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Summary

The Akaike information criterion has been derived under the assumptions that the model

is “true”, or it is a good approximation to the truth, and that parameter estimation is

obtained by using likelihood-based methods. In this paper we relax these two assumptions,

by allowing inference to be drawn through a very flexible class of pseudolikelihoods called

composite likelihood. The merit of composite likelihood is to reduce the computational

complexity so that is possible to deal with large datasets and very complex models, even

when the use of standard likelihood or Bayesian methods is not feasible. In particular,

we introduce a new class of model selection criteria based on composite likelihood. An

application to the well-known Old Faithful geyser dataset is also given.

Some key words : AIC; hidden Markov model; Old Faithful geyser data; pairwise likelihood;

pseudolikelihood; tripletwise likelihood.
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1 Introduction

A popular approach to model selection in statistics is the AIC, namely the Akaike’s in-

formation criterion (Akaike 1973). It is well known that the AIC has been derived under

the assumptions that the model is “true”, or it is a good approximation to the truth, and

that parameter estimation is obtained by using likelihood-based methods. In this paper we

relax these two assumptions, by allowing inference to be drawn through a very flexible class

of pseudolikelihoods. In fact, in a number of applications, large correlated datasets make

unfeasible the use of the likelihood function, since too computationally demanding. One

possibility is to avoid full likelihood methods, or Bayesian strategies, and to adopt simpler

pseudolikelihoods, like those belonging to the composite likelihood class (Lindsay 1988).

A composite likelihood consists in a combination of valid likelihood objects, usually small

subsets of data. It has good theoretical properties and it behaves well in many complex

applications (Besag 1974, Azzalini 1983, Hjort & Omre 1994, Heagerty & Lele 1998, Nott

& Rydén 1999, Parner 2001, Renard 2002, Henderson & Shimakura 2003, Varin, Høst &

Skare 2003). We aim to generalize the AIC for dealing with this class of pseudolikelihoods,

without assuming that the true model belongs to the working family of distributions. The

paper is organized as follow. In Section 2, we restore the concept of composite likelihood,

give some examples and generalize the Kullback-Leibler divergence to deal with model

selection based on composite likelihood. In Section 3, we derive a first-order unbiased

composite likelihood selection statistics. Finally, in Section 4, we show the potential use-

fulness of our methodology analysing the well-known Old Faithfull geyser dataset (Azzalini

& Bowman 1990).

2 Model selection using composite likelihood

The term composite likelihood (Lindsay 1988) denotes a rich class of pseudolikelihoods

based on likelihood-type objects. We start by restoring its definition.

Definition 1. Let
{
f(y; θ), y ∈ Y , θ ∈ Θ

}
be a parametric statistical model, with Y ⊆ Rn,
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Θ ⊆ Rd, n ≥ 1, d ≥ 1. Consider a set of events {Ai : Ai ⊆ F , i ∈ I}, where I ⊆ N and F

is some sigma algebra on Y . Then, a composite likelihood is a function of θ defined as

CLf (θ; y) =
∏
i∈I

f(y ∈ Ai; θ)
wi ,

where f(y ∈ Ai; θ) = f
(
{yj ∈ y : yj ∈ Ai}; θ

)
, with y = (y1, . . . , yn), while {wi, i ∈ I} is a

set of suitable weights. The associated composite loglikelihood is log CLf (θ; y).

Example We present three important examples of composite loglikelihoods.

(i) The “full” loglikelihood, given by log L(θ; y) = log f(y; θ).

(ii) The pairwise loglikelihood, defined as log PL(θ; y) =
∑

j<k log f(yj, yk; θ)w(j,k), where

the summation is over all the pairs (yj, yk), j, k = 1, . . . , n, of observations. With

a slight abuse of notation we denote with w(j,k) the weight associated to (yj, yk).

Analogously, we may define the tripletwise loglikelihood, where triplets of observations

are taken into account, and so on.

(iii) The Besag’s pseudologlikelihood, defined as log BPL(θ; y) =
∑n

j=1 log f(yj|y(−j); θ)wj,

where the summation is over all the conditional events {yj|y(−j)}, with y(−j) the

subset of the components of vector y without the j-th element yj.

�

The usefulness of the composite likelihood ideas naturally arises in an estimating function

framework (Heyde 1997). Indeed, given the set of realized events {Ai : Ai ⊆ F , i ∈ I}, the

maximum composite likelihood estimator is usually defined as a solution of the composite

likelihood equation

∇ log CLf (θ; y) = 0, (1)

where ∇ log CLf (θ; y) =
∑

i∈I ∇ log f(y ∈ Ai; θ)wi is the composite score function. Here-

after, we use the notation ∇h(θ) for the column vector of the first partial derivatives of
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function h(θ), while ∇2h(θ) is the symmetric matrix of second derivatives. Since the com-

posite score function is a linear combination of unbiased estimating functions, then, under

suitable regularity conditions (Lindsay 1988, Heyde 1997, Heagerty & Lele 1998, Nott &

Rydén 1999), the maximum composite likelihood estimator is consistent and asymptoti-

cally normal distributed. In this paper, the composite likelihood is considered in order

to define model selection procedures. In particular, we shall introduce a new selection

criterion which may be viewed as a generalization of the AIC.

Let us consider a random sample Y = (Y1, . . . , Yn) from an unknown distribution with

joint probability density function g(y), with respect to a suitable dominating measure. In

a realization of Y corresponds to a set of realized events such as {Ai : Ai ⊆ F , i ∈ I}.

Alternative parametric statistical models can be defined as plausible description for the

observed data y. These models, viewed as parametric families of joint density functions,

with respect to a suitable dominating measure, may or may not contain the true g(y).

Consider also a future random sample Z = (Z1, . . . , Zn), with the same distribution as Y ;

Y and Z are supposed to be independent. We are interested in the choice of the “best”

model for forecasting Z, given a realization of Y , using composite likelihood methods.

If we adopt for Y and Z a parametric statistical model such as
{
f(y; θ), y ∈ Y , θ ∈ θ

}
,

prediction statements, concerning the future random sample Z, may be conveniently based

on the estimated density function f̂(z) = f(z; θ̂MCL(Y )), where θ̂MCL(Y ) is the maximum

composite likelihood estimator for θ based on Y . Estimation is done within the assumed

parametric statistical model. Thus, in this general framework, it is possible to specify a

predictive model selection procedure based on the following generalization of the Kullback-

Leibler divergence.

Definition 2. Given two density functions g(z) and h(z) for Z, the associated composite

Kullback-Leibler information is defined by the non-negative quantity

Ic(g, h) = Eg(z){log(CLg(Z)/ CLh(Z))} =
∑
i∈I

Eg(z)

{
log g(Z ∈ Ai)− log h(Z ∈ Ai)

}
wi,

(2)

where the expectation is with respect to g(z), log CLg(Z) =
∑

i∈I wi log g(Z ∈ Ai) and
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log CLh(Z) =
∑

i∈I wi log h(Z ∈ Ai).

Then, model selection can be approached on the basis of the expected composite Kullback-

Leibler information between the true density g(z) and the estimated density f̂(z), under

the assumed statistical model. Namely, we define the following theoretical criterion.

Definition 3. Let us consider the random samples Y and Z, as previously defined. The

expected composite likelihood information criterion selects the model minimizing

Eg(y){Ic(g, f̂)} =
∑
i∈I

Eg(y)

[
Eg(z)

{
log g(Z ∈ Ai)

}
−Eg(z)

{
log f(Z ∈ Ai; θ̂MCL(Y ))

}]
wi, (3)

where the expectations are with respect to the true distribution of Y and Z.

The composite Kullback-Leibler information Ic(g, f̂), considered in relation (3), is obtained

from (2) with h(z) = f̂(z), so that

CLh(Z) = CLf (θ̂MCL(Y ); Z) =
∏
i∈I

f(Z ∈ Ai; θ̂MCL(Y ))wi .

Indeed, with a slight abuse of notation, CLg(Z) may be viewed as a constant function of

θ. Note that the above likelihood terms are strictly defined and do not allow the presence

of a multiplicative constant. In the particular case when the composite likelihood is in

fact the likelihood function, the composite Kullback-Leibler divergence Ic(g, f̂) equals the

usual Kullback-Leibler divergence given by

I(g, f̂) = Eg(z)

{
log g(Z)

}
− Eg(z)

{
log f(Z; θ̂ML(Y ))

}
, (4)

where θML(Y ) is the maximum likelihood estimator for θ based on Y . Thus, the general-

ization (2) is useful whenever the complete computation of the exact density f(z; θ), and

of the associated likelihood function, is too demanding, and then not convenient or even

possible. Therefore, this general approach may be fruitfully considered for modeling large

collections of correlated data. Indeed, Y and Z are here defined as suitable n-dimensional

random vector, with components not necessarily independent, identically distributed. If

the components of vector Y = (Y1, . . . , Yn) are independent, identically distributed, the
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Kullback-Leibler divergence (4) corresponds to that obtained for a one dimensional future

random variable, with the same distribution as components of vector Y , multiplied by

n. This particular case corresponds to the underlying assumptions adopted by Konishi &

Kitagawa (1996), introducing an extended information criterion for model selection.

The model selection criterion (3), which points to the model minimizing the expected

composite Kullback-Leibler information between g(z) and f̂(z), is equivalent to that one

selecting the model maximizing the expected predictive composite loglikelihood

ϕ(g, f) = Eg(y)

[
Eg(z)

{
log CLf (θ̂MCL(Y ); Z)

}]
=

∑
i∈I

Eg(y)

[
Eg(z)

{
log f(Z ∈ Ai; θ̂MCL(Y ))

}]
wi. (5)

Note that equation (5) corresponds to the second term in the right hand side of (3). The

selection statistic (5) can be considered as a theoretical criterion for (predictive) model

selection, using composite likelihood. However, since it requires the knowledge of the true

density g(z), it is in fact unfeasible. Thus, model selection may be approached by maximiz-

ing a selection statistic Ψ(Y ; f), defined as a suitable estimator for ϕ(g, f). In particular,

we look for unbiased estimators, exactly or to the relevant order of approximation. The

simplest way to estimate ϕ(g, f), using the available random sample Y , is to consider

Ψ(Y ; f) = log CLf (θ̂MCL(Y ); Y ) =
∑
i∈I

log f(Y ∈ Ai; θ̂MCL(Y ))wi,

which is obtained by simply substituting Z with Y , in the argument of the expectation in

(5). In the following section we shall investigate the asymptotic properties of this naive

model selection statistic and we shall present a first-order unbiased modification, which

can be viewed as a generalization of the AIC, based on composite likelihood.

Example (continued) Write θ̂ML, θ̂MPL and θ̂MBPL for the maximum likelihood, maxi-

mum pairwise likelihood and maximum Besag’s pseudolikelihood estimators, respectively.

Then, the expected predictive composite loglikelihood and its naive estimator Ψ(Y ; f) are

as follows:

6



(i) for the “full” likelihood,

ϕ(g, f) = Eg(y)

[
Eg(z)

{
log f(Z; θ̂ML(Y ))

}]
, Ψ(Y ; f) = log f(Y ; θ̂ML(Y ));

(ii) for the pairwise likelihood,

ϕ(g, f) =
∑
j<k

Eg(y)

[
Eg(z)

{
log f(Zj, Zk; θ̂MPL(Y ))

}]
w(j,k),

Ψ(Y ; f) =
∑
j<k

log f(Yj, Yk; θ̂MPL(Y ))w(j,k);

(iii) for the Besag’s pseudolikelihood,

ϕ(g, f) =
n∑

j=1

Eg(y)

[
Eg(z)

{
log f(Zj|Z(−j); θ̂MBPL(Y ))

}]
wj,

Ψ(Y ; f) =
n∑

j=1

log f(Yj|Y(−j); θ̂MBPL(Y ))wj.

�

3 A first-order unbiased selection statistic

In the following lines, we study the asymptotic properties of the selection statistic Ψ(Y ; f)

and, in particular, we prove that it is biased and it usually provides an overestimate of the

target expectation ϕ(g, f). Moreover, we introduce a new general selection statistic, which

is defined as a simple AIC-type modification of Ψ(Y ; f) and turns out to be first-order bias

corrected.

We shall consider suitable assumptions, which correspond to the requirements that the

joint densities, defining the statistical model, are smooth and that the maximum composite

likelihood estimator is consistent and asymptotically normal distributed, under a possibly

misspecified model for Y .

Assumptions Recalling the notation and the definitions introduced in the previous sec-

tion, we assume that the following conditions hold.
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A. The parametric space Θ is a compact subset of Rd, d ≥ 1, and, for every fixed y ∈ Y ,

the composite likelihood function is two times differentiable with continuity, with

respect to θ.

B. The maximum composite likelihood estimator θ̂MCL(Y ) is defined as a solution to

the composite likelihood equation (1) and there exist a vector θ∗ ∈ int(Θ) such that,

exactly or with an error term negligible as n → +∞,

Eg(y){∇ log CLf (θ∗; Y )} = 0.

C. The maximum composite likelihood estimator θ̂MCL(Y ) is consistent, that is θ̂MCL(Y ) =

θ∗ + op(1), and asymptotically normal distributed, as n → +∞, with a suitable

asymptotic covariance matrix.

Note that the first two assumptions correspond to the basic regularity conditions for the

asymptotic properties of maximum likelihood, and in general maximum composite like-

lihood, estimators under a model which could be misspecified for Y (White 1994). The

vector θ∗ is a pseudo-true parameter value, defined as a value in int(Θ) such that the

composite Kullback-Leibler divergence between g(y) and f(y; θ) is minimal. If the true

distribution belong to the working family of distributions, the model is correctly specified

for Y , namely g(y) = f(y; θ0), for some θ0 ∈ int(Θ). In this particular case, θ0 the true

parameter value. With regard to the third assumption, in order to prove the asymptotic

normality of θ̂MCL(Y ), we usually require that

∇2 log CL(θ∗; Y ) = Eg(y){∇2 log CL(θ∗; Y )}+ op(n). (6)

Now, we are ready to introduce the main result of this paper.

Theorem. Under the assumptions A-C, the selection statistics Ψ(Y ; f), based on composite

likelihood, is a biased estimator for ϕ(g, f). More precisely, the first order bias term is

Eg(y){Ψ(Y ; f)} − ϕ(g, f) = − tr{J(θ∗)H(θ∗)
−1},
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where

J(θ) = varg(y){∇ log CL(θ; Y )}, H(θ) = Eg(y){∇2 log CL(θ; Y )}, (7)

with θ ∈ Θ.

Proof. ¿From Lemma 1 and Lemma 2, given in the Appendix, we obtain the following

asymptotic expansions for the expected predictive composite loglikelihood and the expec-

tation of its naive estimator Ψ(Y ; f). That is,

ϕ(g, f) = Eg(y){log CL(θ∗; Y )}+
1

2
tr{J(θ∗)H(θ∗)

−1}+ o(1),

Eg(y){Ψ(Y ; f)} = Eg(y){log CL(θ∗; Y )} − 1

2
tr{J(θ∗)H(θ∗)

−1}+ o(1).

Then, taking the difference of these two approximations, we state that Ψ(Y ; f) is a biased

estimator for ϕ(g, f) and the first order bias term is − tr{J(θ∗)H(θ∗)
−1}.

Using this result, it is immediate to define a new general criterion for model selection,

which can be viewed as a generalization of the AIC, based on composite likelihood. Namely,

we introduce the following model selection procedure.

Definition 4. Let us consider a random sample Y , as previously defined. The composite

likelihood information criterion (CLIC) selects the model maximizing

Ψc(Y ; f) = Ψ(Y ; f) + tr{Ĵ(Y )Ĥ(Y )−1},

where Ĵ(Y ) and Ĥ(Y ) are suitable consistent, first order unbiased, estimators for J(θ∗)

and H(θ∗), respectively, based on Y . Analogously, the CLIC selects the model minimizing

−Ψc(Y ; f).

In the following, we shall consider the CLIC based on the selection statistic −Ψc(Y ; f),

which is in accordance with the usual representation chosen for the AIC. It is immediate to

see that, under assumptions A-C, Ψc(Y ; f) is a first order unbiased estimator for ϕ(g, f).

In order to apply the CLIC, we need to substitute J(θ∗) and H(θ∗) with some suitable

estimators. In practice, this could be done by means of different strategies, which depend

9



on the particular selection problem taken into account and on the composite likelihood

which is considered. In the following section, we shall present an application to Markov

models and hidden Markov models, where a possible solution for this estimation problem

is proposed.

Finally, a further important point regards the choice of the weights in the composite

likelihood. Typically, the weights are chosen in order to cut off the pairs of not-neighboring

observations, which should be less informative. The simpler weighting strategy is then to

estimate the correlation range and put equal to zero all the pairs at a distance larger

than such a range. A more accurate approach consists in choosing the pairs under some

optimality criterion. For example, Nott & Rydén (1999) investigate the optimal weights

for a pairwise likelihood applied to random set models, within an estimating function

framework. However, this solution requires an extra amount of computations, which is not

feasible for complex models, such as some spatial models.

Example (continued)

(i) The CLIC for the “full” likelihood is based on

Ψc(Y ; f) = log f(Y ; θ̂ML(Y )) + tr{Ĵ(Y )Ĥ(Y )−1}, (8)

where Ĵ(Y ) and Ĥ(Y ) are convenient estimators for J(θ∗) = varg(y){∇ log f(Y ; θ∗)}

and H(θ∗) = Eg(y){∇2 log f(Y ; θ∗)}, respectively. In this case the CLIC corresponds

to the Takeuchi’s information criterion (Takeuchi 1976, Shibata 1989). Note that, if

the components of Y are independent, identically distributed, the selection statistic

(8) coincides with that obtained by Konishi & Kitagawa (1996), using the maximum

likelihood estimator for θ. Moreover, if we (optimistically) assume that the model

is correctly specified for Y , then θ∗ = θ0, J(θ0) = −H(θ0) and (8) simplifies to the

familiar AIC

Ψc(Y ; f) = log f(Y ; θ̂ML(Y ))− d.
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(ii) The CLIC for the pairwise likelihood is based on

Ψc(Y ; f) =
∑
j<k

log f(Yj, Yk; θ̂MPL(Y ))w(j,k) + tr{Ĵ(Y )Ĥ(Y )−1},

where Ĵ(Y ) and Ĥ(Y ) estimate, respectively,

J(θ∗) =
∑
j<k

∑
l<m

covg(y){∇ log f(Yj, Yk; θ∗),∇ log f(Yl, Ym; θ∗)}w(j,k)w(l,m),

and

H(θ∗) =
∑
j<k

Eg(y){∇2 log f(Yj, Yk; θ∗)}w(j,k).

(iii) The CLIC for the Besag’s pseudolikelihood is based on

Ψc(Y ; f) =
n∑

j=1

log f(Yj|Y(−j); θ̂MBPL(Y ))wj + tr{Ĵ(Y )Ĥ(Y )−1},

where Ĵ(Y ) and Ĥ(Y ) estimate, respectively,

J(θ∗) =
n∑

j=1

n∑
k=1

covg(y){∇ log f(Yj|Y(−j); θ∗),∇ log f(Yk|Y(−k); θ∗)}wjwk,

and

H(θ∗) =
n∑

j=1

Eg(y){∇2 log f(Yj|Y(−j); θ∗)}wj.

�

4 The Old Faithful geyser data

In this section we present an application of our model selection strategy to the Old Faithful

geyser dataset discussed in Azzalini & Bowman (1990). The data consists in the time series

of the duration of the successive eruptions at the Old Faithful geyser in the Yellowstone

National Park in the period from 1 to 15 August 1985. Azzalini & Bowman (1990) and

MacDonald & Zucchini (1997, §4.2) consider a binary version of this data obtained by

thresholding the time series at 3 minutes. This discretization seems plausible since the
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data can be described as short or long eruptions with very few values in between and there

is a quite low variation within the two groups.

The main features of the data are summarized as follow. Let us label the short and the

long eruptions with the states 0 and 1, respectively. The random variables Nr, r = 0, 1,

indicate the corresponding number of observed eruptions. We have that N0 = 105 and

N1 = 194; moreover, the one-step observed transition matrix isN00 N01

N10 N11

 =

 0 104

105 89

 ,

where Nrs, r, s = 0, 1, in the number of one-step transition from state r to state s. Note

that no transition from state 0 to itself is occurred. For the models discussed in the sequel,

it is also relevant to consider the two-steps transitions. Since N00 = 0, only five triplets

were observed. Being Nrst, r, s, t = 0, 1, the number of two-step transitions from state r to

state s and then to state t, the non-null observations are: N010 = 69, N110 = 35, N011 = 35,

N101 = 104 and N111 = 54.

In Azzalini & Bowman (1990), the time series is first analyzed by a first-order Markov

chain model. Then, since this model does not fit very well the autocorrelation function,

they move to a second-order Markov chain model, which seems more plausible. The same

data are also analyzed by MacDonald & Zucchini (1997, §4.2). They consider some hidden

Markow models based on the binomial distribution and compare them with the Markov

chain models of Azzalini & Bowman (1990), using the AIC and the BIC, namely the

Bayesian information criterion (Schwarz 1978). They conclude that both the AIC and the

BIC indicate that the model for Old Faithful geyser data is the second-order Markov chain,

even if the two-state binomial hidden Markov model is quite close in performance.

In the next lines, we discuss how the CLIC can be used for model selection in this

dataset. We compare the three models highlighted by MacDonald & Zucchini (1997, §4.2)

as the most effective, namely, the second-order Markov chain, the two-state hidden Markow

model and the two-state second-order hidden Markow model. For completeness, also a sim-

ple two-state Markov chain has been included in the discussion. First at all, we have to
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choose a useful composite likelihood for making inference in all the four models under com-

petition. Since we have hidden Markow models, a composite likelihood based on marginal

events can be conveniently considered, as we shall see in the following lines.

Let us start by recalling that the hidden Markow models constitute a rich and flexible

class of statistical models for time series data, where the time evolution is determined

by an unobservable latent process. A monograph on this topic is MacDonald & Zucchini

(1997). A hidden Markow model is a double stochastic process {Yi, Xi}i≥1, where the

observable random variables {Yi}i≥1 are assumed to be conditionally independent given a

hidden Markov chain {Xi}i≥1, describing the latent evolution of the system. Thereafter,

we shall assume that this latent Markov chain is stationary and irreducible, with m ∈ N+

states and transition probability functions given by f(xi|xi−1; θ), i > 1, with θ ∈ Θ ⊆ Rd

an unknown parameter. Moreover, we denote by f(yi|xi; θ), i ≥ 1, the conditional density

function (or probability function) of Yi given Xi = xi, which does not depend on i. In this

case, the bivariate process {Yi, Xi}i≥1 is stationary.

In this framework, the likelihood function for θ, based on the available observations

y = (y1, . . . , yn), is

L(θ; y) =
∑
x1

. . .
∑
xn

f(x1)f(y1|x1; θ)
n∏

i=2

f(xi|xi−1; θ)f(yi|xi; θ), (9)

where the summations are over the m states and the initial probability function f(x1) is not

necessarily that related to the stationary distribution of the chain (Leroux 1992). Since the

evaluation of (9) requires O(mn) computations, MacDonald & Zucchini (1997) rearrange

the terms in the likelihood function in order to reduce significantly the computational

burden. However, this rearrangement does not seem useful, if one desires to compute

likelihood quantities such as the derivatives of the function log L(θ; y), with respect to θ,

and their expectations with respect to the true unknown distribution.

An alternative to the full likelihood are the composite likelihoods based on small

marginal events, which are much simpler to handle and can highly reduce the compu-

tational effort. The simpler useful composite likelihood is the pairwise likelihood based on
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the pairs of subsequent observations

PL(θ; y) =
n∏

i=2

∑
xi−1,xi

f(xi−1; θ)f(xi|xi−1; θ)f(yi−1|xi−1; θ)f(yi|xi; θ),

where the summation is over all the pairs of subsequent observations of the latent process.

Note that this pairwise likelihood is obtained from the equation given in Section 2 by

imposing a set of dummy weights, where the pairs corresponding to subsequent observations

have weights equal to one.

However, the pairwise likelihood is not a good candidate for our model selection prob-

lem, since for second-order Markov chains the composite likelihood equation has an infinity

number of solutions. Then, we have to move to the, slightly more complex, tripletwise like-

lihood. For a hidden Markow model, the tripletwise likelihood, based on the triplets of

subsequent observations, is given by

TL(θ; y) =
n∏

i=3

∑
xi−2,xi−1,xi

f(xi−2, xi−1, xi; θ)f(yi−2|xi−2; θ)f(yi−1|xi−1; θ)f(yi|xi; θ),

where the summation is over all the triplets of subsequent observations of the latent process

and f(xi−2, xi−1, xi; θ) is the joint probability function of (Xi−2, Xi−1, Xi). When dealing

with binary data, as with the dataset under discussion, if we assume stationarity, the

tripletwise likelihood looks like

TL(θ; y) =
∏

r, s, t∈{0,1}

pr(Yi−2 = r, Yi−1 = s, Yi = t)Nrst ,

where Nrst, r, s, t = 0, 1, defined above, is the number of realized events (Yi−2 = r, Yi−1 =

s, Yi = t), i > 2. Note that, in this case, TL(θ; y) consists in eight terms. However, since

in the Old Faithful geyser dataset there are no transitions from state 0 to itself, in fact

only five terms enter in the function.

In the following, we shall present the four models under competition and we compute

the corresponding tripletwise likelihoods. We implicitly assume that the assumptions A-C

outlined in Section 3 are fulfilled. Indeed, the consistency and asymptotic normality of

the tripletwise likelihood can be proved using the framework suggested in Renard (2002,
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§3.2), whose assumptions are here satisfied because the Markov and hidden Markov models

considered are indeed stationary.

The first model we consider is a two-states Markov chain with one-step transition

probability matrix

Γ =

0 1

a 1− a

 ,

with a ∈ (0, 1) an unknown parameter. Here, we assume that the probability of remaining

in the state 0 is null, since in the dataset we observe N00 = 0. In order to compute the

probabilities associated with the triplets (Yi−2, Yi−1, Yi), i > 2, is convenient to consider

the transition probability matrix whose entries are ∆(sr)(ts) = pr(Yi−1 = s, Yi = r|Yi−2 =

t, Yi−1 = s) = pr(Yi = r|Yi−1 = s, Yi−2 = t), r, s, t = 0, 1, i > 2,

∆MC =


1− k k 0 0

0 0 a 1− a

0 1 0 0

0 0 a 1− a

 ,

where k is any real number in (0,1). The presence of this arbitrary value k is not relevant

since, as noted by MacDonald & Zucchini (1997, §4.2), the pair (0, 0) can be disregarded

without loss of information. The associated bivariate stationary distribution is

πMC =
1

1 + a

0 a

a 1− a

 ,

with entries πrs = pr(Yi−1 = r, Yi = s), r, s = 0, 1, i > 1. Then, the non-null triplet
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probabilities are, for i > 2,

pr(Yi−2 = 0, Yi−1 = 1, Yi = 0) = ∆(10)(01)π01 =
a2

1 + a
,

pr(Yi−2 = 0, Yi−1 = 1, Yi = 1) = ∆(11)(01)π01 =
a(1− a)

1 + a
,

pr(Yi−2 = 1, Yi−1 = 0, Yi = 1) = ∆(01)(10)π11 =
a

1 + a
,

pr(Yi−2 = 1, Yi−1 = 1, Yi = 0) = ∆(10)(11)π11 =
a(1− a)

1 + a
,

pr(Yi−2 = 1, Yi−1 = 1, Yi = 1) = ∆(11)(11)π11 =
(1− a)2

1 + a
.

Note that pr(Yi−2 = 0, Yi−1 = 1, Yi = 1) = pr(Yi−2 = 1, Yi−1 = 1, Yi = 0). This equivalence

will also occur within the other models under competition. Here, θ = a and the tripletwise

loglikelihood is given by

log TL(a) = −(N − 2) log(1 + a) + N010 log a2 + (N011 + N110) log((1− a)a)

+ N101 log a + N111 log(1− a)2.

The maximum tripletwise likelihood estimate is âMTL = 0.5389 and the corresponding

function value is log TL(âMTL) = −458.7104. For comparison, the maximum likelihood

estimate, as reported by MacDonald & Zucchini (1997, §4.2), is âML = 0.5412.

The second model is a second-order two-states Markov chain. In this case the proba-

bilities ∆(sr)(ts), r, s, t = 0, 1, are such that

∆MC2 =


1− k k 0 0

0 0 b 1− b

0 1 0 0

0 0 c 1− c

 ,

with b, c ∈ (0, 1) unknown parameters and k any real number in (0,1). The associated

bivariate stationary distribution is

πMC2 =
1

2c + (1− b)

0 c

c (1− b)
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and then the joint probabilities for the five relevant triplets are, for i > 2,

pr(Yi−2 = 0, Yi−1 = 1, Yi = 0) =
cb

2c + (1− b)
,

pr(Yi−2 = 0, Yi−1 = 1, Yi = 1) =
(1− b)c

2c + (1− b)
,

pr(Yi−2 = 1, Yi−1 = 0, Yi = 1) =
c

2c + (1− b)
,

pr(Yi−2 = 1, Yi−1 = 1, Yi = 1) =
(1− b)(1− c)

2c + (1− b)

and pr(Yi−2 = 1, Yi−1 = 1, Yi = 0) = pr(Yi−2 = 0, Yi−1 = 1, Yi = 1). Since θ = (b, c), the

tripletwise loglikelihood is

log TL(b, c) = −(N − 2) log(2c + 1− b) + N010 log(cb) + (N011 + N110) log(c(1− b))

+ N101 log c + N111 log((1− b)(1− c)).

Here, the maximum tripletwise likelihood estimates are found to be b̂MTL = 0.6634,

ĉMTL = 0.3932, which equals the maximum likelihood estimates. The corresponding value

of the tripletwise loglikelihood is log TL(̂bMTL, ĉMTL) = −451.5889. Here, we note that the

maximum tripletwise likelihood estimates allow the equality between the estimated and

the observed probabilities for the five triplets, so we have

p̂r(Yi−2 = 0, Yi−1 = 1, Yi = 0) =
ĉ b̂

2ĉ + (1− b̂)
=

N010

n− 2

and similarly for the remaining triplets. Then, we can say that this model reaches the

“best” fitting possible using the tripletwise likelihood.

The third model is a two-states hidden Markov model. The hidden process {Xi}i≥1

is a Markov chain with the same one-step transition probabilities as in the Markov chain

previously considered, that is

Γ =

0 1

a 1− a

 ,

with a ∈ (0, 1) unknown. The conditional probabilities for the observations given the latent
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variables are

pr(Yi = y|Xi = 0) = ρy(1− ρ)1−y, y = 0, 1,

pr(Y1 = 1|Xi = 1) = 1,

for i ≥ 1, with ρ ∈ (0, 1) an unknown parameter. The relevant triplet probabilities are, for

i > 2,

pr(Yi−2 = 0, Yi−1 = 1, Yi = 0) =
(1− ρ)2a2

1 + a
,

pr(Yi−2 = 0, Yi−1 = 1, Yi = 1) =
ρ(1− ρ)a2 + (1− ρ)(1− a)a

1 + a
,

pr(Yi−2 = 1, Yi−1 = 0, Yi = 1) =
(1− ρ)a

1 + a
,

pr(Yi−2 = 1, Yi−1 = 1, Yi = 1) =
ρ2a2 + 2ρ(1− a)a + ρa + (1− a)2

1 + a

and pr(Yi−2 = 1, Yi−1 = 1, Yi = 0) = pr(Yi−2 = 0, Yi−1 = 1, Yi = 1). Here θ = (a, ρ) and

the maximum tripletwise likelihood estimates are âMTL = 0.8948, ρ̂MTL = 0.2585. The

maximum likelihood estimates are again very similar, namely âML = 0.827, ρ̂ML = 0.225.

Moreover, we have log TL(âMTL, ρ̂MTL) = −451.5889, the same value obtained for the

second-order Markov chain, again corresponding to the perfect equality between theoretical

and observed triplets probabilities. Note that the tripletwise loglikelihood for the hidden

Markow model is not a reparametrization of that for the second-order Markov chain.

The last model we take into consideration is a two-states second-order hidden Markov

model. Here, the hidden process {Xi}i≥1 is the same as the second-order Markov chain

previously considered, while the conditional probabilities for the observations given the

latent variables are as in the previous hidden Markow model. Then, the relevant triplet
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probabilities are, for i > 2,

pr(Yi−2 = 0, Yi−1 = 1, Yi = 0) =
(1− ρ)2cb

2c + (1− b)
,

pr(Yi−2 = 0, Yi−1 = 1, Yi = 1) =
ρ(1− ρ)cb + (1− ρ)(1− b)c

2c + (1− b)
,

pr(Yi−2 = 1, Yi−1 = 0, Yi = 1) =
(1− ρ)c

2c + (1− b)
,

pr(Yi−2 = 1, Yi−1 = 1, Yi = 1) =
ρ2cb + 2ρ(1− b)c + ρc + (1− b)(1− c)

2c + (1− b)

and pr(Yi−2 = 1, Yi−1 = 1, Yi = 0) = pr(Yi−2 = 0, Yi−1 = 1, Yi = 1). Here θ = (b, c, ρ)

and the maximum tripletwise likelihood estimates are b̂MTL = 0.8494, ĉMTL = 0.6535,

θ̂MTL = 0.2189 and the maximized tripletwise loglikelihood is log TL(̂bMTL, ĉMTL, ρ̂MTL) =

−451.5889, that is the same value obtained in previous two models. In this case the triplet-

wise likelihood estimates differ considerably from the maximum likelihood estimates given

by MacDonald & Zucchini (1997, §4.2), which correspond to b̂ML = 0.717, ĉML = 0.414,

ρ̂ML = 0.072). Such difference can be investigated by comparing the values of tripetwise and

full likelihood at the two different estimates. We have log TL(̂bML, ĉML, ρ̂ML) = −451.5941

which is almost the same value of that obtained plugging the tripletwise estimates. On

the other side, we found log L(̂bMTL, ĉMTL, ρ̂MTL) = −128.0877, but log L(̂bML, ĉML, ρ̂ML) =

−126.8575. However, the fact that the log tripletwise likelihood is almost the same if

computed at the MTL or the maximum likelihood estimates, does not make difference for

model selection conclusion under the CLIC.

In order to compute the CLIC, for the four alternative models, we have to estimate the

mean, the variance and the covariance of the random variables N010, N011, N110, N101 and

N111, with respect to the true unknown distribution. To obtain suitable estimates, we may

consider a reuse sampling approach (Heagerty & Lumley 2000). The idea is to subdivide

the time series in a set of overlapping subseries and use them as several samples from

the true model. This is useful for our problem, if we assume that the unknown model for

{Yi}i≥1 satisfies stationary. Let us assume that the data are split into n−M +1 overlapping

subwindows of the same dimension M . Then, an estimator for prst, namely the probability,

under the true unknown distribution, of the observed triplet (Yi−2 = r, Yi−1 = s, Yi = t),
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r, s, t = 0, 1, i > 2, is given by

p̂rst =
1

(n−M + 1)M

n−M+1∑
j=1

j+M+1∑
i=j+2

I(yi−2 = r, yi−1 = s, yi = t),

where I(B) is the indicator function of the event B. Heagerty & Lumley (2000) show that

the optimal dimension of the subwindows is Cn1/3, where n is the number of observations,

while C is a constant which depends on the strength of the dependence within the data.

Simulation experiments suggest that a value of C between 4 and 8 should be good enough

for most situations.

The estimated true probabilities, using 250 subwindows based on M = 50 observations,

with C ≈ 8, are p̂010 = 0.226, p̂011 = 0.114, p̂110 = 0.340, p̂101 = 0.113 and p̂111 = 0.207. We

also tried with other values for C, but the results are almost unchanged. Finally, as reported

in Table 1, the CLIC suggests that the hidden Markow model is slightly better than the

second-order Markov chain, which is the opposite of the result obtained by MacDonald &

Zucchini (1997, §4.2). In the table we report the values of the CLIC, the AIC and the BIC,

for the four alternative models.

Insert Table 1.

5 Conclusions

We have presented a class of model selection criteria based on composite likelihood. Our

methodology allows to make model selection even in computationally expensive models,

without the condition that the assumed model is the true one or it is a good approxima-

tion to the truth. As an example, we analyzed the well-known Old Faithful geyser dataset

by comparing binary Markov and hidden Markov models using the particular composite

likelihood called tripletwise likelihood. This example has been chosen because we fell it

instructive for describing the main features of our methodology. However, the usefulness

of composite likelihood methods is evident if we consider more complex models. First at

all, models with an hidden structure such as generalized linear mixed models (Breslow &
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Clayton 1993) and state space models (Durbin & Koopman 2001). In both these classes

of models, the computation of standard likelihood objects often requires the solution of

untractable integrals whose dimension depends on the hidden part of the model. In many

applications, the dimension of the integrals to be solved is so large that is very difficult, or

even unfeasible, to make inference and also model selection. Then, the class of composite

likelihood gives interesting alternatives since only a set of small dimensional integrals are

considered in the computations. Moreover, the use of this methodology can be also con-

sidered for analyzing large datasets, such as those arising in many application of spatial

statistics (Hjort & Omre 1994, Heagerty & Lele 1998, Nott & Rydén 1999). Conditional

models like point processes models and autoregressive models used in image analysis (Besag

1986) are other strong potential area of application.
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A Appendix

Derivation of Lemma 1 and Lemma 2

In this appendix, we present the two lemmas involved in the proof of the theorem given

in Section 3.

Lemma 1. Under the assumptions A-C, we have that

ϕ(g, f) = Eg(y){log CL(θ∗; Y )}+
1

2
tr{J(θ∗)H(θ∗)

−1}+ o(1),

with J(θ∗) and H(θ∗) given by (7).
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Proof. Let us consider the following stochastic Taylor expansion for log CL(θ̂MCL(Y ); Z),

around θ̂MCL(Y ) = θ∗,

log CL(θ̂MCL(Y ); Z) = log CL(θ∗; Z) + (θ̂MCL(Y )− θ∗)
T∇ log CL(θ∗; Z)

+
1

2
(θ̂MCL(Y )− θ∗)

T∇2 log CL(θ∗; Z)](θ̂MCL(Y )− θ∗) + op(1).

Since the random vectors Y and Z are independent, identically distributed, we state

that Eg(z){log CL(θ∗; Z)} = Eg(y){log CL(θ∗; Y )} and, as a consequence of assumption

B, Eg(z){∇ log CL(θ∗; Z)} = 0, exactly or to the relevant order of approximation. Thus,

taking expectations term by term, with respect to the true distribution of Z, we have

Eg(z)[log CL(θ̂MCL(Y ); Z)] = Eg(y){log CL(θ∗; Y )}

+
1

2
(θ̂MCL(Y )− θ∗)

TEg(z)[∇2 log CL(θ∗; Z)](θ̂MCL(Y )− θ∗) + op(1).

Moreover, the mean value of the above expansion, with respect to the true distribution of

Y , gives

ϕ(g, f) = Eg(y){log CL(θ∗; Y )}+
1

2
tr{H(θ∗)V (θ∗)}+ o(1), (10)

where V (θ∗) = Eg(y){(θ̂MCL(Y )− θ∗)(θ̂MCL(Y )− θ∗)
T}. The final step is to get an approxi-

mation for V (θ∗). Note that, by means of standard asymptotic arguments, (θ̂MCL(Y )− θ∗)

may approximated by

−∇2 log CL(θ̂MCL(Y ); Y )−1∇ log CL(θ∗; Y ).

Then, since ∇2 log CL(θ̂MCL(Y ); Y ) can be further approximated by ∇2 log CL(θ∗; Y ) we

obtain that, using relation (6),

V (θ∗) = H(θ∗)
−1J(θ∗)H(θ∗)

−1 + o(n). (11)

Plugging (11) in (10) completes the proof.

Lemma 2. Under the assumptions A-C, we have that

Eg(y){Ψ(Y ; f)} = Eg(y){log CL(θ∗; Y )} − 1

2
tr{J(θ∗)H(θ∗)

−1}+ o(1),

with J(θ∗) and H(θ∗) given by (7).
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Proof. Let us consider the following stochastic Taylor expansion for the selection statistic

Ψ(Y ; f), around θ̂MCL(Y ) = θ∗,

Ψ(Y ; f) = log CL(θ∗; Y ) + (θ̂MCL(Y )− θ∗)
T∇ log CL(θ∗; Y )

+
1

2
(θ̂MCL(Y )− θ∗)

T∇2 log CL(θ∗; Y )(θ̂MCL(Y )− θ∗) + op(1).

Since, by means of standard asymptotic arguments, ∇ log CL(θ∗; Y ) may approximated by

−(θ̂MCL(Y )− θ∗)
T∇2 log CL(θ∗; Y ),

we obtain

Ψ(Y ; f) = log CL(θ∗; Y )− 1

2
(θ̂MCL(Y )− θ∗)

T∇2 log CL(θ∗; Y )(θ̂MCL(Y )− θ∗) + op(1).

Then, taking expectations, with respect to the true distribution of Y , and using relations

(6) and (11), complete the proof.
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Model AIC BIC CLIC

MC 272.48 279.88 460.01

MC2 262.24 277.04 452.65

HMM 262.62 277.42 452.32

HMM2 265.80 288.00 458.54

Table 1: Old Faithful geyser dataset. Values for the AIC, the BIC and the CLIC for the

Markov chain (MC), the second-order Markov chain (MC2), the hidden Markow model

(HMM) and the second-order hidden Markow model (HMM2). The values for the AIC

and the BIC are those obtained by MacDonald & Zucchini (1997, §4.2).
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