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Abstract

Time series regression models are specially suitable in epidemiology for evaluating short-term
effects of time-varying exposures. The objectives of this paper are twofold: 1) to apply transfer
function models for regression analysis of epidemiological time series; 2) to explore the potential
of semi-automated or automated approaches for model construction. The ideas are illustrated by
analysing data on the relationship between daily non accidental deaths and air pollution in the
20 US largest cities.
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1. Introduction and background

The literature suggests that a range of health effects occurs at levels of pollutants below US and
European regulatory standards. All analyses of the short-term relationship between atmospheric
pollution and human health outcomes rely on regression analysis in which, for one city, time series
of health outcomes (daily mortality or hospital admissions counts), are regressed over a number
of exposure factors (such as air pollution concentrations) and of confounding factors (such as
meteorology) measured for the same time period.

Despite the simplicity of the approach, there are many variations in the precise methodology
adopted. The models that have been used differ in the parametric assumptions, in their ap-
proaches to estimating natural temporal trends, in the detail with which confounding effects are
treated, in the extent to which displacement of the events is taken into account.

Therefore, two main critics appear frequently in the literature. The first one is related to a
percieved structural methodological weaknesses, which, ultimately, has to do with an inadequate
statistical control of the dependence structure of the data. The second critic concerns the many
ad hoc choices that the construction of such models requires. It is often the case that crucial
choices on the structure of the regressor (such as the degree of smoothing of non parametric
components) exploit what is reasonably expected about the way in which the data are generated.
These choices turn out to be quantitative judgements placed in the model which can only be
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checked by re-running analyses under slightly different scenarios. Unfortunately, results from
this procedure, if performed, are hardly ever reported in the literature.

On the other side, data-driven model selection does not seem to be adequate in this context,
and different model selection strategies may lead to different models and conclusions. An attempt
to overcome this limitation has been performed by Clyde (2000), which instead of selecting one
best model, adopts Bayesian model averaging (Hoeting et al (1999)) for combining predictions
and inferences from a set of competing models.

The effort required for performing model selection is amplified by the fact that is becoming
current practice pooling evidence from different studies. Recent meta-analysis studies (Dominici
et al (2000), Samet et al (2000), Biggeri et al (2001), Atkinson et al (2001)) showed that
combination of data from disparate sources provides additional statistical power to the analysis,
that it is not available in single site analyses. Clearly, selection of a model to be used in the meta
analysis becomes rapidly more complicated as the number of cities increases.

In this paper, we wish to investigate the potential of transfer function analysis in simultaneously
providing a convenient modelling approach for dealing with the complex dependence structure
shown by these data and an affordable computational framework to allow a data-driven model
selection. By performing a (semi-)automated model selection we want to limit the number of ad
hoc choices and leave the data to highlight the most relevant features.

Transfer function models are a well-known and useful modelling strategy, but, to our knowl-
edge, they have never been used in environmental epidemiology. They are able to deal with many
potential covariates, lagged values, seasonal interactions, dynamic features, appearing therefore
a promising vehicle to approach this modelling task. Automated model selection, however, is
not straightforward because enumeration over all possible models is not feasible. To tackle the
data-driven model selection, we propose to make use of Genetic Algorithms (Holland (1975)) to
stochastically search the space of models.

We illustrate these ideas by analysing data on the relationship between daily non accidental
deaths and air pollution in the 20 largest US cities (Dominici et al (2000), Samet et al (2000),
Samet et al (2000)). With respect to the application, our final objective is not to produce a
measure of increase in risk by an increase in the pollutant value, as it is often the case in these
studies. From an applied point of view, our objective is to evaluate the extent to which this class
of models, coupled with a semi-automated model selection procedure, offers information about
how to build a sensible “common” model to be used in combining evidence from different sources.

The main features of the data are illustrated Section 2. Section 3 briefly recalls transfer
function models. Section 4 shows how Genetic Algorithms can be used to identify transfer
function models. The last two sections of the paper cover the application and summarize our
findings.

2. The data

The data that we consider come from the National Morbidity, Mortality and Air Pollution
Study (NMMAPS, Dominici et al (2000), Samet et al (2000), Samet et al (2000)), to which we re-
fer for further details about sources of the data. NMMAPS reports a nationwide study performed
in the United States of America of acute health effects of air pollution on morbidity and mortality.
Data are public and available at the URL http://ihapss.biostat.jhsph.edu/data/.

In what follows, we will analyse the association between daily changes in the concentration of
carbon monoxide (CO) and daily number of deaths in the 20 US largest cities. Some summary
statistics about the data are reported in Table 1.
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Table 1. Summary statistics for the 20 largest cities (1987–1984).

x̄CO COmiss x̄temp x̄dew

Location Population∗ ȳ (ppb) (%) (oF) (oF)

Los Angeles 8863164 148 1057 0.00 68 59

New York 7510646 191 2043 0.07 55 42

Chicago 5105067 114 790 0.00 50 40

Dallas-Fortworth 3312553 49 741 0.00 66 52

Houston 2818199 40 886 0.00 69 59

San Diego 2498016 42 1102 0.00 63 53

Santa Ana-Ana 2410556 32 1243 0.00 63 49

Phoenix 2122101 38 1259 0.10 75 41

Detroit 2111687 47 663 0.00 50 40

Miami 1937094 44 1061 0.10 77 67

Philadelphia 1585577 42 1179 0.10 56 44

Minneapolis 1518196 26 1181 0.14 46 35

Seattle 1507319 26 1779 0.00 52 44

San Jose 1497577 20 1041 0.00 60 45

Cleveland 1412141 36 855 0.85 51 41

San Bernardino 1412140 20 1032 0.00 67 35

Pittsburg 1336449 38 1220 0.07 52 41

Oakland 1279182 22 914 0.00 58 50

San Antonio 1185394 20 1011 1.06 69 56

Riverside 1170413 20 1117 0.03 67 35

∗County Population, as derived from NMMAPS, ȳ= average daily deaths,
x̄CO: average of daily CO levels, COmiss: percentage of days with missing
CO values, x̄temp: average of daily mean temperatures, x̄dew: average of daily
dewpoint temperatures.

The reason for analysing CO instead of PM10, which is the compound of central interest in
NMMAPS, is related to the number of missing values. As shown in Table 1, missing values
are almost absent in the dataset, and this is an essential feature for applying transfer function
models. When missing, data have been estimated by mean of a nonparametric smoother.

Distribution of the original daily counts and average levels of CO are shown in Fig 1 and Fig 2.
As far as daily mortality is concerned, the picture highlights a great deal of variability amongs

cities, with New York city showing the highest daily mortality. Two other cities (Los Angeles
and Chicago) show distributions with remarkably high mean daily deaths counts. Obviously, this
reflects also the ranking of the cities in terms of County population (note that for Los Angeles
and Chicago it was possible to separate the city and the county deaths, so that data reported
for daily mortality reflects only city daily deaths - see Samet et al (2000), p. 9). The same
ranking is not visible in the distribution of the pollutant, as smaller cities show levels of pollution
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Figure 1. Distribution of daily mortality counts for the 20 cities, 1987–1994.

competing with levels recorded in bigger cities (compare for example Seattle with Chicago).
As far as the effect of the pollutant is concerned, NMMAPS reports positive significant effects

of CO at the usual lags (0,1,2).

3. Transfer Function models

In the transfer function setting, the output {Y (t)} results from the contribution of some inputs
{Xi(t)}, i = 1, . . . , k, which are stationary processes, and of a noise process {e(t)}, which is a
zero-mean stationary process independent of the inputs. All the ingredients are related via the
Transfer Function (TF) model

Y (t) =
k

∑

i=1

ωi(B)
δi(B)

Xi(t) +
θ(B)

(1−B)d(1−Bs)Dφ(B)
e(t), (1)

where ωi(B) = ωi0 − ωi1B − . . .− ωiriB
ri , δi(B) = 1− δi1 − . . .− δisi , θi(B) = 1− θi1B − . . .−

θiqBq, φi(B) = 1 − φi1B − . . . − φipBp, are polynomials in the backward shift operator, B (i.e.
BY (t) = Y (t− 1)), with degrees ri, ui, q, p respectively. Moreover, the roots of the polynomials
δi(z), i = 1, . . . , k and φ(z) are supposed to be outside of the unit circle.

A TF model M is identified by specifying the degrees and the coefficients of the polynomi-
als. The identification consists of two steps: 1) selection of the degrees of the polynomials; 2)
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Figure 2. Distribution of daily concentration of CO (ppb) for the 20 cities, 1987–1994.

estimation of the vector of the unknown coefficients θM.
The widely used selection procedure for the degrees (Box et al (1994)) requires examining

cross-correlation functions between (prewhitened) inputs and output. This step involves rather
subjective choices about the degrees of the polynomials, especially ri and ui.

Usually, the vector θM is estimated by minimising the conditional sum of squares of the
prediction errors

s(θ) =

∑T
t=t∗+1 e(t; θ)2

T ∗
, (2)

where t∗ = p+maxi=1,k{
∑k

j=1 ui, ri +
∑k

j 6=i ui}, T ∗ = T − t∗, e(t; θ) = Y (t)− Ŷ (t; θ) and Ŷ (t; θ)
is the one-step prediction error of Y (t).

The selection of M is usually based upon the Kullback-Leibler information criterion. In this
case, it can be approximated by the penalized function

V (M) = log s(θ̂M) + m
c(T ∗)
T ∗

, (3)

where m = dim(θ̂M) is the number of unknown coefficients in (1), θ̂M is the prediction error
estimate and c(T ∗) is a function of the number T of observations. This formulation encom-
passes many criteria, namely the Akaike information criterion (Akaike (1973)) for c(T ) = 2,
the Bayesian information criterion (Schwartz (1978)) for c(T ) = log T and the Hannan-Quinn
criterion (Hannan and Quinn (1979)) for c(T ) = 2 log log T .
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4. Transfer function model identification by means of a genetic algorithm

As an automated model selection procedure has to make a choice from amongst any set of
competing models, the number of possible candidates will get huge as soon as complexity of
the model moderately increases. Therefore, automatic identification of a model poses serious
computational difficulties. We propose to tackle this task by making use of genetic algorithms
(GAs), in the same spirit of Gaetan (2000). GAs are a family of computational strategies inspired
by evolution Holland (1975). These algorithms encode a potential solution to a specific problem
on a simple chromosome-like data structure and apply recombination operators to a population
of these structures so as to preserve critical information. GAs are often viewed as function
optimizers, although the range of problems to which genetic algorithms have been applied is
quite broad. Our implementation of the GA is based on incremental reproduction and a ranking-
based selection scheme (Whitley (1989)). Let q∗, p∗, r∗i , u∗i i = 1, . . . , k the maximum degree
allowed for each polynomial and M = p∗ + q∗ +

∑k
i=1(r

∗
i + u∗i ). We identify a model M with

a chromosome (string) of M genes. The value of a gene is a component of θM. Note that this
setting includes consideration of TF subset models, i.e. models in which polinomials representing
the lag structure can be incomplete. This means that cardinality of the model space is 2M ·

Our GA for transfer model identification is the following (see Chiogna et al (2003) for more
details).

1. Create a random population of N models.

2. Compute for all models the fitness, namely the criterion (3). Assign to each model its rank
value.

3. Select two “parent” models according to their rank to form an “offspring”. The “offspring”
M(O) of two parents M(P1), M(P2) is generated according to

θ(O)
j =

θ(P1)
j + θ(P2)

j

2
, j = 1, . . . , M ·

4. Apply to the “offspring” the mutation operator. This operator chooses a gene with proba-
bility pm and then generates a value from normal distribution with mean 0 and variance σ2.
For the coefficients in ωi(z) the variance is set to σ2 = s2

Y /s2
Xi

; for the others polynomial
we have chosen σ2 = 0·1. In principle, the roots of φ(z) and δi(z) in the “offspring” do not
lie outside the unit circle. So polynomials are changed in order to satisfy this constraint.

5. The coefficient values found in the previous steps are the starting value in the numerical
optimisation of (2). After the evaluation of the offspring’s fitness, if the estimated model
is different from the population’s ones, this replaces the least fit individual according to
criterion (3). Otherwise a new model is generated and its coefficients are generated as in
the mutation stage.

6. Return to 3 until a convergence criterion is met.

The computational burden lies on optimization of (2) because θ̂M cannot be computed ana-
lytically. We use a Gauss-Newton type algorithm to solve this nonlinear least-squares problem,
namely

θ̂n+1 = θ̂n − λn

[

T
∑

t=t∗
J(t; θ̂n)J(t; θ̂n)T

]−1 T
∑

t=t∗
J(t; θ̂n)e(t; θ̂n)
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where 0 < λn ≤ 1 and J(t; θ̂n) is the Jacobian vector ∂Ŷ (t; θ)/∂θ. Note that θ̂n+1 is the least
square solution of

J(t; θ̂n)T θ̂n − λne(t; θ̂n) = J(t; θ̂n)T θ, t = t∗, . . . , T · (4)

This remark allows us to couple the estimation step and the selection one in order to speed up
further the identification procedure. More precisely, at step 5 we solve the least square problem
(4) and get θ∗n+1 and we apply a statistical selection procedure to θ∗n+1 according to the selection
criterion (3) and obtain θ̂n+1. Various statistical selection procedures (Draper and Smith (1998))
can be chosen. For example, if M is less than 30 a branch-and-bound technique (Miller (1990))
is feasible, but we have found that an iterative stepwise selection perform just as well and it does
not require huge allocation of computer memory (Chiogna et al (2003)).

5. Results

In this section, we illustrate the results obtained in our analysis. As described in the intro-
duction, our objectives were twofold: 1) to explore the potential of transfer function analysis
for the study of effects of air pollution and health by making use of real data; 2) to explore the
potential of (semi-)automated or automated approaches for model construction. Therefore, in
what follows we will split considerations about the algorithmic performances of the modelling
strategy and considerations about assessment of the relation between mortality and air pollution
in the 20 largest cities in two separate Sections.

5.1. Modelling strategy

Denote the daily counts by {C(t)}, t = 1, . . . , T and by {Xi(t)} the time series for input i.
In our example {X1(t)}, {X2(t)}, {X3(t)}, are the pollutant, temperature and dew point time
series, respectively. Due the nature of C(t), a Poisson regression model would be a natural way to
explain the variability. However, as the mean number of counts is sufficiently high, we can safely
consider the transformation Y (t) =

√

C(t) and move to linear models. This is supported by the
findings of Smith et al (2000) and allows us to connect to the transfer function methodology.

Figure 3 shows the autocorrelation function of Y (t), X1(t), and X2(t), t = 1, . . . , T , for the
city of Los Angeles. The plot highlights some non-stationarity in the mean of the series, long
persistence and different cyclical patterns. Computing the first differences the series leads to more
stable results, with a slight indication of over-differentiation, as shown in Figure 4. Across cities,
indications about periodicities of the response and covariates varied, although not drammatically.

To offer our model section procedure a great deal of flexibility, we chose the following model
setting:

Y (t) =
3

∑

i=1

ωi(B)Xi(t) +
θ(B)

(1−B)(1−B7)φ(B)
e(t),

where ri = 3, i = 1, . . . , 3 and p = q = 7. As model selection criterion we chose BIC. This formu-
lation allows to take into account short term seasonal patterns and long term trends. Moreover,
it allows to incorporate lagged values of the inputs. Based on evidence from the literature, we
considered that the first three lags were sufficient to catch delayed effects of the covariates. Note
that, despite the relative simplicity of this model formulation, cardinality of the model space is
around 6·7× 107·
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Figure 3. Autocorrelation functions of time series of square root of deaths counts, CO and average daily
temperature.

At the end of the model selection, in 8 cities found the search strategy a significant effect of
CO. In all the 20 cities, the selection procedure adopted first order differences for the input and
the output series. Details on the selection of the best lags for the models in the 8 cities with
significant effects are summarized in Table 2. Differencing the data led to a good control of the
main temporal patterns. On the differenced data, weekly ciclicity did not seem to be relevant.
Only Dallas-Forthworth showed a residual weekly ciclicity, although the Box-Ljung test detected
presence of autocorrelation in the residuals (p-value=1·6 × 10−13), showing that the model was
not able to whitening the residuals, and therefore the temporal control was not fully satisfying.

It is not surprising that on 12 cities the model selection procedure did not spot a significant
effect of CO. This group comprises cities in which there is actually no evidence of a significant
effect of the pollutant, and cities in which the identified best model very closely competed in
terms of goodness of fit (as measured by AIC, BIC, HQ) with a model including the pollutant
as significant, as we a posteriori checked by re-fitting ad hoc competing models. This makes
the number of 8 cities comparatively a high number of cities with significant effect and a strong
evidence in favour of an association between the pollutant and accidental deaths.
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Figure 4. Autocorrelation functions of time series of differenced square root of deaths counts, CO and
average daily temperature.

Table 2. Results of the automated model selection procedure
for the cities showing a significant effect of CO. Structure
of the lags for each explanatory variable. When missing, the
variable was not reported as being significant.

Location Temperature Dewpoint CO Noise

Dallas-Forthworth 0 2 0 1,2,5,7

Los Angeles 1,2 2 1,3 1

Miami 3 3 1

Oakland 3 1 1

Phoenix 3 0,1 2 1

San Diego 1 1

San Jose 1 1

Santa Ana-Ana 2 1 1

5.2. Air pollution and mortality

To perform the meta-analysis task, we adopted the strategy of fitting the same common model
to all the cities and to combine evidence resulting from the model fitting. Based on the output
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Figure 5. Results of the pooled analysis under the fixed effects model (coefficients are multiplied by 104).

from the automated model selection procedure, we decided to fit the following common model:

Y (t) = ω11X1(t− 1) + ω23X2(t− 3) + ω32X3(t− 2) +
(1− θB)
(1−B)

e(t)·

The common model allowed to detect a significant effect in 11 cities, providing further evidence
for what we already said at the end of the previous paragraph. In the meta-analysis, the estimates
for CO for each city were combined using fixed and random effects models (Normand (1999)).
City-specific and pooled estimates are represented graphically in Figure 5 and Figure 6. Beeing
the values of the coefficients very small, for graphical convenience all values have been multiplied
by 104.

As expected, the confidence intervals were widest under the random effects model, and narrow-
est under the fixed effects model. Nevertheless, differences in point estimates were negligible. A
geographical gradient in value for the effect is visible, with Seattle and Minneapolis distinguishing
from the remaining cities. Estimates are significant in Southern California and in the Southwest,
become not significant moving to the Southeast, and return significant moving to the Northeast
and industrial Midwest. This agrees with the effects found for PM10 from NMMAPS. These
findings confirm the ability of TF models in detecting the association between the output and
the inputs and in giving useful indications to construct sensible models for tackling this complex
modelling task.
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Figure 6. Results of the pooled analysis under the random effects model (coefficients are multiplied by
104).

6. Discussion

In this work, we discuss the use of transfer function models in environmental epidemiology,
in particular emphasizing their ability to provide realistic information for performing analyses
in situations in which evidence is available from a variety of sources. We have found transfer
function models a very flexible tool to deal with many variables, lagged effects, serial correlation.
Semi-automated model selection, which we have approached via a genetic search over the model
space, is challenging and provides useful information for combination of studies from disparate
sources.

Clearly, there are some drawbacks related to this paradigm. First of all, this approach ampli-
fies computationally the programming effort that it is typically involved in similar applications.
Although this is disadvantageous, advantages include the conceptual appeal of limiting difficult
and not always transparent ad hoc selections of the structure of the common model. Secondly,
the obvious probabilistic model associated with transfer function analysis is a Gaussian model,
which implies that the original data need to be transformed. In most applications, which focus on
cities with a relevant average number of daily events, transforming the data does not poses any
particular problem. Nevertheless, it could cause some difficulties in sites with a small number of
daily events.

In spite of these objections, we feel that the transfer function approach offers the modellers
realistic information to be used in subsequent analyses.



12 M. Chiogna et al.

Acknowledgement

This work was partially supported by MIUR (Italy) grant MM3208412: “Statistics in envi-
ronmental risk assessment”. A preliminary version of this paper was presented at XLI Riunione
Scientifica della Societa’ Italiana di Statistica, Milan (Italy), 5-7th June 2002 . We wish thank the
discussant of the Section for her useful comments. We are also indebited with Guido Masarotto
for providing us the computational framework.

References

Akaike, H., (1973). Information theory and an extension of the maximum likelihood principle. In:
Petrov, B., Csaki, F. (Eds.), 2nd International Symposium on Information Theory. Akadémiai
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