
Daniela Cocchi, Enrico Fabrizi*,            
Carlo Trivisano 

A stratified model for the analysis of ozone 
trends in an urban area 

Serie Ricerche 2002, n.3 
 

Dipartimento di Scienze Statistiche “Paolo Fortunati” 
Università degli studi di Bologna 

 
* Borsista presso il Dipartimento di Scienze Statistiche “Paolo Fortunati” 



Gruppo di Ricerca per le Applicazioni 
della Statistica ai Problemi Ambientali 

 

Working paper GRASPA n. 13 

 

Daniela Cocchi, Enrico Fabrizi, Carlo Trivisano 
 
 

A stratified model for the analysis of ozone trends 
in an urban area 

 
 
 

 

Il lavoro è stato realizzato nell’ambito del progetto “Statistica 
per la valutazione del rischio ambientale””, finanziato con il 
contributo 2000 per ricerche di interesse nazionale del 
Ministero dell’Università e della Ricerca Scientifica, prot. 
MM13208412. 

 

 



1 

1. Introduction 
In this paper we face the problem of determining the trend of daily 

maxima of ozone concentrations measured in an urban area. Because of 
the close dependence between ozone and weather conditions, the major 
issue is to assess whether any observed trend in the data is due to 
variations in the emissions or to particular climatic conditions. 
This subject has been widely discussed in literature and excellent reviews 
already exist (Thompson et al., 2000). 
We propose a new method for trend inspection that refines the tree based 
approach considered by Huang and Smith (1999). The analysis proposed 
by these authors can be described in two steps: first, a regression tree is 
introduced to partition the daily maxima into groups with an 
homogeneous ozone level, subsequently the trend is evaluated by means 
of a set of alternative linear homoschedastic random effects models, some 
of which allow for a different trend within each group. This approach, 
referred to as stratified (Thompson et al., 2000), has the merit of allowing 
for the estimation of different trends at different levels of ozone 
concentration and weather conditions. The idea that trends may not be the 
same at each level of the process is not new. Smith (1989), modeling 
exceedances of daily maxima over a high threshold under an Extreme 
Value approach, considers a trend component for the location parameter 
of the Generalized Pareto distribution (Pickands, 1971), separately for 
groups of days approximately corresponding to months.  

 

Similarly to Huang and Smith (1999), we propose a tree based 
partitioning of observations. We assume the daily maxima of ozone 
concentrations to be Weibull distributed and propose a random effects 
model for the natural logarithm of the quasi-scale parameter of this 
distribution, where the considered effects are represented by the year and 
the homogeneous ozone regimes resulting from tree partitioning. Our 
approach is free of any hypothesis about the shape of trend, allowing for 
trend inspection in short periods. 

 

The Weibull distribution arises naturally in the context of maxima; 
moreover it represents a flexible assumption since, for different values of 
its parameters, it ranges from approximated normality to highly skewed 
forms. It may then be expected that our model would fit well on the tails  

3 



of distributions and provides a more precise estimation of high 
percentiles and exceedances. 
Our modeling of the natural logarithm of the quasi-scale parameter is 
very close to the proposal of Cox and Chu (1993); nonetheless, we note 
that their approach is non stratified and their trend estimation is based on 
the assumption of a linear functional form for the trend component. 
The models we propose are based on the assumption of conditional 
independence of observations given the quasi-scale parameter, that is 
within each group-by-year cluster. Ozone concentrations are known to be 
characterized, marginally, by strong serial autocorrelation. For this reason 
any independence assumption deserves careful investigation that is 
carried out by estimating a model including an autoregressive component 
for the Weibull quasi-scale parameters. 
We apply this method of trend assessment to the series of daily maxima 
of hourly ozone concentrations measured from a single monitoring site 
located in the city of Bologna, Italy, in the the period 1994-1998.  
We adopt a Bayesian approach for inference. Models are solved by 
means of Gibbs sampling routines, as they are implemented in the 
software BUGS (Spiegelhalter et al., 1996). 
The paper is organized as follows. Section 2 contains a description of the 
data, while in section 3 the proposed models are introduced. In section 4 
results about trend estimation are discussed along with model checking in 
terms of percentiles and yearly number of exceedances prediction 
performances. The sensitivity analysis with respect to the assumption of 
conditional independence is treated in section 5. 
 
 

2. The data 
In this paper we analyze the series of daily maxima of ozone 

concentrations over the metropolitan area of Bologna, in the North of 
Italy, in the period 1994-1998. 
Data have been gathered, and their quality assessed, by the ARPA 
(Agenzia Regionale per la Protezione Ambientale, i.e. the Regional 
Environment Protection Agency) of the Emilia-Romagna region, that is 
charged by the Italian law with all monitoring and protection policies 
related to air pollution. 
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Maxima are calculated on the basis of hourly measurements from a single 
monitoring site situated in Giardini Margherita, a park close to the centre 
of the city. We consider exclusively data gathered during the ozone 
seasons (from April 1st, to October 31st) yielding a gross total of 1067 
observations. For 66 days the maximum is not computed because of 
measurement failures or other causes. We calculate regression trees by 
simply discarding the missing observations. Then, the 66 missing values 
of maxima are imputed using the selected regression tree model. 
These imputations are needed in order to perform the comparison 
between models based on conditional independence and models including 
autoregressive components, as the one described in section 5. 
The path of the series is shown in Figure 1. 
 

Figure 1 
Daily maxima of hourly concentrations in Bologna, ozone seasons, from 

1994 to 1998 
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The meteorological variables are collected at the surface weather station 
of Borgo Panigale, a few kilometers away from the monitoring site of 
Giardini Margherita. Among the hourly available measurements, we 
consider the noon values of temperature (°C), dew point temperature(°C), 
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pressure (mb), relative humidity (%), visibility (km), wind speed (m/s) 
and wind direction (° from N). 
Following Bloomfield et al. (1996) and Huang and Smith (1999) we 
calculate some additional meteorological variables:  
Wind.U = (-Wind.speed *sin(2�*Wind.dir/360),  
Wind.V = (-Wind.speed *sin(2�*Wind.dir/360),  
Temperature2 = (Temperature – 60)2/10, 
Temperature3 = Temperature – 60)3/1000. 
Moreover, lagged values (1 and 2 days) for all the meteorological 
variables are considered. 
Missing data are present in the series of meteorological variables as well. 
In this case we do not propose any imputation, since they are not needed 
in building the regression tree. 
 
 

3. The proposed models 

3.1 Identification of homogeneous regimes 
Partitioning methods based on classification and regression trees 

(Breiman et al. 1984) gained a wide popularity in environmental statistics 
since they are particularly suitable to explore the non linear relationship 
between surface ozone and weather (Burrows et al., 1995); moreover 
they perform rather well in forecasting occurrences of high 
concentrations. However, trees cannot be directly employed in trend 
assessment, since a trend component cannot be included into this class of 
models. A remarkable attempt to exploit the power of regression trees in 
meteorological adjustment for the purpose of trend investigation is 
carried out by Huang and Smith (1999). Working on the well-known 
Chicago ozone data, they first partition the observations into 
homogeneous clusters using a regression tree method (Clark and 
Pregibon, 1991). Once the tree is assessed, they apply ANOVA models 
based on the normality assumption to each cluster identified by the tree in 
which a year effect is included. 
Following Huang and Smith, we build a regression tree for ozone daily 
maxima using the set of meteorological covariates described in section 2. 
We follow the CART approach (Breiman et al., 1984), that does not 
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make use of any distributional assumption. At each node (parent) of the 
tree, data are partitioned into two homogeneous subsets (left child and 
right child) on the basis of the squared loss (L2), that is by maximising 
 
�L2 = L2

parent – (L2
left child + L2

right child) 
 
The usual cost-complexity criterion described in Breiman et al. (1984) is 
considered for pruning the tree; cross-validation is employed to select the 
degree of pruning. 

3.2 Models for the trend 
Let’s denote the vector of daily maxima with . For each vector 
component we assume that 

iy

 
� �| , ~ , , 1,..., 1067,  i i iy Weibull i N� � � � � �                           (3.1) 

 
i. e.: 
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Under the parameterization (3.2), the Weibull distribution has moments: 
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In (3.1) a different quasi-scale parameter �  is considered in each “group 
by year” cluster, but a common shape parameter �  across clusters is 
assumed. This is equivalent to the hypothesis of a common coefficient of 

i
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variation for all the conditional distributions, since it depends on the 
shape parameter only. In fact we have that: 
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          (3.4) 

 
We note that the assumption of a common shape parameter is made also 
by Cox and Chu (1993) and is consistent with Huang and Smith (1999), 
who suppose homoschedastic residuals for their group-specific random 
effects models. Moreover, since mean, median, and other basic  
summaries of the Weibull distribution depend on both parameters, the 
assumption of a common � allows for the influence of the group and year 
effects to be read directly in terms of different quasi-scale parameters. 
Otherwise, year- and group- specific shape parameters could incorporate 
part of the covariates effect in a way that makes comparisons of 
distributions across groups more difficult. 
We consider two different models for the logarithm of the quasi-scale 
parameters: a model with interaction characterized by independent group 
by year random effects (referred to as model 1) and an additive model 
assuming independent year and group effects (model 2). 
More formally, model 1 is characterized by  
 

� �ln W� ��       (3.5) 
 
where � �1 2, ,..., 'N� � � ��

�

 and � is a ( G ) dimensional random vector 
(P is the number of clusters identified by the tree, while P the number of 
years in the period considered by this study). W is defined, using a block 
notation, as 

P�

�1 | ... |� PWW W ; the generic element of W p  
can then be described as 

( 1,..., )p P�

 

� �� �
1 if day  falls in year and cluster , 1,...,
0 otherwiseij p

i p j j
w

��
� �
�

G
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Model 2 is characterized by the equation: 
 

� �ln X Z� � �� � �1 �

)

)

          (3.6) 
 

where X is a  design matrix whose generic element is defined 
as 

( 1N G� �

 

� �
1 if day falls in cluster 1
0 otherwiseij

i j
x

��
� �
�

                      (3.7) 

 
and Z is a  matrix for which we have ( 1N P� �

 

� �
1 if day falls in year 1
0 otherwiseij

i j
z

��
� �
�

                       (3.8) 

 
The general intercept � is introduced to avoid multicollinearity of year 
and group effects. As regards the problem of trend determination, we 
define the trend as the sequence of parameters associated to year effects, 
thus avoiding the assumption on any functional form. We note that model 
1 corresponds to the hypothesis of a group specific trend, while model 2 
assumes a common trend for all the groups identified by the tree. 
We also consider a third benchmark model (model 3), formalizing the 
hypothesis of absence of trend; it is characterized by 
 

� �ln X� �� �1 �           (3.9) 
 
For the specification of prior distributions, we assume, across all models, 
the following prior for the shape parameter:  
 

� �~ 3Gamma� ,1         (3.10) 
 
implying . This distribution is centered on the 
value of � for which the Weibull has a shape similar to that of the 

� � � � 3,3 �� �� VE
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Normal, but is sufficiently diffuse to give support also to more skewed 
distributions. 
Parameters associated to random effects are given in all cases a Normal 
prior distribution centered on 0, while assumptions on their precisions 
change according to the model chosen. In particular in model 1 we 
specify that 
 

� �| ~ 0,
ind

N� � �         (3.11) 
 

where the precision matrix � is block diagonal  and can be written as 
 

� �1 ,..., Gdiagblock I I� �� � . 
 
For the vector of hyperparameters � �1 2, ,..., G� ��� �  we assume that they 
are a priori independent and are distributed as 
 

� �~ 0.01,0.01 , 1,..., ,j Gamma j G� �  
 
that is, we assume a common prior distribution for the year intercept 
related to the same group, while a diffuse Gamma is chosen for the 
parameters� ; we remark that this non-informative “reference” solution 
is designed mostly for computational convenience.  

j

In model 2 we introduce the following priors: 
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�

                                   (3.12) 
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thus assuming common distributions for  each year and group effect. 
Consistently, the same prior assumptions on � and � are introduced in 
model 3. 
We calculate all posterior distributions by using Markov chain Monte 
Carlo (McMC) sampling algorithms. In particular we use the software 
BUGS (Spiegelhalter, Thomas, Best and Gilks 1996) that is based on 
Gibbs sampling. The selected prior distributions have standard functional 
forms that lead to log-concave full conditionals in all cases. As regards 
the assessment of convergence we consider the multiple chain approach 
suggested by Gelman and Rubin (1992), running three different chains 
with well separated starting points for each model. The visual inspection 
of chains path and the modified Gelman and Rubin  statistic (Brooks and 
Gelman, 1998) are our basic convergence assessement tools. We run 
10,000 iterations for each chain, discarding on average a conservative 
“burn in” of 3,000, thus yielding an approximate 20,000 draws from the 
posterior of each model. 
 
 

4. Model comparison and discussion of empirical results 

4.1 The regression tree 
On the basis of the CART method described in section 3.1, the tree 
shown in Figure 2 (see Appendix) is built. 
As it should be expected from the photochemical nature of reactions 
leading to concentration of surface ozone, maximum daily temperature 
and other related variables are responsible for the most important splits in 
the tree, but we note also that relative humidity and visibility play a 
relevant role in determining homogeneous ozone regimes. 
The optimal tree identifies eight groups with very different sizes, some of 
them being very small. The classification of daily maxima by group and 
year is reported in Table 1. 
We note that group 8, characterized by extreme concentrations, includes 
only 13 maxima throughout the five years period, and group 5, even 
though characterized by an intermediate level of the process, includes 
only 23 cases. Once data are cross-classified by year, the resulting “group 
by year” clusters are constituted by very few observations.  
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Table 1 
Daily maxima classified by group and year 

1994 1995 1996 1997 1998
1 17 20 18 25 23 103
2 40 66 60 45 63 274
3 28 17 29 10 12 96
4 14 16 10 3 6 49
5 3 3 3 8 6 23
6 61 61 81 90 62 355
7 45 29 12 33 35 154
8 4 2 0 0 7 13

212 214 213 214 214 1067

Year
   

   
G

ro
up

 
The hierarchical structure of priors for the models described in section 
3.2 (see (3.9), (3.10) and (3.11)) is very helpful for the estimation of 
parameters as it allows, at the price of some shrinkage, for the borrowing 
of information across groups. 
 

4.2 Model comparisons 
 
Within the Bayesian framework, models are compared, in principle, by 
means of the Bayes Factors (BF). Since they are rather difficult to 
compute, a large sample approximation of -2ln(BF), given by 
 

� �

� �
� �npp

yf
yf

BIC k
kM

M

k

ln
|sup
|sup

ln2 0
00 ��
�
�
�

�

�
�
�

�
��	

�

�
        (4.1) 

 
(see Schwartz, 1978), is commonly used. We compare the three proposed 
models by means of (4.1) that, moreover, has the merit of not referring to 
prior assumptions. We note that in (4.1) the subscripts Mk (k=1,…,K) 
index the set of competing models and �k is the pk  dimensional parameter 
indexing the likelihood associated to each model.  
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The null model M0 against which the others are compared is model 3. 
Model comparisons are summarized in Table 2. 
 

Table 2 
Model comparisons by means of � BIC 

��BIC 
Model 1 vs Model 3 -21.014 
Model 2 vs Model 3 100.274 
Model 1 vs Model 2 -121.288 

 
The Bayes Information Criterion (4.1) indicates that both model 1 and 2 
perform better than model 3, supporting the hypothesis that there is a 
significant variation of ozone levels  over the years, even within the 
homogeneous groups identified by the tree. It is also apparent that model 
2 is to be preferred to model 3. This evidence suggests that the trends in 
the groups are not “so different” to justify the introduction of group-
specific trends.  
This can be clearly understood by looking at Figure 3 (in the Appendix) 
where posterior means of the Weibull distributions computed under 
model 1 and model 2 are compared by group and year. 
From Figure 3 (in the Appendix) we can see that the only evident 
discrepancies between the common and the group-specific trends arise in 
group 5 and 8, that are particularly small. On the contrary, this 
discrepancy is almost negligible in larger groups. 
The adequacy of the selected model is checked following a posterior 
predictive approach, that can be easily implemented on the basis of the 
McMC output. We check the consistency of data generated from the 
posterior predictive distribution with observed maxima in terms of the 
mean and the 95th percentile of each “group by year” cluster. Results 
about means are summarized in Figure 4 (in the Appendix) where 
predicted vs observed means are plotted by group and year (straight lines 
representing 0.95 probability intervals calculated on the basis of the 
posterior predictive distribution). The fit is good in almost all cases, with 
the only exception of groups 5 and 8, which however are included in the 
probability intervals calculated for the posterior predictive distributions.  
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Similarly, in Figure 5 (in the Appendix) predicted vs observed 95th 
percentiles are plotted, (straight lines represent 0.95 probability intervals 
for 95th percentiles). 
Globally considered, the fit is good in this case as well, with exceptions 
being represented mostly by the smallest “group by year” clusters. The 
plot regarding group 8 is omitted because of the too small size of this 
group. 
We check also whether the model is adequate in predicting the 95th 
percentiles of annual distributions. To this aim, we combine the eight 
annual groups to calculate the posterior predictive of the annual 95th 
percentiles. This is rather easy to do because of the nice form of the 
Weibull distribution survival function. In fact: 
 

� � � ��
� zzy ijijh ��� expPr           (4.2) 

 
For each iteration of the Markov chain the following equation in zi is 
solved: 
 

� �
8 8

1 1
Pr 0.05 , where 1,...,8;  1,...,5.ijh j ij ij

i i
y z n n i j

� �

� � � �� �         (4.3) 

 
Predicted and observed annual 95th percentiles (along with 0.95 posterior 
predictive intervals) are plotted in Figure 6a (see the Appendix), that 
shows a satisfying fit for all the years in the considered period.  
On the basis of the survival function (4.2) we also compute the annual 
number of exceedances over the threshold of 180 �g/m3 predicted by the 
model. This threshold is explicitly considered by the Italian law as a 
”warning level” for the ozone concentrations. The number of predicted 
versus actual exceedances are plotted in figure 6b (see the Appendix). 
 
 

5. Model sensitivity 
The models of section 3.2 assume that, conditionally on each “group by 
year” specific quasi-scale parameters, daily maxima are independently 
distributed. This assumption is consistent with the opinion of Piegorsch et 
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al. (1998) who notice that “in the case of ozone it is widely assumed that 
day to day values are conditionally independent given the meteorology”. 
Nonetheless, since the series of ozone maxima exhibits strong auto-
correlation, the assumption of conditional independence deserves further 
analysis.  
To assess the sensitivity of inferences on long term trends with respect to 
the assumption of conditional independence, we generalize model 2 by 
introducing an AR(1) component in equation (3.6). That is, we replace 
(3.6) by 
 
ln( ) X Z U� � � �� � � �1 �             (5.1) 
 
where  and X Z  are defined according to (3.7) and (3.8); the design 
matrix U is a diagonal block one defined as  
 

� �1,..., PU diagblock U U�  
 
where each pU is a p pN N� ( pN  being the number of maxima in year p) 
whose generic element can be described as 
 

� �� �
0 if

otherwiseij p i j

j i
u

�
�

���
� �
��

 

We leave the prior assumptions of (3.12) unchanged and specify the 
following distribution for �: 
 

� �| ~ 0,N I� � �                           (5.2) 
 
As regards hyper-parameters we suppose that 
 

� �

~ (0.1,0.1)
~ 1

Gamma
Uniform

�

� � ,1
          (5.3) 

 
We refer to this model as model 4. The introduction of the autoregressive 
component influences both the quasi-scale and the shape parameters.  
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To simplify the comparison between model 2 and 4, in the latter we set 
the shape parameter � equal to the value of its posterior mean in model 2. 
The posterior means and standard deviations of parameters of model 2 
and 4 are listed in Table 3, where it is evident that all parameters, and in 
particular those associated to year effects, are very close in the two cases. 
 

Table 3 
Posterior means and standard deviations of parameters from model 2 

and model 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

posterior posterior posterior posterior
 mean  st.dev.  mean  st.dev.

� -15,820 0,398 -15,510 0,280
� 2 -0,753 0,119 -0,798 0,161
� 3 1,097 0,145 1,107 0,197
� 4 0,058 0,176 -0,015 0,242
� 5 -1,418 0,235 -1,325 0,324
� 6 -1,549 0,120 -1,658 0,160
� 7 -2,517 0,143 -2,523 0,193
� 8 -3,522 0,303 -3,444 0,434
� 2 -0,640 0,100 -0,711 0,174
� 3 -1,238 0,105 -1,301 0,169
� 4 -1,099 0,104 -1,128 0,164
� 5 -0,963 0,102 -1,093 0,172
� 3,748 0,087 3,748
� 0,410 0,045

Model 4Model 2

 
We note that the assumption of (3.10) as a prior distribution for � leads to 
similar conclusions, with the exception that parameters associated to 
random effects are expressed according to different scales and therefore 
are more difficult to compare.  
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6. Conclusions 
In this  work we propose a method for detecting ozone long term trend 
that can be seen as a development of the stratified approach of Huang and 
Smith (1999) and a special case of the regression model introduced by 
Cox and Chu (1993) that is still used as reference method for trends 
assessment of ozone concentrations by the US EPA (see Thompson et al., 
2000). We adopt a Bayesian viewpoint and base posterior summaries on 
McMC samples. We give special emphasis to testing for evidence in 
favour of separate trends at different process levels. 
We apply our method to real data from a single monitoring station in 
Bologna, Italy, over the period 1994-1998. The analysis of these data 
does not provide sound evidence in favour of specific trends after 
cancelling out the effect of weather. As this may depend on the fact that 
we dispose of few observations for the study of trends at the highest level 
of the process, we can conclude that, at present, a common trend 
assumption provides the better description of long term time pattern of 
ozone daily maxima. 
In particular our analysis highlight that there is a strong growth in 
standardized ozone concentrations from 1994 to 1996, while in the 
following two years they seems not to show relevant year to year 
variations. 
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Appendix 
Figure 2 

Regression tree for the Bologna ozone maxima 
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Figure 3 
Posterior means under model 1 and model 2, by group and year 

 

1994 1995 1996 1997 1998

0
20

40
60

80

group 1

MODEL 1
MODEL 2

1994 1995 1996 1997 1998
60

80
12

0

group 2

1994 1995 1996 1997 1998

0
20

40
60

80

group 3

1994 1995 1996 1997 1998

0
20

40
60

80

group 4

1994 1995 1996 1997 1998

80
12

0
16

0

group 5

1994 1995 1996 1997 1998

80
12

0
16

0

group 6

1994 1995 1996 1997 1998

10
0

14
0

18
0

group 7

1994 1995 1996 1997 1998

16
0

20
0

24
0

group 8

 
 

21 



Figure 4 
Predicted vs observed means by group and year and their 0.95 

probability intervals 
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Figure 5 
Predicted vs observed 95th percentiles by group and year and their 0.95 

probability intervals 
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Figure 6 
Predicted vs observed 95th percentiles and exceedances over the 

threshold of 180 �g/m3 by year 
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