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Abstract

Let X1; X2; : : : ; Xq be a system of real smooth vector �elds satisfying
Hörmander�s rank condition in a bounded domain 
 of Rn. Let A =
faij (t; x)gqi;j=1 be a symmetric, uniformly positive de�nite matrix of real
functions de�ned in a domain U � R� 
. For operators of kind

H = @t �
qX

i;j=1

aij (t; x)XiXj �
qX
i=1

bi (t; x)Xi � c (t; x)

we prove local a-priori estimates of Schauder-type, in the natural (par-
abolic) Ck;� (U) spaces de�ned by the vector �elds Xi and the distance
induced by them. Namely, for aij ; bi; c 2 Ck;� (U) and U 0 b U; we prove

kukCk+2;�(U0) 6 c
n
kHukCk;�(U) + kukL1(U)

o
:

1



1 Introduction

Let 
 be a bounded domain of Rn, and let X1; X2; : : : ; Xq be a system of smooth
real vector �elds satisfying Hörmander�s rank condition in 
. In this setting,
�sum of squares�operators

qX
i=1

X2
i

or their �parabolic�analog

@t �
qX
i=1

X2
i (1.1)

have been widely studied since Hörmander�s famous paper [21]: these opera-
tors are hypoelliptic, and share with elliptic and parabolic operators several
deep analogies. In recent years, nondivergence operators modeled on the above
classes, namely

L =

qX
i;j=1

aij (x)XiXj (1.2)

or

H = @t �
qX

i;j=1

aij (t; x)XiXj (1.3)

have also been studied, assuming that A = faijgqi;j=1 is a symmetric, uniformly
positive de�nite matrix of real functions de�ned in 
 (in case (1.2)) or in a
bounded domain U � R� 
 (in case (1.3)), and � > 0 is a constant such that:

��1 j�j2 6
qX

i;j=1

aij�i�j 6 � j�j2 for every � 2 Rq; (1.4)

uniformly in 
 or U . These classes of operators naturally arise in some prob-
lems related to geometry in several complex variables (see [28] and references
therein) as well as in some models of human vision (see [14] and references
therein); moreover, these operators realize a framework where a suitable theory
of nonlinear equations modeled on Hörmander�s vector �elds can be settled.
A system of Hörmander vector �elds can be thought as the natural substitute

of the �cartesian� derivatives @xi ; in the study of degenerate equations like
(1.2) or (1.3). Moreover, it induces a �Carnot�Carathéodory distance�, which
is (locally) doubling with respect to the Lebesgue measure. These facts allow
to de�ne several function spaces shaped on the vector �elds, such as Hölder
spaces, Sobolev spaces, BMO; VMO etc. It is then natural to use these spaces
to express the required regularity of the coe¢ cients aij . Clearly, as soon as
the coe¢ cients aij are not C1, the corresponding operator (1.2) or (1.3) is no
longer hypoelliptic, and no result can be drawn on it from the classical theory of
Hörmander�s sums of squares. Nevertheless, many classical results about elliptic
and parabolic operators, which do not require, in principle, high regularity of
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the coe¢ cients, when properly reformulated in the language of vector �elds, look
like desirable properties of these operators, and reasonable -although nontrivial-
conjectures. Two typical instances of this situation are (local) Lp estimates and
C� estimates on the �second order�derivatives XiXju. In [4]-[5] we have proved
Lp estimates of this kind for operators of type (1.2) or some more general classes,
assuming the coe¢ cients aij in the space VMO, extending the classical results
of Rothschild-Stein [30] for Hörmander�sum of squares. In this paper, we prove
local C� estimates of Schauder type for an operator (1.3). Our main result is
the following (all symbols will be de�ned in the following sections):

Theorem 1.1 Let 
 be a bounded domain of Rn, and let X1; X2; : : : ; Xq be
a system of smooth real vector �elds de�ned in a neighborhood 
o of 
 and
satisfying Hörmander�s rank condition in 
o. Let U be a bounded domain of
Rn+1, U � R � 
; let A = faij (t; x)gqi;j=1 be a symmetric, uniformly positive
de�nite matrix of real functions de�ned in U , and � > 0 a constant such that
(1.4) holds in U . Assume aij ; bi; c 2 Ck;� (U) for some integer k > 0 and some
� 2 (0; 1) : Let

H = @t �
qX

i;j=1

aij (t; x)XiXj �
qX
i=1

bi (t; x)Xi � c (t; x) : (1.5)

Then, for every domain U 0 b U there exists a constant c > 0 depending on
U;U 0; fXig ; �; k; � and the Ck;� norms of the coe¢ cients such that for every
u 2 Ck+2;�loc (U) with Hu 2 Ck;� (U) one has

kukCk+2;�(U 0) 6 c
n
kHukCk;�(U) + kukL1(U)

o
:

Analogous Schauder estimates for stationary operators (1.2) obviously follow
from the above theorem, as a particular case.
Let us brie�y compare our result with the existing literature. In [34], Xu

states local estimates of Schauder type for operators of type (1.2), under an
additional assumption on the structure of the Lie algebra generated by the
Xi�s. In [12], Capogna and Han prove �pointwise Schauder estimates� (in the
spirit of Ca¤arelli�s work [9] on fully nonlinear equations) for equations of type
(1.2) in Carnot groups. In [27], Montanari proves local Schauder estimates for
a particular class of operators of type (1.3), namely tangential operators on CR
manifolds, where the vector �elds are allowed to be nonsmooth (namely, C1;�).
The main feature of the present paper, besides the �evolutionary� case it

covers, is that our theory applies to any system of Hörmander vector �elds.
The general strategy we use (described in detail in §5) is similar to that

we have followed in [5], [6]. A basic role is played by C� continuity of sin-
gular and fractional integrals on spaces of homogeneous type (in the sense of
Coifman-Weiss [15]), coupled with the machinery introduced in [30] and adapted
to nondivergence form operators in [5]. These results about C� continuity of
singular and fractional integrals are proved in Theorems 2.7 and 2.11, (see §2)
and can be of independent interest. Again, the main feature of these results,
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compared with the existing literature, is their generality, which makes them
suitable for application to the context of general Hörmander�s vector �elds.
Once we have proved Theorem 1.1, a more subtle question poses, namely

the possibility of using the above a-priori estimates to show that, whenever a
function u 2 C2;�loc (U) solves Hu = f in U with Ck;� (U) coe¢ cients and data,
then actually u 2 Ck+2;�loc (U) : This natural regularization result follows from
the a-priori estimates as soon as one can solve the classical Dirichlet problem,
for operators of kind (1.5) but with smooth coe¢ cients, provided a good molli�-
cation technique, suited to this context, is available. Solvability of the Dirichlet
problem is a classical result, due to Bony [3], while in §11 we will construct a
family of molli�ers adapted to our context. This construction, which can be
of independent interest, makes use of the existence and properties of the �heat
kernel�for the model operator (1.1), and also of the abstract theory of singular
integrals developed in §2. The desired regularization result is proved in The-
orem 11.5. For technical di¢ culties, our technique allows to prove this result
only for even k.
A �rst application of the theory contained in this paper is the following. In

[7], Lanconelli, Uguzzoni and us prove that operators of type (1.3) possess a
fundamental solution, which satis�es sharp Gaussian estimates. The �Schauder
theory�developed in this paper allows to show that this fundamental solution
has a �nite C2;� norm, in any bounded domain excluding the pole, depending
only on the vector �elds, the C� norms of the coe¢ cients, and the ellipticity
constant �. This fact will be proved in [7].
Plan of the paper. In §2 we prove some abstract results about the action

of singular and fractional integrals on spaces of homogeneous type. The next
two sections are of preliminary nature: in §3 we prove some properties of the
�parabolic Carnot-Carathéodory distance� induced by the vector �elds, which
will allow to apply the abstract theory of §2 to our setting, while in §4 we
collect some properties of parabolic Hölder spaces C� and Ck;� induced by
Hörmander�s vector �elds. In §5 we state precisely our main results and illustrate
the general strategy of the proof: our basic result, that is the C2;� estimate for
an operator without lower order terms, will be proved in three steps, which are
brie�y explained in §5. These three steps constitute §6, 7, 8, respectively. The
basic result is then extended to higher order derivatives in §9, and to operators
with lower order terms in §10. The construction of a family of molli�ers which
allow to control Ck;�-norms, and the proof of regularity results, are performed
in §11. Finally, an Appendix (§12) collects some notation and known results
which are employed throughout the paper, and should be known to any reader
who is familiar with the two classical papers [17] and [30].

Acknoledgement. We wish to thank Ermanno Lanconelli and Francesco
Uguzzoni for some useful discussions on the subject of this paper.
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2 Singular integrals on spaces of homogeneous
type and continuity on Hölder spaces

Let X be a set. A function d : X � X ! R is called a quasidistance on X if
there exists a constant cd > 1 such that for any x; y; z 2 X:

d (x; y) > 0 and d (x; y) = 0, x = y;

d (x; y) = d (y; x) ;

d (x; y) 6 cd (d (x; z) + d (z; y)) : (2.1)

We will say that two quasidistances d; d0 on X are equivalent, and we will
write d ' d0, if there exist two positive constants c1; c2 such that c1d0 (x; y) 6
d (x; y) 6 c2d

0 (x; y) for any x; y 2 X.
For r > 0, let Br (x) = fy 2 X : d (x; y) < rg. These �balls� satisfy the

axioms of a complete system of neighborhoods in X, and therefore induce a
(separated) topology. With respect to this topology, the balls Br (x) need not
be open. We will explicitly exclude the above kind of pathology:

De�nition 2.1 Let (X; d) be a set endowed with a quasidistance d such that
the d-balls are open with respect to the topology induced by d, and let � be a
positive Borel measure on X satisfying the doubling condition: there exists a
positive constant c� such that

� (B2r (x)) 6 c� � � (Br (x)) for any x 2 X; r > 0: (2.2)

Then (X; d; �) is called a space of homogeneous type.

To simplify notation, the measure d� (x) will be denoted simply by dx, and
� (A) will be written jAj. We will also set

B (x; y) = Bd(x;y) (x) :

De�nition 2.2 (Hölder spaces) For any � > 0, u : X ! R; let:

jujC�(X) = sup

�
ju (x)� u (y)j
d (x; y)

� : x; y 2 X;x 6= y

�
kukC�(X) = jujC�(X) + kukL1(X)

C� (X) =
n
u : X ! R : kukC�(X) <1

o
:

Also, we denote by C�0 (X) the subspace of boundedly supported C
� (X) func-

tions.

A basic result proved by Macias-Segovia (see Theorem 2 in [25]) states that:
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Proposition 2.3 Let d be any quasidistance on a set X. Then there exists
another quasidistance d0 on X, equivalent to d, a constant c > 0 and an exponent
�0 2 (0; 1] such that for every r > 0; x; y; z 2 X with d0 (x; z) < r; d0 (y; z) < r;

jd0 (x; z)� d0 (y; z)j 6 cd0 (x; y)
�0 r1�� (2.3)

Remark 2.4 This proposition says that the function x 7�! d0 (x; z) (for z �xed)
is locally Hölder continuous (with respect to d0 and therefore also to d). This
allows to prove, under reasonable assumptions on the measure � (for instance, if
� is a Radon measure) that on the space of homogeneous type (X; d; �), C�0 (X)
is dense in Lp (X) for any p 2 [1;1) and any � 6 �0 (with �0 as in (2.3)).
In particular, if d is (equivalent to) a distance, then �0 = 1 in (2.3)). So, in a
general space of homogeneous type, Hölder spaces are always interesting spaces
for � small enough. On the opposite side, we cannot say, in general, that for �
large enough the space C� (X) is reduced to constant functions; this will be the
case in our application to Carnot-Carathéodory distance, due to the presence of
a suitable "gradient" related to the distance.

De�nition 2.5 Let (X; d; dx) be a space of homogeneous type.
We will say that a measurable function k (x; y) : X �X ! R is a standard

kernel on X if k satis�es the following properties:

jk (x; y)j 6 c

jB (x; y)j for any x; y 2 X; (2.4)

(�growth estimate�)

jk (x; y)� k (x0; y)j 6
c

jB (x0; y)j

�
d (x0; x)

d (x0; y)

��
(2.5)

for any x0; x; y 2 X, with d (x0; y) >Md (x0; x), M > 1; c; � > 0 (�mean value
inequality�).

Remark 2.6 Condition (2.4) and the doubling condition immediately imply
that for any �xed c1; c2 > 0,Z

c1r<d(x;y)<c2r

jk (x; y)j dy 6 c (2.6)

for any r > 0; with c independent of r.
Note also that, if condition (2:5) holds for some M0 > 1, then it holds

for any M > M0. We can assume M large enough, so that the condition
d (x0; y) > Md (x0; x) implies that d (x0; y) ' d (x; y). We will use systemat-
ically this equivalence. Moreover, just not to use one more constant, we will
assume that this �large� value of M is 2. This means to assume that the con-
stant cd in (2.1) is < 2. The reader will excuse this little abuse of notation.

6



Theorem 2.7 Let (X; d; dx) be a bounded space of homogeneous type, and let
k (x; y) be a standard kernel. Let

K"f (x) =

Z
d0(x;y)>"

k (x; y) f (y) dy (2.7)

where d0 is any quasidistance on X, equivalent to d; and �xed once and for all.
Assume that for every f 2 C� (X) and x 2 X the following limit exists:

Kf (x) = P:V:

Z
X

k (x; y) f (y) dy = lim
"!0

K"f (x) :

Also, assume that: �����
Z
d0(x;y)>r

k (x; y) dy

����� 6 cK (2.8)

for any r > 0 (with cK independent of r) and

lim
"!0

�����
Z
d0(x;y)>"

k (x; y) dy �
Z
d0(x0;y)>"

k (x0; y) dy

����� 6 cKd (x; x0)
 (2.9)

for some  2 (0; 1], where d0 is the same quasidistance appearing in (2.7). Then
the operator K is continuous on C� (X) ; more precisely:

jKf jC�(X) 6 cK kfkC�(X) for every � 6 ; � < � (2.10)

where  is the number in (2.9) and � is the number in (2.5). Moreover,

kKfk1 6 cK;R;� kfk� (2.11)

where R =diamX.

Remark 2.8 The fact that classical singular integrals "with variable kernels"
(those arising in the study of linear elliptic equations) preserve Hölder spaces
was already proved by Calderón-Zygmund in [10] (see Theorem 2 p.909). In
the context of "homogeneous spaces with gauge", continuity of singular integrals
on Hölder spaces was proved by Korànyi-Vàgi [22]; this result has also been
applied by Folland [17], in the context of homogeneous groups. These results
are particular cases of the previous proposition, while the lack of any kind of
homogeneity in the space is the main feature of our result. It is worthwhile to
mention that the boundedness of the space X is necessary only for 2.11.

Remark 2.9 (On the role of di¤erent quasidistances) Here we want to
clarify the role of the two possibly di¤erent quasidistances d; d0. In some ap-
plications of the abstract theory of singular integrals on spaces of homogeneous
type (included the present application to the proof of Schauder estimates), it is
useful to switch from one quasidistance to another one, having di¤erent good
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properties. In particular, in the de�nition of principal value of a singular inte-
gral, the small region around the pole which is removed and shrinked needs not
to be a ball with respect to the original quasidistance. Also, it is worthwhile to
note that properties (2.4), (2.5) are preserved replacing the quasidistance with
an equivalent one; the same is true for (2.8), provided also (2.4) is assumed
(therefore, in (2.8) the presence of d0 instead of d is not relevant, but only
written for consistence with (2.7)); on the other hand, property (2.9) is not ob-
viously preserved replacing the quasidistance with an equivalent one. Therefore,
the possibility of choosing in (2.9) and (2.7) a suitable quasidistance d0, possibly
di¤erent from d, will be crucial to check these assumptions in our context of
Hörmander vector �elds.

In the proof of the above proposition we need the following Lemma, that
can be proved by a standard computation (see [6], Lemma 2.8):

Lemma 2.10 Let X be any space of homogeneous type. Then
a. Z

d(x;y)<r

d (x; y)
�

jB (x; y)j dy 6 cr� for any � > 0;

b. Z
d(x;y)>r

d (x; y)
��

jB (x; y)j dy 6 cr�� for any � > 0:

Proof of Theorem 2.7. To prove (2.10), let us write:

Kf (x)�Kf (x0)

=

�Z
X

k (x; y) [f (y)� f (x)] dy �
Z
X

k (x0; y) [f (y)� f (x0)] dy
�
+

+ lim
"!0

(
f (x)

Z
d0(x;y)>"

k (x; y) dy � f (x0)
Z
d0(x0;y)>"

k (x0; y) dy

)
� A+B:

A =

(Z
d(x0;y)>2d(x0;x)

fk (x; y) [f (y)� f (x)]� k (x0; y) [f (y)� f (x0)]g dy
)
+

+

(Z
d(x0;y)<2d(x0;x)

fk (x; y) [f (y)� f (x)]� k (x0; y) [f (y)� f (x0)]g dy
)

� A1 +A2:

A1 =

Z
d(x0;y)>2d(x0;x)

f[k (x; y)� k (x0; y)] [f (y)� f (x0)]g dy+

+ [f (x0)� f (x)]
Z
d(x0;y)>2d(x0;x)

k (x; y) dy

� A11 +A12:
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jA11j 6
Z
d(x0;y)>2d(x0;x)

c

jB (x0; y)j

�
d (x0; x)

d (x0; y)

��
jf j� d (x0; y)

�
dy =

= c jf j� d (x0; x)
�
Z
d(x0;y)>2d(x0;x)

1

jB (x0; y)j d (x0; y)���
dy 6

if � < �; by Lemma 2.10, b,

6 c jf j� d (x0; x)
�
d (x0; x)

���
= c jf j� d (x0; x)

�
:

As to the second term,

jA12j 6 jf j� d (x0; x)
�

�����
Z
d(x0;y)>2d(x0;x)

k (x; y) dy

����� :
By Remark 2.6, d (x0; y) > 2d (x0; x) ) d (x; y) > cd (x0; x) for some c > 0.
ThenZ

d(x0;y)>2d(x0;x)
k (x; y) dy =

=

Z
d(x;y)>cd(x0;x)

k (x; y) dy �
Z
d(x0;y)<2d(x0;x); d(x;y)>cd(x0;x)

k (x; y) dy

and, by (2.8) and (2.6),

jA12j 6 jf j� d (x0; x)
�

(�����
Z
d(x;y)>cd(x0;x)

k (x; y) dy

�����+
+

Z
d(x0;y)<2d(x0;x); d(x;y)>cd(x0;x)

jk (x; y)j dy
)

6 jf j� d (x0; x)
�

(
cK +

Z
cd(x0;x)6d(x;y)6c1d(x0;x)

jk (x; y)j dy
)

6 cK jf j� d (x0; x)
�
:

jA2j 6
Z
d(x0;y)<2d(x0;x)

jk (x; y)j jf (y)� f (x)j dy+

+

Z
d(x0;y)<2d(x0;x)

jk (x0; y)j jf (y)� f (x0)j dy

since d (x0; y) < 2d (x0; x) =) d (x; y) < cd (x0; x)

6
Z
d(x;y)<cd(x0;x)

jk (x; y)j jf (y)� f (x)j dy+

+

Z
d(x0;y)<2d(x0;x)

jk (x0; y)j jf (y)� f (x0)j dy

� A21 +A22

9



jA21j 6 cK jf j�
Z
d(x;y)<cd(x0;x)

d (x; y)
�

jB (x; y)jdy 6

by Lemma 2.10, a)
6 cK jf j� d (x; x0)

�
:

Analogously,
jA22j 6 cK jf j� d (x; x0)

�
:

We have therefore proved that

jAj 6 cK jf j� d (x; x0)
�
:

Let us come to B.

B = lim
"!0

(
f (x)

Z
d0(x;y)>"

k (x; y) dy � f (x0)
Z
d0(x0;y)>"

k (x0; y) dy

)
=

= [f (x)� f (x0)] lim
"!0

Z
d0(x;y)>"

k (x; y) dy+

+ f (x0) lim
"!0

(Z
d0(x;y)>"

k (x; y) dy �
Z
d0(x0;y)>"

k (x0; y) dy

)
� B1 +B2:

jB1j 6 jf j� d (x; x0)
�
sup
">0

�����
Z
d0(x;y)>"

k (x; y) dy

����� 6
6 cK jf j� d (x; x0)

�

by (2.8). Moreover, by (2.9), we can conclude

jBj 6 cK jf j� d (x; x0)
�
+ cK kfk1 d (x; x0)


:

This ends the proof of (2.10).
To prove (2.11), let us write:

Kf (x) =

Z
X

k (x; y) [f (y)� f (x)] dy + f (x) lim
"!0

Z
d(x;y)>"

k (x; y) dy = A+B

jAj 6 cK jf j�
Z
X

d (x; y)
�

jB (x; y)jdy 6

for some �xed R > 0, since the space is bounded

6 cK jf j�
Z
d(x;y)6R

d (x; y)
�

jB (x; y)jdy 6

by Lemma 2.10, a)
6 cK jf j�R

�:
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jBj 6 kfk1 sup
">0

�����
Z
d0(x;y)>"

k (x; y) dy

����� 6 cK kfk1

and this concludes the proof.
The next Theorem provides a result of C� continuity for fractional integrals:

Theorem 2.11 Let (X; d; dx) be a bounded space of homogeneous type, and
assume that X does not contain atoms (that is, points of positive measure). Let
k� (x; y) be a "fractional integral kernel", that is:

0 6 k� (x; y) 6
cd (x; y)

�

jB (x; y)j (2.12)

for any x; y 2 X; some c; � > 0;

jk� (x; y)� k� (x0; y)j 6
cd (x0; y)

�

jB (x0; y)j

�
d (x0; x)

d (x0; y)

��
(2.13)

for any x0; x; y 2 X, with d (x0; y) >Md (x0; x), some M > 1; c; � > 0 (�mean
value inequality�). Then the operator

I�f (x) =

Z
X

k� (x; y) f (y) dy

is continuous on C� (X) ; for any � < min (�; �) :

Remark 2.12 If the space X contains atoms, the de�nition of I� has to be
modi�ed as

I�f (x) =

Z
Xnfxg

k� (x; y) f (y) dy;

in order to assure the convergence of the integral; we want to avoid these techni-
calities. Fractional integrals on spaces of homogeneous type have been extensively
studied by Gatto-Vàgi, see [18], [19]; see also [20] and references therein. How-
ever, our result is not comparable with theirs because on one side they make the
extra assumption of normality of the space, while on the other side they do not
require boundedness of X. Moreover, our result is not sharp: one should expect
I� to map C� in C�+�; here we have limited ourselves to prove, in the shortest
way, the result which we need for subsequent applications to Schauder estimates.

Proof. Let R be the diameter of X. We will check that k� satis�es assump-
tions (2.4), (2.5), (2.8), and (2.9); then the result will follow by Proposition 2.7.
Namely: property (2.12) implies (2.4) with the constant c replaced by cR�; anal-
ogously, property (2.13) implies (2.5), with the same exponent �. By Lemma
2.10, a, �����

Z
d0(x;y)>�

k� (x; y) dy

����� 6 c

Z
d(x;y)<R

d (x; y)
�

jB (x; y)jdy 6 cR�

11



hence (2.8) holds. Finally, to prove (2.9), we start by noting that in this case

lim
"!0

�����
Z
d0(x;y)>"

k� (x; y) dy �
Z
d0(x0;y)>"

k� (x0; y) dy

����� =
=

����Z
X

k� (x; y) dy �
Z
X

k� (x0; y) dy

����
because, by (2.12), the integral of k� (x; �) is convergent, henceZ

d0(x;y)6"
k� (x; y) dy ! 0 for "! 0

since X has no atoms. By (2.12), (2.13) and Lemma 2.10,����Z
X

k� (x; y) dy �
Z
X

k� (x0; y) dy

���� 6
6
Z
d(x0;y)>2d(x0;x)

jk� (x; y)� k� (x0; y)j dy

+

Z
d(x0;y)62d(x0;x)

jk� (x; y)� k� (x0; y)j dy

6 cd (x0; x)
�
Z
d(x0;y)>2d(x0;x)

dy

jB (x0; y)j d (x0; y)���
+

+ c

Z
d(x;y)6cd(x0;x)

d (x; y)
�

jB (x; y)jdy + c
Z
d(x0;y)62d(x0;x)

d (x0; y)
�

jB (x0; y)j
� I

Now: if � > �,

I 6 cd (x0; x)
� � d (x0; x)��� + cd (x0; x)� 6 cd (x0; x)

�
;

if � < �,

I 6 cd (x0; x)
�
Z
d(x0;y)<R

d (x0; y)
���

jB (x0; y)j
dy + cd (x0; x)

� 6

6 cd (x0; x)
�
R��� + cd (x0; x)

� 6 cd (x0; x)
�
R���

since we can assume d (x0; x) < R; �nally, if � = �;

I 6 cd (x0; x)
�
Z
d(x0;y)<R

1

jB (x0; y)j
dy + cd (x0; x)

� 6

6 cd (x0; x)
�
Z
d(x0;y)<R

�
d (x0; y)

d (x0; x)

�"
1

jB (x0; y)j
dy + cd (x0; x)

� 6

6 c"d (x0; x)
��"

R" + cd (x0; x)
� 6 c"d (x0; x)

��"
R":

Hence (2.9) holds for any  < min (�; �); by Proposition 2.7, I� is continuous
on C� (X) for any � 6 ; � < �, that is for any � < min (�; �) :

12



3 Parabolic Carnot-Carathéodory distance

Let 
 be a bounded domain of Rn, and let X1; X2; : : : ; Xq be a system of smooth
real vector �elds de�ned in a neighborhood 
o of 
 and satisfying Hörmander�s
condition of step s in 
o. Explicitely, this means that:

Xi =
nX
k=1

bik (x) @xk

with bik 2 C1 (
0) ; and the vector space spanned at every point of 
0 by:
the �elds Xi; their commutators [Xi; Xj ] = XiXj �XjXi; the commutators of
the Xk�s with the commutators [Xi; Xj ];: : :and so on, up to some step s, is the
whole Rn.
Let us recall the following

De�nition 3.1 (Carnot-Carathéodory distance) For x; y 2 
0; let:

d(x; y) = inffT () j  : [0; T ()]! Rn X-subunit; (0) = x; (T ()) = yg;

where we call X-subunit any absolutely continuous path  such that

0(t) =
mX
j=1

�j(t)Xj((t))

a.e. with
Pm

j=1 �j(t)
2 6 1 a.e.

For x 2 
, we set

Br (x) = fy 2 
o : d (x; y) < rg :

It is well known (see [29]) that d is a distance (called Carnot-Carathéodory
distance, or brie�y CC-distance, induced by the system of Hörmander�s vector
�elds Xi) and that there exist positive constants c; r0; c1; c2 depending on 

such that:

jB2r (x)j 6 c jBr (x)j for any x 2 
; r 6 r0

c1 jx� yj 6 d (x; y) 6 c2 jx� yj1=s for any x; y 2 
; (3.1)

where s is the step appearing in Hörmander�s condition.
In order to apply to a domain A � 
 the abstract theory of spaces of ho-

mogenous type developed in §2, we need to know that in (A; d; dx) the doubling
condition holds. Explicitly, this means that

jB2r (x) \Aj 6 c jBr (x) \Aj for any x 2 A; r > 0:

This requires some regularity property of @A.

De�nition 3.2 Under the above assumptions, we say that a domain A � 
 is
d-regular if

jBr (x) \Aj > c jBr (x)j
for every x 2 A, 0 < r <diam(A).

13



In [6] we have proved the following criteria of regularity:

Lemma 3.3

i Let A = BR (x0) � 
o be a metric ball. Then, BR (x0) is d-regular.

ii The union of a �nite number of d-regular domains in 
o is d-regular.

iii If A is a bounded d-regular domain in 
o, then (A; d; dx) is a space of ho-
mogeneous type.

Let us now consider the parabolic Carnot-Carathéodory distance dP corre-
sponding to d; namely

dP ((t; x) ; (s; y)) =

q
d (x; y)

2
+ jt� sj;

de�ned in the cylinder R� 
:
One can easily check that:

Lemma 3.4 Whenever d (x; y) is a distance de�ned on some set 
; dP ((t; x) ; (s; y))
de�ned as above is a distance on R� 
:

Notation 3.5 We will write Br (x) for the d-ball in 
 with radius r and center
x; and Br (t; x) for the dp-ball in R � 
 with radius r and center (t; x). In
other words, with this notation the center of the ball reveals the dimension of
the space.

To apply the theory developed in §2 to the space

(BR (t0; x0) ; dP ; dtdx)

we need to know that a dP -ball BR (t0; x0) is dP -regular. This fact will be
actually proved in this section, and will require some labour.
First, we need to introduce some standard subsets related to parabolic geom-

etry, namely:
"parabolic cones" of the kind:

Cr (t; x) =

�
(�; z) : jt� � j < r2; d (x; z) < r � jt� � j

r

�
and "parabolic cylinders":

Qr (�; x) =
�
(t; z) : jt� � j < r2; d (x; z) < r

	
:

Then:

Lemma 3.6 The volume of the sets

Br (t; x) ; Cr (t; x) ; Qr (t; x)

is equivalent to
r2 jBr (x)j :

Moreover, if d (x; y) 6 cr, then jBr (t; x)j is equivalent to jBr (t; y)j :

14



Proof. Obviously,
jQr (t; x)j = 2r2 jBr (x)j :

Moreover,
Br (t; x) � Qr (t; x) and Cr (t; x) � Qr (t; x)

hence
jBr (t; x)j 6 2r2 jBr (x)j and jCr (t; x)j 6 2r2 jBr (x)j :

As to the estimates from below, we can write:

jBr (t; x)j =
Z t+r2

t�r2
d�

Z
d(x;y)<

p
r2�jt�� j

dy = 2

Z r2

0

��Bpr2�� (x)�� d� >
> 2

Z 3
4 r

2

0

��Br=2 (x)�� d� = 3

2
r2
��Br=2 (x)�� ;

jCr (t; x)j =
Z t+r2

t�r2
d�

Z
d(x;y)<

r2�jt��j
r

dy = 2

Z r2

0

���B r2��
r

(x)
��� d� > (3.2)

> 2
Z 1

2 r
2

0

��Br=2 (x)�� d� = r2
��Br=2 (x)�� :

By the doubling property of jBr (x)j ; the result follows.
Finally, the last assertion holds because, since d (x; y) 6 cr, by the doubling

condition on d,

jBr (t; x)j 6 2r2 jBr (x)j 6 c1r
2 jBr (y)j 6 c2 jBr (t; y)j :

We also recall the following:

Lemma 3.7 Let BR (x0) be a metric ball, x 2 BR (x0) ; d (x; x0) = � < R. If
r < 3�, then there exists x1 such that:
i) Br=3 (x1) � BR (x0) \Br (x) ;
ii) d (x0; x1) < �� r

3 ;
iii) d (x1; x) < 2

3r:
If r > 3�, then taking x1 = x0; properties i),ii),iii) hold.

The above Lemma is contained in the proof of Lemma 4.2 of [6]. We can
now prove the following:

Proposition 3.8 Let BR (t0; x0) be a dP -ball. Then BR (t0; x0) is dP -regular,
that is there exists c > 0 such that

jBR (t0; x0) \Br (t; x)j > c jBr (t; x)j

for every (t; x) 2 BR (t0; x0) ; 0 < r < 2R:
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Proof. For (t; x) 2 BR (t0; x0) ; let us consider the ball Br (t; x) ; for some
r 6 2R; let � = d (x; x0) :
1st case: we assume r < 3�: Let x1 be as in Lemma 3.7. Then, we claim

that:
Cr=3 (t; x1) � BR (t0; x0) \Br (t; x) : (3.3)

Namely, let

(�; z) 2 Cr=3 (t; x1) �
�
(�; z) : jt� � j < r2

9
; d (x1; z) <

r

3
� 3
r
jt� � j

�
:

To prove that (�; z) 2 Br (t; x) ; we write

dP ((�; z) ; (t; x)) =

q
d (x; z)

2
+ j� � tj 6

q
(d (x; x1) + d (x1; z))

2
+ j� � tj 6

by iii) of Lemma 3.7 and de�nition of Cr=3 (t; x1)

6

s�
2

3
r +

r

3
� 3
r
jt� � j

�2
+ j� � tj =

=

r
9

r2
jt� � j2 � 5 j� � tj+ r2 6 r

because the function f (s) = 9
r2 s

2 � 5s+ r2; is decreasing in
h
0; r

2

9

i
; hence has

its maximum at s = 0, and f (0) = r2.
To prove that (�; z) 2 BR (t0; x0) ; we write:

dP ((�; z) ; (t0; x0)) =

q
d (x0; z)

2
+ j� � t0j 6

6
q
(d (x0; x1) + d (x1; z))

2
+ j� � tj+ jt� t0j 6

6

s�
�� r

3
+
r

3
� 3
r
j� � tj

�2
+ j� � tj+ jt� t0j 6

6
s
(�2 + j� � tj) +

�
9

r2
j� � tj2 � 6�

r
j� � tj+ j� � tj

�
6 R

because �2 + j� � tj 6 R2 and 9
r2 j� � tj

2 � 6�
r j� � tj+ j� � tj 6 0 for r < 3�:

Inclusion (3.3) and Lemma 3.6 imply that, in case 1,

jBR (t0; x0) \Br (t; x)j >
��Cr=3 (t; x1)�� > c1 jBr (t; x1)j > c2 jBr (t; x)j :

The last inequality follows, again by Lemma 3.6, because d (x; x1) < 2
3r.

2nd case: we assume r > 3� and jt� t0j 6 5
9R

2: Under the assumption
r > 3�, Lemma 3.7 states that
i) Br=3 (x0) � BR (x0) \Br (x) ;
ii) d (x0; x) < 2

3r:

16



Let us show that (3.3) still holds, with x1 = x0; that is:

Cr=3 (t; x0) � BR (t0; x0) \Br (t; x) : (3.4)

Inclusion Cr=3 (t; x0) � Br (t; x) follows by the same proof as above. To show
that Cr=3 (t; x0) � BR (t0; x0) ; let (�; z) 2 Cr=3 (t; x0) ; then:

dP ((�; z) ; (t0; x0)) =

q
d (x0; z)

2
+ j� � t0j 6

6

s�
r

3
� 3
r
jt� � j

�2
+ j� � tj+ jt� t0j 6

=

r
9

r2
jt� � j2 � j� � tj+ r2

9
+
5

9
R2 6

r
r2

9
+
5

9
R2 6 R

where we used the fact that 9
r2 jt� � j

2 � j� � tj 6 0 for j� � tj < r2

9 ; and that
r < 2R. This shows that also in Case 2,

jBR (t0; x0) \Br (t; x)j >
��Cr=3 (t; x0)�� > c1 jBr (t; x0)j > c2 jBr (t; x)j

where the last inequality follows, by Lemma 3.6, because d (x; x0) = � < r
3 :

3rd case: we assume r > 3� and 5
9R

2 < jt� t0j < R2: Since r > 3�, as in
case 2 we know that:
i) Br=3 (x0) � BR (x0) \Br (x) ;
ii) d (x0; x) < 2

3r:
To �x ideas, assume t > t0 (the other case is identical), that is t > t0+

5
9R

2.
Let us de�ne:

C�r=3 (t; x0) =

�
(t; z) : t� r2

9
< � < t� r2

18
; d (x0; z) <

r

3
� 3
r
jt� � j

�
:

We claim that
C�r=3 (t; x0) � BR (t0; x0) \Br (t; x) : (3.5)

Inclusion C�r=3 (t; x0) � Br (t; x) can be proved as in Case 1. To show that

C�r=3 (t; x0) � BR (t0; x0) ; let (�; z) 2 C�r=3 (t; x0) ; then � > t0 and:

dP ((�; z) ; (t0; x0)) =

q
d (x0; z)

2
+ � � t0 6

6

s�
r

3
� 3
r
(t� �)

�2
+ (t� t0)� (t� �) 6

=

r
9

r2
(t� �)2 � 3 (� � t) + r2

9
+R2 6 R

because the function f (s) = 9
r2 s

2 � 3s + r2

9 for s 2
h
r2

18 ;
r2

9

i
is decreasing and

attains its maximum at s = r2

18 ; f
�
r2

18

�
= � r2

36 < 0: Therefore (3.5) holds, and

we conclude that in Case 3,

jBR (t0; x0) \Br (t; x)j >
���C�r=3 (t; x0)��� > c1 jBr (t; x0)j > c2 jBr (t; x)j
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where the second inequality follows by a similar computation to that of the
proof of Lemma 3.6, and the last inequality follows by Lemma 3.6. This ends
the proof of the Proposition.

4 Parabolic Hörmander Hölder spaces

We now de�ne parabolic Hölder spaces adapted to this context. Let 
 be as in
previous section. For any bounded domain U � R� 
 and any � > 0, let:

jujC�(U) = sup

�
ju (t; x)� u (s; y)j
dP ((t; x) ; (s; y))

� : (t; x) ; (s; y) 2 U; (t; x) 6= (s; y)
�

kukC�(U) = jujC�(U) + kukL1(U)

C� (U) =
n
u : U ! R : kukC�(U) <1

o
:

Note that, by (3.1), a function u 2 C� (U) is also continuous on U in Euclidean
sense. By Lemma 3.4, dP is a distance; if U is a dP -regular domain (for instance,
a dP -ball), then (U; dP ; dtdx) is a space of homogeneous type and, by Remark
2.4, the space C�0 (U) is dense in L

p (U) for any � 2 (0; 1] and p 2 [1;1): We
are going to show that for � > 1, C� spaces become trivial:

Proposition 4.1 Let d be the Carnot-Carathéodory distance induced in a do-
main 
 by a system of Hörmander�s vector �elds X1; :::; Xq, and dP the corre-
sponding parabolic distance. Then:

i If f (x) 2 C� (
) for some � > 1; then f is constant in 
;

ii if f (t; x) 2 C� (U) for some � > 2; then f is constant in U ; if 1 < � 6 2;
then f does not depend on x.

Proof. (i). Let us show that Xif � 0 in 
 for i = 1; 2; :::; q; then Hörmander�s
condition implies that the Euclidean gradient of f vanishes in 
; hence f is
constant. For any x 2 
; let  (t) be the integral curve of Xi such that:�

0 (t) = Xi ( (t))
 (0) = x

Then:

Xif (x) =

�
d

dt
f ( (t))

�
(0) = lim

t!0

f ( (t))� f ( (0))
t

: (4.1)

Since  is subunit (see §3), we can write:

jf ( (t))� f ( (0))j 6 jf ja d ( (t) ;  (0))
� 6 jf ja t�

and, if � > 1; this implies Xif (x) = 0; by (4.1).
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(ii). Applying (i) to the function x 7�! f (t; x) for �xed t, we deduce that
if � > 1 then f does not depend on x. Now, saying that f (t) belongs to the
parabolic C� space means that

jf (t)� f (s)j 6 c jt� sj�=2

and this implies that f is constant if � > 2.
By the previous discussion, henceforth we will consider parabolic Hölder

spaces C� for � 2 (0; 1).
For any positive integer k; let

Ck;� (U) =
n
u : U ! R : kukCk;�(U) <1

o
with

kukCk;�(U) =
X

jIj+2h6k

@ht XIu

C�(U)

where, for any multiindex I = (i1; i2; :::; is) ; with 1 6 ij 6 q; we say that jIj = s
and

XIu = Xi1Xi2 :::Xisu:

Note that all the derivatives @ht X
Iu involved in the de�nition of Ck;� are

continuous in Euclidean sense, because they belong to C�.
We will also set Ck;�0 (U) for the space of Ck;� (U) functions compactly

supported in U .
Occasionally, we will also use the space C1;0 (U) of continuous functions u

with continuous derivatives Xiu (for i = 1; 2; :::; q), and the corresponding space
C1;00 (U) of compactly supported functions.
The following Proposition collects some simple facts about parabolic Hölder

spaces, which will be used later:

Proposition 4.2 Let U be as above.

i For any couple functions f; g 2 C� (U), one has:

jfgjC� 6 jf jC� kgkL1 + kfkL1 jgjC� (4.2)

and
kfgkC� 6 2 kfkC� kgkC� : (4.3)

Moreover, if both f and g vanish at least in a point of U; then

jfgjC� 6 2 (diamU)� jf jC� jgjC� (4.4)

Also, for any couple functions f; g 2 Ck;� (U)

kfgkCk;� 6 ck kfkCk;� kgkCk;� (4.5)

for some absolute constant depending only on k.
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ii If BR (x0) is a d-ball in Rn; f 2 C1 (B5R (x0)) one has:

jf (x)� f (y)j 6 sup
B5R(x0)

jXf j � d (x; y) for any x; y 2 BR (x0) (4.6)

where

jXf j =

vuut qX
i=1

(Xif)
2
:

If BR (t0; x0) is a dP -ball in Rn+1; for any f 2 C10 (BR (t0; x0)) one has:

jf (t; x)� f (s; y)j 6 (sup jXf j+R sup j@tf j) � dP ((t; x) ; (s; y)) : (4.7)

In particular,

jf jC� 6 R1�� � (sup jXf j+R sup j@tf j) (4.8)

iii If U 0 � U; then
jf jC�(U 0) 6 jf jC�(U) (4.9)

iv For any ball BR (t0; x0) � U , for any f 2 C� (U), with sprtf � BR we have

jf jC�(U) = jf jC�(BR)

v Let Bir (i = 1; 2; :::; k) a �nite family of balls (in Rn+1) of the same radius,
such that [ni=1Bi2r � U . Then for any f 2 C� (U) ;

kfkC�([ki=1Bi
r)
6 c

kX
i=1

kfkC�(Bi
2r)

(4.10)

with c depending on the family of balls, but independent of f .

vi The following interpolation inequality holds for the time derivative of any
function f 2 C2;�0 (U):

kftkL1 6 r�=2 jftjC� +
2

r
kfkL1 for any r > 0; � 2 (0; 1) : (4.11)

Proof. The �rst two inequalities in (i) are obvious. The third follows from the
second by the following remark: if f (t0; x0) = 0 for some (t0; x0) 2 U; then for
any (t; x) 2 U;

jf (t; x)j = jf (t; x)� f (t0; x0)j 6 jf j� dP ((t; x) ; (t0; x0))
�

hence
kfk1 6 jf j� (diamU)

�

and the same holds for g. Inequality (4.5) obvioulsy follows from (4.3).
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To prove (ii), for any �xed " > 0; let  be a subunit curve joining x; y such
that:

0 (t) =

qX
i=1

�i (t)Xi ( (t)) ;

 (0) = x;  (T ) = y; T 6 (1 + ") d (x; y) :
Observe that  � B5R (x0): namely, for any z 2 ; let z be the portion of 
which joins x to z,  (Tz) = z, then

d (x; z) 6 Tz 6 T 6 (1 + ") d (x; y) 6 (1 + ") 2R
for x; y 2 BR (x0) ; hence d (z; x0) 6 d (x; z) + d (x; x0) < 5R.
We have

f (y)� f (x) = f ( (T ))� f ( (0)) =

=

Z T

0

d

dt
(f ( (t))) dt =

Z T

0

qX
i=1

�i (t) f
0 ( (t))Xi ( (t)) dt:

Then

jf (y)� f (x)j 6
Z T

0

vuut qX
i=1

�i (t)
2

vuut qX
i=1

Xif ( (t))
2
dt 6

6 sup
z2B5R(x0)

jXf (z)j � T 6 (1 + ") d (x; y) � sup
z2B5R(x0)

jXf (z)j :

For vanishing " we have (4.6). For functions depending also on t, the same
reasoning gives

jf (t; x)� f (s; y)j 6 sup jXf j � d (x; y) + sup j@tf j � jt� sj 6 (4.12)

6 sup jXf j � d (x; y) + sup j@tf j � jt� sj1=2R
6 (sup jXf j+R sup j@tf j) � dP ((t; x) ; (s; y))

which is (4.7); this also implies (4.8).

(iii) is obvious. To prove (iv): jf jC�(U) > jf jC�(BR)
is obvious; if (t; x) 2

BR; (s; y) =2 BR; pick a subunit curve  joining x to y; with

T () 6 (1 + ") d (x; y)
and let y� 2  such that (t; y�) 2 @BR; then

dP ((t; x) ; (t; y
�)) = d (x; y�) 6 (1 + ") d (x; y) 6 (1 + ") dP ((t; x) ; (s; y)) :

Since f (s; y) = f (t; y�) = 0 we have

jf (t; x)� f (s; y)j
dP ((t; x) ; (s; y))

� =
jf (t; x)j

dP ((t; x) ; (s; y))
� 6

6 (1 + ")� jf (t; x)j
dP ((t; x) ; (t; y�))

� = (1 + ")
� jf (t; x)� f (t; y�)j
dP ((t; x) ; (t; y�))

�
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therefore jf jC�(U) 6 (1 + ")
� jf jC�(BR)

for any " > 0, and we are done.
(v) can be proved with a similar reasoning to that used in [6], Lemma 4.4: let

�i (i = 1; 2; :::; k) be smooth cuto¤ functions such that sprt �i � Bi2r,
Pk

i=1 �i = 1
in [ki=1Bir. Then, subadditivity of the seminorm and (4.9) give

jf jC�([kj=1B
j
r) 6

kX
i=1

jf�ijC�([kj=1B
j
r) 6

kX
i=1

jf�ijC�([kj=1B
j
2r)
=

by (iv), since sprt �i � Bi2r

=
kX
i=1

jf�ijC�(Bi
2r)
6 2

kX
i=1

kfkC�(Bi
2r)
k�ikC�(Bi

2r)
6 c

kX
i=1

kfkC�(Bi
2r)

:

(vi) can be proved as in the Euclidean case (see [23], p.124):

ft (t; x) = ft (t; x)� [f (t+ 1; x)� f (t; x)] + [f (t+ 1; x)� f (t; x)] =
= ft (t; x)� ft (t+ �; x) + [f (t+ 1; x)� f (t; x)]

for some � 2 (0; 1) : Then

jft (t; x)j 6 jft (t; x)� ft (t+ �; x)j+ 2 kfkL1 6
6 ��=2 jftjC� + 2 kfkL1 :

The same reasoning applied to the function f (t; x) = g (rt; x) (for any r > 0)
gives:

r jft (t; x)j 6 (r�)�=2 r jftjC� + 2 kfkL1
and �nally

kftkL1 6 r�=2 jftjC� +
2

r
kfkL1 :

5 Local Schauder estimates: statement of re-
sults and strategy of the proof

We are now in position to summarize our assumptions and main results.
(H1) Let 
 be a bounded domain of Rn, and let X1; X2; : : : ; Xq be a system

of smooth real vector �elds de�ned in a neighborhood 
o of 
 and satisfying
Hörmander�s condition of step s in 
o.
(H2) Let U be a bounded domain of Rn+1, U � R�
; letA = faij (t; x)gqi;j=1

be a symmetric, uniformly positive de�nite matrix of real functions de�ned in
U , and let � > 0 be a constant such that:

��1 j�j2 6
qX

i;j=1

aij (t; x) �i�j 6 � j�j2 for every � 2 Rq; (t; x) 2 U:
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(H3) Assume aij 2 C� (U) for some � 2 (0; 1) :
We consider the di¤erential operator:

H = @t �
qX

i;j=1

aij (t; x)XiXj :

Our basic result for the operator H is the following:

Theorem 5.1 Under the assumptions (H1),(H2),(H3), for every domain U 0 b
U and � 2 (0; 1) there exists a constant c > 0 depending on U;U 0; fXig ; �; �
and kaijkC�(U) such that for every u 2 C

2;�
loc (U) with Hu 2 C� (U) one has

kukC2;�(U 0) 6 c
n
kHukC�(U) + kukL1(U)

o
:

We now outline the strategy of the proof.
To study H, we will use extensively results and techniques from [30] (in

particular, Rothschild-Stein�s technique of "lifting and approximation"), as well
as from our previous papers [5], [6]. We will brie�y recall the basic de�nitions
and results in the Appendix, which we refer to for our notation. For more
details, the reader is referred to the papers quoted in the Appendix.
First of all, by Rothschild-Stein "lifting Theorem", we lift the vector �elds

Xi (x) ; de�ned in Rn; to new vector �elds eXi (�) de�ned on RN ; with � =
(x; h) ; h 2 RN�n: We also set eaij (t; �) = eaij (t; x; h) = aij (t; x) ; e
 = 
 � I;

where I is a neighborhood of the origin in RN�n; eU = U � I and

eH = @t �
qX

i;j=1

eaij (t; �) eXi
eXj :

All the notation and results introduced in §§3-4 can now be applied to the

system of Hörmander vector �elds
n eXi

o
. To make explicit the context where we

are now working, we will denote by ed the CC-distance induced in e
 by the systemn eXi

o
; and by edP its parabolic counterpart in N +1 variables. Accordingly, the

symbol eBr (t0; �0) will denote the edP -ball of center (t0; �0) and radius r.
Following a general strategy already employed in [5],[6], the proof of Theorem

5.1 will then proceed in three steps:
Step 1: C�-estimates for eH; when u is a test function with small support in

RN :

Theorem 5.2 There exists r; c > 0 such that for any u 2 C2;�
�eU�, u com-

pactly supported in some ball eBr (t0; �0) � eU ,
kukC2;�( eBr) 6 c

� eHu
C�( eBr)

+ kukL1( eBr)

�
where c; r depend on fXig ; �; � and kaijkC�(U) :
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Step 2: C�-estimates for eH on a ball, for functions not necessarily vanishing
at the boundary:

Theorem 5.3 There exist positive constants r; c; � such that for any u 2 C2;�
� eBr (t0; �0)� ;

0 < t < s < r;

kukC2;�( eBt) 6
c

(s� t)�

� eHu
C�( eBs)

+ kukL1( eBs)

�
where c; r depend on fXig ; �; � and kaijkC�(U) ; � depends on fXig ; �:

Step 3: C�-estimates for H on a ball, for any u 2 C2;�loc (U):

Theorem 5.4 There exist positive constants r; c; � such that for any u 2 C2;� (Br (t0; x0)) ;
0 < t < s < r;

kukC2;�(Bt)
6 c

(s� t)�
n
kHukC�(Bs)

+ kukL1(Bs)

o
where c; r depend on fXig ; �; � and kaijkC�(U) ; � depends on fXig ; �:

Step 1 will be achieved in §6, exploiting the results of §§2-3-4, and adapting
ideas and techniques already applied in [30],[5],[6]. Step 2 will be achieved in
§7, and will follow from Step 1 by standard properties of cuto¤ functions and
suitable interpolation inequalities for Hölder norms, which will be proved there.
These, in turn, rely both on results and techniques of §6, and on the abstract
results proved in §2. Step 3 will be achieved in §8, and will follows from Step
2 by known properties of the metrics induced by the vector �elds fXig andn eXi

o
; provided we use an integral characterization of Hölder spaces, which is

also proved in §8. Finally, by a covering argument, Theorem 5.1 immediately
follows from step 3.

6 Operators of type l; parametrix and local es-
timates for functions of small support

In this section we will prove Theorem 5.2, that is the �rst step in the proof of
our basic result, Theorem 5.1. We will use systematically notation and results
borrowed from [30] and [17]; the reader is referred to the Appendix for the
details.
Let us start again from the lifted operator

eH = @t �
qX

i;j=1

eaij (t; �) eXi
eXj :

By Rothschild-Stein �approximation theorem�(see Theorem 1.6 in [5]), we can
locally approximate the vector �elds eXi with left invariant vector �elds Yi de-
�ned on a homogeneous group G (which is actually RN endowed with a suitable
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Lie group structure). This approximation is expressed by the following identity
which holds for every f 2 C10 (G):

eXi (f (�� (�))) (�) =
�
Yif +R

�
i f
�
(�� (�)) (6.1)

where �� (�) = � (�; �) is a local di¤eomorphism in RN , and the vector �elds R�i
are remainders in a suitable sense (see the Appendix, or [5]). The superscript
� in R�i recalls that these vector �elds depend on the point �; while they act as
derivatives with respect to �.
We now freeze eH at some point (t0; �0) 2 eU , and consider the frozen lifted

operator: eH0 = @t �
qX

i;j=1

eaij(t0; �0) eXi
eXj :

To study eH0, we will consider its approximating operator, de�ned on G0 =
R�G:

H0 = @t �
qX

i;j=1

eaij(t0; �0)YiYj :
Here we regard G0 as a homogeneous group, with translations

(t; �) � (s; �) = (t+ s; � � �) ;

dilations
D (�) (t; �) =

�
�2t;D (�) �

�
and homogeneous dimension Q0 = Q+2, where Q is the homogeneous dimension
of G. Since H0 is left invariant and homogenous of degree 2 in G0, by known
results by Folland (see §§ 2-3 in [17]), it has a fundamental solution, denoted by

h (t0; �0; s; u)

which is homogeneous of degree 2�Q0 = �Q. Also, h (t0; �0; s; u) is nonnegative
and vanishes for s < 0.
Throughout this section, ed will dentote the CC-distance induced in e
 by the

system
n eXi

o
; and edP its parabolic counterpart in N + 1 variables. Moreover,

we will use the quasidistance, introduced by Rothschild-Stein in [30]:ed0 (�; �) = k�(�; �)k
where k�k is the homogeneous norm in G; note that ed0 is de�ned only locally
and it is a quasidistance, equivalent to ed; we will also set

ed0P ((t; �) ; (s; �)) =qed0 (�; �)2 + jt� sj:
Obviously, ed0P is a quasidistance, equivalent to edP . Note also that, denoting byeB ((t; �) ; (s; �)) = eBedP ((t;�);(s;�)) (t; �) ;
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we have ��� eB ((t; �) ; (s; �))��� ' edP ((t; �) ; (s; �))Q+2 :
Notation 6.1 Henceforth we will use the symbol Dk to understand the sum of
all space derivatives of order k. For instance, in the statement of the Lemma
here below, the symbol f @ht Dk'


C�

stands for X
16ij6q

f @ht eXi1 � � � eXik'

C�

:

Lemma 6.2 (cuto¤ functions) For any 0 < � < r; (t; �) 2 RN+1 there exists
' 2 C10

�
RN+1

�
with the following properties:

i 0 6 ' 6 1, ' � 1 on eB� (t; �) and sprt' � eBr (t; �);
ii ��@ht Dk'

�� 6 ck;h

(r � �)k+2h
for k; h 2 N (6.2)

iii For any f 2 C�,f @ht Dk'

C� 6

ck;h

(r � �)k+2h+1
kf kC� for k; h 2 N (6.3)

and r � � small enough.

We will write eB� (t; �) � ' � eBr (t; �)
to indicate that ' satis�es all the previous properties.
Proof. Since eB� � ' � eBr implies eB�0 � ' � eBr for any �0 < �; we can assume
without loss of generality that � > r=2:
The proof of (i)-(ii) is very similar to the proof of Lemma 3.3 in [5]; we repeat

it for convenience of the reader. Pick a function f : [0;1)! [0; 1] satisfying:

f � 1 in [0; �] , f � 0 in [r;1), f 2 C1 (0;1) ,���f (k)��� 6 ck

(r � �)k
for k = 1; 2; ::: (6.4)

Setting '(s; �) = f
�ed0P ((t; �) ; (s; �))�, we can compute:

eXi'(s; �) = f 0(ed0P ((t; �) ; (s; �))) eXi

�ed0P ((t; �) ; (s; �))� (�) (6.5)
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eXi
eXj' (s; �) = (6.6)

= f 00(ed0P ((t; �) ; (s; �))) eXi

�ed0P ((t; �) ; (s; �))� (�) eXj

�ed0P ((t; �) ; (s; �))� (�)+
+ f 0(ed0P ((t; �) ; (s; �))) eXi

eXj

�ed0P ((t; �) ; (s; �))� (�) :
Next, we use the approximation Theorem:

eXi

�q
k�(�; �)k2 + jt� sj

�
(�) = (6.7)

=

��
Yi +R

�
i

��q
k�k2 + jt� sj

��
(�(�,�)) =

=
k�(�; �)kq

k�(�; �)k2 + jt� sj

��
Yi +R

�
i

�
(k�k)

�
(�(�,�))

By homogeneity of the norm, Yi(kuk) is bounded and, since R�i has local degree
6 0, R�i (kuk) is also uniformly bounded; hence��� eXi

�ed0P ((t; �) ; (s; �))� (�)��� 6 c: (6.8)

Analogously, ��� eXi
eXj

�ed0P ((t; �) ; (s; �))� (�)��� 6 ced0P ((t; �) ; (s; �)) (6.9)

for ed0P ((t; �) ; (s; �)) small enough. Then (6.4), (6.5), (6.8) imply��� eXi'(s; �)
��� 6 c

r � � :

Since f 0(ed0P ((t; �) ; (s; �))) 6= 0 for ed0P ((t; �) ; (s; �)) > �; (6.4), (6.6), (6.8), (6.9)
imply: ��� eXi

eXj'(s; �)
��� 6 c

(r � �)2
+

c

� (r � �) 6 c
r

� (r � �)2
6 c

(r � �)2
;

proceeding analogously we get:

��Dk'(s; �)
�� 6 c

k�1X
i=0

1

�i (r � �)k�i
=

c

(r � �)k
k�1X
i=0

(r � �)i

�i
6 c

(r � �)k

Moreover,

@s'(s; �) = f 0(ed0P ((t; �) ; (s; �)))@s �ed0P ((t; �) ; (�; �))� (s)
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and ���@s �ed0P ((t; �) ; (�; �))� (s)��� 6 ced0P ((t; �) ; (s; �))
hence

j@s'(s; �)j 6
c

� (r � �) 6 c
r

� (r � �)2
6 c

(r � �)2
:

Analogously, ��@hs '(s; �)�� 6 c

(r � �)2h

Combining these computations we can complete the proof of (i)-(ii).
To prove (iii), we apply (4.12) to @hsD

k': By (6.2) we get:��@hsDk'(u; �)� @hsDk'(s; �)
�� 6

6 sup
��@hsDk+1'

�� ed (�; �) + sup ��@h+1s Dk'
�� ju� sj 6

6 ck;h

"
1

(r � �)k+2h+1
ed0P ((u; �) ; (s; �)) + 1

(r � �)k+2h+2
ed0P ((u; �) ; (s; �))2

#

Now: if ed0P ((u; �) ; (s; �)) 6 r � �; then:��@hsDk'(u; �)� @hsDk'(s; �)
�� 6 ck;h

(r � �)k+2h+1
ed0P ((u; �) ; (s; �)) ;

if ed0P ((u; �) ; (s; �)) > r � �; then��@hsDk'(u; �)� @hsDk'(s; �)
�� 6 ��@hsDk'(u; �)

��+ ��@hsDk'(s; �)
�� 6

6 c

(r � �)k+2h
6 c

(r � �)k+2h
�
ed0P ((u; �) ; (s; �))

r � � 6

6 ck;h

(r � �)k+2h+1
ed0P ((u; �) ; (s; �)) :

This, together with (6.2), means that@hsDk�

C� 6

ck;h

(r � �)k+2h+1
;

which, by (4.3) implies (6.3).
Let us recall the key de�nition which describes the singular and fractional

integral operators which appear in this context.

De�nition 6.3 As above, let h (t0; �0; s; u) be the fundamental solution of H0;
homogeneous of degree 2 � Q0 = �Q: We say that k(t0; �0; t; �; �) is a frozen
kernel of type `, for some nonnegative integer `, if for every positive integer m
there exiats a positive integer Hm such that

k(t0; �0; t; �; �) =

HmX
i=1

ai(�)bi(�) [Dih(t0; �0; �)] (t;�(�; �))+

+ a0(�)b0(�) [D0h(t0; �0; �)] (t;�(�; �))

28



where ai, bi (i = 0; 1; : : : Hm) are test functions, Di are di¤erential operators
such that: for i = 1; : : : ;Hm , Di is homogeneous of degree 6 2 � ` (so that
Dih(t0; �0; �) is a homogeneous function of degree > ` � Q0), and D0 is a dif-
ferential operator such that D0h(t0; �0; �) has m derivatives with respect to the
vector �elds Yi (i = 1; : : : ; q).
We say that T (t0; �0) is a frozen operator of type ` > 1 if k(t0; �0; t; �; �) is

a frozen kernel of type ` and

T (t0; �0)f(t; �) =

Z t

�1

Z
RN

k(t0; �0; t� s; �; �) f(s; �) dsd�;

we say that T (t0; �0) is a frozen operator of type 0 if k(t0; �0; t; �; �) is a frozen
kernel of type 0 (or "frozen singular integral") and

T (t0; �0)f(t; �) = P:V:

Z t

�1

Z
RN

k(t0; �0; t� s; �; �) f(s; �) dsd�+ (6.10)

+ � (t0; �0)� (t; �) f (t; �) ;

where � is bounded and � is smooth. Explicitely, the principal value of the
integral is de�ned as:

P:V:

Z t

�1

Z
RN

:::dsd� = lim
"!0

Z
ed0P ((t;�);(s;�))>" :::dsd�:

The link between this de�nition and the abstract theory of §2 is contained
in the following:

Proposition 6.4 Let

kj(t; �; s; �) = a(�)b(�) [Djh(t0; �0; �)] (t� s;�(�; �))

be a kernel like those appearing in the de�nition 6.3, with Dj di¤erential operator
homogeneous of degree j (we now leave the dependence on the frozen point (t0; �0)
implicitely understood). Then:

i (growth condition) kj satis�es (2.4) in the form:

jkj(t; �; s; �)j 6
cedP ((t; �) ; (s; �))Q+j 6 c

edP ((t; �) ; (s; �))2�j��� eB ((t; �) ; (s; �))��� ;
ii (mean value inequality) kj satis�es (2.5) in the form:

jkj (t; �; s; �)� kj (t1; �1; s; �)j 6 c
edP (t1; �1; t; �)edP (t1; �1; s; �)Q+j+1 6

6 c
edP (t1; �1; t; �)2�j��� eB ((t; �) ; (s; �))��� �

 edP (t1; �1; t; �)edP (t1; �1; s; �)
!

when edP (t1; �1; s; �) > 2edP (t1; �1; t; �) ;
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iii (cancellation properties) If j = 2, then kj satis�es properties (2.8), in the
form �����

Z
r<ed0P ((t;�);(s;�))<R kj (t; �; s; �) dsd�

����� 6 c

with c independent of r;R and satis�es (2.9), in the form

lim
"!0

�����
Z
ed0P ((t;�);(s;�))>" kj (t; �; s; �) dsd� �

Z
ed0P ((t1;�1);(s;�))>" kj (t1; �1; s; �) dsd�

����� 6
6 cedP (t1; �1; t; �)
for every  2 (0; 1).

Remark 6.5 Point (ii) of this Proposition is similar to, but sharper than,
Proposition 2.17 of [5]. The point is that, to get Schauder estimates for any
� 2 (0; 1) ; here we need (2.5) with exponent � = 1 at the numerator, while in
[5], following Rothschild-Stein, we only get � = 1=s with s =step of Hörman-
der�s condition. Also, point (iii) of this Proposition is similar to, but stronger
than, Lemma 4.11 of [6].

Proof. By the uniform Gaussian estimates proved in [1] for the fundamental
solution of H0, we know that

��@ksYi1Yi2 :::Yirh (t0; �0; s; u)�� 6 c1
e�c2

kuk2
s

sQ=2+k+r=2
(6.11)

with c1; c2 independent of (t0; �0). More generally, if Dk is a di¤erential operator
homogeneous of degree k, we can write:

jDkh (t0; �0; s; u)j 6 c1
e�c2

kuk2
s

sQ=2+k=2
6 (6.12)

6 c1

 
kuk2 + s

s

!Q+k
2

e�c2
kuk2
s�

kuk2 + s
�Q+k

2

6

6 c3�
kuk2 + s

�Q+k
2

because the function � 7�! (1 + �)
Q+k
2 e�c2� is bounded on [0;1). Again, the

constant c3 is independent of (t0; �0) : This implies, for the kernel kj in the
statement of this proposition,

jkj(t; �; s; �)j 6
c3�

k�(�; �)k2 + jt� sj
�Q+j

2

6 cedP ((t; �) ; (s; �))Q+j
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which is (i).
To prove (ii), �x (t1; �1) ; (s; �) ; and let 2r = edP (t1; �1; s; �) ; then condition

edP (t1; �1; s; �) > 2edP (t1; �1; t; �)
means that (t; �) is a point ranging in eBr (t1; �1). Let ' (t; �) be a cuto¤ function
such that eBr (t1; �1) � ' � eB 3

2 r
(t1; �1)

(see Lemma 6.2) and let

u (t; �) = kj (t; �; s; �)' (t; �) :

Then u 2 C1;00
� eB 3

2 r
(t1; �1)

�
, and, for edP (t1; �1; t; �) < r, we can apply property

(ii) of Proposition 4.2:

jkj (t; �; s; �)� kj (t1; �1; s; �)j = ju (t; �)� u (t1; �1)j 6 (6.13)

6 edP (t1; �1; t; �) �
8<: sup
(�;�)2 eB 3

2
r
(t1;�1)

��� eXu (�; �)���+ 3
2
r sup
(�;�)2 eB 3

2
r
(t1;�1)

jut (�; �)j

9=; :

Now,

eXhu (�; �) = eXhkj (�; �; s; �)' (�; �) + kj (�; �; s; �) eXh' (�; �) = I + II

and

eXhkj (�; �; s; �) = a(�)b(�) (YhDjh) (t0; �0; � � s;�(�; �))+

+ a(�)b(�)
�
R�hDjh

�
(t0; �0; � � s;�(�; �))+

+ a(�) eXhb(�) (Djh) (t0; �0; � � s;�(�; �))

so that

jIj 6 c' (�; �)edP (�; �; s; �)Q+j+1 6 c

rQ+j+1
6 cedP (t1; �1; s; �)Q+j+1

where we have used the fact that, for (�; �) 2 eB 3
2 r
(t1; �1) and 2r = edP (t1; �1; s; �) ;

we have edP (�; �; s; �) > cr. On the other hand,

jIIj 6 c

r
� cedP (�; �; s; �)Q+j 6 c

rQ+j+1
6 cedP (t1; �1; s; �)Q+j+1 :

Similarly,

ut (�; �) = @tkj (�; �; s; �)' (�; �) + kj (�; �; s; �)'t (�; �) = It + IIt;
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with

jItj 6 c j@tDjh (t0; �0; � � s;�(�; �))' (�; �)j 6
c' (�; �)edP (�; �; s; �)Q+j+2 6 c

rQ+j+2

and
jIItj 6

c

r2
� cedP (�; �; s; �)Q+j 6 c

rQ+j+2

Therefore,

r sup
(�;�)2 eB 3

2
r
(t1;�1)

jut (�; �)j 6
c

rQ+j+1
6 cedP (t1; �1; s; �)Q+j+1

and �nally, by (6.13), we get:

jk (t; �; s; �)� k (t1; �1; s; �)j 6 c
edP (t1; �1; t; �)edP (t1; �1; s; �)Q+j+1

when edP (t1; �1; s; �) > 2edP (t1; �1; t; �) :
To prove (iii) when j = 2; we proceed similarly to the proof of Lemma 4.11

of [6]: if
k2(t; �; s; �) = a(�)b(�) [D2h(t0; �0; �)] (t� s;�(�; �))

where [D2h(t0; �0; �)] is homogeneous of degree �Q0, we split kj as follows:

k2(t; �; s; �) =
a(�)b(�)c (�) [D2h(t0; �0; �)] (t� s;�(�; �))

g (�;�(�; �))
+

+
a(�)b(�) [D2h(t0; �0; �)] (t� s;�(�; �))

g (�;�(�; �))
[g (�;�(�; �))� c (�)]+

+ a(�) [b(�)� b(�)] [D2h(t0; �0; �)] (t� s;�(�; �))

� ka(t; �; s; �) + kb(t; �; s; �) + kc(t; �; s; �)

where g and c (�) are the functions appearing in the following formula of change
of variables (see Theorem 1.7 in [5]):

u = �(�; �) ; d� = g (�; u) du; g (�; u) = c (�) (1 +O (kuk)) :

We will prove that ka; kb; kc satisfy (2.8) and (2.9). First, let us note that
ka is singular, but satis�es the strong vanishing property, with respect to the
quasidistance ed0P :Z

r<ed0P ((�;t);(�;s))<R ka(t; �; s; �)d�ds
= a(�)b(�)c (�)

Z
r<
p
kuk2+jsj<R

D2h(t0; �0; s; u)duds = 0
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where the last integral vanishes by a known property of homogeneous distribu-
tions of degree �Q0 in homogeneous groups (see [17], Proposition 1.8). Hence
ka obviously satis�es (2.8) and (2.9), for any .
On the other side, let us check that both kb and kc are fractional integral

kernels that satisfy properties (2.12) and (2.13) with � = � = 1: As we have
seen in the proof of Proposition 2.11, this implies that kb and kc also satisfy
(2.8) and (2.9) with any  < 1. Namely,

kb(t; �; s; �) =
a(�)b(�) [D2h(t0; �0; �)] (t� s;�(�; �))

g (�;�(�; �))
[g (�;�(�; �))� c (�)]

=
a(�)b(�) [D2h(t0; �0; �)] (t� s;�(�; �))

1 +O (k�(�; �)k) O (k�(�; �)k)

so that

jkb(t; �; s; �)j 6
c ja(�)b(�)jed0P ((t; �) ; (s; �))Q0�1 6

c ja(�)b(�)jedP ((t; �) ; (s; �))Q0�1 :

Finally, since b is smooth, and

j� � �j 6 ced (�; �) 6 ced0 (�; �) 6 ced0P ((t; �) ; (s; �)) ;
jkc(t; �; s; �)j = ja(�) [b(�)� b(�)] [Dh(t0; �0; �)] (t� s;�(�; �))j

6 c ja(�)j j� � �j jDh(t0; �0; �) (t� s;�(�; �))j

6 c ja(�)jed0P ((t; �) ; (s; �))Q0�1 6
c ja(�)jedP ((t; �) ; (s; �))Q0�1 :

This means that kb and kc satisfy (2.12). A similar and more tedious computa-
tion shows that also (2.13) holds, with � = � = 1.

Theorem 6.6 Let T (t0; �0) is a frozen operator of type ` > 0 and eBr a edP -ball
in RN+1, then T (t0; �0) is continuous on C�

� eBr�:
kT (t0; �0)fkC�( eBr) 6 c kfkC�( eBr) :

Proof. We prove the theorem for frozen operators of type 0, being the other
cases implicitely contained in this, by De�nition 6.3. So, let T (t0; �0) be as in
(6.10). Throughout this proof, we will apply the results of §2 to the homogeneous
space � eBr; edP ; dtd�� :
This is possible in view of Proposition 3.8.
The multiplication operator

f 7! � (t0; �0)�f
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is obviously continuous on C�
� eBr�, by (4.3), because � is a smooth function.

On the other hand, by De�nition 6.3, the kernel of T (t0; �0) is a �nite sum of
kernels of the kind

kj(t; �; s; �) = a(�)b(�) [Djh(t0; �0; �)] (t� s;�(�; �))

with [Djh(t0; �0; �)] homogeneous of some degree j > �Q0 (that is, Dj homoge-
neous of degree j 6 2); plus a regular kernel.
This regular part obviously satis�es (2.12) and (2.13) with � = � = 1 on any

bounded domain, by (ii) of Proposition 4.2, hence de�nes a continuous operator

on C�
� eBr�, by Theorem 2.11.

By Proposition 6.4, we get that:
If j < 2; then kj satis�es (2.12) and (2.13) with � = 1 and � = 2 � j; the

operator with kernel kj is a fractional integral operator, continuous on C�
� eBr�

for any � 2 (0; 1) ; by Theorem 2.11.
If j = 2; the kernel kj satis�es (2.4), (2.5) with � = 1, (2.8), and (2.9), with

any  < 1; the operator with kernel kj is a singular integral operator, continuous

on C�
� eBr� for any � < ; and therefore for any � 2 (0; 1) ; by Theorem 2.7.

With Theorem 6.6 at hand, we can complete the proof of Theorem 5.2 with
a fairly straightforward adaptation of techniques contained in [30], [5] and [6].
For convenience of the reader, we present a reasonably detailed proof.
As in [30], Theorem 8 (for a detailed proof see Lemma 2.9 in [5]), we have:

Proposition 6.7 If T (t0; �0) is a frozen operator of type ` > 1, then eXiT (t0; �0)
is a frozen operator of type `� 1:

Next, we recall the basic �representation formula�which holds in this context
(compare with Theorem 3.1 in [5] ).

Theorem 6.8 (Parametrix for eH0) For every test function a, every t0; �0,
there exist a frozen operator of type two, P �(t0; �0), and q2 frozen operators of
type one, Sij(t0; �0) (i; j = 1; : : : ; q), such that for every compactly supported
function f 2 C2;�,

P �(t0; �0) eH0f(t; �) = a(�)f(t; �) +

qX
i;j=1

eaij(t0; �0)Sij(t0; �0)f(t; �): (6.14)

In particular,

P �(t0; �0)f (�) =

Z t

�1

Z
RN

a(�)b(�)h(t0; �0; t� s;�(�; �))) f(s; �) d�ds:

Sketch of the proof. (see [5] for details)
1. One considers the formally transposed operator

eH�
0 = @t �

qX
i;j=1

eaij(t0; �0) eX�
i
eX�
j
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and the corresponding approximating operator

H0 = @t �
qX

i;j=1

eaij(t0; �0)YiYj
(recall that, on the group G, Y �i simply coincides with �Yi; see e.g. [30] p.252).
2. One de�nes

P0(t0; �0)f (t; �) =

Z t

�1

Z
RN

a(�)b(�)h(t0; �0; t� s;�(�; �)) f(s; �) d�ds

where h (t0; �0; �) is the fundamental solution of H0; and a; b are suitable cuto¤
functions.
3. One computes eH�

0P0(t0; �0)f (t; �) by means of relation (6.1), and �nds the
identity:

eH�
0P0 (t0; �0) f(t; �) = a(�)f(t; �) +

qX
i;j=1

eaij(t0; �0)S�ij(t0; �0)f(t; �)
where S�ij (t0; �0) are frozen kernels of type 1, by Proposition 6.7.
4. One transposes the last identity, and �nds:

P � (t0; �0) eH0f(t; �) = a(�)f(t; �) +

qX
i;j=1

eaij(t0; �0)Sij(t0; �0)f(t; �)
where the Sij (t0; �0)�s are frozen kernels of type 1, and P � (t0; �0) is a frozen
kernel of type 2; namely,

P �(t0; �0)f (�) =

Z t

0

Z
RN

a(�)b(�)h(t0; �0; t� s;�(�; �))) f(s; �) d�ds

This is exactly the identity (6.14).
Next, we want to take the second derivative eXh

eXk of both sides of (6.14),
to get a representation formula for the second derivatives of a test function. To
perform this computation, the following property is crucial:

Proposition 6.9 If S(t0; �0) is any frozen operator of type 1, there exist q + 1
frozen operator of type 2, P (t0; �0) ; P k (t0; �0) (k = 1; 2; :::; q) such that

S(t0; �0)f(t; �) =

qX
k=1

P k (t0; �0)Xkf (t; �) + P (t0; �0) f (t; �) :

In the stationary case, this property is contained in Theorem 9 (p.292) of
[30]; in this computation the presence of the time variable is irrelevant, hence
the Proposition holds.
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Conclusion of the Proof of Theorem 5.2 (sketch). By Proposition 6.9,
one can rewrite the parametrix formula (6.14) in the form:

P � (t0; �0) eH0f(t; �) = a(�)f(t; �)+

+

qX
i;j=1

eaij(t0; �0) ( qX
k=1

P kij (t0; �0)
eXkf (t; �) + Pij (t0; �0) f (t; �)

)

where P �; Pij ; P kij are frozen operators of type two. Taking two derivatives
of both sides of the previous identity, applying Proposition 6.7 and writingeH0 = eH +

� eH0 � eH� we get:
eXr
eXs (af) (t; �) = T (t0; �0) eHf(t; �)+ (6.15)

+ T (t0; �0)

qX
i;j=1

[eaij(t0; �0)� eaij(t; �)] eXi
eXjf (t; �)+

+

qX
i;j=1

eaij(t0; �0) ( qX
k=1

T kij (t0; �0) eXkf (t; �) + Tij (t0; �0) f (t; �)

)
:

where T; Tij ; T kij are frozen singular integrals.

Next, we take C�
� eBr� norm of both sides of (6.15) and apply Theorem 6.6,

writing: eXk
eXhf


C�( eBr)

6

6 c

8<: eHfC�( eBr)
+

qX
i;j=1

[eaij(t0; �0)� eaij(�)] eXi
eXjf


C�( eBr)

+

+

qX
l=1

 eXlf

C�( eBr)

+ kfkC�( eBr)

)
:

To handle the term involving eXi
eXjf in the right-hand side of the last in-

equality, we now exploit the fact that, for f 2 C2;�0

� eBr� ; both eXi
eXjf and

[eaij(t0; �0)� eaij(�)] vanish at a point of eBr; then (4.4) implies
qX

i;j=1

���[eaij(t0; �0)� eaij(�)] eXi
eXjf

���
C�( eBr)

6 cr� jeaij jC�( eBr)

��� eXi
eXjf

���
C�( eBr)

;

while obviously

qX
i;j=1

[eaij(t0; �0)� eaij(�)] eXi
eXjf


L1( eBr)

6 cr� jeaij jC�( eBr)

 eXi
eXjf


L1( eBr)

:
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This allows, for r small enough, to get:

 eXk
eXhf


C�( eBr)

6 c

( eHf
C�( eBr)

+

qX
l=1

 eXlf

C�( eBr)

+ kfkC�( eBr)

)
(6.16)

(this is the classical "Korn�s trick"). Since from the equation we also read

k@tfkC�( eBr) 6
 eHf

C�( eBr)
+ c

qX
h;k=1

 eXk
eXhf


C�( eBr)

;

from (6.16) we have

kfkC2;�( eBr) 6 c

( eHf
C�( eBr)

+

qX
l=1

 eXlf

C�( eBr)

+ kfkC�( eBr)

)
: (6.17)

Next, we want to get rid of the term
 eXlf


C�(Br)

in the last inequality. To

do this, we start again with (6.14), take only one derivative eXi and reason like
above, getting:

eXk [a(�)f(t; �)]

= S (t0; �0) eHf(t; �) + S (t0; �0)
0@ qX
i;j=1

[eaij(t0; �0)� eaij (�)] eXi
eXjf

1A (t; �)
+

qX
i;j=1

eaij(t0; �0)T ij(t0; �0)f(t; �):
In the last formula, S (t0; �0), T ij(t0; �0) are, respectively, frozen operators of
type 1; 0. Taking C� norms in the last equation and substituting in (6.16) we
get

kfkC2;�( eBr) 6 c

� eHf
C�( eBr)

+ kfkC�( eBr)

�
+ "

qX
h;k=1

 eXk
eXhf


C�( eBr)

with " small for small r. Hence we conclude:

kfkC2;�( eBr) 6 c

� eHf
C�( eBr)

+ kfkC�( eBr)

�
: (6.18)

Finally, we want to replace the term kfkC�( eBr) with kfkL1( eBr) in the last

inequality. To this aim, we apply (4.8) and write:

kfkC�( eBr) 6 kfkL1( eBr) + r
1��

 
qX
l=1

 eXlf

L1

+ r k@tfkL1

!
:
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Substituting this in (6.18), for r small enough the term
�Pq

l=1

 eXlf

L1

+ r k@tfkL1
�

can be taken to the left hand side, to get

kfkC2;�( eBr) 6 c

� eHf
C�( eBr)

+ kfkL1( eBr)

�
that is Theorem 5.2.

7 Interpolation inequalities for Hölder norms and
local Schauder estimates in the lifted variables

In order to get from Theorem 5.2 a local estimate for C2;� functions (not nec-
essarily with compact support), we need to establish suitable interpolation in-
equalities. This will require some labour; we start with the following:

Proposition 7.1 (Interpolation inequality for test functions) LetH =@t�P eX2
i and let eBR � RN+1 a ball of radius R. Then for every � 2 (0; 1) there

exist positive constants  > 1 and c; depending on � and fXig, such that for
every " > 0 and every f 2 C10

� eBR� eXif

�
6 " kHfk� +

c

"
kfkL1 :

This result, in turn, relies on a similar interpolation for operators of type
` > 1:

Lemma 7.2 Let P be an operator of type ` > 1 and � 2 (0; 1). Then there
exist positive constants  and c; depending on � and fXig, such that for every
" > 0 and every f 2 C10

� eBR�
kPHfk� 6 " kHfk� +

c

"
kfkL1

Proof. Let
PHf =

Z
eBR

k (t� s; �; �)Hf (s; �) d�ds;
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where k satis�es the properties of a frozen kernel of type `, and let �" be a cuto¤
function such that eB"=2 (t; �) � �" � eB" (t; �). We split PH as follows

PHf (t; �) =

Z
eBR

k (t� s; �; �)Hf (s; �) d�ds

=

Z
edP ((s;�);(t;�))>"=2 k (t� s; �; �) [1� �" (s; �)]Hf (s; �) d�ds+

+

Z
edP ((s;�);(t;�))6" k (t� s; �; �) �" (s; �)Hf (s; �) d�ds

=

Z
edP ((s;�);(t;�))>"=2H

T [k (t� �; �; �) (1� �" (�; �))] (s; �) f (s; �) d�ds+

+

Z
edP ((s;�);(t;�))6" k (t� s; �; �) �" (s; �)Hf (s; �) d�ds

= I (t; �) + II (t; �) :

where HT denote the transpose of H.
Let h"(t; �; s; �) = HT [k (t� �; �; �) (1� �" (�; �))] and observe that for a suit-

able  > 1

jh"(t; �; s; �)j+ j@th" (t; �; s; �)j+
X��� eX�

j h
" (t; �; s; �)

��� 6 c"� :

This follows from (6.12), by the de�nition of h".
By (ii) of Proposition 4.2, it follows that

jh"(t1; �1; s; �)� h"(t2; �2; s; �)j 6 cR"
� edP ((t1; �1) ; (t2; �2))

and therefore

jI (t1; �1)� I (t2; �2)j 6
Z
jh"(t1; �1; s; �)� h"(t2; �2; s; �)j jf (s; �)j d�ds

6 c"�
��� eBR��� kfkL1( eBR)

edP ((t1; �1) ; (t2; �2)) :
Also, since

jI (t; �)j 6
Z
edP ((s;�);(t;�))>"=2 c"

� jf (s; �)j d�ds 6 c"�
��� eBR��� kfkL1( eBR)

we obtain
kIk� 6 c"� kfkL1 for any � 2 (0; 1) :

Let us consider II (t; �) ;and let

k" (t; �; s; �) = k (t� s; �; �) �" (s; �) :

By Proposition 6.4, and keeping into account the support of k", for any �xed
� 2 (0; 1), the kernel satis�es properties (2.12), (2.13) in the form:

jk" (t; �; s; �)j 6 c
edP ((t; �) ; (s; �))��� eB ((t; �) ; (s; �))��� 6 c"�

edP ((t; �) ; (s; �))1����� eB ((t; �) ; (s; �))��� ;
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jk" (t; �; s; �)� k" (t1; �1; s; �)j 6 c
edP ((t; �) ; (t1; �1))��� eB ((t1; �1) ; (s; �))���

 edP ((t; �) ; (t1; �1))edP ((t1; �1) ; (s; �))
!
6

6 c"�
edP ((t; �) ; (t1; �1))1����� eB ((t1; �1) ; (s; �))���

 edP ((t; �) ; (t1; �1))edP ((t1; �1) ; (s; �))
!

for edP ((t1; �1) ; (s; �)) > 2edP ((t; �) ; (t1; �1)) : By Theorem 2.11, this implies

kIIk� 6 c"� kHfk�

for every � < 1� �. Therefore, for every � 2 (0; 1) there exist �;  > 0 such that

kPHfk� 6 c"� kHfk� + c"
� kfkL1( eBR) ;

which implies the Lemma.

Proof of Proposition 7.1. Let faijg be the identity matrix. By Theorem 6.8,
we can write

PHf (t; �) = a (�) f (t; �) + Sf (t; �)

where P is an operator of type 2 and S is an operator of type 1. If we assume

a � 1 on eBR, for f 2 C10 � eBR� we obtain
f = PHf � Sf (7.1)

and therefore, by Proposition 6.7

eXif = S1Hf + Tf (7.2)

where S1 is an operator of type 1 and T is an operator of type 0. Substituting
(7.1) in (7.2) yields eXif = S1Hf + TPHf � TSf

and therefore  eXif

�
6 kS1Hfk� + kTPHfk� + kTSfk� 6 (7.3)

by Theorem 6.6,

6 c fkS1Hfk� + kPHfk� + kSfk�g 6

applying Lemma 7.2 to S1 and P

6 c
�
" kHfk� + "

� kfkL1 + kSfk�
	
:

We end the proof by showing that

kSfk� 6 c kfkL1 :
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Indeed, if

Sf (t; �) =

Z
eBR

k (t; �; s; �) f (s; �) d�ds

we have

jSf (t1; �1)� Sf (t2; �2)j =
����Z [k (t1; �1; s; �)� k (t2; �2; s; �)] f (s; �) dsd�

����
6
Z
jk (t1; �1; s; �)� k (t2; �2; s; �)j jf (y)j dsd�

6 kfkL1( eBR)

Z
jk (t1; �1; s; �)� k (t2; �2; s; �)j dsd�:

Arguing as in last part of the proof of Theorem 2.11 (with � = � = 1), we obtain
that for every � 2 (0; 1)Z

jk (t1; �1; s; �)� k (t2; �2; s; �)j dsd� 6 c� edP ((t1; �1) ; (t2; �2))�R1��:
This shows that

jSf j� 6 c kfkL1 :

Moreover,

jSf (t; �)j 6
Z
eBR

jk (t; �; s; �) f (s; �)j d�ds 6

6 kfkL1
Z
edP ((t;�);(s;�))6cR c

edP ((t; �) ; (s; �))��� eB ((t; �) ; (s; �))���dsd� 6
6 cR kfkL1

by Lemma 2.10. Hence
kSfk� 6 c kfkL1 :

We can now follow the technique used in [6], to prove a version of the previous
theorem for functions which do not vanish at the boundary of the domain. Some
complication will arise to handle extra terms involving the time derivative.
The following technical lemma is adapted from [13], Lemma 4.1 p.27, and is

proved in this form in [6].

Lemma 7.3 Let  (t) be a bounded nonnegative function de�ned on the interval
[T0; T1], where T1 > T0 > 0. Suppose that for any T0 6 t < s 6 T1;  satis�es

 (t) 6 # (s) +
A

(s� t)�
+B;

where #;A;B; � are nonnegative constants, and # < 1
3 . Then

 (�) 6 c�

"
A

(R� �)�
+B

#
; 8T0 6 � < R 6 T1

where c� only depends on �.
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Theorem 7.4 (Interpolation inequality) There exist positive constants c;R; 
such that for any f 2 C2;�( eBR), 0 < � < R; 0 < � < 1=3,

kDfkC�( eB�) 6 �
hD2f


C�( eBR)

+ k@tfkC�( eBR)

i
+

c

� (R� �)2
kfkL1( eBR):

The constants c;R;  depend on �; fXig ;  is as in Proposition 7.1. (Recall
Notation 6.1 for the use of symbols D; D2).

Proof. If f 2 C2;�
� eBR� ; 0 < t < s 6 R and � is a cuto¤ function witheBt � � � eBs, applying Proposition 7.1 to f� and using Lemma 6.2, we get:

kDfkC�( eBt) 6 kD (�f)kC�( eBs) 6 " kH (�f)kC�( eBs) +
c

"
kfkL1( eBs) (7.4)

where:

kH (�f)kC�( eBs) 6 k�HfkC�( eBs) + c kD�DfkC�( eBs) + kfH�kC�( eBs) 6 (7.5)

6 c

s� t kHfkC�( eBs) +
c

(s� t)2
kDfkC�( eBs) +

+
c

(s� t)2
kfkL1( eBs) + jfH�jC�( eBs) :

To bound the last term in the last inequality, we apply (4.8), and write:

jfH�jC�( eBs) 6 R1��
�
kD (fH�)kL1( eBs) +R k@t (fH�)kL1( eBs)

�
6

6 R1��

(
c

(s� t)2
kDfkL1( eBs) +

c

(s� t)3
kfkL1( eBs)

)
+

+R2��

(
c

(s� t)2
k@tfkL1( eBs) +

c

(s� t)4
kfkL1( eBs)

)
:

This bound inserted in (7.5) gives:

kH (�f)kC�( eBs) 6
c

(s� t)2
nD2f


C�( eBs) + k@tfkC�( eBs)

o
+

+
c1

(s� t)2
kDfkC�( eBs) +

c

(s� t)4
kfkL1( eBs)

where now all the constants c depend also on R. Next, we insert the last
inequality in (7.4), choosing " = � (s� t)2 =c1 and get:

kDfkC�( eBt) 6 � kDfkC�( eBs) + c�
nD2f


C�( eBs) + k@tfkC�( eBs)

o
+

+

 
c�

(s� t)2
+

c

� (s� t)2

!
kfkL1( eBs)
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Let  (t) = kDfkL1( eBt). Then, for R �xed once and for all (small enough),

# < 1=3 �xed, and any � < # we get, since  > 1;

 (t) 6 # (s) +
c

� (s� t)2
kfkL1( eBR) + c�

hD2f

C�( eBR)

+ k@tfkC�( eBR)

i
for any 0 < t < s < R, and by Lemma 7.3 we get

 (�) 6 c

� (R� �)2
kfkL1( eBR) + c�

hD2f

C�( eBR)

+ k@tfkC�( eBR)

i
for any 0 < � < R:
We now come to the goal of this section:

Proof of Theorem 5.3. If f 2 C2;�
� eBR� (R small enough to apply Theorem

5.2); t < R; s = (t+R) =2; and � is a cuto¤ function, eBt � � � eBs, we can
apply Theorem 5.2 to f�, getting

kfkC2;�( eBt) 6 c

� eH (f�)
C�( eBs)

+ kf�kL1( eBs)

�
6

by computations similar to those already done in the proof of Theorem 7.4

6 c

(
1

s� t

 eHf
C�( eBs)

+
1

(s� t)2
kDfkC�( eBs) + (7.6)

+
1

(s� t)2
kfkL1( eBs) +

���f eH����
C�( eBs)

)
+ kf�kL1( eBs) :

Now, however, we have to handle the term
���f eH����

C�( eBs)
in a di¤erent way.

Applying (4.8) and (4.11) we can write, for some small � to be chosen later:���f eH����
C�( eBs)

6 R1��
�D �f eH��

L1( eBs)
+R

@t �f eH��
L1( eBs)

�
6

6 R1��

(
c

(s� t)2
kDfkL1( eBs) +

c

(s� t)3
kfkL1( eBs)

)
+ (7.7)

+R2��
�
��=2

���@t �f eH�����
C�( eBs)

+
2

�

f eH�
L1( eBs)

�
Now:

R2��
2

�

f eH�
L1( eBs)

6 cR2��

� (s� t)2
kfkL1( eBs) ; (7.8)���@t �f eH�����

C�( eBs)
6
���(@tf) eH����

C�( eBs)
+
���f@t eH����

C�( eBs)
; (7.9)���(@tf) eH����

C�( eBs)
6 c

(s� t)3
k@tfkC�( eBs) ; (7.10)
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���f@t eH����
C�( eBs)

6

6 R1��
�D �f@t eH��

L1( eBs)
+R

@t �f@t eH��
L1( eBs)

�
6

6 R1��

(
c

(s� t)4
kDfkL1( eBs) +

c

(s� t)5
kfkL1( eBs)

)
+

+R2��

(
c

(s� t)4
k@tfkL1( eBs) +

c

(s� t)6
kfkL1( eBs)

)
: (7.11)

Inserting (7.8), (7.9), (7.10), (7.11) in (7.7) and then in (7.6) we get:

kfkC2;�( eBt) 6 c1

(
1

s� t

 eHf
C�( eBs)

+
1

(s� t)2
kDfkC�( eBs) + (7.12)

+

 
1

(s� t)3
+

1

� (s� t)2

!
kfkL1( eBs)

)
+ c2�

�=2

(
1

(s� t)4
k@tfkC�( eBs) +

+
1

(s� t)4
kDfkC�( eBs) +

1

(s� t)6
kfkL1( eBs)

)
where now the constants ci depend also on R.
For a small " to be chosen later, we not pick � such that c2��=2= (s� t)4 = ";

and write:

kfkC2;�( eBt) 6 (7.13)

6 c1

(
1

s� t

 eHf
C�( eBR)

+
1

(s� t)2
kDfkC�( eBs)

)
+

+ " kfkC2;�( eBR) +
c

"�=2 (s� t)�0
kfkL1( eBR)

Next, we apply Theorem 7.4 to write

kDfkC�( eBs) 6 � kfkC2;�( eBR) +
c

� (s� t)�
kfkL1( eBR) (7.14)

(recall that, by our choice of t; s; R; (s� t) = (R� s)). We insert (7.14) in
(7.13) with � such that c1�=(s� t)2 = ", and get:

kfkC2;�( eBt) 6
c1

R� t

 eHf
C�( eBR)

+ 2" kfkC2;�( eBR) +
c

"�0 (R� t)�"
kfkL1( eBR)

Letting  (t) = kfkC2;�( eBt) and choosing " such that 2" = # < 1=3; we can

rewrite the last inequality as

 (t) 6 # (R) +
c

(R� t)�"

� eHf
C�( eBR)

+ kfkL1( eBR)

�

44



and by Lemma 7.3 we get

kfkC2;�( eBt) 6
c

(R� t)�"

� eHf
C�( eBR)

+ kfkL1( eBR)

�
(7.15)

for R small enough, with c depending also on an upper bound for R.

8 Hölder spaces and lifting

To show how Theorem 5.3 implies Theorem 5.4 and then Theorem 5.1, we
need some facts about the metric induced by vector �elds. Let d (x; y) the
CC-distance induced by a system X1; X2; :::; Xq of Hörmander�s vector �elds
in Rn; and let ed (�; �) be the CC-distance induced by the lifted vector �eldseX1; eX2; :::; eXq in RN ; also, let dP ; edP be the corresponding parabolic distances.
For a bounded domain U � Rn+1; let eU = U � I � RN+1 be the lifted coun-
terpart of U; where I is some neighborhood of the origin in RN�n: Denote by
C�X (U) ; C

�eX
�eU� the Hölder spaces induced by dP and edP ; respectively. We are

interested in the following question: if, for any f : U ! R we set ef : eU ! R withef (t; x; h) = f (t; x), can we say that f 2 C�X (U) if and only if ef 2 C�eX
�eU�?

By Lemma 7 (p.153) in [31], we know thated ((x; h) ; (y; k)) > d (x; y) :

This obviously impliesedP ((t; x; h) ; (s; y; k)) > dP ((t; x) ; (s; y))

and therefore ��� ef ���
C�fX(eU) 6 jf jC�(U) : (8.1)

However, no simple inequality of the kinded ((x; h) ; (y; h)) 6 cd (x; y)

seems to be known, so an inequality of the kind

jf jC�
X(U)

6 c
��� ef ���

C�fX(eU) (8.2)

is not trivial and, as far we know, has never been proved. (Note that in [34] the
lifting technique was avoided, making a stronger assumption on the algebra of
the vector �elds).
We are going to prove (8.2) here. The point is to make use of an integral

formulation of Hölder continuity.
Let

M�;BR(t0;x0) (f) = sup
(t;x)2BR;r>0

inf
c2R

1

r� jBr (t; x)j

Z
Br(t;x)\BR(t0;x0)

jf (s; y)� cj dsdy:

45



If f 2 C�X (BR (t0; x0)) ; then M�;BR(t0;x0) (f) 6 c jf jC�
X(BR(t0;x0))

: But the con-
verse is also true:

Lemma 8.1 If f 2 L1loc (BR (t0; x0)) is a function such that M�;BR(t0;x0) (f) <
1; then there exists a function f�; a.e. equal to f; such that f� 2 C�X (BR (t0; x0))
and

jf�jC�
X(BR)

6 cM�;BR(t0;x0) (f)

for some c independent of f .

Proof. This result, in the Euclidean case, is due to Campanato (see [11], Teor.
[I.2] p.183, see also [26] and [32] for related results). Reading pp.177-184 in [11],
one can see that exactly the same proof holds in a much more general context,
namely:
If (X; d; �) is a space of homogeneous type, and 
 � X is a bounded domain

in X, d-regular in the sense of De�nition 3.2, then there exists r > 0 such that

jf� (x)� f� (y)j 6 cM�;
 (f) d (x; y)
�

for a suitable function f� = f a.e., and any couple of points x; y 2 
 with
d (x; y) < r (with the obvious meaning of symbols).
We can apply the above statement to 
 = BR (t0; x0) and dP the parabolic

CC-distance induced by the vector �elds Xi, in view of Proposition 3.8, getting

jf� (t; x)� f� (s; y)j 6 c�M�;BR(t0;x0) (f) dP ((t; x) ; (s; y))
�

for dP ((t; x) ; (s; y)) < r: It is then easy to extend this bound to any couple of
points (t; x) ; (s; y) 2 BR (t0; x0) such that dP ((t; x) ; (s; y)) > r. To this aim, it
is enough to show that we can choose k points (ti; xi) ; i = 1; 2; :::; k such that:
(i) (ti; xi) 2 BR (t0; x0) for i = 1; 2; :::; k; (t1; x1) = (t; x) and (tk; xk) =

(s; y) ;
(ii) dP ((ti�1; xi�1) ; (ti; xi)) 6 r for i = 2; 3; :::; k
(iii) the integer k and the constant c can be chosen dependently only on r;R.
Once this is done, we can write:

jf� (t; x)� f� (s; y)j 6
kX
i=2

jf� (ti; xi)� f� (ti�1; xi�1)j 6

6
kX
i=2

cM�;BR(t0;x0) (f) dP ((ti�1; xi�1) ; (ti; xi))
� 6

6 kcM�;BR(t0;x0) (f) dP ((t; x) ; (s; y))
�
=

= c (r;R; �) dP ((t; x) ; (s; y))
�
:

So, let us show how to choose these points. To �x ideas, assume jt� t0j >
js� t0j : Recalling that

dP ((t; x) ; (s; y)) =

q
d (x; y)

2
+ jt� sj;
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we can join (t; x) with (s; y) along the following line: �rst we move from (t; x)
to (s; x) along a segment; this segment is contained in BR (t0; x0) and can be di-
vided in k1 equal parts, each of (euclidean) length 6 r2; with k1 only depending
on r;R; then we consider the two points x; y 2 Bp

R2�js�t0j
(x0) ; by de�nition

of CC-distance, we can join x to x0 and y to x0 with two subunit curves 1; 2
contained in Bp

R2�js�t0j
(x0) ; with

T (i) 6 R 6 R

r
dP ((t; x) ; (s; y)) :

Therefore we can also join (s; x) to (t; y) with a line  contained in BR (t0; x0),
with

T () 6 cdP ((t; x) ; (s; y)) ;

on this line we can choose k2 points such that the distance of two subsequent
points is 6 r; moreover, the number k2 only depends on r;R. This ends the
proof.
The second fact we use is the following property:

Lemma 8.2 There exist c > 0 and � 2 (0; 1) such that for any positive function
g de�ned in eU � RN+1; (t; x; h) 2 eU; r > 0; r small enough,

1

jB�r (t; x) \BR (t0; x0)j

Z
B�r(t;x)\BR(t0;x0)

g (s; y) dsdy 6

6 c��� eBr (t; x; h)���
Z
eBr(t;x;h)

g (s; y) dsdydh0

Proof. By Theorem 4, p.151 in [31] (quoted in the Appendix) we know that,
given a point (x; h) 2 RN ;��� eBr (x; h)��� ' jBr (x)j � ���nh0 2 RN�n : (z; h0) 2 eBr (x; h)o���
provided z 2 B�r (x) for some �xed � < 1. The equivalence holds with respect to
r > 0, and the symbol j�j denotes the volume of a set in the suitable dimension.
Multiplying both sides for r2 we see that this property immediately extends to
the parabolic version: given a point (t; x; h) 2 RN+1;��� eBr (t; x; h)��� ' jBr (t; x)j � ���nh0 2 RN�n : (�; z; h0) 2 eBr (t; x; h)o���
provided (�; z) 2 B�r (t; x) for some �xed � < 1. Exploiting this fact, for any
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positive function g (s; y) de�ned in Rn+1 we can write

1��� eBr (t; x; h)���
Z
eBr(t;x;h)

g (s; y) dsdydh0 =

=
1��� eBr (t; x; h)���

Z
Br(t;x)

g (s; y) dsdy

Z
fh02RN�n:(s;y;h0)2 eBr(t;x;h)g

dh0 >

> c��� eBr (t; x; h)���
Z
B�r(t;x)

��� eBr (t; x; h)���
jBr (t; x)j

g (s; y) dsdy =

=
c

jBr (t; x)j

Z
B�r(t;x)

g (s; y) dsdy >

> c

jB�r (t; x)j

Z
B�r(t;x)

g (s; y) dsdy >

> c

jB�r (t; x) \BR (t0; x0)j

Z
B�r(t;x)\BR(t0;x0)

g (s; y) dsdy

where the last inequality holds by Proposition 3.8.
The above Lemma enables us to state the following:

Proposition 8.3 If f; ef are as above, then��� ef ���
C�fX( eBR)

6 jf jC�
X(BR)

6 c
��� ef ���

C�fX( eBR)
: (8.3)

Moreover,��� eXi1
eXi2 :::

eXik
ef ���
C�fX( eBR)

6 jXi1Xi2 :::Xikf jC�
X(BR)

6 c
��� eXi1

eXi2 :::
eXik
ef ���
C�fX( eBR)

(8.4)
for ij = 1; 2; :::; q:

Proof. For any c 2 R, we have the following inequalities:

1

r�
1

jBr (t; x) \BR (t0; x0)j

Z
Br(t;x)\BR(t0;x0)

jf (s; y)� cj dsdy 6

by Lemma 8.2

6 c

r�
1��� eBr=� (t; x; h0)���

Z
eBr=�(t;x;h0)

��� ef (s; y; h)� c��� dsdydh 6
choosing c = f (t; x) = ef (t; x; h0)

6 c

r�

��� ef ���
C�fX( eBR)

(r=�)
�
= c

��� ef ���
C�fX( eBR)

:
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Taking the sup on r > 0 and (t; x) 2 BR (t0; x0) ; and the inf on c 2 R we get

M�;BR(t0;x0) (f) 6 c
��� ef ���

C�fX( eBR)

and, by Lemma 8.1, the second inequality in (8.3) follows (while the �rst is
trivial).
Now, inequality (8.4) is also a consequence of what we have proved, just

because eXi
ef = (̂Xif): To justify this assertion, it�s enough to recall the structure

of the lifted vector �elds eXi:

eXi = Xi +
N�nX
j=1

cij (x; h1; h2; :::; hj�1) @hj i = 1; : : : ; q:

Since ef does not depend on the added variables hj ; eXi
ef = Xi

ef = (̂Xif): The
same reasoning can be iterated to higher order derivatives.
Combining Theorem 5.3 with Proposition 8.3, we immediately get Theorem

5.4:
Proof of Theorem 5.4.

kukC2;�
X (Bt)

6 c keukC2;�fX ( eBt) 6
c

(s� t)�

( eHeu
C�fX( eBs)

+ keukL1( eBs)

)
6

6 c

(s� t)�
n
kHukC�

X(Bs)
+ kukL1(Bs)

o
:

Finally, by a covering argument Theorem 5.1 follows:
Proof of Theorem 5.1. Let U 0; U as in the statement of the theorem, and
chose a family of balls BiR such that

U 0 �
k[
i=1

BiR �
k[
i=1

Bi2R � U:

Then by (4.9), (4.10) and Theorem 5.4,

kukC2;�(U 0) 6 kukC2;�([Bi
R)
6 c

kX
i=1

kukC2;�(Bi
R)
6

6 c
kX
i=1

n
kHukC�(Bi

2R)
+ kukL1(Bi

2R)

o
6

6 c
n
kHukC�(U) + kukL1(U)

o
:
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9 Schauder estimates of higher order

In this section we want to extend Theorem 5.1 to higher order derivatives,
proving Theorem 1.1 for the operator H (without lower order terms). Explicitly,
we are going to prove the following:

Theorem 9.1 Let k be a positive integer. Under assumptions (H1),(H2) (see
§5), if aij 2 Ck;� (U) for some positive integer k and � 2 (0; 1) ; then for every
domain U 0 b U there exists a constant c > 0 depending on U;U 0; fXig ; �; k; �
and kaijkCk;�(U) ; such that for every u 2 C

2+k;�
loc (U) with Hu 2 Ck;� (U) one

has
kukC2+k;�(U 0) 6 c

n
kHukCk;�(U) + kukL1(U)

o
:

Let us recall the de�nition of Ck;�-norm:

kukCk;�(U) =
X

jIj+2h6k

@ht XIu

C�(U)

where, for any multiindex I = (i1; i2; :::; is) ; with 1 6 ij 6 q; we say that jIj = s
and

XIu = Xi1Xi2 :::Xisu:

The �rst step to prove the above theorem is to get the analog of Theorem
5.2, for kfkCk;� :

Theorem 9.2 Under the assumptions of Theorem 9.1, there exists r > 0 such

that for any f 2 Ck+2;�0

� eBr�, for some ball eBr (t0; �0) � eU ,
kfkCk+2;� 6 c

n eHf
Ck;�

+ kfkL1
o

In turn, the proof of this result will be achieved through several Lemmas.

Lemma 9.3 For every k > 0 and every multi-index J = (j1; : : : jk) there exist
operators PI and SI that are a linear combination of frozen operators of type 2
of type 1, respectively, such that

eXJ (af) =
kX

m=0

X
jIj=m

�
PI eXI

eH0f + SI eXIf
�
:

Proof. When k = 0 the above formula reduces to

af = P eH0f + Sf

which is (6.14).
Let us prove the formula by induction on k, so assume it holds for jJ j = k and

let us prove its analog for a derivative of the kind eXh
eXJ (af) : By Proposition
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6.9, for suitable operators PI;p, PI;0 of type two, and SI;p, SI;0 of type one, we
have

eXh
eXJ (af) =

=
kX

m=0

X
jIj=m

� eXhPI eXI
eH0f + eXhSI eXIf

�

=
kX

m=0

X
jIj=m

 
qX
p=1

PI;p eXp
eXI
eH0f + PI;0 eXI

eH0f +

qX
p=1

SI;p eXp
eXIf + SI;0 eXIf

!

=
k+1X
m=0

X
jI0j=m

�
PI0 eXI0

eH0f + SI0 eXI0f
�

which is exactly the assertion for k + 1.

Lemma 9.4 For any integer k > 0; there exists r > 0 such that for any f 2
Ck+2;�0

� eBr�
����Dk+2f

����
C� 6 c

0@kaijkCk;�

X
j6k+1

Djf

C� +

 eHf
Ck;�

1A (9.1)

and hence, by iteration����Dk+2f
����
C� 6 ca;k

�
kfkL1 +

 eHf
Ck;�

�
(9.2)

where ca;k depends on kaijkCk;� .

Proof. By the previous Lemma and Proposition 6.7, for any multi-index J ,
jJ j = k and m; l = 1; : : : q we have

eXm
eXl
eXJ (af) =

kX
i=0

X
jIj=i

�
TI eXI

eH0f + eXm
eXlSI eXIf

�
;

where TI is ot type 0, SI is of type 1. By Proposition 6.9, this last equals

kX
i=0

X
jIj=i

 
TI eXI

eH0f +

qX
p=1

TI;p eXp
eXIf + TI;0 eXIf

!
;

for suitable operators TI;p; TI;0 of type 0: Hence

����Dk+2f
����
C� 6 c

kX
i=0

X
jIj=i

 eXI
eH0f


C�
+ c

X
j6k+1

Djf

C� :
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To estimate
 eXI

eH0f

C�

we write

eXI
eH0f = eXI

� eH0 � eH� f + eXI
eHf

=

qX
i;j=1

eXI

�
(aij (t0; �0)� aij (�; �)) eXi

eXjf
�
+ eXI

eHf
=

qX
i;j=1

(aij (t0; �0)� aij (�; �)) eXI
eXi
eXjf+

�
X

jJ0j+jJ00j=jIj
jJ0j>0

� eXJ0aij

� eXJ00
eXi
eXjf + eXI

eHf

and therefore, (by the same "Korn�s trick" explained in the proof of Theorem
5.2)  eXI

eH0f

C�
6 "

����Dk+2f
����
C� + kaijkCk;�

X
j6k+1

Djf

C� +

 eHf
Ck;�

which gives:

����Dk+2f
����
C� 6 c

0@" ����Dk+2f
����
C� + kaijkCk;�

X
j6k+1

Djf

C� +

 eHf
Ck;�

1A
hence

����Dk+2f
����
C� 6 c

0@kaijkCk;�

X
j6k+1

Djf

C� +

 eHf
Ck;�

1A :

Iteration gives ����Dk+2f
����
C� 6 ca;k

�
kfkC2;� +

 eHf
Ck;�

�
and hence, by our "basic estimate" for k = 0 (that is Theorem 5.2)����Dk+2f

����
C� 6 ca;k

�
kfkL1 +

 eHf
Ck;�

�
The problem is now to bound also time derivatives of f . Recalling that:

kfkCk+2;� =
X

2h+m6k+2

@ht Dmf

C�

let us prove the following:
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Lemma 9.5 For any triple of integers k; h;m such that k > 1; h > 1;m > 0;
2h+m 6 k + 2, we have@ht Dmf


�
6 ca;k

� eHf
Ck;�

+ kfkL1
�

(9.3)

Proof. Let us prove (9.3) by induction on h. For h = 1 we have to show that:

kX
m=0

k@tDmfk� 6 ca;k

� eHf
Ck;�

+ kfkL1
�

We start from the equation:

@tf = eHf + qX
i;j=1

aij eXi
eXjf (9.4)

Dm@tf = Dm eHf +Dm

0@ qX
i;j=1

aij eXi
eXjf

1A
k@tDmfkC� 6 c

0@ eHf
Ck;�

+

qX
i;j=1

mX
l=0

Dm�laij

C�

Dl+2f

C�

1A 6

by (9.2)

6 ca;k

� eHf
Ck;�

+ kfkL1
�
:

Assume (9.3) holds up to h� 1: Again from (9.4) we get:

Dm@ht f = Dm@h�1t
eHf +Dm@h�1t

0@ qX
i;j=1

aij eXi
eXjf

1A
Dm@ht f


C� 6

 eHf
Cm+2h�2;�

+ ca;m+2h�2

mX
l=0

Dl+2@h�1t f

C� 6

by inductive hypothesis and our assumptions on m; k; h

6 ca;k

� eHf
Ck;�

+ kfkL1
�
:

By Lemmas 9.4 and 9.5, Theorem 9.2 is proved. The second step of the
proof of higher order Schauder estimates is contained in the following:
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Theorem 9.6 Under the assumptions of Theorem 9.1, there exists R > 0 such

that for any for every f 2 Ck+2;�
� eBR (t0; �0)� ; 0 < t < s < R;

kfkCk+2;�( eBt) 6
c

(s� t)�k

� eHf
Ck;�( eBs)

+ kfkL1( eBs)

�
: (9.5)

Proof (sketch). The proof is now a tedious but quite straigthforward iteration
of the steps of the proof of Lemmas 9.4 and 9.5, using suitable cuto¤ function.
We state the steps.
1. We start from (9.1), in the following slightly sharper form, which is

actually what has been proved in Lemma 9.4 (here the norm of eHf involves
only spatial derivatives):

����Dk+2f
����
C� 6 ck;a

0@ X
j6k+1

Djf

C� +

X
j6k

Dj eHf
C�

1A
and apply this to f�; with f 2 Ck+2;�

� eBs� and � cuto¤ function with eBt �
� � eBs: Then we get, with the usual techniques:����Dk+2f

����
C�( eBt) 6 (9.6)

6 ck;a

0@ X
j6k+1

1

(s� t)j+1
Djf


C�( eBs)

+
1

(s� t)k+1
 eHf

Ck;�( eBs)

1A
2. Next, we re�ne the above argument as follows. For �xed 0 < t < s; we

set tj = t+ j
k+1 (s� t) for j = 0; 1; 2; :::; k + 1, and rewrite (9.6) as:����Dj+2f

����
C�( eBtj�1)

6

6 ck;a

0@ X
i6j+1

1

(tj � tj�1)i+1
Dif


C�( eBtj )

+
1

(tj � tj�1)i+1
 eHf

Cj;�( eBtj )

1A
for j = 1; 2; :::; k. Collecting all these inequalities and our basic estimate for
k = 0 (that is Theorem 7.15) we get, by iteration:����Dk+2f

����
C�( eBt) 6

ck;a

(s� t)�k

� eHf
Ck;�( eBs)

+ kfkL1( eBs)

�
: (9.7)

3. We now have to add, at the left hand side of our inequalities, the terms
involving time derivatives. To do this, we apply (9.3) to f�, where � is a cuto¤
function with eBt � � � eBs: By standard computations this yields, for any triple
of integers k; h;m such thay k > 1; h > 1;m > 0; 2h+m 6 k + 2,@ht Dmf


C�( eBt) 6

6 ca;k

 
1

(s� t)k+1
 eHf

Ck;�( eBs)
+ kfkL1( eBs) +

1

(s� t)k+3
kfkCk+1;�( eBs)

!
:
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Together with (9.7), this allows to write:

kfkCk+2;�( eBt) 6 ca;k

 
1

(s� t)�k
 eHf

Ck;�( eBs)
+ (9.8)

+
1

(s� t)�k
kfkL1( eBs) +

1

(s� t)k+3
kfkCk+1;�( eBs)

!
:

4. Reasoning like at step 2 of this proof, (9.8) iteratively implies

kfkCk+2;�( eBt) 6
ca;k

(s� t)�
0
k

� eHf
Ck;�( eBs)

+ kfkL1( eBs)

�
which ends the proof.
Finally, we note that Theorem 9.6 immediately implies Theorem 9.1, by the

same arguments of §8.

10 Operators with lower order terms

We now complete the proof of Theorem 1.1, considering an operator with lower
order terms. We start with C2;�-estimates:

Theorem 10.1 . Let:

H1 = @t �
qX

i;j=1

aij (t; x)XiXj +

qX
j=1

bj (t; x)Xj + c (t; x) :

If (H1),(H2) hold, then for every domain U 0 b U , � 2 (0; 1), aij ; bj ; c 2 C� (U) ;
there exists a constant c > 0; depending on U;U 0; fXig ; �; � and the C� (U)-
norms of the coe¢ cients aij ; bj ; c, such that for every u 2 C2;�loc (U) with H1u 2
C� (U) one has

kukC2;�(U 0) 6 c
n
kH1ukC�(U) + kukL1(U)

o
:

Proof. The proof will follow the same three steps of the proof of Theorem 5.1.
Let

eH1 = @t �
qX

i;j=1

aij (t; x) eXi
eXj +

qX
k=1

bk (t; x) eXk + c (t; x) =

= eH +

qX
k=1

bk (t; x) eXk + c (t; x)
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By (6.16) and (4.3) of Proposition 4.2 we can write: eXk
eXhf


C�( eBr)

6 (10.1)

6 c

( eHf
C�( eBr)

+

qX
l=1

 eXlf

C�( eBr)

+ kfkC�( eBr)

)
6

6 c

( eH1f

C�( eBr)

+

qX
l=1

 eXlf

C�( eBr)

+ kfkC�( eBr)

)

for every f 2 C2;�0
� eBr� ; with r small enough. To get rid of the term contain-

ing eXlf;we now apply the interpolation inequality of Theorem 7.4 which, for
functions with compact support, rewrites as:

kDfkC�( eBr) 6 �
hD2f


C�( eBr) + k@tfkC�( eBr)

i
+

c

�r�
kfkL1( eBr) : (10.2)

From (10.1) and (10.2) we get

kfkC2;�( eBr) 6 c

� eH1f

C�( eBr)

+ kfkC�( eBr)

�
and the same reasoning of the the last lines of §6 then gives

kfkC2;�( eBr) 6 c

� eH1f

C�( eBr)

+ kfkL1( eBr)

�
(10.3)

that is Step 1 for the operator H1.

Now, look at the proof of Theorem 5.3, at the end of §7. If f 2 C2;�
�eU�,eBR � eU; (R small enough to apply Theorem 5.2); t < R; s = (t+R) =2; and �

is a cuto¤ function, eBt � � � eBs, we can apply (10.3) to f�, getting
kfkC2;�( eBt) 6 c

� eH1 (f�)

C�( eBs)

+ kf�kL1( eBs)

�
:

Now, expanding the expression eH1 (f�) and bounding the C�
� eBs�-norm of

each term, we get essentially the same terms obtained in the proof of 5.3; so the
rest of the proof can be repeated without changes, and we get:

kfkC2;�( eBt) 6
c

(t� s)�

� eH1f

C�( eBs)

+ kfkC�( eBs)

�
(10.4)

that is, Step 2 for the operator H1. Finally, by the same arguments of §8, (10.4)
implies Theorem 10.1.
We can now easily extend to the operator with lower order terms also the

Ck+2;�-estimates of Theorem 9.1, completing the proof of Theorem 1.1
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Proof of Theorem 1.1. By Theorem 9.1 we can write

kukC2+k;�(U 0) 6 c
n
kHukCk;�(U) + kukL1(U)

o
6

6 c

8<:kH1ukCk;�(U) + kukL1(U) +
qX
j=1

kbjXjukCk;�(U) + kcukCk;�(U)

9=; 6

by (4.5)

6 c
n
kH1ukCk;�(U) + kukL1(U) + kukCk+1;�(U)

o
: (10.5)

Next, we choose an increasing family of domains Uj (j = 0; 1; 2; :::; k + 1) such
that

U0 = U 0 b U1 b U2 b ::: b Uk b Uk+1 = U;

and rewrite (10.5) as:

kukC2+j;�(Uk�j)
6 c

n
kH1ukCj;�(U) + kukL1(U) + kukCj+1;�(Uk�j+1)

o
for j = 1; 2; :::; k: Collecting these inequalities and our basic estimate on kukC2;�(Uk)

,
that is Theorem 5.1, we get

kukC2+k;�(U 0) 6 c
n
kH1ukCk;�(U) + kukL1(U)

o
which is our desired result.

11 Regularization of solutions

In this section we will prove a regularization result for the complete operator H1

considered in §10. The main tool for this result is a family of molli�ers adapted
to the vector �elds Xj . We start with a technical Lemma.

Lemma 11.1 Given an operator of type

HA = @t �
qX

i;j=1

aij (t; x)ZiZj ;

where Z1; : : : ; Zq satisfy the assumptions (H1) in some bounded domain 
 � Rn;
the matrix A = faijg satis�es assumptions (H2), (H3) in U � R�
; and given
U 0 b U , there exists a new operator of type

H 0
A = @t �

mX
i;j=1

a0ij (t; x)XiXj (11.1)

such that:
i) the vector �elds Xi�s and the coe¢ cients a0ij are de�ned on the whole
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space Rn+1;
ii) H 0

A coincides with HA in U 0;
iii) H 0

A coincides with the classical heat operator for x outside 
;
iv) H 0

A satis�es (H1) and (H2), with the same constant �.

Proof. Let ' 2 C10 (
) be a �xed cut-o¤ function such that '(x) = 1 i¤ x 2 
0,
being 
0 an open set with 
0 b 
. Let us de�ne the new system of vector �elds
X1; : : : ; Xm (m = q + n), as follows:

Xi = 'Zi; i = 1; : : : ; q; Xq+k = (1� ')@xk ; k = 1; : : : ; n:

Next, let  2 C10 (U) ;  � 1 in U 0, and set

fbijgn+qi;j=1 =

�
fahkgqh;k=1 0

0 In

�
;

a0ij =  bij + (1�  ) �ij :

For the operator H 0
A de�ned as in (11.1) by these vector �elds Xi, conditions i),

ii), iv) and (H2) are obviously satis�ed, so we only need to check Hörmander�s
condition. Fix a point x 2 Rn; if ' (x) 6= 1, then in a neighborhood of x the
system X1; : : : ; Xm contains nonvanishing multiples of the n �elds @xk , which
span; if ' (x) = 1, then the �elds Xi = 'Zi, i = 1; :::; q, satisfy Hörmander�s
condition at x because at that point

[Xi; Xj ] = ['Zi; 'Zj ] = '2 [Zi; Zj ] + ' (Zi')Zj � ' (Zj')Zi = [Zi; Zj ]

since in 
0 ' = 1 and 'xk = 0 for every k. Iterating the above relation, we see
that at the point x the system Xi (i = 1; :::; q) and the system Zi (i = 1; :::; q)
generate the same Lie algebra, that is the whole Rn:
Let

H = @t � L = @t �
qX
i=1

X2
i :

By the above Lemma, the vector �eldsXj have globally bounded coe¢ cients and
by known results of Kusuoka-Stroock (see [24] §4), there exists a fundamental
solution h (t; x; y) such that

@h

@t
(t; x; y) = [Lh (t; �; y)] (x) =

�
LTh (t; x; �)

�
(y) (11.2)

for (t; x; y) 2 (0;+1)� Rn � Rn; satisfying the estimates

1

c
��B �x;pt���e� cd(x;y)2

t 6 h (t; x; y) 6 c��B �x;pt���e� d(x;y)2

ct (11.3)

��XI
xX

J
y h (t; x; y)

�� 6 c

t(jIj+jJj)=2
��B �x;pt���e� d(x;y)2

ct (11.4)
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for (t; x; y) 2 (0; 1)�Rn�Rn; for every multi-indexes I and J . By construction
h (t; x; y) is the density of a probability measure and thereforeZ

Rn
h (t; x; y) dy = 1

for every (t; x) 2 (0;+1)� Rn.
We now use this �Gaussian kernel� to build a family of molli�ers adapdet

to the vector �elds Xi.

Theorem 11.2 (molli�ers) Let � 2 C10 (R) be a positive test function withR
� (t) dt = 1 and let

�" (t; x; y) = "�1h ("; x; y) �

�
t

"

�
:

For any f 2 C�
�
Rn+1

�
; " 2 (0; 1) ; set

f" (t; x) =

Z
Rn+1

�" (t� s; x; y) f (s; y) dsdy:

Then, there exists a constant c depending on �; fXig ; such that

kf"kC� 6 c kfkC� : (11.5)

Moreover,
lim
"!0

kf" � fkL1(Rn+1) = 0: (11.6)

Proof. To prove (11.5), we will show that �" (t� s; x; y) satis�es the properties
of singular integral kernels, (2.4), (2.5), (2.8), (2.9), with � =  = 1; uniformly
in ". By (11.3) and Lemma 3.6, we have

0 6 �" (t� s; x; y) 6 c
�
�
t�s
"

�
e�

d(x;y)2

c"

" jB (x;
p
")j 6 c

�
�
t�s
"

�
e�

d(x;y)2

c"

jB ((t; x) ;
p
")j : (11.7)

and therefore when dP ((t; x) ; (s; y)) 6
p
" we obtain

�" (t� s; x; y) 6
c

jB ((t; x) ; (s; y))j :

If now dP ((t; x) ; (s; y)) >
p
", by the doubling condition there exists � > 0 such

that
jB ((t; x) ; (s; y))j
jB ((t; x) ;

p
")j 6 c

�
dP ((t; x) ; (s; y))p

"

��
:

Hence

�
�
t�s
"

�
e�

d(x;y)2

c"

jB ((t; x) ;
p
")j 6

c

jB ((t; x) ; (s; y))j

�
dP ((t; x) ; (s; y))p

"

��
�

�
t� s
"

�
e�

d(x;y)2

c" :

59



Since � 2 C10 (R) we have � (v) 6 ce�jvj and therefore

�

�
t� s
"

�
e�

d(x;y)2

c" 6 e�j
t�s
" je�

d(x;y)2

c" 6 e�
jt�sj+d(x;y)2

c" = e�
dP ((t;x);(s;y))2

c" :

(11.8)
Since the function t 7! t�e�t

2

is bounded on (0;1) we conclude

�
�
t�s
"

�
e�

d(x;y)2

c"

jB ((t; x) ;
p
")j 6

c

jB ((t; x) ; (s; y))j

�
dP ((t; x) ; (s; y))p

"

��
e�

dP ((t;x);(s;y))2

c"

6 c

jB ((t; x) ; (s; y))j :

that is (2.4).
Let now R = dP ((t0; x0) ; (t; x)). By 4.2 ii) we have

j�" (t� s; x; y)� �" (t0 � s; x0; y)j

6
 
sup
(�;z)

jXx
i �" (� � s; z; y)j+R sup

(�;z)

j@t�" (� � s; z; y)j
!
dP ((t; x) ; (t0; x0))

where the sup is taken for (�; z) 2 B ((t0; x0) ; 5R).
Assume that

dP ((t0; x0) ; (s; y)) >MdP ((t0; x0) ; (t; x))

with M > 5; then for a suitable constant c we have dP ((t0; x0) ; (s; y)) 6
cdP ((�; z) ; (s; y)).
Using (11.4) and reasoning as in (11.8) we obtain

jXx
i �" (� � s; z; y)j 6

c

"3=2
e�

d(z;y)2

c"

jB (z;
p
")j�

�
� � s
"

�
6 cp

"

e�
dP ((�;z);(s;y))2

c"

jB ((�; z) ;
p
")j

6 cp
"

e�
dP ((t0;x0);(s;y))

2

c"

jB ((�; z) ;
p
")j

Assume that dP ((�; z) ; (s; y)) 6
p
". Then

jB ((t0; x0) ; dP ((t0; x0) ; (s; y)))j 6 c jB ((s; y) ; dP ((t0; x0) ; (s; y)))j
6 c jB ((s; y) ; dP ((�; z) ; (s; y)))j
6 c jB ((�; z) ; dP ((�; z) ; (s; y)))j
6 c

��B �(�; z) ;p"��� :
Therefore

jXx
i �" (� � s; z; y)j 6

cp
"

e�
dP ((t0;x0);(s;y))

2

c"

jB ((t0; x0) ; dP ((t0; x0) ; (s; y)))j
:
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Let now dP ((�; z) ; (s; y)) >
p
" then

jB ((t0; x0) ; dP ((t0; x0) ; (s; y)))j
jB ((�; z) ;

p
")j 6 c

jB ((�; z) ; dP ((�; z) ; (s; y)))j
jB ((�; z) ;

p
")j 6

6
�
dP ((�; z) ; (s; y))p

"

��
:

so that

jXx
i �" (� � s; z; y)j 6

cp
"

e�
dP ((�;z);(s;y))2

c"

jB ((�; z) ;
p
")j

6 cp
"

e�
dP ((�;z);(s;y))2

c"

jB ((t0; x0) ; dP ((t0; x0) ; (s; y)))j

�
dP ((�; z) ; (s; y))p

"

��
6 cp

"

e�
dP ((t0;x0);(s;y))

2

c"

jB ((t0; x0) ; dP ((t0; x0) ; (s; y)))j
:

Similarly

R j@t�" (� � s; z; y)j 6 cR

���0 � ��s" ��� e� d(z;y)2

c"

"2 jB (z;
p
")j

6 Rp
"

ce�
dP ((�;z);(s;y))2

c"

p
" jB ((t0; x0) ; dP ((t0; x0) ; (s; y)))j

6 dP ((t0; x0) ; (s; y))p
"

ce�
dP ((t0;x0);(s;y))

2

c"

p
" jB ((t0; x0) ; dP ((t0; x0) ; (s; y)))j

6 ce�
dP ((t0;x0);(s;y))

2

c"

p
" jB ((t0; x0) ; dP ((t0; x0) ; (s; y)))j

Hence

j�" (t� s; x; y)� �" (t0 � s; x0; y)j

6 ce�
dP ((t0;x0);(s;y))

2

c"

p
" jB ((t0; x0) ; dP ((t0; x0) ; (s; y)))j

dP ((t; x) ; (t0; x0))

6 dP ((t0; x0) ; (s; y))p
"

cdP ((t; x) ; (t0; x0)) e
� dP ((t0;x0);(s;y))

2

c"

dP ((t0; x0) ; (s; y)) jB ((t0; x0) ; dP ((t0; x0) ; (s; y)))j

6 cdP ((t; x) ; (t0; x0))

dP ((t0; x0) ; (s; y)) jB ((t0; x0) ; dP ((t0; x0) ; (s; y)))j

6 cdP ((t; x) ; (t0; x0))

dP ((t; x) ; (s; y)) jB ((t0; x0) ; dP ((t0; x0) ; (s; y)))j
:

This is exactly (2.5) with � = 1:
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Next, we have�����
Z
d0P ((t;x);(s;y))>r

�" (t� s; x; y) dsdy
����� 6

Z
Rn+1

"�1h ("; x; y) �

�
t� s
"

�
dsdy = 1

which is (2.8). Also,

lim
r!0

�����
Z
d0P ((t;x);(s;y))>r

�" (t� s; x; y) dsdy �
Z
d0P ((t0;x0);(s;y))>r

�" (t0 � s; x0; y) dsdy
����� =

=

����Z
Rn+1

�" (t� s; x; y) dsdy �
Z
Rn+1

�" (t� s; x; y) dsdy
���� = j1� 1j = 0

which trivially implies (2.9) with  = 1:
By Theorem 2.7 we get

jf"jC� 6 c kfkC� for every � 2 (0; 1) :

Since we also have

jf" (t; x)j 6
Z
Rn+1

�" (t� s; x; y) jf (s; y)j dsdy 6

6 kfk1
Z
Rn+1

�" (t� s; x; y) dy = 1 � kfk1 ;

we conclude
kf"kC� 6 c kfkC� for every � 2 (0; 1)

that is (11.5). Note that we have applied only (2.10) in Theorem 2.7, which
does not require boundedness of the space.
Let us come to the proof of (11.6). Since

R
Rn+1 �" (t; x; y) dtdy = 1 we have

f" (t; x)� f (t; x) =
Z
�" (t� s; x; y) [f (s; y)� f (t; x)] dsdy:
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Hence, using (11.7) and (11.8) we get

jf" (t; x)� f (t; x)j

6
Z
�" (t� s; x; y) jf (s; y)� f (t; x)j dsdy

6 1

jB ((t; x) ;
p
")j

Z
e�

dP ((t;x);(s;y))2

c" dP ((s; y) ; (t; x))
�
dsdy

=
1

jB ((t; x) ;
p
")j

Z
B((t;x);

p
")
e�

dP ((t;x);(s;y))2

c" dP ((s; y) ; (t; x))
�
dsdy

+
+1X
k=0

1

jB ((t; x) ;
p
")j

Z
B((t;x);2k+1

p
")nB((t;x);2k

p
")
e�

dP ((t;x);(s;y))2

c" dP ((s; y) ; (t; x))
�
dsdy

6 "�=2 +
+1X
k=0

��B �(t; x) ; 2k+1p"���
jB ((t; x) ;

p
")j e�

22k

c

�
2k+1

p
"
��

6 "�=2 +

+1X
k=0

2(k+1)�e�
22k

c

�
2k+1

p
"
��
= c"�=2:

Proposition 11.3 For any � 2 (0; 1) ; k even integer, U; U 0 bounded open sets,
with U 0 b U; there exists a constant c such that for any f 2 Ck;� (U) ; " 2 (0; 1) ;

kf"kCk;�(U 0) 6 c kfkCk;�(U) :

Proof. By (11.2), we have

Lf" (t; x) =

Z
Rn+1

"�1�

�
t� s
"

�
[Lh ("; �; y)] (x) f (s; y) dsdy

=

Z
Rn+1

"�1�

�
t� s
"

��
LTh ("; x; �)

�
(y) f (s; y) dsdy

=

Z
Rn+1

"�1�

�
t� s
"

�
h ("; x; y)Lf (s; y) dsdy = (Lf)" (t; x)

Also

@

@t
f" (t; x) =

Z
Rn+1

"�1
@

@t

�
�

�
t� s
"

��
h ("; x; y) f (s; y) dsdy

= �
Z
Rn+1

"�1
@

@s

�
�

�
t� s
"

��
h ("; x; y) f (s; y) dsdy

=

Z
Rn+1

"�1�

�
t� s
"

�
h ("; x; y)

@f

@s
(s; y) dsdy =

�
@f

@t

�
"

(t; x) :

Therefore we have
Hf" = (Hf)" :
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Iterating, we obtain for any positive integer m,

Hmf" = (H
mf)" : (11.9)

Also, we need to iterate the inequality in Theorem 9.1, as follows: let U 0 =
Um b Um�1 b ::: b U1 = U; then

kfkC2m;�(Um)
6 c

n
kHfkC2m�2;�(Um�1)

+ kfkL1(Um�1)

o
6 (11.10)

6 c
nH2f


C2m�4;�(Um�2)

+ kHfkL1(Um�2)
+ kfkL1(Um�2)

o
6

6 ::: 6

6 c
n
kHmfkC�(U1)

+
Hm�1f


L1(U1)

+ :::+ kfkL1(U1)
o
:

By (11.9), (11.10) and Proposition 11.2 we can write:

kf"kC2m;�(U 0) 6 c
n
kHmf"kC�(U1)

+
Hm�1f"


L1(U1)

+ :::+ kf"kL1(U1)
o
=

= c
n
k(Hmf)"kC�(U1)

+
�Hm�1f

�
"


L1(U1)

+ :::+ kf"kL1(U1)
o
6

6 c
n
kHmfkC�(U1)

+
Hm�1f


L1(U1)

+ :::+ kfkL1(U1)
o
6

6 c kfkC2m;�(U) :

We will also need the following compactness Lemma:

Lemma 11.4 Let fung be a sequence of Ck;� (U) functions such that

kunkCk;�(U) 6 c

independent of n. Then, there exists a subsequence unh and a function u 2
Ck;� (U) such that unh ! u in Ck (U). Explicitely, this means that

@mt X
Iunh ! @mt X

Iu

uniformly in U for any m; I such that 2m+ jIj 6 k.

Proof. For any m; I such that 2m + jIj 6 k; the functions @mt X
Iun are equi-

bounded and equicontinuous (in classical sense), hence by Arzelà�s theorem
there exists a subsequence @mt X

Iunh uniformly converging in U to some func-
tion vm;I . Moreover, we can extract a single subsequence unh such that all
these conditions simultaneously hold. Set u = v0;0: By Proposition 2.2 in [8]
(see also Lemma 57 in [7]), this implies that u 2 Ck (U) and vm;I = @mt X

Iu;
hence unh ! u in Ck (U) : Finally, passing to the limit in the inequality��@mt XIunh (t; x)� @mt XIunh (s; y)

�� 6 cdP ((t; x) ; (s; y))
�

we �nd that actually u 2 Ck;� (U) :
Next, we apply the previous molli�cation machinery to prove that the a-

priori estimates of higher order that we have proved in §9 also imply a regular-
ization result. Namely:
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Theorem 11.5 Under the assumptions of Theorem 1.1, for every � 2 (0; 1) ; if
u 2 C2;�loc (U) and H1u 2 Ck;� (U) for some even integer k; then u 2 C2+k;�loc (U).
Moreover, for every domain U 0 b U there exists a constant c > 0 depending on
U;U 0; fXig ; �; k; � and kaijkCk;�(U) ; kbikCk;�(U) ; kckCk;�(U) such that

kukC2+k;�(U 0) 6 c
n
kH1ukCk;�(U) + kukL1(U)

o
:

Proof. Let u 2 C2;�loc (U) ; f = H1u 2 Ck;� (U) ; and let aij ; bj ; c be the coe¢ -
cients of H. By Lemma 11.1, we can assume that aij 2 Ck;�

�
Rn+1

�
and satisfy

the ellipticity condition (H2) on the whole space. Analogously, we can extend
the function f and the coe¢ cients bj ; c to the whole space in such a way that
f; bj ; c 2 Ck;�

�
Rn+1

�
. Assume �rst that c satis�es the sign condition

c (t; x) > c0 > 0 for any (t; x) 2 Rn+1: (11.11)

Let now a"ij ; b
"
j ; c

"; f" be the molli�ed versions of aij ; bj ; c and f , and set

H"
1 = @t �

mX
i;j=1

a"ij (t; x)XiXj +
mX
i=1

b"i (t; x)Xi + c
" (t; x) :

Note that the a"ij�s satisfy (H2) with constant � independent of ": Since H
"
1 has

smooth coe¢ cients, it can be written as a Hörmander operator. This, together
with condition (11.11), allows to apply known results of Bony [3]: for every
point of U 0 we can �nd a neighborhood D b U where we can uniquely solve the
classical Dirichlet problem:�

H"
1u

" = f" in D
u" = u on @D

Moreover, the domainD satis�es the following regularity property (see Corollary
5.2 in [3]) which will be useful later: for every point (t1; x1) 2 @D there exists
an Euclidean ball of center (t0; x0) =2 D which intersects D exactly at (t1; x1) :
Since H"

1 is hypoelliptic, the solution u
" belongs to C1 (D) ; in particular,

u" 2 Ck+2;�loc (D) ; hence we can apply our a-priori estimates (Theorem 9.1),
writing

ku"kCk+2;�(D0) 6 c"

n
kf"kCk;�(D) + ku"kL1(D)

o
:

The constant c" depends on the coe¢ cients a"ij ; b
"
j ; c

" only through their Ck;� (D)-
norms and the ellipticity constant, hence by Proposition 11.3, if k is an even
integer c" can be bounded independently of ": For the same reason kf"kCk;�(D) 6
c kfkCk;�(U) ; while, by the classical maximum principle (for operators with non-
negative characteristic form satisfying (11.11)),

ku"kL1(D) 6 ku"kL1(@D) = kukL1(@D) :

This means that, for any D0 b D;

ku"kCk+2;�(D0) 6 c (11.12)
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with c depending on D0 but not on ". By Lemma 11.4, for every D0 b D we
can �nd a sequence "n ! 0 and a function v 2 Ck+2;� (D0) such that

u"n ! v in Ck+2 (D0) :

By a standard �diagonal argument�, we can also select a single sequence "n ! 0
and a function v 2 Ck+2;�loc (D) such that

u"n ! v in Ck+2loc (D) and pointwise in D:

In particular, this means that H1u"n ! H1v: On the other hand, H1u"n =
f"n ! f by (11.6), hence

H1v = f in D.

Our next task is to show that v = u in D; this will imply u 2 Ck+2;�loc (D) ;
that is the desired regularity result. To do this, we will make use of a classical
argument of barriers, taken from [3], to show that u = v on @D; this will imply
that v = u in D; again by the maximum principle, applied to H1.
Fix a point (t1; x1) 2 @D; let (t0; x0) be the center of the exterior ball that

touches @D at (t1; x1) ; and set:

w (t; x) = e�K[jx�x0j
2+(t�t0)2] � e�K[jx1�x0j

2+(t1�t0)2]

with K a positive constant to be chosen later. By construction, w (t; x) < 0
in D. A direct computation shows that, by the construction of D made in [3],
H1w (t; x) < 0 in a suitable neighborhood D1 of (t1; x1), for K large enough.
Next, we compute, for a large constant M :

H1 (Mw � (u" � u)) =MH1w � (f" � f) < 0 in D1 \D
for M large enough, since (f" � f) is uniformly bounded with respect to ": Let
us show that

Mw � (u" � u) < 0 on @ (D1 \D) :
On D1\@D; we haveMw�(u" � u) =Mw 6 0; on the other hand, on @D1\D
we have w 6 c < 0; while (u" � u) is uniformly bounded with respect to "; hence
for M large enough Mw � (u" � u) 6 0: The maximum principle then implies

Mw � (u" � u) 6 0 in D1 \D
that is

ju" � uj 6 �Mw in D1 \D; uniformly in ":
For "! 0 we get

j(v � u) (t; x)j 6 �Mw (t; x) for (t; x) 2 D1 \D
and, for (t; x) ! (t1; x1) we get v (t1; x1) = u (t1; x1) : This ends the proof of
our result, under the additional assumption (11.11). In the general case, since
c is bounded we can rewrite the equation H1u = f in the form

(H1 + c0)u = f + c0u

where c0 is a constant such that c+c0 satis�es condition (11.11). Since f+c0u 2
C2;� (U), the above reasoning implies u 2 C4;�loc (U). Iterating this argument
yields our result in the general case.
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12 Appendix. Homogeneous groups, Rothschild-
Stein �lifting and approximation�technique
and their parabolic version

Let X1; : : : ; Xq be C1 real vector �elds on a domain 
 � Rn. For every
multiindex � = (�1,: : : ; �d) with 1 6 �i 6 q, we de�ne

X� =
�
X�d ;

�
X�d�1 ; : : : [X�2 ; X�1 ] : : :

��
,

and j�j = d. We call X� a commutator of the Xi�s of length d. Assume that
X1; : : : ; Xq satisfy Hörmander�s condition of step s at some point x0 2 Rn; this
means that fX� (x0)gj�j6s spans Rn. Let G (s; q) be the free Lie algebra of step
s on q generators, that is the quotient of the free Lie algebra with q generators
by the ideal generated by the commutators of length at least s + 1, and let
N =dimG (s; q), as a vector space. One always has N > n. If e1,: : : ; eq are
generators of the free Lie algebra G (q; s) and

e� =
�
e�d ;

�
e�d�1 ; : : : [e�2 ; e�1 ] : : :

��
,

then there exists a set A of multiindices � so that fe�g�2A is a basis of G (q; s)
as a vector space. This allows us to identify G (q; s) with RN . Note that
CardA = N while max�2Aj�j = s. The Campbell-Hausdor¤ series de�nes
a multiplication in RN (see e.g. [30] or [31]) that makes RN the group N(q; s),
that is the simply connected Lie group associated to G (q; s). We can naturally
de�ne dilations in N(q; s) by

D(�)
�
(u�)�2A

�
=
�
�j�ju�

�
�2A

:

These are automorphisms of N(q; s), which is therefore a homogeneous group,
in the sense of Stein (see [33], p. 618-622). We will call it G, leaving the
numbers q; s implicitly understood. Note that the G is uniquely determined by
the number q of the vector �elds Xi and the step s of the Hörmander�s condition
they satisfy.
The following structures can be de�ned in a standard way in G:
� Homogeneous norm k�k: for any u 2 G, u 6= 0, set

kuk = � ,
����D(1� )u

���� = 1,
where j�j denotes the Euclidean norm; also, let k0k = 0. Then:
kD(�)uk = � kuk for every u 2 G, � > 0;
the set fu 2 G: kuk = 1g coincides with the Euclidean unit sphere

P
N ;

the function u 7! kuk is smooth outside the origin;
there exists c(G) > 1 such that for every u, v 2 G

ku � vk 6 c (kuk+ kvk) and
u�1 6 c kuk ;
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1

c
jvj 6 kvk 6 c jvj1=s if kvk 6 1:

� Quasidistance d:
d(u; v) =

v�1 � u
for which the following hold:

d(u; v) > 0 and d(u; v) = 0 if and only if u = v;

1

c
d(v,u) 6 d(u; v) 6 c d(v,u);

d(u; v) 6 c fd(u; z) + d(z; v)g
for every u, v, z 2 RN and some positive constant c(G) > 1.
If we denote by B(u; r) � Br(u) �

�
v 2 RN : d(u; v) < r

	
the metric balls,

then we see that B(0; r)=D(r)B(0; 1). Moreover, it can be proved that the
Lebesgue measure in RN is the Haar measure of G. Therefore

jB(u; r)j = jB(0; 1)j rQ,

for every u 2 G and r > 0, where Q =
P

�2A j�j is called the homogeneous
dimension of G.
� The convolution of two functions in G is de�ned as

(f � g)(x) =
Z
RN

f(x � y�1) g(y) dy =
Z
RN

g(y�1 � x) f(y) dy,

for every couple of functions for which the above integrals make sense.
Let �u be the left translation operator acting on functions: (�uf)(v) = f(u �

v). We say that a di¤erential operator P on G is left invariant if P (�uf) =
�u(Pf) for every smooth function f . From the above de�nition of convolution
we read that if P is any left invariant di¤erential operator,

P (f � g) = f � Pg

(provided the integrals converge).
We say that a di¤erential operator P on G is homogeneous of degree � > 0

if
P (f (D(�)u)) = �� (Pf)(D(�)u)

for every test function f , � > 0, u 2 RN . Also, we say that a function f is
homogeneous of degree � 2 R if

f (D(�)u) = �� f (u) for every � > 0, u 2 RN :

Clearly, if P is a di¤erential operator homogeneous of degree �1 and f is a
homogeneous function of degree �2, then Pf is homogeneous of degree �2 � �1.
For example, u� @

@u�
is homogeneous of degree j�j � j�j.

Denote by Yj (j = 1; : : : ; q) the left-invariant vector �eld on G which agrees
with @

@uj
at 0. Then Yj is homogeneous of degree 1 and, for every multiindex �,
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Y� is homogeneous of degree j�j. The system of vector �elds fYjgqj=1 satis�es
Hörmander�s condition of step s in RN ; and their Lie algebra coincides with
G (q; s). Again, the Yj�s are uniquely determined by the numbers q; s, related
to the original vector �elds Xi de�ned in Rn.
A di¤erential operator on G is said to have local degree less than or equal to

` if, after taking the Taylor expansion at 0 of its coe¢ cients, each term obtained
is homogeneous of degree 6 `.
We are now in position to state the famous �Lifting and approximation�

result by Rothschild-Stein [30].

Theorem 12.1 Let X1; : : : ; Xq be C1 real vector �elds on a domain 
 � Rn
satisfying Hörmander�s condition of step s at some point x0 2 
. Then in terms
of new variables, h1,: : : ; hN�n, there exist smooth functions cij(x; h) (1 6 i 6 q,
1 6 j 6 N � n) de�ned in a neighborhood ~U of �0 = (x0; 0) 2 
 � RN�n = e

such that the vector �elds eXi given by

eXi = Xi +
N�nX
j=1

cij (x; h1; h2; :::; hj�1) @hj i = 1; : : : ; q

satisfy Hörmander�s condition of step s. Moreover, denoting by f eX�(�)g�2A a
basis for RN for every � 2 eU; let us de�ne, for �; � 2 eU , the map

��(�) = (u�)�2A

with

� = exp

 X
�2A

u� eX�

!
�:

Then there exist open neighborhoods U of 0 and V;W of �0 in RN , with W b V
such that:
a) �� j V is a di¤eomorphism onto the image, for every � 2 V ;
b) ��(V ) � U for every � 2W ;
c) �: V � V ! RN , de�ned by �(�; �) = ��(�) is C1 (V � V );
d) In the coordinates given by ��, we can write eXi = Yi + R�i on U , where
Yi are the homogeneous left invariant vector �elds de�ned above, and R

�
i are

vector �elds of local degree 6 0 depending smoothly on � 2 W (the superscript
� does not denote the variable of di¤erentiation but dependence on the point �).
Explicitly, this means that for every f 2 C10 (G):

eXi (f(�� (�))) (�) =
�
Yif +R

�
i f
�
(�� (�)) :

e) More generally, for every � 2 A we can write

eX� = Y� +R
�
�

with R�� a vector �eld of local degree 6 j�j � 1 depending smoothly on �.
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Roughly speaking, the above theorem says that the original system of vector

�elds fXigqi=1 de�ned in Rn can be lifted to another system
n eXi

oq
i=1

de�ned in

RN (N > n), such that the eXi can be locally approximated by the homogeneous
left invariant vector �elds Yi: The remainder in this approximation process is
expressed by the vector �elds R�i which have the following good property: when
they act on a homogeneous function, typically of negative degree (that is, with
some singularity), the singularity does not become worse. The vector �elds
Yi; R

�
i must be thought as acting on the group G; the vector �elds eXi as acting

on the �manifold�RN ; the change of variables between the two environments
being realized by the map ��: Here below we add some other miscellanuous
facts, related to the above concepts, which are used in this paper.
� Under the change of variables u = ��(�), the measure element becomes:

d� = c(�) � (1 +O (kuk)) du,

where c(�) is a smooth function, bounded and bounded away from zero in V .
The same is true for the change of coordinates u = ��(�).
� If, for �; � 2 V , we de�ne

� (�; �) = k�(�; �)k

where k�k is the homogeneous norm de�ned above, then � is a quasidistance,

locally equivalent to the CC-distance ~d induced by the vector �elds
n eXi

o
: Note,

however, that ed is globally de�ned in e
; while the map � is only de�ned in each
neighborhood of e
:
� Although there is no easy relation between the CC-distance d induced

in Rn by the Xi�s and the CC-distance ~d induced in RN by the eXi�s, a more
transparent relation holds between the volumes of corresponding balls. This
fact is described by the following result by Sanchez-Calle:

Lemma 12.2 (See [31],Theorem 4). Let B; eB denote metric balls with respect
to d (in Rn) and ed (in RN ), respectively. For any r > 0 (small enough),
x; y 2 Rn; d (x; y) 6 �r (� < 1 �xed), h 2 RN�n, one has

rQ '
��� eB ((x; h) ; r)��� ' jB (x; r)j � ���nh0 2 RN�n : (y; h0) 2 eB ((x; h) ; r)o���

where j�j denotes Lebesgue measure in the appropriate Rm, and the equivalence
a ' b means c1a 6 b 6 c2a for positive constants c1; c2 independent of r; x; y; h.
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