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ABSTRACT 

Nonlinear bending of thin wires is the main or one of the fundamental matters in several 

applications, especially when the plastic behaviour is widely involved. Such applications often 

require the reaching of large curvatures if compared to wire cross-section dimensions. In these cases 

a broad plasticization of the cross section is achieved early, even before curvature becomes large. In 

this paper a new analytical model is proposed, able to foresee the final curvature obtained after 

nonlinear bending of wires with non-symmetric cross sections, once load parameters are known. 

Both elastic springback after the unloading and material behavioural nonlinearities have been 

considered. From the engineering point of view, negligible errors are committed when applying the 

model to all those materials guaranteeing that wire cross sections remain plane after rotation 

(Bernoulli-Navier’s hypothesis). The wire stress state can be evaluated by means of the model and 

enables the low cycle fatigue resistance verification. 
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1. INTRODUCTION 

For those structural applications involving thin wire bending that require the achievement of small 

residual final curvature radii, even comparable to the dimensions of the cross section, a good 

knowledge of the bending process technological parameters is essential. The designer would be 

greatly helped by a reference calculation model that could assess them. Among the most common 

examples of applications that can benefit by the utilization of a specific model, recall the production 

of bent wires for tyre, cylindrical helical spring or spectacle frame manufacturing. The metallic 

materials manageable by means of the model should also be different from classical carbon steel, 

e.g. titanium or aluminium alloys. Moreover, the maximum wire stress and strain state during 

bending should be estimable by applying the model in order to avoid excessive wire damaging or 

fatigue failure. Further greatly developing applications, like those utilizing shape memory bent 

wires constructed with particular Ti-Ni alloys [1-3], e.g. the production of orthodontic wires [4-6], 

can be interested in such a model. 

The very accurate analytical methods dealing with the nonlinear bending of plates, that can be 

found in the literature [7-9], are not applicable to wires because of the substantial geometric 

differences between the two technological products. For example, assuming the hypothesis of 

compact cross section about its centroid, a plate shows the anticlastic effect. The models in the 

literature enable to determine with high accuracy the technological parameters necessary to obtain 

the required final shapes for metal plates, taking into account the elastic springback after folding 

operations [10]. J.F. Wang et al. [11] proposed an in-depth study on the folding of aluminium alloy 

sheets taking into account the effect of the anticlastic curvature on the elastic springback. The 

authors pointed out the effect of the plate geometrical parameter variation on the zone of persistent 

anticlastic curvature and on the final shape of the manufactured product. Other models [12] studied 

the correlation between the bending process and the mechanical characteristics of materials. The 

development and diffusion of the Finite Element method has allowed to improve and realize several 

calculation models based on the numerical simulation of bending processes. Such studies allow to 

estimate with accuracy the springback of the metallic sheets after unloading during folding 

operations so as to provide the designer with a quick and precise tool that optimizes process 

technological parameters [13-19]. B.K. Chun et al. [20, 21] studied and implemented models by 

means of finite elements, able to simulate sheet metal forming operations taking into account the 

Bauschinger’s effect, and to foresee the elastic springback in presence of cyclic load. The material 

work hardening was considered by means of nonlinear isotropic and kinematic behavioural models. 

In the literature, further analytical and numerical-iterative models are available. They allow to 

foresee the plate elastic springback and to optimize sheet folding and forming operations and die 
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design [22-25]. All these models have also been validated by the comparison with experimental 

data. 

As aforesaid, research studies of nonlinear bending of metallic wires have not known, for the time 

being, the same development that has interested the studies of sheet metal folding and forming. 

Studies [26-28] reported in less recent literature are focused on the calculation of the bending angle 

recovered by means of elastic springback by rectangular cross sectioned wires after a uniform 

bending process with known radius of curvature. The results obtained by applying the analytical 

model reproduce accurately the experimental evidences if the residual stress effect on the wire is 

left aside. I.V. Khromov [29] elaborated a calculation algorithm and implemented, starting from it, 

a FEM model for determining the stress state of effort in a wire with circular cross section. The 

numerical solution of the problem was obtained using integral equations valid in the plasticized 

zone of the cross section and considering a material with linear isotropic work hardening 

behaviours. B. Goes et al. [30] formulated an analytical model to describe the effect of the residual 

stresses on tensile tests after coiling or bending operations. The coiling curvature is large if 

compared to the wire cross section radius and it is assumed that the material behaviour fits the Voce 

law, and the Bauschinger’s effect on the elastic springback is negligible. Residual stresses and a 

highly work hardened material are effects of the wire drawing process. C.J. Luis et al. [31] 

proposed a comparison between analytical and numerical methods applied to the study of wire 

drawing. S.H. Chen and T.C. Wang [32] studied the bending of thin beams experimentally, in order 

to formulate a new work hardening law of the strain gradient theory. In the reference, elastic 

springback after unloading and the following residual curvature are not dealt with. J.Y. Richard 

Liew et al. [33] analyzed curved beams to evaluate, taking into account the residual stresses and the 

radius of curvature, the ultimate moment capacity by means of an analytical model and with the aid 

of a finite element model. In the literature, one can find references on the nonlinear bending of 

curved beams in plain strain state, considering the material work hardening [34]. Other references 

report studies on beams bending in presence of a residual stress field [35], and on the nonlinear 

bending of sandwich beams by means of analytical and experimental methods [36]. 

The aim of this paper is to develop, starting from the model proposed in the reference [37], a more 

accurate analytical model able to improve the models available in the literature in foreseeing the 

residual curvature produced in thin metallic wires after bending operations. Thanks to the 

determination of the stress state over the wire cross section, it also enables to analyze the low cycle 

fatigue resistance during service life. The calculation model could supply a designer with an 

accurate and, at the same time, simple and fast tool to deduce a priori the required bending moment 

or the loading radius of curvature. In order to do it, the model takes into account the nonlinear 
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material behaviour during bending, i.e. it can consider either the whole cross section in the elastic 

field or partially elastic and partially plastic or entirely in the plastic field. The curvature loss during 

unloading elastic springback or the material post-yielding plasticization are therefore not neglected. 

The bending process nonlinearity, that the model takes into account, has a high influence on the 

accuracy of the imposed design process curvature, in particular when large curvatures, i.e. large 

deformations, are involved. One of the main aspects of the work is the study of the neutral axis 

displacement for a generic cross section, when the reached curvature determines the beginning of 

the wire plasticization [38]. The model takes into account this effect, even if it does not appear 

explicitly in any calculation step. Moreover, the final strain level for a bent wire can be accurately 

predicted so as to avoid obtaining excessively damaged or failed final products. Among all the 

material behaviour laws proposed in the literature [39-44] for modeling the correlation between 

stress and deformation, we have chosen the elastic-perfectly plastic material behaviour. In future 

developments, we intend to verify the possibility to extend the model validity to other and more 

accurate material behaviour models. 

The cross section geometries that can be studied by the model are generic. In the present work, the 

study of a singly symmetric cross section similar to those of spectacle frames has been developed in 

full detail. We assume, among our starting theoretical hypotheses, the Bernoulli-Navier’s 

hypothesis about the conservation of the cross section planarity after rotations, and the hypothesis 

of compact cross section around the centroid so as to be able to neglect deformation anticlastic 

effects. At the end of the paper, a numerical example of model application on a wire with singly 

symmetric cross section is implemented with the aid of a suitable calculation code. The example 

also shows the displacements of the neutral axis and of the advancing plasticization fronts over the 

cross section with the diminishing of the radius of curvature during the process progression. 

   

 

2. ANALYTICAL MODEL: HYPOTHESES AND DEVELOPMENT 

First of all we point out some fundamental statements and preliminary hypotheses: 

1) The starting wire configuration is rectilinear and then the bending follows an arc of 

circumference whose radius decreases during the loading phase. We call r the actual radius of 

curvature due to the bending load with respect to the cross section centroidal axis. The starting 

wire bendable length has been called l0. 

2) We suppose that wire cross sections remain plane after bending rotation and oriented as the 

radial direction from the centre of curvature (Bernoulli-Navier’s hypothesis). From point 1) the 

curvature is the same for all the sections belonging to l0. 
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3) We neglect transversal and shear stresses during bending with respect to normal ones. 

4) We fix each cross section y vertical axis directed towards the centre of curvature. The y axis 

origin is kept fixed on cross section centroid during bending and let positive y values be on the 

centre of curvature side.  

5) Let b(y) be the wire cross section width varying with the y coordinate so that the cross section 

area is: 

( )A b y dy
∞

−∞
= ∫  (1) 

Clearly b(y) is null outside the cross section height interval.  

6) By the hypothesis 4) on the centroid, the following equation has to be satisfied: 

( ) 0b y y dy
∞

−∞
=∫  (2) 

7) In order to determine the actual wire configuration during nonlinear bending with respect to the 

actual curvature radius, it is necessary to evaluate, by means of the equilibrium equation, the 

actual ψ = ψ(r) curvature angle spanned by the wire (figure 1).  

8) The engineering strain of a generic fibre positioned at the y quote is therefore given by: 

( ) ( )( ) ( )( )0

0 0

, 1e

r r y l r r y
r y

l l
ψ ψ

ε
− − −

= = −  (3) 

9) In the pure elastic field of material behaviour the actual strain can be assumed substantially 

equal to the engineering one. In the plastic field the true strain formulation has instead to be 

applied. This distinction is not important for the calculation procedure here reported but only 

for the final check about the not overcoming of the material plastic strain limit (rupture). In fact 

the model equations do not involve integrations with respect to strains but to y cross section 

quotes. In symbols: 

( ) ( )
( ) ( )( )

               if   

1    if   
e s

e s

r ,y r ,y

lnr ,y r ,y

ε ε ε ε

ε ε ε ε

= ≤


= + ≥
 (4) 

It is important to emphasize that the model proposed in this paper applies only if the real material 

behaviour can guarantee a substantial respect of Bernoulli-Navier’s hypothesis for cross section 

rotations during nonlinear bending. From the engineering point of view it could be said that most 

technical application materials are treatable considering point 2) satisfied with negligible 

discrepancies. 

In the present model, an elastic-perfectly plastic material behaviour is considered, with symmetric 
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tension and compression behaviours. For next research activities, more complicated and realistic 

behavioural models will be evaluated, even if we judge the results reached considering this simple 

first model quite satisfying and opening to further study developments. 

ψ(r)

r

 

Figure 1: actual curvature angle representation. 

 

2.1 Perfectly elastic range 

In the pure elastic range of the material behaviour the normal stress in a generic cross section point 

with vertical coordinate y is given by: 

( ) ( ) ( )  if  sr , y E r, y r , yσ ε ε ε= ≤  (5) 

Assuming that the applied bending moment is uniform along the bent wire, the equilibrium equation 

for a generic cross section is: 

( ) ( ), 0  r y b y dy rσ
∞

−∞
= ∀∫  (6) 

Substituting the stress expression from equation (5) we obtain: 

( )( ) ( )
0

0 1
r r y

E b y dy
l

ψ∞

−∞

 −
= − 

 
∫   

( )( ) ( ) ( ) ( ) ( ) ( )
0 0

 0
r r y r

b y dy b y dy r y b y dy A
l l

ψ ψ∞ ∞ ∞

−∞ −∞ −∞

−
⇔ − = − − =∫ ∫ ∫  (7) 

The analytical formulation for ψ(r) is thus obtained: 
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( )
( ) ( ) ( )

0

0 0 0
r y
l

Al Al lA
r

rA rb y dy r b y dy yb y dy
ψ ∞ ∞ ∞−

−∞ −∞ −∞

= = = =
−∫ ∫ ∫

 (8) 

In this case the actual strain expression is reduced to: 

( )
( )0

0

0

,

l
r y l yrr y

l r
ε

− −
= = −  (8) 

The wire length at a generic y quote for each actual curvature radius is: 

( ) ( )( ),l r y r r yψ= −  (9) 

By equating the partial derivative of l with respect to r with zero we are able to verify that, as 

expected for the pure elastic field, the cross section centroid lies on the neutral axis: 

( ) ( ) 00
2, 0  0

l l ylr y r y
r r rr

∂ ∂  = = ⇔ =− ∂ ∂  
 (10) 

This represents a first check for the analytical model correctness. The applied bending moment 

during the wire loading phase can be calculated as follows: 

( ) ( )( ) ( ) ( ) ( ) ( )2 C
n

E EJ
M r r, y y y b y dy E r, y yb y dy y b y dy

r r
σ ε

∞ ∞ ∞

−∞ −∞ −∞

−
= − = = = −∫ ∫ ∫  (11) 

In this case the springback after unloading is theoretically complete so that no residual curvature 

can be observed. Obviously this behaviour involves only large curvature radii. As the curvature 

rises and the elastic limit is exceeded, the influence of the plastic field behaviour has to be 

adequately considered. 

 

2.2 Perfectly elastic-perfectly plastic range 

Since an elastic-perfectly plastic material behaviour is assumed, as the yield stress is achieved 

further deformations do not generate any increase in the stress level. Consequently in the perfectly 

plastic field the stress can be expressed as follows: 

( )
( )
( )

  if  ,
,

if  ,
s s

s s

E r y
r y

E r y

ε ε ε
σ

ε ε ε

 >= 
− < −

 (12) 

It has to be pointed out that as the first fibre of the cross section begins to yield, the neutral axis 

position begins to move in order to guarantee the undeformed condition for the neutral fibre. The 

unloading of the wire can not restore the undeformed state for the plasticized fibres anymore as is 

for the pure elastic range. A residual curvature begins to be observed. 
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Let y1(r) be the quote at which the first yielding in the outer side with respect to the centre of 

curvature happens, and y2(r) for the inner one, without considering if each quote is or is not inside 

the cross section height limits. In order to determine y1 and y2 for a given radius of curvature r, it 

has to be understood which fibres have already been yielded and which not over the cross section. 

The non-plasticized fibres are included in the following interval: 

( ) ( )( ) ( )
( )

( )
( )

0 0
1 2

0

1 1
, 1     s s

s

r r y l l
r y y r y r y

l r r
ψ ε ε

ε ε
ψ ψ

− + −
= − ≤ ⇔ = − ≤ ≤ − =  (13) 

By linearity, the neutral axis quote is centred in the above reported elastic interval, thus: 

( ) ( )
0

n

l
y r r

rψ
= −  (14) 

Rearranging the adopted material behaviour in terms of y, the normal stress over the cross section 

can be reformulated as follows: 

( )

( )
( )

( ) ( )( ) ( )
( )

( )
( )

( )
( )

0

0 0

0

0

1

1 1

1

 if   

1  if   

 if   

s

s s

s

l
s r

l lr y r
l r r

l
s r

E y r

r, y E r y r

E r y

ε
ψ

ε εψ
ψ ψ

ε
ψ

ε

σ

ε

+

+ −−

−

 ≤ −

= − − ≤ ≤ −

− − ≤

 (15) 

The curvature angle is obtained from the equilibrium equation as for equation (6). In this case the 

integral formulation is more complicated: 

( ) ( ) 0r, y b y dyσ
∞

−∞
=∫   

( )
( ) ( ) ( )

( )

( )
( ) ( )( ) ( ) ( )

( )
( )

00

00

11

11
0

01
ss

ss

ll rr rr
ls sl rr rr

r r y
b y dy b y dy b y dy

l

εε
ψψ

εε
ψψ

ψ
ε ε

−+ −− ∞
−+−∞ −−

 −
+ − =− 

 
∫ ∫ ∫  (16) 

Note here that formulation (15) holds if and only if y1 and y2 are respectively decreasing and 

increasing as functions of the curvature radius r. Otherwise one would have the paradoxical 

situation where an already plasticized fibre returns to an elastic behaviour. Observe that: 

1
02

1
1sy d

l
r dr

ε ψ
ψ

∂ +
= +

∂
 (17) 

and, by an application of the implicit function theorem: 
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( )

( ) ( )

2

1

2

1

y

y
y

y

b dyyd
dr b dyr y y

ψψ
= −

−

∫
∫

 (18) 

Therefore, substituting (18) in (17), one obtains: 

( ) ( )

( ) ( )

2

1

2

1

1
1 0

y

y
y

y

b dyy y yy
r b dyr y y

−∂
= <

∂ −

∫
∫

 (19) 

and this shows that y1 decreases with r. Similarly, one can prove that: 

( ) ( )

( ) ( )

2

1

2

1

2
2 0

y

y
y

y

b dyy y yy
r b dyr y y

−∂
= >

∂ −

∫
∫

 (20) 

and y2 indeed increases with r. 

By developing equation (16) it is possible to calculate ψ(r) as an explicit function of the radius of 

curvature and by means of its value the applied bending moment: 

( ) ( )( ) ( ) ( ) ( )nM r r, y y y b y dy r, y yb y dyσ σ
∞ ∞

−∞ −∞
= − =∫ ∫   

( )
( )

( ) ( ) ( )
( )

( )
( ) ( )( ) ( )

( )
( )

( )

00

0

0

11

1
0

1

1
ss

s

s

ll rr rr
s l

r
r

ls r
r

r r y
M r E b y y dy E b y y dy

l

E b y y dy

εε
ψψ

ε

ψ

ε

ψ

ψ
ε

ε

−+ −−

+−∞ −

∞
−

−

 −
= + +− 

 

−

∫ ∫

∫
 (21) 

It is simple to analytically determine the neutral axis position corresponding to the fully plasticized 

cross section, provided that such condition be reached. In this case the equilibrium equation 

becomes, as well-known from the classical Structural Mechanics literature: 

( ) ( ) ( ) ( )0    n n

n n

y y

s s y y
b y dy b y dy b y dy b y dyε ε

∞ ∞

−∞ −∞
− = ⇔ =∫ ∫ ∫ ∫  (22) 

It is trivial to understand that the neutral axis divides the cross section into two fully plasticized 

parts of the same area. 

The model above reported is applicable to a generic wire cross section. The rising complications 

introduced when we try to apply the model to a precise cross section shape are not irrelevant. In the 

following part of the paper the case of a singly symmetric cross section will be treated. 

As a final remark of this section, observe that, when applied to a doubly symmetric cross section 

wire (b(y) = b(-y)), this model recovers the results obtained by S. Baragetti [37] in the case of 
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elastic-perfectly plastic material behaviour. Indeed the equilibrium equation is verified by the 

function ψ(r) = l0/r for any value of r: 

( )

( ) ( )

( ) ( ) ( ) ( ) ( )
00

00
00

00

11
0

11
0

01
ss

ss

ll rr l rl r
ls sl rr l rl r

r yl
b y dy b y dy b y dy

r l

εε

εεε ε
−+ −− ∞

−+−∞ −−

 −
+ − =− 

 
∫ ∫ ∫   

( ) ( ) ( )1
  0s s

s s

r r

s sr r
b y dy yb y dy b y dy

r

ε ε

ε ε
ε ε

− ∞

−∞ −
⇔ − − =∫ ∫ ∫  (23) 

The angle ψ(r) spanned by the bent wire arc is the same already found for the perfectly elastic 

behaviour range. The neutral axis remains coincident with the centroidal axis until fully 

plasticization of the cross section is achieved. 

Substituting the expression for ψ into equation (21) one can easily obtain the bending moment: 

( ) ( ) ( ) ( )

( ) ( )

2

2

0

2
2

s s

s s

s

s

r r

s sr r

r

s r

E
M r E b y y dy b y y dy E b y y dy

r
E

E b y y dy b y y dy
r

ε ε

ε ε

ε

ε

ε ε

ε

− ∞

−∞ −

∞

= − − =

= − −

∫ ∫ ∫

∫ ∫
 (24) 

 

 

3. SINGLY SYMMETRIC CROSS SECTION 

Starting from the model discussed in the previous section, we have developed the study of nonlinear 

bending of a singly symmetric cross section wire. It has to be noted the relevance of this section 

shape because of its large diffusion, e.g. in the spectacle frame field. In figure 2 the studied cross 

section shape is represented. The concavity realized in the section bottom side could in particular 

receive the lens external edge and keep it fixed. 

 

C

y

h2

h1

b1

b2/2 b2/2

x
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Figure 2: the singly symmetric cross section type considered in the model. 

 

The centroid lies on the width changing quote and the symmetry axis coincides with the vertical y 

axis and crosses C. With respect to the coordinate system we have: 

( ) 1 1

2 2

  if   0
  if   0

b h y
b y

b y h
− ≤ ≤

=  ≤ ≤
 (25) 

Provided that h1 < h2, from the application of equation (2) results: 

( )2

1

2 2
1 1 2 20    h

h b y y dy b h b h− = ⇔ =∫  (26) 

Let δ be the ratio h2/h1 > 1, then it is useful to express b1 and h1 as functions, respectively, of b2 and 

h2: 

2
1 2

1
1 2

b b
h h

δ
δ −

 =


=
 (27) 

The area of the cross section part where the y coordinates are negative is bigger than the one where 

they are positive. Indeed b1h1 = δ b2h2 > b2h2. As a consequence, for the fully plasticized wire cross 

section, the neutral axis quote yn has to be negative in order to verify the condition of the equality 

between inner and outer area (22). In symbols we have: 

( ) 1 1 2 2
1 1 2 2 1 1

1

1
    

2 2n n n
b h b h

y h b b h y b y h
b

δ
δ

− −
+ = − ⇔ = − = −  (28) 

This coordinate varies from 0 to -h1/2 with δ varying from 1 to infinity. 

It is easy to evaluate the bending moment that plasticizes the whole cross section: 

( )2

1

0 2 22 21 1 2
1 1 2 210 2 2 2

n

n

y h
s s s

fp s s s nnh y

E b E b E b
M b y dy b y dy b y dy y hy h

ε ε ε
σ σ σ

−
= − − = + −−∫ ∫ ∫   

( )( ) 2
2 22 3 1 1

4
s

fp
E

M b h
ε

δ δ
δ

⇒ = − − +  (29) 

Now we are able to formulate a hypothesis about the y1 and y2 limit trend of the non-plasticized 

intermediate region of the cross section with the variation of r. In particular, given that for small 

curvature we have an elastic behaviour, while for full plasticization the neutral axis has negative 

coordinate, we can identify only two different possible trends.  

For the first one we can select three particular curvature radius values, r1, r2 and r3, with r3 < r2 < r1, 

such that four cases are observable: 
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1 1 2 20    if      1y h h y r r≤ − ≤ ≤ ≤ ≤  (30-a) 

1 1 2 20    if      2 1y h y h r r r≤ − ≤ ≤ ≤ ≤ ≤  (30-b) 

1 1 2 20    if      3 2h y y h r r r− ≤ ≤ ≤ ≤ ≤ ≤  (30-c) 

1 1 2 20    if      3h y y h r r− ≤ ≤ ≤ ≤ ≤  (30-d) 

In figure 3 the third case of (30) is represented as an example. 

For the second possibility we can suppose that the three values make true the following set of 

situations: 

1 1 2 20    if      1y h h y r r≤ − ≤ ≤ ≤ ≤  (31-a) 

1 1 2 2 10    if      2y h y h r r r≤ − ≤ ≤ ≤ ≤ ≤  (31-b) 

1 1 2 20    if      3 2y h y h r r r≤ − ≤ ≤ ≤ ≤ ≤  (31-c) 

1 1 2 20    if      3h y y h r r− ≤ ≤ ≤ ≤ ≤  (31-d) 

From (31) one can argue that the plasticization of the centroidal fibre happens before that of the -h1 

quoted fibre. But this can not happen because for r = r3, namely while the -h1 quoted fibre is 

plasticizing, the equilibrium equation would not be satisfied: 

( )2 2

1 2

03
1 1 20

0

01
y h

s sh y

r y
b dy b dy b dy

l
ψ

ε ε
−

 −
− − =− 

 
∫ ∫ ∫  

( )2

1

3
1 1 2 2 2

0

  1
y

s sh

r y
b dy b y h b

l
ψ

ε ε
−

 −
⇔ = − +− 

 
∫  

 

In fact for the elastic region of the cross section we have: 

( )2

1

3

0

01
y

h

r y
dy

l
ψ

−

 −
=− 

 
∫   

So we get the following absurd (recalling that y2 ≤ 0): 

2 1 2 20 0s sy b h bε ε= − + >  (32) 
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Figure 3: example of a possible stress state during bending. In particular the c-case is showed. 

 

Then the cases collected in (31) have to be discarded. Applying the cases (30-a), (30-b), (30-c) or 

(30-d) the equilibrium equation (16) changes when applied to each one of them. The result that we 

have obtained is a piecewise smooth function ψ(r) covering all the range of curvature radii up to the 

smallest ones. Clearly the choice of the correct solutions for each radius interval is dependent on the 

continuity condition at its extremes. 

For the case (30-a), when the cross section is fully perfectly elastic, the equilibrium equation (16) 

reduces to: 

( ) ( ) ( )2

1
0

01
h

h

r y r b y dy
l

ψ
−

 −
=− 

 
∫  (33-a.1) 

In this situation the solution is ψ(r) =ψa(r) = l0/r and the required condition about the range of 

values for curvature radii is: 

( )
( )

0 2
2 2 1

1 s
s

s

l h
h y r r     r r

r

ε
ε

ψ ε
−

≤ = − = ⇔ ≥ =  (33-a.2) 

(obviously the most extended cross section part with respect to the neutral axis is the one that has to 

be compared with radius dimension). 

The required loading bending moment as a function of the radius r is: 

( ) ( ) ( ) ( ) ( ) ( )2 2

1 1

2 3 3
2 2 1 1

0

1
3

h ha
a h h

r y r E E
M r E yb y dy y b y dy h b h b

r rl
ψ

− −

 −
= = − = − +− 

 
∫ ∫   

( ) ( )
3

12 2 1
3a

Eb h
  M r

r
δ −⇔ = − +  (33-a.3) 
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When r = r1 we are able to calculate the bending moment that causes the first plasticization of the 

farther fibres with respect to the neutral axis: 

( ) ( )
2

12 2
1 1

3
s

ip a
Eb h

M M r
ε

δ −= = − +  (33-a.4) 

For the case (30-b), when the cross section is partially perfectly elastic and partially plastic, the 

equilibrium is given by:  

( )
( ) ( ) ( ) ( ) ( )

( )

( )

( ) ( )
( )

( )
( )

( ) ( )

0
2

0
1

1

1

0

2 2 2
1 1 1 1 2 0 2 2 0

1 1 2 2
0 0 0

2
2 0 2 0

2 2

0 1

2 2 2 2

s

b
s

b

l
r hbr lsh r

r

b b b s
s

b b

s s
s

b b

r y r b y dy b y dy
l

b h rb h b l r b b lr r rb h rb rb
l l lr r

b l b l
b h

r r

ε

ψ
ε

ψ

ψ
ε

ψ ψ ψ ε
ε

ψ ψ

ε ε
ε

ψ ψ

−
−

−
− −

 −
= −− 

 

= + − + − + − + +

− − +

∫ ∫

  

Developing we have: 

( ) ( ) ( )2 2 2 2 2
2 1 1 2 2 2 1 1 2 2 0 2 2 2 02 2 1 2 0b s s b s sr b rb h b h rb b h b h l b b b lψ ε ε ψ ε ε + + − − + + + − + =    

( ) ( ) ( )22 2 2 2
2 2 2 2 0 02 2 1 1 0b s s b s  r r h h r h h l lδ ψ ε δ ε ψ ε ⇒ + + − − + + + − =   (33-b.1) 

From which it is possible to calculate ψb(r) by choosing the solution fitting ψa(r) in r = r1. In 

symbols: 

( )
( ) ( ) ( ) ( ) ( )2 2 2

02 2
2 2

1 1 2 1 2 1

2
s s s s s

b

r h h r h
lr

r r h h

ε δ ε δ ε ε δ ε
ψ

δ

 − + + + + − + + − =
+ +

 (33-b.2) 

The verification of the continuity of ψ(r) in the connection point r1 is reported below: 

( )1 0
2

s
a r l

h
ε

ψ =  

( )

( ) ( ) ( ) ( ) ( )2
2 2 2 2

1 0 02
22 22

2 2

1
1 2 1 2 1

2

s
s s s

s s
b

s s

h
h h h h

r l l
hh

h h

ε
δ ε δ ε δ ε

ε ε
ψ

δ
ε ε

−
 + + + + − + + − 

= =
 

+ + 
 

 

 

The bending moment can be calculated as follows: 
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( ) ( ) ( ) ( ) ( )( )
( )

( )
( )

0

1

2

0

1
0

1 2 0
0 0

12

1 1
s

b

s

b

l
rb br

b h

h
ls r

r

r y r r y r
M r Eb y dy Eb y dy

l l

E b y dy

ε

ψ

ε

ψ

ψ ψ

ε

−
−

−

−
−

   − −
= + +− −   

   

−

∫ ∫

∫
  

( ) ( ) ( )

( ) ( ) ( ) ( )

3 22
22 2 1

0 2 22

1 22
22 2 2 2

20 0

3 13 2 1
6

1 3 1
6

b
b s

b b
s s

r hEb h r rrM r
l h hh

Eb h r h r hr
hl l

ψ
εδ

ψ ψε ε

−

− −

        ⇒ = − + − +− + + −                  
    − −  − + −   
     

 (33-b.3) 

Before we move to case c, let us study the simpler case d, where the inner front y2 crosses the 

centroid quote. Writing the equilibrium equation, we have: 

( )
( ) ( ) ( )

( )

( )
( ) ( )( ) ( ) ( )

( )

( )

( )
( ) ( )

( ) ( )
( ) ( )

( )
( )

00
2

00
1

11

11
0

0 0 1 1 0 0
1 1

0 0

0
1 2 2

0 1

1 2 2 2
1 2

2

1

ss

dd
ss

dd

ll rr hdrr ls slh rr rr

s s d d s
s

d d dd

s
s s

d

r yrb y dy b y dy b y dy
l

l l b r b l lr rb rr h
l lr r rr

l
b b hr

r

εε
ψψ

εε
ψψ

ψ
ε ε

ε ε ψ ψ ε
ε

ψ ψ ψψ

ε
ε ε

ψ

−+ −−
−+− −−

 −
= + −− 

 

     +
= + − − − ++ −     

    
 −

− −− 
 

∫ ∫ ∫

  

Multiplying by ψd(r) and dividing by εs each term we obtain: 

( )( )1 1 1 2 2 1 02 2 0d rb b h b h b lrψ + − − =   

( ) 1
0

1 1 1 2 2

2
2d

b
lr

rb b h b h
ψ⇒ =

+ −
 (33-d.1) 

The quote of the neutral axis is therefore: 

( ) ( )
0 1 1 2 2

22
1

1
2 2n

d

l b h b h
y r r h

r b
δ

ψ δ
− −

= − = − = −  (33-d.2) 

It should be noted that, for these values of r, the neutral axis remains fixed in the position assumed 

as the cross section fully plasticizes.  

The present configuration holds for negative y2, so: 

( )( )2 1 1 2 2
1

1
1 0

2s sy r b h b h
b

ε ε= − − − ≤   

This permits to evaluate the superior endpoint r3 of the radii interval: 
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( )( )1 1 2 2
3

1

1
2

s

s

b h b h
r r

b
ε

ε
− −

≤ =  (33-d.3) 

The bending moment equation is: 

( )
( )

( )
( )

( )

( )
( ) ( ) ( )

( )
( )

00

01

2

0

11

1 1 1
0

0
11 2 0

1
ss

dd
s

d

s

d

ll rr drr
d s lh r

r

h
ls sr

r

r y rM r E b y dy Eb y dy
l

E b y dy E b y dy

εε
ψψ

ε

ψ

ε

ψ

ψ
ε

ε ε

−+ −−

+− −

−
−

 −
= + +− 

 

− −

∫ ∫

∫ ∫
  

( )
22

2 2 2 2 2 2 2 3 2 4 2
2

2 2 2

4 4 213 6 9 2
12

s
d s s s s s

Eb h r r rM r
h h h

ε
δ δ ε δε δ ε δ ε δ ε

δ

   ⇒ = − − − + − + + +   
     

 (33-d.4) 

Going back to case c, where the cross section begins to plasticize in the outer side, the 

corresponding equilibrium equation is:  

( )
( ) ( ) ( )

( )

( )
( ) ( )( ) ( ) ( )

( )

( )

( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

00
2

001

11

11
0

2

0 0 01
1 11

0 0

0
2 2

0 1

1 1 1
1

2

1

ss

cc
ss

cc

ll rr hcrr ls slh rr rr

s s sc c
s

c c c

s
s

c

r yrb y dy b y dy b y dy
l

l l lr br rb bh r r r
l lr r r

l
b h r

r

εε
ψψ

εε
ψψ

ψ
ε ε

ε ε εψ ψ
ε

ψ ψ ψ

ε
ε

ψ

−+ −−
−+− −−

 −
= + −− 

 

      + + +
= + − ++ − − −      

      

 −
− +− + 

 

∫ ∫ ∫

( )
( )

( ) ( ) ( )
( )

2

0 02
2

0 0

1 1
1

2
s sc c

c c

l lr br rb r r
l lr r

ε εψ ψ
ψ ψ

    − −
− −− −    

    

  

Multiplying each term by ψc(r), we have: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
2 0

1 2 1 2 1 2 1 1 2 2 1 2
0

2
0

0 1 2 1 2

0
2 2

2

c s s s c

s
s

r l
b b r b b r b b b h b h b br r

l

l
l b b b b

ψ ε ε ε ψ

ε
ε

 = − − − + + + − + − 

+ + + −

 (33-c.1) 

Between the two solutions, the one that guarantees the continuity of ψ(r) in r3 is: 

( )
( )

( ) ( ) ( ) ( )

( ) ( )
1
2

1 2 1 2 1 1 2 2
02

1 2

2 2 20
1 2 1 2 1 1 2 2 1 2 1 22

1 2

2 2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 1 2 2 1 1 2 2

2 2 2

2 4 2

s s s s
c

s s s

s s s s

rb rb rb rb b h b h
lr

r b b

l
rb b h h r b h b h rb b h h

r b b

b b h h r b b r b h b h b h b h

ε ε ε ε
ψ

ε ε ε

ε ε ε ε

− + + + −
= +

−

− − + + + + − +−

− + + − + + 

 (33-c.2) 

Indeed: 
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( ) ( ) ( )

( ) ( )( )

3 1 3 2 3 1 3 2 1 1 2 2 1 1 2 2 1
3 0 0 02 2

3 1 2 3 1 2 1 1 2 2

1 0 1 0 1
3 0

1 1 2 23 1 1 1 2 2 1 1 2 2
1 1 1 2 2

1

2

2 2 2
12

s s s s s
c

s
d

s

s

r b r b r b r b b h b h b h b h b
r l l l

r b b r b b b h b h

b l b l b
r l

b h b hr b b h b h b h b h
b b h b h

b

ε ε ε ε ε
ψ

ε
ψ

ε
ε

− + + + − −
= − =

− − −

= = =
− −+ − −

+ −

 (33-c.3) 

When r = r2 the plasticization of the outer section side is starting, namely y1 = -h1. Therefore, in 

order to determine r2, the following system has to be solved:  

( ) ( ) ( ) ( )( )
( )

( )
( )

( )
( )

1 0
2 22

1 0
1 2 2

0 2 22 2
1 2 20

0 0

0
2 1

2

01 1

1

ls
rc

ls
rc

r hc c
sh r

s

c

r y r yr r
b dy b dy b dy

l l

l
r h

r

ε
ψ

ε
ψ

ψ ψ
ε

ε
ψ

−

−

−

− −

    − −
+ − =− −    

    


+ − = −


∫ ∫ ∫
  

( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

2
02 1 12 2

2 21 1 2
20 0

2

0 02 22 2
2 22

2 20 0

0
2 1

2

1
1

2

1 1
1 0

2

1

sc c
s

c

s sc c

c c

s

c

lr b hr r
h rb h b

rl l

l lr br r
r r   b

r rl l

l
r h

r

εψ ψ
ε

ψ

ε εψ ψ
ψ ψ

ε
ψ

  − 
− +− + −    

   


   − −  − −⇔ + − − =     
    

 + = −



 (33-c.4) 

Substituting r2 into the first equation we obtain: 

( ) ( ) ( )( )2 2 2 2 2
1 1 2 1 1 1 0 2 1 0 2 2 0 2 02 2 2 4 2 4 0c c s s s sb h b h b h l b h l b h l b lr rψ ψ ε ε ε ε− − − − − =   

Between the two solutions, the one that guarantees the continuity of ψ(r) in r2 is: 

( )
( )

( )

2 2 2 2 2
1 1 2 1 2 2 1 2 1 2 2 1 2 1 1 2 2

02 2
1 2 1

2 2 4 s

c

b h b h b h b b h h b h h b h b h
lr

b b h

ε
ψ

− − + − + + +
=

−
 

( ) ( )( )2 2 2 2 2
2 1 2 2 1 1 2 1 2 1 2 1 2 1 1 2 2

2
2

2 1 1 4 2

4
s s

s

b h b h b h b h h b b h h b h b h
r

b

ε ε

ε

− + + − + − + +
⇒ =  

(33-c.5) 

The bending moment equation becomes: 

( )
( )

( ) ( )
( )

( ) ( )

( )
( ) ( ) ( )

( )
( )

0

0
1

0
2

0

1
0

11 1
0

1

12 20
0

1

1

s

c
s

c

s

c
s

c

l
r cr lc s h r

r

l
r hcr ls r

r

r y rM r E b y dy Eb y dy
l

r y rEb y dy E b y dy
l

ε

ψ
ε

ψ

ε

ψ
ε

ψ

ψ
ε

ψ
ε

+
−

+
− −

−
−

−
−

 −
= + +− 

 

 −
+ −− 

 

∫ ∫

∫ ∫
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( ) ( ) ( )( )

( )

( ) ( )

( )

32
2 2 2

0 2

22
2 2 2 2

2

12
2 2 2 2 2 2 22

0 2

22
2 2 2 2 3 22

0

1 1
6

3 3 3 3 6
6

6 3 3 3 6 3
6

1 3 3 3
6

c
c

s s s

c
s s s s

c
s s s s

Eb h h rrM r
l h

Eb h r
h

Eb h h rr
l h

Eb h hr
l

ψ
δ δ

δ δ ε ε ε

ψ
ε δ ε δ ε δ ε

ψ
ε δ ε ε δ ε

−

−

  ⇒ = − + − + 
   

  − + − − − + 
   
  − + − + − + + 
   

 − − − + − − − 
 

( )2 2 2 33 s sδ ε δ ε
 
 −
  

 (33-c.6) 

A tedious but not difficult calculation shows that, when h2 ≥ h1, the limiting radii satisfy the 

inequality r3 ≤ r2 ≤ r1, as desired. 

 

 

4. RESIDUAL CURVATURE EVALUATION 

Once a certain loading bending moment M(r) has been applied to the wire, a precise loading 

plasticization of the cross section is achieved. In order to evaluate the residual wire curvature we 

consider a linear unloading. With this assumption, the engineering strain formulation can be 

adopted to develop explicit calculation formulas. If we call rul the unloading radius with respect to 

the cross section centroidal axis and ψul(rul) the unloading curvature angle depending on rul, the 

corresponding engineering strain will be: 

( ) ( ) ( ) 0

0

ul ul ul
ul ul

r y r l
r , y

l
ψ

ε
− −

=  (34) 

The corresponding unloading normal stress is: 

( )
( ) ( )( )
( )
( ) ( )( )

1

1 2

2

 if   

 if   
 if   

ul ul s

ul ul ul ul

ul ul s

E r ,y E y yr ,y

r , y E r , y y y y
E r , y E y yr ,y

ε ε ε

σ ε
ε ε ε

 + − ≤


= ≤ ≤
 + − − ≤

 (35) 

assuming, a posteriori, that this quantity satisfies the inequality |σul(rul)| < σs. 

Imposing the equilibrium for the unloading phase over the cross section we have: 
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( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

1

2

1

20

0 ul ul

y

ul ul s sy

yul ul ul
s sy

r , y b y dy

E r , y b y dy E r, y b y dy E r, y b y dy

r r
A A r, y b y dy r, y b y dy

l

σ

ε ε ε ε ε

ψ
ε ε ε ε

∞

−∞

+∞ +∞

−∞ −∞

+∞

−∞

=

= + − − +

= − + − − +

∫
∫ ∫ ∫

∫ ∫

 (36) 

Extractingψul(rul) from the previous equation we obtain: 

( ) ( )( ) ( ) ( )( ) ( )1

2

0

1
y

s syul ul

ul

A r, y b y dy r, y b y dyr
l A r

ε ε ε εψ +∞
−∞− − + +∫ ∫

=  (37) 

Observe that in the doubly symmetric case, this expression reduces to 1/rul. 

The unloading bending moment Mul(rul) is given by: 

( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1

2

1

2

1

2

0

ul ul ul ul

y

ul res s

sy

yul ul
C y

y

s s y

M r r , y yb y dy

E r , y yb y dy E r, y yb y dy

E r, y yb y dy

r
E J E r, y yb y dy E r, y yb y dy

l

E yb y dy E yb y dy

σ

ε ε ε

ε ε

ψ
ε ε

ε ε

∞

−∞

+∞

−∞ −∞

+∞

+∞

−∞

+∞

−∞

=

= + − +

− +

= − − − +

+ −

∫
∫ ∫
∫

∫ ∫

∫ ∫

 (38) 

Recalling equation (21) for the loading moment, we can observe that: 

( ) ( ) ( ) ( ) ( )2 1

1 2

y y

s sy y
M r E r, y yb y dy E b y y dy E b y y dyε ε ε

∞

−∞
− = −∫ ∫ ∫   

Substituting into equation (38) we have: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

2

2

1

0

0

0 0

0 0

yul ul
ul ul C y

y

y

ul ul
C

ul ul
C C

r
M r E J E r, y yb y dy E r, y yb y dy

l
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 (39) 

The residual radius rres is given by the value of rul for which the above expression for Mul(rul) equals 

zero: 
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( ) ( ) ( )
0 0
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r M r r
l J E l

ψ ψ
= +  (40) 

Observe that in the doubly symmetric case, this equation reduces to the well-known formula: 

( )1 1

res C

M r
r J E r

= +   

Provided that the loading radius is known and is directly linked to the loading bending moment in 

each one of the four loading intervals previously characterized, the final wire curvature follows 

from the comparison between equations (37) and (40): 

( )( ) ( ) ( )( ) ( ) ( ) ( )1

2

0

1
y

s sy

res C

A r, y b y dy r, y b y dy M r r
r A J E l

ε ε ε ε ψ+∞
−∞− − + +∫ ∫

= +   

( ) ( )

( )( ) ( ) ( )( ) ( )

( ) ( )

1

2

0 0

1 2

1 C C

y
res s sy

M r r M r r
A A

J E l J E l

r A I IA r, y b y dy r , y b y dy

ψ ψ

ε ε ε ε+∞
−∞

   
+ +   

   ⇒ = =
− −− − − − −∫ ∫

 (41) 

For the chosen cross section the two integrals, I1 and I2, appearing at the denominator can be 

calculated for each of the four bending situations, i.e. (30-a), (30-b), (30-c) and (30-d), as follows. 

If r ≥ r1, 

1 2 0I I= =  (42-a) 

If r2 ≤ r ≤ r1, 
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∫

∫ ∫  (42-b) 

If r3 ≤ r ≤ r2, 
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 (42-c) 

If r ≤ r3, 
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 (42-d) 

Therefore the provided set of equations enables to foresee with good accuracy the residual curvature 

of a wire characterized by the previously showed cross section. 

Moreover, in order to guarantee the material integrity, it should be checked that the final plastic 

wire strain does not overcome a required limit. This typically corresponds to the rupture plastic 

strain of the wire material. To carry out that control it is necessary to consider the maximum final 

true wire strain over the cross section, namely: 

( ) ( )( )
0

f rmax
max

r r y
r ,y ln

l
ψ

ε ε
  − = ≤  
   

 (43) 

It should be noted that the initial bendable length does not influence any calculation. In fact it is a 

completely free parameter for a designer that applies the model since it is always coupled with the 

curvature angle terms. 
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5. A NUMERICAL EXAMPLE OF MODEL APPLICATION 

A numerical example of model application is reported in the following. With reference to the cross 

section shape above illustrated (figure 2 and 3) we consider the following characteristic dimensions: 

b1 = 3 mm, b2 = 0.75 mm, h1 = 1 mm and h2 = 2 mm. The centroidal moment of inertia JC equals 3 

mm4. It can be easily verified that δ = h2/ h1 is greater than one and that condition (26) is satisfied. 
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Figure 4: loading, unloading and residual radius of curvature with respect to the loading bending 

moment (elastic-perfectly plastic material behaviour; E = 206000 MPa, σs = 750 MPa). 

 

Considering an elastic-perfectly plastic material behaviour the required fundamental mechanical 

properties are Young’s modulus E, equal to 206000 MPa as typically for steels, the yield strength 

σs, 750 MPa, and the plastic true strain limit εr, 0.3. The wire plasticization starts with a bending 

moment equal to 1125 Nmm (see equation (33-a.4)) and ends, with the cross section fully 

plasticized, when the moment, (see equation (29)), equals about 2109 Nmm.  
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Figure 5: neutral axis and plasticization fronts displacements with respect to the loading radius of 

curvature. 

 

In figure 4 the loading and the residual radius of curvature with respect to the applied loading 

bending moment are reported. The comparison between the two radii shows the entity of the 

springback for each applied moment. The values clearly converge when the loading bending 

moment has plasticized the whole cross section. Moreover, it is interesting to remark that for the 

considered material it is possible to bend the wire up to a 9 mm radius without exceeding the 

maximum true strain limit. Indeed by applying equation (43) it is possible to verify that for a 

loading radius of 9 mm we have a maximum true strain over the cross section of about 0.28 in 

modulus. Furthermore, the condition |σul(rul)| < σs is satisfied: indeed |σul(rul)| < 656 MPa for any 

value of the loading radius r. 

Another interesting feature is the displacement of the neutral axis and the plasticization fronts 

during the loading phase. By means of the model it has been possible to plot their trend with the 

decreasing of the loading radius (figure 5). A neutral axis displacement can be observed after the 

plasticization of the first fibre at a distance of h2 from it. This obviously happens on the more 

extended (along the y direction) cross section side and determines the negative direction of the 

neutral axis displacement. The convergence of the three displacement curves is asymptotic when the 

radius tends to zero. From figure 5 we can also see for which radius the negative cross section side 
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starts plasticizing (r2, about 238 mm), particularly with respect to the other side (r3, about 550 mm). 

 

 

6. CONCLUSIONS 

The analytical model developed and reported in this paper is focused on the relation between the 

nonlinear bending moment applied to a thin metallic wire and the corresponding residual radius of 

curvature. The set of analytical equations supplied by the model lets the designer choose the correct 

bending parameters, i.e. the bending moment, necessary to obtain the required final wire shape after 

the unloading springback. The nonlinearities due to the material behaviour that are taken into 

account are those of an elastic-perfectly plastic behaviour. The goal for the future is to continue the 

research by refining the model and developing more accurate material behaviours. The general form 

of the model has been developed and reported for a wire cross section nonsymmetric with respect to 

the centroidal axis, so as to show how the model could be applied to generic geometries. This lack 

of symmetry causes the displacement of the neutral axis. The calculations take this effect into 

account but at the same time they do not depend directly on it. The Bernoulli-Navier’s hypothesis 

was adopted. Therefore the proposed model is applicable only if wire cross sections remain plane 

after bending rotations. This is very close to real material behaviour from the engineering point of 

view.  

The proposed model allows predicting the final geometry of a wire after bending loading and 

unloading operations. The model enables to determine the stress and strain cross section state too. 

Considerations about fatigue behaviour and material damaging can consequently be formulated. 

The designer can introduce into the model the main mechanical characteristics of the wire material. 

The reported numerical example of model application allows to appreciate the large deformations, 

down to extremely small radii of curvature, and the neutral axis displacement during bending in the 

plastic range.  
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NOMENCLATURE 

A  wire cross section area 

b(y)  wire cross section width 

C  cross section centroid 

E  Young’s modulus of wire material 

h1  maximum cross section outer distance from centroid  

h2  maximum cross section inner distance from centroid  

JC  cross section moment of inertia about the centroidal axis 

l0  starting wire bendable length 

l(r, y) actual wire bent length with respect to a generic cross section quote 

M(r) loading bending moment applied to the wire for a certain loading radius 

Mip  initial plasticization bending moment 

Mfp  full plasticization bending moment 

Mul(rul) unloading bending moment applied to the wire for a certain unloading radius 

r  actual radius of curvature due to the bending load with respect to the centroidal axis  

rres  residual radius of curvature after the unloading with respect to the centroidal axis  
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rul  unloading radius of curvature with respect to the centroidal axis  

y  generic fibre vertical quote with respect to centroid 

yn  neutral axis vertical quote with respect to centroid 

y1(r)  vertical first yielding quote in the wire outer side  

y2(r)  vertical first yielding quote in the wire inner side 

ε(r, y) cross section strain for a certain radius of curvature 

εe(r, y) engineering strain for a certain radius of curvature 

εf(r, y) actual strain corresponding to the final wire configuration 

εr  actual strain corresponding to the material rupture 

εs  engineering strain corresponding to the material yield stress 

εul(rul, y) engineering unloading strain for a certain unloading radius of curvature 

σ (r, y) normal stress over the wire cross section 

σs  material yield stress 

ψ(r)  actual curvature angle spanned by the actual bent wire length 

ψul(rul) unloading curvature angle spanned by the actual bent wire length 
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