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1 Introduction

This paper is motivated by an analysis of air quality data is provided for
the municipal area of Taranto (southern Italy) characterized by high envi-
ronmental risks as formally decreed by the Italian government in the *90s
with two administrative measures. This is due to the massive presence of
industrial sites with elevated environmental impact activities along the NW
boundary of the city of Taranto conurbation. Such activities include one
of the largest iron production plants in Europe, an oil-refinery, cement pro-
duction, fuel storage, power stations, waste materials management, mining
industry and many others. Some other highly environmental impacting ac-
tivities are more integrated within the urban area and have to do with the
presence of a large commercial harbour and quite a few military plants (a
NATO base, an old arsenal and fuel and munitions storages). All the afore
mentioned activities have effects on the environment and on public health,
as a number of epidemiological researches concerning this area reconfirm
(Primerano et al., 2006). As a consequence Taranto was subject to intensive
monitoring of the main pollutants in the last few years, leading to an unusu-
ally fine composite network that lends itself to the reconstruction of spatial
fields at the city level.



Spatio-temporal modelling of PM concentrations can be useful to under-
stand the process dynamics and in producing exposure variables for ecolog-
ical risk models, as assessing the association between daily concentrations
of particulate matter and adverse health effects was the objective of many
studies in recent years (Biggeri et al., 2004).

Here our main concern is on two methods for pre-processing data recorded
from an air quality monitoring network characterized by missing data and
heterogeneity. The primary aim is the proposal of a statistical protocol
for missing data imputation and adjustment, in view of the spatio-temporal
modelling of air quality data. A recent paper by Fasso et al. (2007) partly
shares the same objectives and also addresses space-time modelling by a
geostatistical dynamical calibration model based on a multivariate state-
space formulation, dealing with the high dimension of the state equation by
the Empirical Orthogonal Function (EOF) approach. The first to introduce
a reduced dimension space-time Kalman filter were Goodall and Mardia
(1994) who proposed the Kriged Kalman filter (KKF, Mardia et al, 1998).
Parameter estimation for both KKF and the afore mentioned EOF-based ap-
proach is carried out in the maximum likelihood framework, while Bayesian
versions of space-time Kalman filter models were first introduced by Wickle
etal. (1998), followed by Sahu and Mardia’s Bayesian Kriged Kalman filter
(BKKF, 2005) and Xu and Wickle (2007) EOF-based model, among oth-
ers. In a recent paper (Sahu et al., 2005) a point is given in favour of the
use of Bayesian Gaussian random effect models (Bayesian LME’s) instead
of BKKF when there is a reasonable suspect that the space-time process is
separable. The application of a separability test by Fuentes (2006) proved
that this was indeed the case for the data at hand. In recent years a num-
ber of papers was devoted to spatio-temporal modelling of air quality data
by Bayesian LME’s (Greco, 2005; Shaddick and Wakefield, 2002 among
others). In the following sections we propose and compare three alternative
procedures which are suitable for data imputation and adjustment. These
procedures share a leave-one-out type mechanism and are based on ad hoc
exploratory tools and on the recursive Bayesian estimation and prediction of
spatial LME’s.

The paper is organized as follows. In section 2 we describe the PM
concentration data of the Taranto area. These data come from a composite
network since they are collected and validated by the regional and municipal
governments with different protocols. Section 3 contains a discussion of the



methodology used for missing data imputation and adjustment. In particular
in subsection 3.1 we introduce some ad hoc tools based on spatial and dy-
namic regression within a leave-one-out type mechanism. We consider the
latter to be a baseline standard approach, to be improved by the Bayesian
model-based ones reported in subsection 3.2. A detailed comparison among
the performances of the ad hoc tools and two Bayesian model-based meth-
ods is given in section 4, while section 5 contains some concluding remarks.

2 The data

In the context of an agreement between Dipartimento di Scienze Statistiche
- Universita degli Studi di Bari and the local regional environmental pro-
tection agency (ARPA Puglia) air quality data for the municipal area of the
city of Taranto were provided belonging to three different monitoring net-
works pertaining to the regional and municipal government and counting 25
monitoring stations on the whole (VV.AA., 2007). Pollutants continuously
monitored by some of the stations include sulphur dioxide (SO2), nitrogen
oxide (NOx) and dioxide (NO2), carbon monoxide (CO), benzene, PM10
and ozone. At present validated data for the three networks are available for
only one common operating period corresponding to year 2005. The present
study is focused on particulate matter as measured by PM 10 concentrations.
All the stations monitoring PM10 are equipped with analogous instruments
based on the Beta absorption technology, either reporting hourly, two-hourly
or daily measurements (Menegotto, M., 2006).

Log-average daily concentrations were obtained and the 14 stations mon-
itoring PM 10 were split into two groups according to the data validation pro-
tocol used: the 6 instruments controlled by the regional government (ARPA)
were considered to be far more reliable than those managed by the munic-
ipal government (GECOM), except for one ARPA sensor which produced
sensibly lower values (and was re-calibrated during 2006). The use of the
ARPA measurements as reference values lead to the exclusion of that sta-
tion from the data-base. Among the 13 remaining stations the GECOM ones
often appeared to overestimate PM10 concentration levels (fig. 1), this be-
haviour being only partly attributable to the more peripherical location of
the ARPA sensors (fig. 2). Some adjustment of the GECOM data was thus
deemed necessary to allow for data comparability.

A large number of missing data was observed (tab. 1), due to both differ-



log-average PM10 daily concentrations

Figure 1: Smooth density estimates of log-average daily PM10 concentra-
tions for the 13 monitoring stations.

ent working periods for groups of monitoring stations and occasional mal-
function of PM10 sensors. Missing data were thus considered to be missing
at random (MAR) wether they occurred during the operating periods of the
measuring devices.

3 Methods

Missing data is a ubiquitous problem in evaluating long-term experimental
measurements, such as those associated with air quality monitoring. Spatio-
temporal modelling often implies that such gaps in the measured data are
filled or imputed. So far, no standardized method has been accepted and the
imputation methods used are largely dependent on the researchers’ choice.
The objective of the methods to be described in this section is to obtain
a “clean” database by imputing missing values and adjusting data recorded
at presumably overestimating (GECOM) stations. This tasks are undertaken
by three alternative procedures. In the first occasional NA’s are imputed by
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Figure 2: Spatial distribution of the stations belonging to the ARPA (bold)
and GECOM monitoring networks (the stations Archimede and Orsini are
almost overlapping).

linear spatial regression, then GECOM data are calibrated by dynamic lin-
ear models within a cross-validation scheme (this procedure will be denoted
by ad hoc). The other two procedures both rely on the Bayesian estima-
tion of daily hyerarchical spatial linear models (Bayesian Kriging) within a
leave-one-out cross-validation scheme for missing data imputation and data
adjustment (they will be called krg and s/t krg respectively). In section 4
the three procedures are compared considering the performance of the first
as a baseline standard.



Station Starting date | % missing
Ancona 01/01/2005 1.10
Camuzzi 01/01/2005 2.19
Carcere 01/01/2005 1.64
Gennarini 01/01/2005 9.32
Stadio 01/01/2005 9.59
Talsano 01/01/2005 9.04
Talsano (A) | 01/01/2005 2.74
Testa 01/01/2005 2.74
Paolo VI 15/01/2005 9.86
Peripato 15/01/2005 25.75
Orsini 08/02/2005 17.81
Archimede 07/04/2005 29.04
Statte 07/04/2005 34.79

Table 1: Taranto PM10 concentration data, year 2005: operating periods
starting dates and percentages of missing daily averages.

3.1 Ad hoc exploratory tools

First of all to deal with occasional NA’s assumed to be MAR (i.e. those
occurred during the instruments operating periods), an imputation technique
based on linear spatial regression is used (Le and Zidek, 2006). In particular,
consider measurement at site i missing at time ¢:

i. fit a regression model with PM10 log-mean daily concentrations at
site i as predictand and the time series of all other sites available at
time ¢ as predictors;

ii. obtain the prediction of the fitted model at time #;

iii. impute the missing value by simulating at random from a Normal
distribution with mean and variance respectively equal to the fitted
value and the estimated residual regression variance.

Within this procedure no spatial correlation structure is assumed for the
imputed data, all the stations being considered equivalent in the linear pre-
dictor.

As a second step adjustment of data recorded at the GECOM stations is
dealt with. Generally speaking calibration is often referred to as the process
of adjusting the output of a measurement instrument to agree with the values



of some specified standard. In Statistics calibration is a reverse process to
regression (Osborne, 1991) and can be summarized as follows:

i. a dependence model is estimated between a response variable (the
specified standard) and an explanatory variable (the output of the mea-
surement intrument);

ii. itis used to obtain predictions of other values of the explanatory vari-
able from new observations of the response variable.

In the Taranto case-study each GECOM monitoring station is adjusted to
agree with the values reported by a specified station belonging to the ARPA
network (taken as the reference standard). Notice that in order not to gen-
erate further missing values in the adjusted GECOM data, only two ARPA
stations were available, i.e. those having no missing values after the imputa-
tion process (Carcere and Talsano (A)). Then for each GECOM station one
of the two ARPA stations was chosen as a reference standard on the ground
of spatial proximity (fig. 2) and maximum correlation (tab. 2). In this case
no new values of the output of the measurement instrument are available to
obtain predictions of the reference standard, but rather the same observations
of the explanatory variable are used to base model estimation and prediction.
This is accomplished within a leave-one-out cross-validation scheme where
each daily observation is deleted in turn and the dependence model is esti-
mated by the remaining 364. The prediction of the log-average daily PM10
concentration at the ARPA station for the deleted day is then considered as
the corresponding adjusted measurement for the GECOM station.

The form chosen for the dependence model was dynamic linear regres-
sion (Pankratz, 1991), where the AR(1) autocorrelation structure was as-
sumed for both the response and the explanatory variable:

Y, =0Y—1 +BiXe +BoXi—1 + & (1)

here ¥; and X; respectively stand for the log-average PM10 concentrations
at the ARPA and GECOM stations on day ¢ and & is an i.i.d. random term.
Model (1) is estimated by OLS and adjusted values of the GECOM output
are obtained as X, = ¥, within the afore mentioned cross-validation scheme.



Archimede Carcere Paolo VI  Talsano (A)  Statte
Ancona 0.18 0.69 0.56 0.68 0.65
Camuzzi 0.55 0.53 0.54 0.56 0.49
Gennarini 0.29 0.67 0.69 0.76 0.72
Orsini 0.67 0.30 0.31 0.28 0.11
Peripato 0.68 0.66 0.70 0.76 0.53
Stadio 0.34 0.40 0.39 0.44 0.45
Talsano 0.08 0.43 0.38 0.52 0.47
Testa 0.28 0.50 0.54 0.58 0.59

Table 2: Correlation matrix between stations belonging to the GECOM
(rows) and ARPA (columns) networks.

3.2 Bayesian kriging

While explicitly taking the temporal correlation structure into account, the
methods outlined in the latter section don’t include any spatial information.
Then we consider them to be a baseline standard approach to be improved by
a unique procedure used for both missing data imputation and data adjust-
ment. The basic idea is to use a daily spatial interpolation model, in order
to predict missing and overestimated data. Hierarchical Bayesian models
embracing properly defined spatial autocorrelation structures can admit any
pattern of missing measurements in a partially observed spatial process, as
this approach provides a predictive distribution that can be used for imputa-
tion.

The usual LME model is chosen as the daily spatial interpolation model
(Diggle and Ribeiro, 2007):

Y(s) =u(s)+S(s) +&(s)

where Y (s) is the observed process at a set of n spatial locations s, u(s)
is a spatial trend, S(s) is a Gaussian spatial random effect and €(s) is an
independent random error term. More precisely:

* u(s) is a function describing the large scale variation of the spatial
phenomenon. It can be modeled as a function of covariates (coordi-
nates and/or other spatial information) or set as a constant;

* S(s) is a second order stationary isotropic Gaussian spatial process
with null mean and covariance structure depending on the distance be-



tween spatial locations through two parameters 62 and ¢, respectively
the variogram sil// and a vector of spatial correlation parameters;

* ¢g(s) is a vector of i.i.d. Normal random variables with null mean
and common variance T> (the variogram nugget). £(s) accounts for
measurement error and microscale uncertainty, i.e. the noise affecting
the readings of the spatial signal.

Here we assume the trend to be constant u(s) = By, concentrating our at-
tention on the latent spatial part of the process S(s). Prior specification
then concerns parameters By, 6, ©> and ¢. Diffuse priors are chosen for
Bo and 6. A scalar correlation parameter ¢ (the variogram range) is consid-
ered, measuring how quickly the correlation function decays to a particular
reference value when the separation distance between pairs of locations in-
creases. The prior represents a guess about its possible values, varying in
the interval [0, ). The krige.bayes function of the geoR R library imple-
ments two types of prior distributions for discrete sets of values of ¢:

1. flat priors: pr(¢) o< 1,
2. decreasing priors: pr(¢) o< 1/6% or pr(¢) o exp(—8¢) , with & > 0

The uniform prior (type 1) represents the belief that, a priori, all the values
in the specified discrete set are equally plausible. Priors of type 2 allow the
user to flexibly choose the shape hyperparameter 6 and express a prior belief
that small values of ¢ in the discrete set are more likely.

The so called noise-to-signal ratio ‘cfel = 12 /62 can be treated as a fixed
or random quantity. In the second case it is possible to describe the prior
knowledge in the same way adopted for the correlation parameter ¢.

For missing data imputation and adjustment we propose an iterative pro-
cedure making use of two daily spatial kinds of models specified as Bayesian
LME’s, namely prediction models and estimation models. Preliminarly, to
properly set the priors in view of an iterative reconstruction of the spatial
variation, a unique daily estimation model is fitted to available data and pos-
terior estimates of covariance structure parameters ¢ and ’cfel are used for
prior specification within the prediction models. With so few locations, a
single daily model predicting all observations to be treated (missing, outly-
ing or to be calibrated) by those not to be treated would be too expensive in
terms of degrees of freedom and estimates’ variability would change daily
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as a function of the number of observations to be treated. Then daily spatial
prediction models are fitted within a leave-one-out cross-validation scheme
and used to predict each observation to be treated by all the data available on
the same day. This procedure is repeated updating observations to be treated
untill convergence is reached.

The iterative reconstruction of the daily spatial variation and the pre-
diction of missing and overestimated values are formalized in the following
krg algorithm. Let x be the vector of daily observations and J the set of
indices denoting the monitoring stations to be treated.

step 0.1 Fit the estimation model to vector x where data corresponding to the
stations to be treated are omitted. After some sensitivity analysis a
discrete uniform prior was chosen for ’cfel on the interval (0,1) with
0.1 increments. We allowed ¢ to vary in a discrete sequence between
1 and 7 km with 0.5km incremental value; a type 2 (reciprocal) prior
was judged appropriate (faster convergence and less smoothing in the

returned values). Obtain posterior estimates of ¢ and rfel.

step 1.1 Fori € J let x(; be obtained by omitting station i in the vector of daily
observations x. Iteratively predict each x; from x(; using posterior
estimates of ¢ and Tfel obtained in the previous step in the prior spec-
ification of the prediction models. Store predicted values in vector z
and substitute them to corresponding values in x.

step 2.1 Store the current z values in z,;4 and repeat step 1.1 to obtain a new z.

step 3.1 If |z — 2| < € (€ = 0.0001) or the iterations number is > 100 stop,
otherwise repeat step 2.1 until convergence.

The krg algorithm treats daily observations independently. In order to
include the time dynamic into the kriging procedure daily priors are recur-
sively updated at each iteration in algorithm s/t krg. More precisely the
priors of the prediction models are daily updated by posterior estimates ob-
tained by the estimation model on the previous day. The spatial variation
is thus believed to follow a sort of order 1 time dependence, with daily co-
variance parameter estimates depending stochastically on those of the day
before. Then step 0.1 in krg takes the following modifyed form, while next
three steps remain the same:
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Minimum 1stQ. Median Mean 3rd Q. Maximum
krg 5.00 8.00 9.00 9.81 11.00 25.00
s/t krg 6.00 10.00 11.00 13.88  16.00 49.00

Table 3: Summary statistics for the number of iterations of the two Bayesian
kriging estimation algorithms.

step 0.2 For day 1 run step 0.1. For days 2 to 365 fit the estimation model to
vector x of the previous day, where data corresponding to the treated
stations z are substituted. The same priors as in step 0.1 are used.

Notice that the cross-validation structure of both algorithms implies that
each observation to be treated is updated by a prediction model, on the basis
of the values at the previous iteration. As a by-product estimates of co-
variance structure parameters T}%el and ¢ for each treated observation at each
iteration of the two algorithms are obtained as summaries of posterior sim-
ulations and are used to assess convergence.

4 Results

The methods outlined in §3 were used to obtain MAR data imputation and
adjustment of the GECOM data.

In fig. 3 the developement of the estimates of 12, and ¢ when pass-
ing from one iteration to the next is shown for one day representative of
the overall behaviour. It is quite evident that while the covariance structure
parameters are updated within s/t krg, it is not so in krg. This means
that in krg the provisional a priori spatial structure remains substantially
unchanged along the iterations and that treated observations are iteratively
adapted to this structure untill convergence. On the contrary s/t krg si-
multaneously adapts the spatial structure and the observations to be treated,
so that the final spatial structure is the result of an adaptive iterative process.
Given that the spatial structure “moves”, the need of a larger number of it-
erations for s/t krg to reach convergence is justified, as shown in tab. 3.
Notice that for both algorithms the maximum iteration number is far below
the 100 units limit.

For the 8 stations belonging to the GECOM network the outlined pro-
cedures produced time series of adjusted data that were compared to the



12

tausgrel (median)
0.04 0.06 0.08 0.10

0.02

Wed 09-02-2005

A :T’éﬁﬂ

.

T

sdilleestind

.

ilicdinedat

"

Dﬁég

-

— krg
— sltkrg

j

.

rrrrrrrrrrrrrrrrrr T
1 3 5 7 9 11 13 15 17 19 21 23

iteration

()

phi (median)

0.02 0.04 0.06 0.08 0.10

0.00

Wed 09-02-2005

apbealosnsenpns
HE
3:100985540g

.
. .

"

— krg
— sltkrg

rrrrrrrrrrrrrrrrrr T
1 3 5 7 9 11 13 15 17 19 21 23

iteration

(®)

Figure 3: Posterior summaries (medians) of ’cfel and ¢ by iteration number
for day 9/2/2005 (similar results for the 365 days are available from the
authors on request).

observed ones in terms of root mean squared error. Tab. 4 shows how only
for the Gennarini and Stadio stations the ad hoc method produces time se-
ries closer to those observed. Indeed in these two cases the three predicted
time series and the observed one are very close and thus the need for ad-
justment is questionable. For the remaining six GECOM stations the ad
hoc predictions are always smaller and far from the kriging-based ones (as
noticed in fig. 1 the GECOM stations tend to overestimate PM10 concen-
trations, so adjusted data will be smaller than observed ones), due to the
former adjustment method being based on only one reference station rather
than on the spatial structure reproduced by all available stations (fig. 4(a)).
The two kriging-based methods behave quite similarly, though krg predic-
tions denote slightly larger values and variability (Iess smoothing). Fig. 4(a)
also shows that the shift obtained by the three adjustment procedures does
not alter the time dynamics observed in the time series. In figure 4(b) cred-
ibility intervals based on the 2.5% and 97.5% percentiles of the simulated
predictive distribution prove to be quite narrow for the s/t krg case. Sim-
ilar results were obtained for the two kriging-based methods and for all the
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ad hoc krg s/t krg
Ancona 048 () 0.32 042
Camuzzi | 0.56 (f) 0.38 0.44
Gennarini | 0.28 (§) 0.30 0.39

Orsini 077 (f) 0.51 0.57
peripato 0.57(t) 0.33 0.39
Stadio 0.35(8¢) 0.39 0.45
Talsano 0.46 () 0.38 0.43
Testa 0.61(f) 047 0.56

Table 4: Differences between observed and adjusted (GECOM) data: root
mean squared errors (ARPA stations used to obtain ad hoc predictions:
tCarcere, §Talsano (A)).

eight stations belonging to the GECOM network, the details being available
from the authors on request. Notice that the inspection of the graphs didn’t
produce any evidence for the daily IC’s size to vary as a function of the
number of stations to be treated.

For the five ARPA stations missing data imputations obtained by the
three methods were quite similar though, as for the GECOM network, more
extreme and smaller values were obtained by the krg and ad hoc methods
respectively.

With the aim of obtaining a first assessment of the spatial variability re-
produced by the three methods, a second type of diagnostic was produced
in order to compare adjusted GECOM data to those observed at the closer
ARPA station (considered as a data quality reference standard). For the 8
GECOM monitoring stations tab. 5 contains the root mean squared errors
corresponding to the regression lines given in fig. 5 for the Talsano station.
It is clear that the ad hoc method is the worst among the three and does
a poor job in terms of spatial variation, especially when the station used
for adjustment does not coincide with the closest one (as in the case of the
Ancona and Gennarini stations), due to the presence of missing data. The
ad hoc method thus results to be very sensible to the choice of the reference
station used for adjustment. Algorithm krg and s/t krg perform quite sim-
ilarly in reproducing the spatial variation, providing a sharp correspondence
between calibrated data for each GECOM station and those observed for the
closest ARPA station.

For PM10 concentration data a strong daily dependence is expected, due
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Figure 4: Log-average daily PM10 concentrations for the Camuzzi GECOM
monitoring station before and after imputation and calibration (days 100 to
200: 10/4/2005-19/7/2005): (a) comparison among the three methods, (b)
s/t krg predictions and 95% credibility intervals (similar results for all the
8 GECOM stations are available from the authors on request).

to the high atmospheric lifetime of smaller size particles (Greco, 2005). As
shown in tab. 6 all the 13 log-average PM 10 concentration time series show
a similar AR(1) time-correlation structure. Inspection of empirical ACF’s
(not reported) fosters the same conclusion.

As a matter of fact adjusting the data according to the three proposed
procedures does not alter the AR(1) time-correlation structure. In figure
6 the boxplots of the partial auto-correlation functions of the 13 monitoring
stations are reported (first four lags) showing higher values corresponding to
lag 1 for observed and adjusted data. Direct inspection of the 13 x 4 PACF’s
shows that they almost invariably fall below significance boundaries for lags
greater than 1. Notice that higher values at lag 1 imply that s/t krg repro-
duces a stronger daily dependence with respect to the other two methods and
foster the impression of a higher degree of temporal smoothing of s/t krg
already obtained by the inspection of fig 4(a) and similar unreported graphs.

Finally empirical variograms of the data were obtained to further inves-
tigate their spatial variation before and after missing data imputation and ad-
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obs ad hoc krg s/t krg
Ancona () 0.532 0.233 0.277 0.208
Camuzzi () | 0413  0.567  0.261 0.262
Gennarini (§) | 0.359  0.232  0.154 0.163
Orsini (f) 0416 0546  0.234 0.236
peripato (%) 0.338 0535 0.323 0.329

Stadio () 0.556 0353 0.271 0.204
Talsano (§) 0425 0342 0.141 0.148
Testa (f) 0.610 0592  0.328 0.333

Table 5: Differences between observed and calibrated GECOM data and
the closest ARPA station (fCarcere, Archimede, §Talsano (A)): root mean
squared errors.

lagl lag2 lag3 lag4
Ancona 052 -0.06 0.08 -0.01
Camuzzi 0.64  0.07 0.10 -0.01

Carcere 058 0.03 0.15 0.03
Gennarini 056 -0.03 0.12  0.00
Orsini 0.50 -0.07 0.11  0.08

PaoloVI 062 005 0.I5 -0.05
peripato 071 021 0.16 0.10

Stadio 067 0.17 0.14 -0.01
Talsano 0.67 0.04 0.19 -0.01
TalsanoF 0.60 0.03 0.07 0.03
Testa 0.56 0.20 0.02 -0.01
Archimede | 046 0.10 0.08 0.05
Statte 0.63 -0.15 -0.01 0.04

Table 6: Partial auto-correlation functions for observed data (first four lags).
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Figure 5: Differences between observed and calibrated data for the GECOM
Talsano monitoring station and the closer ARPA Talsano station: regression
lines (similar results for all the 8 GECOM stations are available from the
authors on request).

justment. To remove the temporal trends the residuals after fitting an AR(1)
model to the 13 time series for both the raw PM10 daily log-averages and
those after imputation and adjustment were obtained. The estimated auto-
correlation functions of the residuals (not shown) confirmed that there were
no more temporal effects, then the variation in the resulting data could be
expected to have arisen from variation due to space.

Let w(s;,7) denote the residuals at location s; (i = 1,...,13), time 7 (t =
1,...,365), assumed to be independent replications at location s; since data
were time de-trended. We now consider an average variogram estimator
(Sahu and Mardia, 2005) defined by

= 57 2 {wlsit) = w(s;,0)}?

where d;; is the distance between the spatial locations s; and s; and T = 365.
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Figure 6: Boxplot of 13 partial auto-correlation functions for observed and
adjusted data (first four lags).

The empirical variogram cloud is obtained by plotting Y(d;;) against d;; for
the 13(13 —1)/2 = 78 possible pairs of locations. In figure 7 smooth loess
curves (obtained by the R function loess with smoothing parameter equal
to 0.1) interpolating variogram clouds obtained with the previous method
for time de-trended observed and adjusted data are provided.

The ad hoc method, which has no consideration for the spatial varia-
tion, flattens the variogram observed for the original data producing an al-
most “pure nugget” spatial random field. On the contrary both kriging-based
methods tend to preserve the spatial variation adjuststing the GECOM data
by values perfectly matching the fitted spatial structure and thus lead to a
substantial reduction of the nugget effect. This is a desirable feature of the
procedure as we expect that a large part of the measurement error is due
to the different calibration of the two networks. While sharing the small
nugget with krg, the smooth variogram of the s/t krg method increases
more rapidly, implying that the method including the time variability con-
straint produces more smoothing in the time series and a higher overall spa-
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Figure 7: Smooth loess curves interpolating variogram clouds for time de-
trended observed and adjusted data.

tial variation (sill).

5 Conclusions

In this paper we compare two approaches to the imputation of missing
data and calibration of measurements coming from different monitoring net-
works. More precisely the two methodologies produce adjusted values of the
log-average PM10 concentrations for the GECOM network and allow miss-
ing data imputation at the ARPA monitoring stations. The first proposed
technique (ad hoc) based on linear spatial regression and on a dynamic re-
gression model, does not explicitly account for the presence of spatial vari-
ation in the data. As a consequence the initially observed spatial variability
is almost eliminated from the final adjusted data set. On the other hand this
method preserves the time variability structure quite well. Being based on
two different statistical models operating sequentially, the ad hoc method
does not allow to exactly asses the precision of the final estimates. The lat-
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ter and the elimination of the spatial variation observed in the data can be
considered as serious drawbacks to the adoption of the ad hoc approach in
practice. The krg method, based on Bayesian kriging, explicitly accounts
for spatial variation and its space-time version s/t krg for time dynamic
as well. Indeed temporal and spatial variability prove to be appropriately
rebuilt in the final series by these two methods. Furthermore as the im-
putation/calibration procedure allows to sample from the model predictive
distribution, it is possible to build credibility intervals for each treated ob-
servation in order to evaluate its precision and that of the overall procedure.
Small side effects of the use of Bayesian methods are the computational
complexity and time consumption. On the other hand both krg and s/t
krg can be easily implemented in the R environment using library geoR.
Thus if imputation and adjustment are prerequisites to the reconstruction of
spatial fields, the two alternative kriging-based procedures are suggested. To
choose between the two one can consider that the purely spatial krg makes
use of current day data to set prior distributions and is thus more appropriate
when a purely spatial approach to data treatment is recommended.

The space-time Bayesian procedure s/t krg revealed to be the most
appropriate for the Taranto log-PM10 data. It showed a good capability of
spatial variation reconstruction and time dynamic preservation. The slightly
higher degree of temporal smoothing together with the larger overall spatial
variability (variogram sill) imply a preference of this algorithm with respect
to krg from the information conservation point of view. s/t krg showed
a slower convergence than krg, however results quality justifies the longer
computational time needed.
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