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Abstract

A long standing conjecture for the linear Schrödinger equation states that 1/4 of derivative

in L2, in the sense of Sobolev spaces, suffices in any dimension for the solution to that equation

to converge almost everywhere to the initial datum as the time goes to 0. This is only known

to be true in dimension 1 by work of Carleson. In this paper we show that the conjecture is

true on spherical averages. To be more precise, we prove the L2 boundedness of the associated

maximal square function on the Sobolev class H1/4(Rn) in any dimension n.
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1 Introduction

For α ∈ R, we denote by Hα(Rn) the Sobolev space

Hα(Rn) =

{
f ∈ S ′(Rn) : ‖f‖Hα =

(∫ ∣∣∣f̂(ξ)
∣∣∣
2

(1 + |ξ|2)α dξ

)1/2

< ∞
}

.

We will also consider the homogeneous Sobolev space Ḣα(Rn) defined by

Ḣα(Rn) =

{
f ∈ S ′(Rn) : ‖f‖Ḣα =

(∫ ∣∣∣f̂(ξ)
∣∣∣
2

|ξ|2α dξ

)1/2

< ∞
}

.

Let f be in the Schwartz class S(Rn), and define

Stf(x) = u(x, t) =
∫

Rn

f̂(ξ)e−2πi|ξ|2te2πiξ·x dξ.

Then u is the solution to the linear Schrödinger equation with initial datum f , that is,




∂
∂tu(x, t) = i

2π ∆xu(x, t) in Rn+1
+

u(x, 0) = f(x) in Rn.

There is a fundamental question in this setting and is that of determining the minimal smooth-

ness on the initial value function f , needed for the almost everywhere convergence

lim
t→0+

u(x, t) = f(x), a.e. (1)

This smoothness is measured in terms of the Sobolev space Hα which the function f belongs to.

In 1979, Carleson proved in [4] that the a.e. convergence (1) holds for any f ∈ Ḣ1/4 in dimension

n = 1. Dahlberg and Kenig [6] extended this result to functions in Ḣn/4(Rn) for any n and

showed that there are counterexamples if the regularity is less than 1/4. It is conjectured that

α = 1/4 suffices for this problem in any dimension n. Sjölin and Vega proved independently in

[11], [16] that α greater than 1/2 implies the convergence (1) in any dimension n (previous results,

for α > 1, were obtained in [3], [5]), while Prestini [10] proved the conjecture for radial functions.

The case n = 2 has been intensively studied during the last years and is the only one (apart from

n = 1) where there are positive results for (1) with smoothness α < 1/2 (see [9], [14], [15], and

the references there).

As usual, problems related to the a.e. convergence are intimately connected to the boundedness

of the associated maximal function. In our case, this maximal function is given by S∗f(x) =

supt>0 |Stf(x)|, x ∈ Rn. For example, the a.e. convergence (1) for all functions f ∈ Hα follows

from the a priori maximal estimate

(∫

|x|≤1

|S∗f(x)|p dx

)1/p

≤ C‖f‖Hα , f ∈ S(Rn). (2)
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In fact, all the known cases about convergence mentioned above are obtained via this maximal

inequality for different values of p ∈ [1, 2].

In this paper, we investigate whether inequality (2) holds if we replace S∗ by a spherical average

operator; namely we look at the maximal square function

Q∗f(x) = sup
t>0

(
1

σ(Sn−1)

∫

Sn−1
|Stf(|x|ω)|2 dσ(ω)

)1/2

.

Clearly, one has the inequality
∫
|x|≤1

|Q∗f(x)|2 dx ≤ ∫
|x|≤1

|S∗f(x)|2 dx, and therefore the bound-

edness of S∗ would imply a corresponding inequality for Q∗. The known counterexamples show

that the smoothness condition α ≥ 1/4 is still necessary for the boundedness of this operator. The

main result of this paper says that α = 1/4 is also sufficient for the boundedness of Q∗.

Theorem 1.1 The operator Q∗ is bounded from Ḣ1/4(Rn) into L2({|x| ≤ 1}) in any dimension

n, that is, there is a positive constant C such that

(∫

|x|≤1

|Q∗f(x)|2 dx

)1/2

≤ C‖f‖Ḣ1/4 , ∀ f ∈ S(Rn). (3)

In particular, (3) gives us that 1/4 of smoothness suffices for the a.e. convergence with respect

to quadratic spherical means. The precise statement is contained in the following corollary.

Corollary 1.2 If f ∈ H1/4(Rn), then, for every x0 ∈ Rn we have

lim
t→0+

∫

Sn−1
|Stf(x0 + rω)− f(x0 + rω)|2 dσ(ω) = 0, a.e. r.

Proof. The proof is standard. By translation invariance, we may assume without loss of generality

that x0 = 0. It is easy to see that, if g ∈ S(Rn), then Stg → g as t → 0+, uniformly in Rn. Given

f ∈ H1/4(Rn) we take a sequence {gk}∞k=1 ⊆ S(Rn) such that gk → f in H1/4(Rn). Denote by µ

the Borel measure dµ(r) = rn−1 dr. Let λ > 0, Bn = {x ∈ Rn: |x| ≤ 1} and define

Aλ =
{

0 < r < 1: lim sup
t→0+

∫

Sn−1
|Stf(rω)− f(rω)|2 dσ(ω) > λ

}
.

Then, for any positive integer k

µ(Aλ) ≤ µ

({
0 < r < 1: lim sup

t→0+

∫

Sn−1
|St(f − gk)(rω)|2 dσ(ω) >

λ

2

})

+ µ

({
0 < r < 1:

∫

Sn−1
|gk(rω)− f(rω)|2 dσ(ω) >

λ

2

})
.

Now, Chebyshev’s inequality and Theorem 1.1 imply that

µ(Aλ) ≤ C

λ

∫

Bn

sup
t>0

∫

Sn−1
|St(f − gk)(|x|ω)|2 dσ(ω) dx

+
C

λ
‖f − gk‖22 <

C

λ
‖f − gk‖2H1/4 , ∀ k,
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and, therefore, µ(Aλ) = 0. ¤
We point out that a somewhat analogous theorem as (3) has been recently proved by Tao in

[13]. In dimension n = 2, our result can be restated as follows
(∫

|x|≤1

sup
t>0

|Qf(x, t)|2 dx

)1/2

≤ C‖f‖Ḣ1/4 ,

where Qf(x, t) =
(

1
2π

∫ 2π

0

∣∣Stf(|x|eiθ)
∣∣2 dθ

)1/2

. Tao’s result, on the contrary, involves the L2

norm in the t-variable of the L∞ norm in the x-variable. Precisely,
(∫ ∞

0

sup
x
|Qf(x, t)|2 dt

)1/2

≤ C‖f‖L2 .

The techniques of [13], unfortunately, do not seem to apply to the present case. Indeed, the

calculations there require only the standard asymptotics of Bessel functions for large values, while

more precise estimates on the remainder term are needed not only here, but also in our preliminary

results [7] and [8].

Before we proceed with the proof of Theorem 1.1, let us first make a reformulation of our

problem and some additional comments. Observe that if {Yk} is an orthonormal basis of spherical

harmonics in L2(Sn−1), and f̂(ξ) ∼ ∑
k fk(|ξ|)Yk(ξ/|ξ|) denotes the corresponding expansion of

f̂ with respect to this basis, then

Q∗f(x) = sup
t>0

(∑

k

1
|x|n−1

∣∣∣Qt
ν(k)

(
fk(s)s(n−1)/2

)
(|x|)

∣∣∣
2
)1/2

,

where

Qt
νg(r) =

∫ ∞

0

eits2
g(s)J̃ν(rs) ds

and ν(k) = (n − 2)/2 + degree(Yk). Here, Jν denotes the Bessel function of order ν and J̃ν(t) =
√

tJν(t) for t ≥ 0. Using that the norm in Ḣ1/4 of f with respect to the above expansion is given

by ‖f‖Ḣ1/4 =
∑

k

∫∞
0
|fk(r)|2r1/2rn−1 dr, and “cancelling out the

∑
signs”, the inequality

∫

|x|≤1

|Q∗f(x)|2 dx ≤ C‖f‖2
Ḣ1/4

is equivalent to the estimate
∫ 1

0

sup
t>0

|Qt
νg(r)|2 dr ≤ C

∫
|g(r)|2r1/2 dr,

uniformly in the index ν too.

We can now follow Carleson’s approach (see [4], [6]). First we linearize our maximal operator,

by making t into a function of r, t(r). Next we may assume that g is supported on a fixed interval

I (as long as the final constant C is independent of I). “Moving” the smoothness to the other

side (that is, redefining g(r)r1/4 as g again), we consider instead the linear operator

Tνg(r) =
∫

I

eis2t(r)J̃ν(rs)
s1/4

g(s) ds.
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Then what we have to show is
∫ 1

0

|Tνg(r)|2 dr ≤ C

∫

I

|g(s)|2 ds, (4)

with C independent of g ∈ L2(I), of the interval I, of the measurable function t(r) and of ν ∈ N/2.

We want to point out that Theorem 1.1 gives as a consequence the boundedness of the maximal

Schrödinger operator S∗ on radial functions in Rn, with constant independent of n. A close look

at the above arguments will convince us that both, Theorem 1.1 and this dimension-free estimate

are, in fact, equivalent.

Let us bring here a related result obtained by the authors. In [8] it was proved that the uniform

estimate ∫

I

eias2
Jν(s)

ds

sβ
= O(1),

independent of ν ∈ N/2, the interval I and a ∈ R, holds (for β < 1) if and only if β ≥ 1/6. This

expression appears in a natural way as the leading term (using the product formula for Bessel

functions) of the expansion of the kernel associated to TνT ∗ν but replacing the “smoothness” 1/4

by the generic smoothness α with 2α − 1/2 = β. This could be interpreted as an indication that

the uniform estimate of the operators Qν by this method would only be possible on the class

Ḣ1/3 (α = 1/3 corresponds to the case β = 1/6). Our theorem here shows that an additional

cancellation of the rest of terms in the expansion of the kernel is possible so that, as Theorem 1.1

says, the result holds indeed on Ḣ1/4.

Continuing with the reduction of our problem, let us point out that by using a TT ∗ argument

and the well known expansion

J̃ν(r) =

√
2
π

cos
(
r − πν

2
− π

4

)
+ Oν

(
1
r

)
as r →∞,

it is not difficult to obtain (4) but with a constant which would depend on ν (see also [10]). Thus

we only need to check that the constant C is uniformly bounded as ν tends to infinity.

The following lemma, due to J. A. Barceló ([1], [2]), describes the oscillation and the asymp-

totics of the Bessel function for large values, with the precise dependency of the remainder term

with respect to the order of the function.

Lemma 1.3 There is a universal constant C > 0 such that for all ν > 1/2 and for all r > ν+ν1/3

we have

Jν(r) =

√
2
π

cos θ(r)
(r2 − ν2)1/4

+ hν(r),

where

θ(r) = (r2 − ν2)1/2 − ν arccos
ν

r
− π

4
,

and

|hν(r)| ≤




C
(

ν2

(r2−ν2)7/4 + 1
r

)
if ν + ν1/3 ≤ r ≤ 2ν

C
r if r ≥ 2ν.
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In order to simplify the notation, let us define for r > ν + ν1/3 the functions

JB
ν (r) =

√
2
π

cos θ(r)
(r2 − ν2)1/4

,

J̃B
ν (r) =

√
rJB

ν (r),

h̃ν(r) =
√

rhν(r).

Thus, we can write Tν as the sum of the following operators

T 1
ν g(r) =

∫

I

eit(r)s2
J̃ν(rs)χ[0, ν](rs)s−1/4g(s) ds,

T 2
ν g(r) =

∫

I

eit(r)s2
J̃ν(rs)χ[ν, ν+ν2/3](rs)s

−1/4g(s) ds,

T 3
ν g(r) =

∫

I

eit(r)s2
h̃ν(rs)χ[ν+ν2/3, 2ν](rs)s

−1/4g(s) ds,

T 4
ν g(r) =

∫

I

eit(r)s2
J̃B

ν (rs)χ[ν+ν2/3, 2ν](rs)s
−1/4g(s) ds,

T 5
ν g(r) =

∫

I

eit(r)s2
h̃ν(rs)χ[2ν,∞)(rs)s−1/4g(s) ds,

T 6
ν g(r) =

∫

I

eit(r)s2
J̃B

ν (rs)χ[2ν,∞)(rs)s−1/4g(s) ds.

The desired boundedness will now follow from the boundedness of the above operators. This will

be proved in sections 2 through 6, but first we would like to recall Van der Corput’s lemma.

Lemma 1.4 (Van der Corput) Let φ be a smooth real valued function defined on an interval

[a, b] and ψ a smooth positive decreasing function defined on the same interval. Suppose that φ′ is

monotonic in [a, b] and that |φ′(s)| ≥ λ for all s ∈ [a, b]. Then there is a universal constant C > 0

such that ∣∣∣∣∣
∫ b

a

eiφ(s)ψ(s) ds

∣∣∣∣∣ ≤ C
ψ(a)

λ
.

A proof of this can be found in [12].

2 Boundedness of T 1
ν

We need the following version of Schur’s lemma.

Lemma 2.1 Given two σ-finite measure spaces (X, µ), (Y, ν) and a µ⊗ ν-measurable function k

on X × Y , suppose that there exists a positive constant C such that

sup
u∈X

∫

Y

∫

X

|k(x, y)k(u, y)| dµ(x) dν(y) < C.

Then, if f ∈ L2(X, µ), the integral

Kf(y) =
∫

X

k(x, y)f(x) dµ(x)
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converges absolutely for a.e. y ∈ Y , the function Kf thus defined is in L2(Y, ν) and

‖Kf‖22 ≤ C‖f‖22.

The next proposition discusses the boundedness of the operator T 1
ν .

Proposition 2.2 There is a positive constant C such that for all ν ≥ 1, for all intervals I, for

all measurable functions t(r) and for all g ∈ L2(I),

‖T 1
ν g‖L2(0, 1) ≤ C‖g‖L2(I).

Proof. The kernel of the operator T 1
ν is

k(s, r) = eit(r)s2
J̃ν(sr)χ[0, ν](sr)s−1/4,

so that |k(s, r)| = |J̃ν(sr)|χ[0, ν](sr)s−1/4. By Lemma 2.1,

‖T 1
ν ‖22 ≤ sup

u∈I

∫ 1

0

J̃ν(uy)χ[0, ν](uy)u−1/4

∫

I

J̃ν(sy)χ[0, ν](sy)s−1/4 ds dy

= sup
u∈I

∫ 1

0

J̃ν(uy)χ[0, ν](uy)u−1/4y−3/4

∫

I′∩[0, ν]

J̃ν(t)t−1/4 dt dy.

Since, by the well-known estimates for Jν in the interval [0, ν/2] (see [17]) and Stirling’s formula,
∫ ν/2

0

Jν(t)
tγ

dt ≤
∫ ν/2

0

tν−γ

2νΓ(ν + 1)
dt =

νν+1−γ

22ν−γ+1Γ(ν + 1)(ν + 1− γ)
≤ C

ν1/2+γ

( e
4

)ν

,

we have, using the estimate
∫ ν

0
|Jν(s)| ds ≤ C (see [7], Lemma 2.4),

∫ ν

0

J̃ν(t)
t1/4

dt =
∫ ν/2

0

t1/4Jν(t) dt +
∫ ν

ν/2

t1/4Jν(t) dt ≤ Cν1/4.

Therefore,

‖T 1
ν ‖22 ≤ C sup

u∈I

ν1/4

u1/4

∫ 1

0

J̃ν(uy)χ[0, ν](uy)
y3/4

dy

= C sup
u∈I

ν1/4

u1/2

∫

[0, u]∩[0, ν]

Jν(s)s−1/4 ds.

Assume first that u > ν/2. Then

ν1/4

u1/2

∫

[0, u]∩[0, ν]

Jν(s)
s1/4

ds ≤ C

ν1/4

[∫ ν/2

0

+
∫ ν

ν/2

Jν(s)
s1/4

ds

]
≤ C

ν1/2
≤ C.

If instead 0 < u < ν/2, then

ν1/4

u1/2

∫

[0, u]∩[0, ν]

Jν(s)
s1/4

ds =
ν1/4

u1/2

∫ u

0

Jν(s)
s1/4

ds

≤ ν1/4

u1/22νΓ(ν + 1)

∫ u

0

sν−1/4ds ≤ C
uν+1/4ν−3/4eν

2ννν+1/2

≤ C
νν+1/4ν−3/4eν

4ννν+1/2
=

C

ν

(e

4

)ν

≤ C.

Thus ‖T 1
ν ‖22 ≤ C. ¤

It is worth noting that in the study of T 1
ν we have not used the oscillation given by eit(r)s2

.
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3 Boundedness of T 2
ν

Here we will use the following estimates on the Bessel functions: there exists a positive constant

C such that if s ∈ [ν, ν + ν1/3] then |J̃ν(s)| ≤ Cν1/6, and if s ∈ [ν + ν1/3, 2ν] then

|J̃ν(s)| ≤ C
ν1/4

(s− ν)1/4
.

These estimates are classical, but can be easily obtained from Lemma 1.3 too. We can now state

the boundedness result for T 2
ν .

Proposition 3.1 There exists a positive constant C such that for all ν ≥ 1, for all intervals I,

for all functions t(r) and for all g ∈ L2(I), we have

‖T 2
ν g‖L2([0, 1]) ≤ C‖g‖L2(I).

Proof. The absolute value of the kernel of T 2
ν is

|k(s, r)| = |J̃ν(sr)|χ[ν, ν+ν2/3](sr)s
−1/4.

By Schur’s lemma,

‖T 2
ν ‖22 ≤ sup

u∈I

∫ 1

0

|J̃ν(uy)|χ[ν, ν+ν2/3](uy)u−1/4

[∫

I

|J̃ν(sy)|χ[ν, ν+ν2/3](sy)s−1/4 ds

]
dy.

The expression within brackets is bounded above by

1
y3/4

∫ ν+ν2/3

ν

|J̃ν(t)|t−1/4dt ≤ 1
y3/4ν1/4

∫ ν+ν2/3

ν

|J̃ν(t)| dt

≤ C

y3/4ν1/4

[
ν1/2 +

∫ ν+ν2/3

ν+ν1/3

ν1/4

(t− ν)1/4
dt

]

≤ C

y3/4ν1/4
[ν1/2 + ν3/4] ≤ C

ν1/2

y3/4
.

Thus

‖T 2
ν ‖22 ≤ Cν1/2 sup

u∈I

∫ 1

0

|J̃ν(uy)|χ[ν, ν+ν2/3](uy)u−1/4y−3/4 dy

= Cν1/2 sup
u∈I

u−1/2

∫

[0, u]∩[ν, ν+ν2/3]

|J̃ν(t)|t−3/4 dt

≤ Cν−3/4

∫ ν+ν2/3

ν

|J̃ν(t)| dt

≤ Cν−3/4+3/4 = C.

¤
Once more, in this proof we have not used the oscillation given by the exponential nor the one

given by the Bessel function.
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4 Boundedness of T 3
ν .

Proposition 4.1 There exists a positive constant C such that for all ν ≥ 1, for all intervals I,

for all functions t(r) and for all g ∈ L2(I), we have

‖T 3
ν g‖L2([0, 1]) ≤ C‖g‖L2(I).

Proof. A trivial application of Cauchy-Schwartz’s inequality yields

‖T 3
ν g‖2L2([0, 1]) =

∫ 1

0

∣∣∣∣
∫

I

eit(r)s2
r1/2s1/4hν(rs)χ[ν+ν2/3, 2ν](rs)g(s) ds

∣∣∣∣
2

dr

≤
∫ 1

0

∫

I

|hν(rs)|2rs1/2χ[ν+ν2/3, 2ν](rs) ds dr ‖g‖22

≤
∫ 1

0

∫

I′
|hν(v)|2 v1/2

r1/2
χ[ν+ν2/3, 2ν](v) dv dr ‖g‖22

≤ C‖g‖22
∫ 2ν

ν+ν2/3
|hν(v)|2v1/2 dv

= Cν3/2‖g‖22
∫ 2

1+ν−1/3
|hν(νu)|2u1/2 du.

The estimate

|hν(νu)|2 ≤ C

(
1

ν3(u2 − 1)7/2
+

2
ν5/2(u2 − 1)7/4u

+
1

ν2u2

)
,

that holds for u ∈ [1 + ν−2/3, 2], concludes the proof. ¤

5 Boundedness of T 4
ν .

We shall need the following technical lemma. Its proof is a simple application of the fundamental

theorem of calculus.

Lemma 5.1 Let I be an interval and g ∈ C3(I) be such that g′(u) ≤ 0, g′′(u) ≥ 0 and g′′′(u) ≤ 0

for all u ∈ I. Then for any u, u0 ∈ I,

1. if u < u0, then g(u)− g(u0) ≥ −g′(u0)(u0 − u), and

2. if u > u0, then g(u0)− g(u) ≥ −g′(u0)(u− u0)− 1
2g′′(u0)(u− u0)2.

Proposition 5.2 There exists a positive constant C such that for all ν ≥ 1, for all intervals I,

for all functions t(r) and for all g ∈ L2(I), we have

‖T 4
ν g‖L2([0, 1]) ≤ C‖g‖L2(I).

Proof. First write T 4
ν as the sum of two operators, by means of the equality cos θ = (eiθ +e−iθ)/2,

T 4
ν g(r) =

√
1
2π

∫

I

eit(r)s2 r1/2s1/4eiθ(rs)

(s2r2 − ν2)1/4
χ[ν+ν2/3, 2ν](rs)g(s) ds +

+

√
1
2π

∫

I

eit(r)s2 r1/2s1/4e−iθ(rs)

(s2r2 − ν2)1/4
χ[ν+ν2/3, 2ν](rs)g(s) ds.

9



Observe that it is enough to study just one of the two above operators, as long as we obtain a

result independent of the function t(r), positive or negative. Let us then fix our attention on the

one with the + sign in the exponential (call it just T ). The operator TT ∗ has kernel

K(r, ρ) =
∫

I

ei[(t(r)−t(ρ))s2+θ(rs)−θ(ρs)]r1/2ρ1/2s1/2χ[ν+ν2/3, 2ν](rs)χ[ν+ν2/3, 2ν](ρs)
(r2s2 − ν2)1/4(ρ2s2 − ν2)1/4

ds.

Let

θ̃(x) = θ(νx) = ν
√

x2 − 1− ν arccos(1/x)− π/4, x > 1.

Assuming ρ < r, calling q = r/ρ and changing variables, s = νu/ρ, we have that the kernel K(r, ρ)

equals

ρβ−1/2

(r − ρ)β

[
ν1/2(q − 1)β

∫

I∩[1+ν−1/3, 2/q]

ei[−aνu2/2+θ̃(qu)−θ̃(u)]

u1/2(1− u−2)1/4(1− q−2u−2)1/4
du

]
,

where a = −2ν(t(r)− t(ρ))/ρ2 and β ∈ [1/2, 1) will be fixed at our convenience (β = 3/4 will do).

Since the function min(r, ρ)β−1/2|r − ρ|−β is integrable in ρ ∈ [0, 1], uniformly in r ∈ [0, 1], by

Schur’s lemma it is enough to show that the expression within brackets is uniformly bounded in

a ∈ R, ν À 1, I any interval, and q ∈ (1, 2) (for q ≥ 2, the interval of integration becomes empty).

We introduce now some notation: for u > 1 call

ψ(u) =
ν1/2(q − 1)β

u1/2(1− u−2)1/4(1− q−2u−2)1/4
=

ν1/2(q − 1)βu1/2q1/2

(u2 − 1)1/4(q2u2 − 1)1/4
,

φ(u) = −aνu2/2 + θ̃(qu)− θ̃(u),

η = − logν(q − 1),

so that q = 1 + ν−η, and the required uniformity in q ∈ (1, 2) is moved to the same one for η > 0.

Next observe that for η ≥ 1/(2β), the result is easily obtained since
∣∣∣∣∣
∫

I∩[1+ν−1/3, 2/q]

eiφ(u)ψ(u) du

∣∣∣∣∣ ≤
∫ 2

1

ψ(u) du ≤ C

∫ 2

1

ν1/2−ηβ

(u− 1)1/2
du ≤ C.

Let us assume then that 0 < η < 1/(2β). This is the point where we start using the oscillatory

term in the estimation of our integral. Since we want to use Van der Corput’s lemma, we need to

study the function φ′. Note that

φ′(u) = ν
(√

q2 − u−2 −
√

1− u−2 − au
)

= ν(f(u)− au),

where f is implicitly defined by the above equality. Let us begin by considering only those values

of a for which there is a zero of φ′ in the interval [1 + ν−1/3, 2/q]. Thus, parametrize a in such a

way that this zero is 1+ν−γ , with γ ∈ [0, 1/3]. This way, the required uniformity in the parameter

a is moved to the parameter γ. For further reference, observe that

a =

√
q2(1 + ν−γ)2 − 1−

√
(1 + ν−γ)2 − 1

(1 + ν−γ)2
.

10
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Figure 1: The curves f(u) and au.

Let u ∈ [1 + ν−1/3, 2/q]. One can easily see that f satisfies all the hypotheses of Lemma 5.1.

Thus, recalling that φ′(u) = ν(f(u)− au), we may deduce that if u < 1 + ν−γ then

|φ′(u)| ≥ ν(1 + ν−γ − u)
(
a− f ′(1 + ν−γ)

)
, (5)

whereas if u > 1 + ν−γ

|φ′(u)| ≥ ν(u− 1− ν−γ)
(

a− f ′(1 + ν−γ)− 1
2
f ′′(1 + ν−γ)(u− 1− ν−γ)

)
. (6)

Define

δ =
1
2
− ηβ +

γ

4
+

ξ

4

where ξ = min(η, γ). Observe that (η, γ) may vary in the rectangle R = (0, 1/(2β)) × [0, 1/3].

Divide R into two regions, F = {(η, γ) ∈ R: δ ≥ γ} and G = R \ F .

Consider first the case (η, γ) ∈ F . Divide the interval [1 + ν−1/3, 2/q] into the union of four

subintervals (defined to be empty when the left endpoint happens to be bigger than the right

endpoint):

A1 = [1 + ν−1/3, 1 + ν−γ/10],

A2 = [1 + ν−γ/10, 1 + ν−γ − ν−δ/N ],

A3 = [1 + ν−γ − ν−δ/N, 1 + ν−γ + ν−δ/N ],
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Figure 2: The sets F and G, where B = (1/(2β), 0), C = (1/(2β), 1/3), D = (1/(3β), 1/3) and

E = (0, 1/3).

A4 = [1 + ν−γ + ν−δ/N, 2/q],

where N is a large number that will be fixed at our convenience. The interval A3 is a neighborhood

of the zero of φ′, where the oscillation vanishes. The best we can do here is then to estimate the

corresponding integral with the magnitude of the integrand:

∣∣∣∣
∫

I∩A3

eiφ(u)ψ(u) du

∣∣∣∣ ≤
∫ 1+ν−γ+ν−δ/N

1+ν−γ−ν−δ/N

ψ(u) du ≤ 2
Nνδ

ψ

(
1 +

1
2νγ

)

≤ C
1
νδ

ν1/2−ηβ

ν−γ/4((1 + ν−η)(1 + ν−γ/2)− 1)1/4

≤ C
1
νδ

ν1/2−ηβ+γ/4

(ν−η + ν−γ)1/4
≤ C

νδ

νδ
≤ C.

For A1, we can use Van der Corput’s lemma. Thus
∣∣∣∣
∫

I∩A1

eiφ(u)ψ(u) du

∣∣∣∣ ≤ C
ψ(1 + ν−1/3)

φ′(1 + ν−γ/10)
.

Observe that

ψ(1 + ν−1/3) ≤ C
ν1/2−ηβ

ν−1/12(ν−1/3 + ν−η)1/4
≤ C ν7/12−ηβ+ζ/4,
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where ζ = min(η, 1/3). As for φ′, using (5) we have that that

|φ′(1 + ν−γ/10)| ≥ ν(1 + ν−γ − 1− ν−γ/10)
(
a− f ′(1 + ν−γ)

)

≥ 9
10

ν1−γ
(−f ′(1 + ν−γ)

)

=
9
10

ν1−γ

(
− (1 + ν−γ)−2

√
q2(1 + ν−γ)2 − 1

+
(1 + ν−γ)−2

√
(1 + ν−γ)2 − 1

)

≥ C ν1−γ

√
(1 + ν−η)2(1 + ν−γ)2 − 1−

√
(1 + ν−γ)2 − 1√

(1 + ν−η)2(1 + ν−γ)2 − 1
√

(1 + ν−γ)2 − 1

≥ Cν1−γ/2−η+ξ.

Thus
∣∣∣∣
∫

I∩A1

eiφ(u)ψ(u) du

∣∣∣∣ ≤ C
ν7/12−ηβ+ζ/4

ν1−γ/2−η+ξ

≤ Cν−5/12+η(1−β)+γ/2+ζ/4−ξ ≤ Cν−1/6+(1−β)/(2β) ≤ C,

if β ≥ 3/4.

Let us now consider A2. Once again, using Van der Corput’s lemma,
∣∣∣∣
∫

A2∩I

eiφ(u)ψ(u) du

∣∣∣∣ ≤ C
ψ(1 + ν−γ/10)

φ′(1 + ν−γ − ν−δ/N)
.

Proceeding as in the previous case, we see that

ψ(1 + ν−γ/10) ≤ C
ν1/2−ηβ

ν−γ/4(ν−γ + ν−η)1/4
≤ C ν1/2−ηβ+γ/4+ξ/4,

and that

|φ′(1 + ν−γ − ν−δ/N)| ≥ ν(1 + ν−γ − 1− ν−γ + ν−δ/N)
(
a− f ′(1 + ν−γ)

)

≥ ν1−δ

N

(−f ′(1 + ν−γ)
)

≥ Cν1−δ−η+γ/2+ξ

= Cν1/2−η(1−β)+γ/4+3ξ/4.

Therefore
∣∣∣∣
∫

I∩A2

eiφ(u)ψ(u) du

∣∣∣∣ ≤ C
ν1/2−ηβ+γ/4+ξ/4

ν1/2−η(1−β)+γ/4+3ξ/4

≤ Cν−(2β−1)η−ξ/2 ≤ C,

if β ≥ 1/2.

Let us now move to the study of the interval A4. Using Van der Corput’s lemma, we have
∣∣∣∣
∫

A4∩I

eiφ(u)ψ(u) du

∣∣∣∣ ≤ C
ψ(1 + ν−γ + ν−δ/N)
|φ′(1 + ν−γ + ν−δ/N)| .
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As usual, we see that

ψ(1 + ν−γ + ν−δ/N) ≤ C
ν1/2−ηβ

ν−γ/4(ν−γ + ν−η)1/4
≤ C ν1/2−ηβ+γ/4+ξ/4,

while using (6), we see that

|φ′(1 + ν−γ + ν−δ/N)| ≥ ν
1

Nνδ

(
a− f ′(1 + ν−γ)− 1

2
f ′′(1 + ν−γ)

1
Nνδ

)

≥ ν1−δ

N

(
−f ′(1 + ν−γ)− 1

2
f ′′(1 + ν−γ)

1
Nνδ

)
.

We already have the estimate −f ′(1 + ν−γ) ≥ Cνγ/2+ξ−η. We shall now show that there is a

positive constant C such that

|f ′′(1 + ν−γ)| ≤ Cν3γ/2+ξ−η. (7)

In the following computations, we will call u0 = 1 + x = 1 + ν−γ , q = 1 + y = 1 + ν−η, with

x, y ∈ [0, 1], and z = max(x, y). Thus

|f ′′(u0)| =
(3u2

0 − 2)(q2u2
0 − 1)3/2 − (3q2u2

0 − 2)(u2
0 − 1)3/2

u3
0(u

2
0 − 1)3/2(q2u2

0 − 1)3/2

=
(3u2

0 − 2)2(q2u2
0 − 1)3 − (3q2u2

0 − 2)2(u2
0 − 1)3

u3
0(u

2
0 − 1)3/2(q2u2

0 − 1)3/2
(
(3u2

0 − 2)(q2u2
0 − 1)3/2 + (3q2u2

0 − 2)(u2
0 − 1)3/2

) .

The numerator of the above expression is a polynomial in x and y, sum of monomials of degrees

3 to 16, none of which is of the form xj for any j. Therefore this numerator is bounded above in

absolute value by

Cy(x2 + xy + y2) ≤ Cyz2.

On the other hand, the denominator is bounded below in absolute value by

Cx3/2(x + y)3/2((x + y)3/2 + x3/2) ≥ Cx3/2z3.

It follows that

|f ′′(u0)| ≤ C
yz2

x3/2z3
= Cν3γ/2+ξ−η,

as desired. Thus we may deduce that

|φ′(1 + ν−γ + ν−δ/N)| ≥ C

N
ν1−δ

(
νγ/2+ξ−η − Cν3γ/2+ξ−η

Nνδ

)

≥ C

N
ν1−δνγ/2+ξ−η(1− C

N
νγ−δ)

≥ Cν1−δ+γ/2+ξ−η

≥ Cν1/2+γ/4+3ξ/4−η(1−β),
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if we take N big enough (recall we are in the case δ ≥ γ). We may now conclude
∣∣∣∣
∫

A4∩I

eiφ(u)ψ(u) du

∣∣∣∣ ≤ C
ν1/2−ηβ+γ/4+ξ/4

ν1/2+γ/4+3ξ/4−η(1−β)
≤ Cν−η(2β−1)−ξ/2 ≤ C,

if β ≥ 1/2.

It remains to study the case (η, γ) ∈ G, that is δ < γ. Observe that this implies γ ≤ η and

therefore ξ = γ. Divide the interval [1 + ν−1/3, 2/q] into the union of three subintervals (defined

to be empty when the left endpoint happens to be bigger than the right endpoint):

A1 = [1 + ν−1/3, 1 + ν−γ/10],

A2 = [1 + ν−γ/10, 1 + 2ν−1/2+ηβ−γ/2],

A3 = [1 + 2ν−1/2+ηβ−γ/2, 2/q],

The interval A2 is a neighborhood of the zero of φ′, where the oscillation vanishes, so we estimate

the associated integral with the magnitude of the integrand:
∣∣∣∣
∫

I∩A2

eiφ(u)ψ(u) du

∣∣∣∣ ≤
∫ 1+2ν−1/2+ηβ−γ/2

1+ν−γ/10

ψ(u) du ≤ 2ν−1/2+ηβ−γ/2 ψ
(
1 + ν−γ/10

)

≤ C
ν−1/2+ηβ−γ/2ν1/2−ηβ

ν−γ/4((1 + ν−η)(1 + ν−γ/10)− 1)1/4

≤ C
ν−γ/2

ν−γ/2
≤ C.

The study of A1 is exactly the same as in the case γ ≤ δ, thus we do not repeat it.

As for A3, we use Van der Corput’s lemma, obtaining
∣∣∣∣
∫

A3∩I

eiφ(u)ψ(u) du

∣∣∣∣ ≤ C
ψ(1 + 2ν−1/2+ηβ−γ/2)
|φ′(1 + 2ν−1/2+ηβ−γ/2)| .

Since a is positive and f is decreasing and f(1 + ν−γ) = a(1 + ν−γ), we may say that

|φ′(1 + 2ν−1/2+ηβ−γ/2)| ≥ ν(a(1 + 2ν−1/2+ηβ−γ/2)− f(1 + ν−γ))

= νa(2ν−1/2+ηβ−γ/2 − ν−γ) ≥ νaν−1/2+ηβ−γ/2

≥ ν1/2+ηβ−γ/2 q2 − 1√
q2(1 + ν−γ)2 − 1 +

√
(1 + ν−γ)2 − 1

≥ Cν1/2+ηβ−γ/2 ν−η

(ν−γ + ν−η)1/2 + ν−γ/2

≥ Cν1/2+ηβ−γ/2ν−η+γ/2 = Cν1/2+ηβ−η.

On the other hand,

ψ(1 + 2ν−1/2+ηβ−γ/2) ≤ C
ν1/2−ηβ

ν−1/8+ηβ/4−γ/8(ν−η + ν−1/2+ηβ−γ/2)1/4
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≤ C
ν1/2−ηβ

ν−1/4+ηβ/2−γ/4
= Cν3/4−3ηβ/2+γ/4.

Therefore,
∣∣∣∣
∫

A3∩I

eiφ(u)ψ(u) du

∣∣∣∣ ≤ C
ν3/4−3ηβ/2+γ/4

ν1/2+ηβ−η
= Cν1/4−5ηβ/2+γ/4+η ≤ C,

if (η, γ) ∈ G, and β ≥ 2/3.

It remains to study the boundedness of the integral
∣∣∣∣∣
∫

I∩[1+ν−1/3, 2/q]

eiφ(u)ψ(u) du

∣∣∣∣∣

for the values of a for which φ′ has no zeros in [1 + ν−1/3, 2/q]. Call a0 and a1 the values of a for

which the zero of φ′ is 1+ ν−1/3 and 2/q, respectively. Geometrically, it is clear that for any fixed

u ∈ [1 + ν−1/3, 2/q], the value of |φ′(u)| grows as a goes from a0 to ∞, and decreases as a goes

from −∞ to a1, while ψ(u) stays unchanged. Thus, all the estimates we obtained for a0 using

Van der Corput’s lemma or simply the magnitude of ψ, remain true for any a ≥ a0, and those we

obtained for a1 remain true for any a ≤ a1. This concludes the proof. ¤

6 Boundedness of T 5
ν .

Proposition 6.1 There exists a positive constant C such that for all ν ≥ 1, for all intervals I,

for all functions t(r) and for all g ∈ L2(I), we have

‖T 5
ν g‖L2([0, 1]) ≤ C‖g‖L2(I).

Proof. The kernel of the operator T 5
ν (T 5

ν )∗ is

L(r, ρ) =
∫

I

ei(t(r)−t(ρ))s2
h̃ν(rs)h̃ν(ρs)χ[2ν,∞)(rs)χ[2ν,∞)(ρs)s−1/2 ds,

Thus, using Lemma 1.3,

|L(r, ρ)| ≤
∫ ∞

2ν
min(r, ρ)

|h̃ν(rs)h̃ν(ρs)|s−1/2 ds ≤ C√
rρ

∫ ∞

2ν
min(r, ρ)

s−3/2 ds ≤ C

√
min(r, ρ)√

νrρ
.

Since
∫ 1

0

|L(r, ρ)| dr ≤ C

∫ 1

0

√
min(r, ρ)√

νrρ
dr =

C√
νρ

∫ ρ

0

dr +
C√
ν

∫ 1

ρ

1√
r

dr =
C√
ν

(2−√ρ)

is uniformly bounded in ρ ∈ [0, 1], by Schur’s lemma the operators T 5
ν (T 5

ν )∗ are uniformly bounded,

and so are the T 5
ν ’s. ¤
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7 Boundedness of T 6
ν .

Proposition 7.1 There exists a positive constant C such that for all ν ≥ 1, for all intervals I,

for all functions t(r) and for all g ∈ L2(I), we have

‖T 6
ν g‖L2([0, 1]) ≤ C‖g‖L2(I).

Proceeding as for T 4
ν , write T 6

ν as the sum of two operators, by means of the equality cos θ =

(eiθ + e−iθ)/2,

T 6
ν g(r) =

√
1
2π

∫

I

eit(r)s2 r1/2s1/4eiθ(rs)

(s2r2 − ν2)1/4
χ[2ν,∞)(rs)g(s) ds +

+

√
1
2π

∫

I

eit(r)s2 r1/2s1/4e−iθ(rs)

(s2r2 − ν2)1/4
χ[2ν,∞)(rs)g(s) ds.

Once again, it is enough to study just one of these two operators, for example the one with the +

sign in the exponential (call it just T ). The operator TT ∗ has kernel

K(r, ρ) =
∫

I

ei[(t(r)−t(ρ))s2+θ(rs)−θ(ρs)]r1/2ρ1/2s1/2χ[2ν,∞)(rs)χ[2ν,∞)(ρs)
(r2s2 − ν2)1/4(ρ2s2 − ν2)1/4

ds.

Assuming ρ < r, calling p = (r− ρ)/ρ and σ = pν, and changing variables, s = u/(r− ρ), we have

the kernel
1

(r − ρ)1/2

∫

I∩[2σ,∞)

ei[−au2/2+θ((p+1)u/p)−θ(u/p)]

u1/2(1− σ2(p + 1)−2u−2)1/4(1− σ2u−2)1/4
du,

where a = −2(t(r)− t(ρ))/(r − ρ)2. Since the function |r − ρ|−1/2 is integrable in r, uniformly in

ρ, by Schur’s lemma it is enough to show that the integral is uniformly bounded in the interval I,

in p > 0, in σ > 0, and in a ∈ R. Let us call

φ(u) = −a

2
u2 + θ

(
p + 1

p
u

)
− θ

(
u

p

)

ψ(u) =
1

u1/2
(
1− σ2

(p+1)2u2

)1/4 (
1− σ2

u2

)1/4
.

Observe that

φ′(u) = −au +
(p + 2)u√

(p + 1)2u2 − σ2 +
√

u2 − σ2
= −au + f(u),

(note that here “f” indicates a different function from the one in section 5) and that the function

ψ is decreasing with

ψ(u) ≤ 1√
u− σ

.

Note that, since φ′ is the difference of a concave up function and a linear function, φ′′ is the

difference of an increasing function and a constant. Hence, φ′′ is increasing and therefore it
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changes sign at most once. By assuming that the interval I is contained in an interval where φ′′

has constant sign, we can apply Van der Corput’s lemma to
∣∣∣∣∣
∫

I∩[2σ,∞)

eiφ(u)ψ(u) du

∣∣∣∣∣ .

In order to do it, we need to study the function φ′. As usual, we consider only those values of a

for which there is a zero of φ′ in the interval [2σ, ∞), that is

0 < a ≤
√

4(p + 1)2 − 1−√3
4σp

.

Assume first that σ ≥ 1. Let us parametrize a in such a way that the zero of φ′ is σ + σγ , with

γ ≥ 1. This gives

a =
(p + 2)√

(p + 1)2(σ + σγ)2 − σ2 +
√

(σ + σγ)2 − σ2
.

In this way, the required uniformity in the parameter a is equivalent to the uniformity in the

parameter γ. In order to apply Van der Corput’s lemma we need to estimate |φ′| from below.

PSfrag replacements
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Figure 3: The curves f(u) and au.

Observe that

|φ′(u)| =

∣∣∣∣∣−
(p + 2)u√

(p + 1)2(σ + σγ)2 − σ2 +
√

(σ + σγ)2 − σ2
+

(p + 2)u√
(p + 1)2u2 − σ2 +

√
u2 − σ2

∣∣∣∣∣

=

∣∣∣∣∣
(p + 2)u

(
√

(p + 1)2u2 − σ2 +
√

u2 − σ2)(
√

(p + 1)2(σ + σγ)2 − σ2 +
√

(σ + σγ)2 − σ2)
×
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×
(

(p + 1)2((σ + σγ)2 − u2)√
(p + 1)2(σ + σγ)2 − σ2 +

√
(p + 1)2u2 − σ2

+
(σ + σγ)2 − u2

√
(σ + σγ)2 − σ2 +

√
u2 − σ2

)∣∣∣∣∣

≥
∣∣∣∣

(p + 2)u
((p + 1)u + u)((p + 1)(σ + σγ) + (σ + σγ))

×

×
(

(p + 1)2((σ + σγ)2 − u2)
(p + 1)(σ + σγ) + (p + 1)u

+
(σ + σγ)2 − u2

σ + σγ + u

)∣∣∣∣

=
∣∣∣∣
σ + σγ − u

σ + σγ

∣∣∣∣

Next divide the interval [2σ, ∞) into four subintervals, given by the following partition

u1 = 2σ,

u2 = max(2σ, σ + σγ/2),

u3 = max(u2, σ + σγ − σγ/2),

u4 = σ + σγ + σγ/2,

and study each case separately. Applying Van der Corput’s lemma and using the above estimates

for ψ and φ′, we obtain that when [u1, u2] is non-degenerate,
∣∣∣∣∣
∫

[u1, u2]∩I

eiφ(u)ψ(u) du

∣∣∣∣∣ ≤ C
ψ(2σ)

|φ′(σ + σγ/2)| ≤ C
σ + σγ

√
σσγ/2

≤ C√
σ
≤ C.

On the other hand, when [u2, u3] is non-degenerate,
∣∣∣∣∣
∫

[u2, u3]∩I

eiφ(u)ψ(u) du

∣∣∣∣∣ ≤ C
ψ(σ + σγ/2)

|φ′(σ + σγ − σγ/2)| ≤ C
σ + σγ

√
σγ/2σγ/2

≤ C.

As for [u3, u4], we estimate it using the size of ψ(u):
∣∣∣∣∣
∫

[u3, u4]∩I

eiφ(u)ψ(u) du

∣∣∣∣∣ ≤
∫ σ+σγ+σγ/2

u3

ψ(u) du ≤ 2σγ/2ψ(u3)

≤ 2σγ/2ψ(σ + σγ/2) ≤ 2σγ/2

√
σγ/2

≤ C.

Finally, using Van der Corput’s lemma again,
∣∣∣∣∣
∫

[u4,∞]∩I

eiφ(u)ψ(u) du

∣∣∣∣∣ ≤ C
ψ(σ + σγ + σγ/2)
|φ′(σ + σγ + σγ/2)| ≤ C

σ + σγ

√
σγ + σγ/2σγ/2

≤ C.

This concludes the case σ ≥ 1. As for the remaining case, 0 < σ ≤ 1, we impose that the zero of

φ′ is σ +σγ , with γ ≤ 1 (when γ grows from −∞ to 1, σγ decreases from ∞ to σ). Just as before,

we have the following estimates for φ′ and ψ

ψ(u) ≤ 1√
u− σ

,

|φ′(u)| ≥ |σ + σγ − u|
σ + σγ

≥ |σ + σγ − u|
2σγ

.
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Suppose 0 ≤ γ ≤ 1. Then
∣∣∣∣∣
∫

[2σ, 3]∩I

eiφ(u)ψ(u) du

∣∣∣∣∣ ≤
∫ 3

2σ

ψ(u) du ≤ C,

and by Van der Corput’s lemma,
∣∣∣∣∣
∫

[3,∞]∩I

eiφ(u)ψ(u) du

∣∣∣∣∣ ≤ C
ψ(3)
|φ′(3)| ≤ C

2σγ

√
2(3− σ − σγ)

≤ Cσγ ≤ C.

If instead γ < 0, then we divide the interval [2σ, ∞) into five subintervals, given by the following

partition

u1 = 2σ,

u2 = 3,

u3 = max(3, σ + σγ/2),

u4 = max(u3, σ + σγ − σγ/2),

u5 = σ + σγ + σγ/2,

and study each case separately: the integrals along the intervals [u1, u2] and [u4, u5], can be

estimated by taking absolute values inside; for the other intervals, apply Van der Corput’s lemma

as usual.
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