
MI-Juvara 47.62 1.96 61.91 2.54 58.76 1.26 101 169 138
MI-Verziere 46.08 2.62 59.90 3.40 61.99 1.22 85 166 155
Pioltello 45.12 2.22 58.65 2.88 53.80 1.33 88 147 130
Meda 47.77 1.58 62.10 2.05 48.48 1.56 89 175 118
Vimercate 42.17 1.74 54.83 2.26 55.14 1.29 64 137 129
LVG
MI-Messina 61.98 2.29 147

7. Conclusions and further developments
We have discussed two statistical issues arising in assessing the attainment of air quality
standards. In particular, we have considered some techniques for assessing uncertainty of
annual averages. This approach is useful also for many other pollutants and admits a number
of variants in the field of seasonal modelling and decomposition. The second and main issue
addressed in this paper is the correction of PM10 readings based on TEOM monitors. We have
shown that, using displaced gravimetric monitors it is possible to have good calibrated data
and, at least for our data, the dynamical displaced calibration model does improve with
respect to the simple “1.3 rule” and approaches the optimal co-located calibration model.
The DDC model, allow for missing values handling, covariates and dynamic adjustment.
Moreover, it can be substantially improved if partial information is available about local
averages, obtained, for example, by a mobile station.
Of course many open problems require  further solutions. Among these, we mention two
areas, the first is related to a problem which has been completely ignored in this paper, i.e. the
uncertainty assessment on the number of exceedances which are fixed by European
regulations at 35, five days per calendar year.
The second is related to the DDC model and calls for many further extensions, including
model averaging, long range dependence modelling and space-time modelling.
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