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Abstract

Given a positive constant �, there exists a constant c such that for

every measurable set 
 in the Euclidean space and R > 0, there exist

entire functions of exponential type R with A(x) � �
(x) � B(x)

and jB(x)�A(x)j 6 c (1 +R dist (x; @
))��. Analogous results hold

for the approximation by eigenfunctions of di¤erential operators on

manifolds. This leads to Erdös-Turán type estimates for discrepancy

on manifolds.
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1 Introduction

An in�nite sequence of points fxjg+1j=1 is uniformly distributed in the interval

[0; 1] if for every 0 � a < b � 1,

lim
m!+1

(
m�1

mX
j=1

�[a;b] (xj)

)
= b� a:

The criterion of H.Weyl states that a sequence is uniformly distributed if

and only if for every k 6= 0,

lim
m!+1

(
m�1

mX
j=1

exp (2�ikxj)

)
= 0:

More precisely, a measure of the irregularities of point distribution is given

by the discrepancy

sup
0�a<b�1

�����(b� a)�m�1
mX
j=1

�[a;b] (xj)

����� :
The inequality of P.Erdös and P.Turán establishes a quantitative con-

nection between this discrepancy and exponential sums. Given m points

0 � x1; x2; :::; xm � 1, then for every n = 1; 2; :::

sup
0�a<b�1

�����(b� a)�m�1
mX
j=1

�[a;b] (xj)

�����
� cn�1 + c

nX
k=1

k�1

�����m�1
mX
j=1

exp (2�ikxj)

����� :
See [1], [4] and [9]. A proof of the above inequality relies on the ap-
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proximation of characteristic functions �[a;b] (x) by trigonometric polynomials

P (x) =
X+n

k=�n
bP (k) exp (2�ikx), so that

(b� a)�m�1
mX
j=1

�[a;b] (xj) � (b� a)�m�1
mX
j=1

P (xj)

= (b� a)� bP (0)� X
1�jkj�n

 
m�1

mX
j=1

exp (2�ikxj)

! bP (k):
In particular, a construction of these approximations is due to A.Beurling

and A.Selberg, who proved that for every 0 � a � b � 1 and n = 0; 1; 2; :::,

there exist trigonometric polynomials P� (x) of degree n with

P� (x) � �[a;b] (x) � P+ (x) ;
1Z
0

��P� (x)� �[a;b] (x)�� dx = 1=(n+ 1):
See e.g. [11]. Similar extremal problems have been considered by J.J.Holt

and J.D.Vaaler, with precise estimates on the approximation in �1 < x <

+1 with measure jxj2�+1 dx of the function sgn (x) by functions of �nite

exponential type. A radialization of these functions then yields an analog of

Selberg polynomials for approximation of characteristic functions of multi-

dimensional balls and this has been applied to Erdös-Turán estimates of

discrepancy. See [5], [6], [7]. Looking for a generalization of the above results,

here we show that analogs of Selberg polynomials exist in several variables

and in very general settings and, again, this can be applied to estimates of

irregularities of point distribution.

The plan of the paper is the following. In the second section we consider
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approximations from above and below of characteristic functions by entire

functions of exponential type. We also brie�y consider approximations by

linear combinations of eigenfunctions of the Laplace-Beltrami operator on

a compact Riemannian manifold. In the third section these approximation

results are applied to Erdös-Turán estimates of irregularities of point dis-

tribution on manifolds. In particular, inspired by A.Lubotzky, R.Phillips

and P.Sarnak [10], when the manifold is a compact Lie group or homoge-

neous space we consider point distributions generated by the action of a free

group. Finally, inspired by W.M.Schmidt [12], when the manifold is a torus

we obtain explicit estimates for the irregularities of distribution of sequences

fjpg+1j=1 with respect to polyhedra and convex domains.

2 Approximation by entire functions

The following is the main result in this section.

Theorem 1 Given a positive constant �, there exists a constant c such that

for every measurable set 
 in the Euclidean space Rd and R > 0, there ex-

ist entire functions of exponential type R satisfying A(x) � �
(x) � B(x)

and jB(x)� A(x)j 6 c (1 +R dist (x; @
))��. Roughly speaking, the approxi-

mation jB(x)� A(x)j is essentially one at points with distances 1=R from

the boundary of 
, while jB(x)� A(x)j is essentially zero at larger dis-

tances. This approximation is essentially optimal. Indeed, for every pair

of entire functions of exponential type R with A(x) � �
(x) � B(x), if

dist (x; @
) � (2R supz2Rd fjA(z)j ; jB(z)jg)
�1 then B(x)� A(x) � 1=2.
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We would like to emphasize that the constant c in the theorem is indepen-

dent of the measurable set 
 and that there are no regularity assumptions

on this set. When a set is regular, then there are few points at small distance

from the boundary and the approximation is bad only on a small set, but

when a set is fractal, then there are many points at small distance from the

boundary and the approximation is bad on a large set.

One can turn the above pointwise estimates into integral ones. Denoting

by � the Lebesgue measure, the boundary of 
 has �nite � dimensional

Minkowski measure if

lim sup
"!0+

"��d� (fdist (x; @
) < "g) < +1:

Corollary 2 Assume that the boundary of 
 has �nite � dimensional Minko-

wski measure. Then for every R > 0 there exist entire functions of exponen-

tial type R with A(x) � �
(x) � B(x) and

Z
Rd

jB(x)� A(x)j dx � cR��d:

For measurable sets periodic with respect to the integer lattice Zd, the

above approximating entire functions are periodic too, hence they are trigono-

metric polynomials which may be seen as generalizations of Beurling Selberg

polynomials.

Corollary 3 Given a positive constant � there exists a constant c such that

for every domain 
 in the torus Td = Rd=Zd and R = 0; 1; 2; :::, there ex-

ist trigonometric polynomials of degree R with A(x) � �
(x) � B(x) and
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jB(x)� A(x)j 6 c (1 +R dist (x; @
))��.

Proof of Theorem 1. Let m(�) be a smooth radial function on Rd with

m(�) = 0 if j�j � 1=2 and
Z

Rd
m (�)2 d� = 1. Then the convolution m�m (�)

is a smooth radial function with m � m (0) = 1 and m(�) = 0 if j�j � 1.

De�ne

K(x) =

Z
Rd

m �m (�) exp (2�i� � x) d�:

Sincem�m (�) is smooth, this kernelK(x) and its derivatives have fast de-

cay at in�nity,
��@�K(x)=@x��� � c (1 + jxj)�d�
 for every � and 
. Moreover,

it is non negative, since it is the square of the Fourier transform of m(�), and

it has mean one,
Z

Rd
K(x)dx = m �m (0) = 1. De�ne KR(x) = R

dK (Rx) :

The convolutionsKR��
 (x) are entire functions of exponential type R which

approximate �
 (x) and suitable modi�cations of these approximations sat-

isfy all the required properties. Let

H�;R (x) = (1 +R dist (x; @
))
�� :

Claim For every � > 0 there exists c such that for every x,

j�
 (x)�KR � �
 (x)j � cH�;R (x) :
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To prove this estimate, recall that KR(y) is positive with mean one and

fast decay at in�nity. Hence

j�
 (x)�KR � �
 (x)j =

������
Z
Rd

KR (y) (�
 (x)� �
 (x� y)) dy

������
�

Z
fjyj�dist(x;@
)g

KR(y)dy � c (1 +R dist (x; @
))�� :

Claim For every � > 0 there exist positive constants c and C such that for

every x,

cH�;R(x) � KR �H�;R (x) � CH�;R(x):

To prove the estimate from above, observe that H�;R(x� y) � H�;R(x) if

jyj � 2�1 dist (x; @
). Hence,

KR �H�;R (x) =
Z
Rd

KR (y)H�;R (x� y) dy

�
�

max
jyj�2�1 dist(x;@
)

H�;R (x� y)
�Z
Rd

KR (y) dy

+

�
max
y2Rd

H�;R (x� y)
� Z
fjyj�2�1 dist(x;@
)g

KR(y)dy

� cH�;R(x):
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To prove the estimate from below, again observe that H�;R(x � y) �

H�;R(x) if jyj � 1=R. Hence,

KR �H�;R (x) =
Z
Rd

KR (y)H�;R (x� y) dy

�
�
min
jyj�1=R

H�;R (x� y)
� Z
fjyj�1=Rg

KR(y)dy

� cH�;R(x):

The constants c and C in both claims may be chosen independent of 
.

To conclude the proof of the theorem, de�ne

A(x) = KR � �
 (x)� 
KR �H�;R (x) ;

B(x) = KR � �
 (x) + 
KR �H�;R (x) :

By the above claims, if 
 is large enough, then

�
 (x)� A(x) = 
KR �H�;R (x)� (KR � �
 (x)� �
 (x))

� 
c1H�;R (x)� c2H�;R (x) � 0;

B(x)� �
 (x) = 
KR �H�;R (x)� (�
 (x)�KR � �
 (x))

� 
c1H�;R (x)� c2H�;R (x) � 0:

Finally,

B(x)� A (x) = 2
KR �H�;R (x) � cH�;R (x) :

8



The fact that this order of approximation is optimal is a consequence of

the inequality of S.Bernstein between the maxima of an entire function and

its derivatives. If F (z) is an entire function of exponential type R, then

jF (x)� F (y)j � jx� yj sup
z2Rd

jrF (z)j � jx� yjR sup
z2Rd

jF (z)j :

Hence, if A(x) � �
(x) � B(x) are entire functions of exponential typeR,

if x is in 
 and y is outside 
 with jx� yj � (2R supz2Rd fjA(z)j ; jB(z)jg)
�1,

then B(x)� A(y) � 1 and

B(x)� A(x) = (B(x)� A(y))� (A(x)� A(y)) � 1� 1=2;

B(y)� A(y) = (B(x)� A(y))� (B(x)�B(y)) � 1� 1=2:

The above results for the Euclidean spaces Rd and Td easily extend to

non euclidean settings, such as expansions in eigenfunctions of di¤erential

operators on manifolds. LetM be a smooth d dimensional compact mani-

fold without boundary, with Riemannian distance dist(x; y) and measure �

normalized so that � (M) = 1. Let � be the Laplace-Beltrami operator,

with eigenvalues
�
�2
	
and let f'�(x)g be a complete orthonormal system of

eigenfunctions. To every function in L2(M; d�) one can associate a Fourier

transform and a Fourier series,

bf(�) = Z
M

f(y)'�(y)d�(y); f(x) =
X
�

bf(�)'�(x):
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Fourier series on compact Lie groups and symmetric spaces are examples.

In particular, the Laplace operator �
Xd

j=1
@2=@x2j on the torus Td = Rd=Zd

has eigenfunctions fexp (2�ik � x)gk2Zd with eigenvalues
�
4�2 jkj2

	
k2Zd and

the eigenfunction expansions are classical trigonometric series. Similarly, the

eigenfunctions of the Laplace operator on the surface of a sphere are homoge-

neous harmonic polynomials and the eigenfunction expansions are spherical

harmonic expansions. In the setting of manifolds an analog of the trigono-

metric polynomials is given by �nite linear combination of eigenfunctionsX
�
c�'�(x). Indeed it can be shown that there is a close relation between

approximation by functions of exponential type and by eigenfunctions. See

for example [3]. The following is a generalization of the above theorem and

corollary.

Theorem 4 Given a positive constant � there exists a constant c with the

following property: given a domain 
 in M and R > 0, there exist linear

combinations of eigenfunctions with eigenvalues at most R2 such that A(x) �

�
(x) � B(x) and jB(x)� A(x)j 6 c (1 +R dist (x; @
))��.

Proof. The proof of this theorem is similar to the proof of Theorem 1. One

only needs a suitable family of approximations of the identity adapted to the

manifold, analogous to the convolution kernels RdK(Rx).
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Claim Given � and R > 0, there exist kernels with the following properties:

KR(x; y) =
X
�<R

c�'�(x)'�(y);

jKR(x; y)j � cRd (1 +R dist (x; y))�d�� ;Z
M

KR(x; y)d�(y) = 1;Z
M

jKR(x; y)j d�(y) � 1 + c=R:

The last two conditions mean that, up to a negligible error, these kernels

are essentially positive. The construction of such kernels on Lie groups and

symmetric spaces is well known and in these cases it is possible to obtain

positivity. We do dot know whether positivity can be achieved in our general

setting, however in the sequel this essential positivity will su¢ ce. Givenm (�)

as in the proof of Theorem 1 and h (j�j) = m �m (�), de�ne

KR(x; y) =
X
�

h
�
R�1�

�
'�(x)'�(y):

It is possible to prove that these kernels have asymptotic expansions with

Euclidean main terms RdK(R dist(x; y)) and remainders controlled by c=R.

Although the details are not completely trivial, the techniques can be found

in Chapter XII of [14], or in [2]. Finally, de�ne

A(x) =

Z
M

KR(x; y) (�
(y)� 
H�;R(y)) d�(y);

B(x) =

Z
M

KR(x; y) (�
(y) + 
H�;R(y)) d�(y):
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Then, as in the proof of Theorem 1, it is possible to show that these

functions satisfy the required properties.

3 An Erdös-Turán type inequality

As advertised in the Introduction, the approximation results in the previous

section have simple and straightforward applications to multi-dimensional

versions of the classical Erdös-Turán inequality.

Theorem 5 Let 
 be a domain in the manifold M and let fxjgmj=1 be a

sequence of m points. Also let H�;R (x) = (1 +R dist (x; @
))
��. Then, for

some constant c independent of 
 and of fxjgmj=1 and for every R > 0,

������(
)�m�1
mX
j=1

�
(xj)

����� �
c

Z
M

H�;R (x) d�(x) + c
X
0<�<R

�
jb�
(�)j+ ��� bH�;R(�)����

�����m�1
mX
j=1

'� (xj)

����� :
Proof. If A(x) � �
(x) � B(x) are de�ned as above, then

A(x); B(x) =

Z
M

 X
�

h
�
R�1�

�
'�(x)'�(y)

!
(�
(y)� 
H�;R(y)) d�(y)

=
X
�

h
�
R�1�

� �b�
 (�)� 
 bH�;R (�)�'�(x):
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Recalling that 0 is an eigenvalue with eigenfunction '0(x) = 1 and also

that h(t) is bounded, with h (0) = 1 and h (t) = 0 if t � 1, one obtains

� (
)�m�1
mX
j=1

�
(xj) � � (
)�m�1
mX
j=1

A(xj)

= 
 bH�;R (0)�X
�>0

h
�
R�1�

� �b�
 (�)� 
 bH�;R (�)�
 
m�1

mX
j=1

'�(xj)

!

� c
Z
M

H�;R (x) d�(x) + c
X
0<�<R

�
jb�
(�)j+ ��� bH�;R(�)����

�����m�1
mX
j=1

'� (xj)

����� :
Similarly

�� (
) +m�1
mX
j=1

�
(xj) � �� (
) +m�1
mX
j=1

B(xj)

� c
Z
M

H�;R (x) d�(x) + c
X
0<�<R

�
jb�
(�)j+ ��� bH�;R(�)����

�����m�1
mX
j=1

'� (xj)

����� :

One might ask for a neater statement of the above theorem, without ex-

plicit references to the functions H�;R (x). When the boundary of 
 has �nite

� dimensional Minkowski measure, then
Z

M
H�;R (x) d�(x) is dominated by

cR��d. However, it is not so clear how to eliminate
n bH�;R(�)o. Indeed, even

if in some average sense this Fourier transform is smaller than fb�
(�)g, the
pointwise inequality

��� bH�;R(�)��� � c jb�
(�)j can be false, for example whenb�
(�) = 0. On the other hand the function H�;R(x) can be replaced by any
function G�;R(x) with similar behavior, 0 < c < G�;R(x)=H�;R(x) < C <

+1. For example, when the domain 
 is de�ned by an inequality '(x) < 0,

with r'(x) 6= 0 if '(x) = 0, one can take G�;R(x) =
�
1 + (R'(x))2

���=2
.

13



Inspired by the work of A.Lubotzky, R.Phillips, P.Sarnak on the problem

of distributing points on a sphere, we now consider irregularities of point

distributions generated by the action of a free group on a homogeneous space.

Corollary 6 Let G be a compact Lie group, K a closed subgroup,M = G=K

a homogeneous space of dimension d with normalized invariant measure �.

Let H be a �nitely generated free subgroup in G and assume that the action of

H onM is free. Given a positive integer k, let f�jgmj=1 be an ordering of the

elements in H with length at most k. For every function f(x) in L2(M; d�)

de�ne

Tf(x) = m�1
mX
j=1

f (�jx) :

This operator is self adjoint and has an orthonormal complete system

of eigenfunctions. Assume that all the eigenfunctions with eigenvalue 1

are constant, while the other eigenvalues T (�) satisfy the bound jT (�)j �

cm�1=2 log(m) with some constant c independent of m. Finally, let 
 be

a domain in M with boundary of �nite � dimensional Minkowski measure.

Then, for every point p inM, one has

������(
)�m�1
mX
j=1

�
(�jp)

����� � cm(��d)=(2d��) log(2d�2�)=(2d��)(m):

The above constant c may be chosen independent of m and p and of the

positioning of 
 inM.

A.Lubotzky, R.Phillips and P.Sarnak have shown that the required Ra-

manujan bounds on the eigenvalues hold when the homogeneous space is the

two dimensional sphere SO(3)=SO(2) and the free group is generated by rota-
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tions of angles arccos(�3=5) around orthogonal axes. In particular, whenM

is a sphere and 
 is a spherical cap, the above corollary is already contained

in [10]. However, while their proof relies on explicit estimates for Fourier

coe¢ cients of spherical caps, here we avoid explicit computations and obtain

results which apply to more general domains.

Proof. Since the operators T and� commute, they have a common orthonor-

mal system of eigenfunctions, �'�(x) = �
2'�(x) and T'�(x) = T (�)'�(x).

Our assumption is precisely that jT (�)j � cm�1=2 log(m) if � 6= 0. Hence, by

Theorem 5,

������(
)�m�1
mX
j=1

�
(�jp)

�����
� c

Z
M

H�;R (x) d�(x) + c
X
0<�<R

�
jb�
(�)j+ ��� bH�;R(�)���� jT (�)'� (p)j

� c
Z
M

H�;R (x) d�(x)

+cm�1=2 log(m)
X
0<�<R

�
jb�
(�)j+ ��� bH�;R(�)���� j'� (p)j :

If the boundary of 
 has �nite � dimensional Minkowski measure and if

� > d� �, then Z
M

H�;R(x)d�(x) � cR��d:
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The remaining sums can be estimated as follows.

X
0<�<R

jb�
(�)j j'� (p)j
�
( X
0<�<1

jb�
(�)j2
)1=2( X

0<�<1

j'� (p)j
2

)1=2

+

[log2(R)]X
k=0

8<:X
��2k

jb�
(�)j2
9=;
1=2( X

�<2k+1

j'� (p)j
2

)1=2
:

If the boundary of 
 has �nite � dimensional Minkowski measure, then

the modulus of continuity in L2(M; d�) of the characteristic function �
(x)

has an order (d� �)=2 and, by an analog for eigenfunction expansions of the

approximation theorem of D.Jackson,

X
��2k

jb�
(�)j2 � c2(��d)k:
See e.g. [3]. Moreover, by the estimates of H.Weyl on the spectral func-

tion, X
�<2k+1

j'� (p)j
2 � c2dk:

See e.g. Theorem 17.5.3 in [8]. Collecting these estimates one obtains

X
0<�<R

jb�
(�)j j'� (p)j � cR�=2:
Similarly, X

0<�<R

��� bH�;R(�)��� j'� (p)j � cR�=2:
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Hence,

������(
)�m�1
mX
j=1

�
(�jp)

����� � cR��d + cm�1=2 log(m)R�=2:

Choosing R = m1=(2d��) log2=(��2d)(m), one concludes that

������(
)�m�1
mX
j=1

�
(�jp)

����� � cm(��d)=(2d��) log(2d�2�)=(2d��)(m):

Finally, observe that all these estimates are invariant under the group

action.

As we said, the above corollary applies to distributions of points on a

sphere generated by suitable free groups of rotations. As a �nal example, we

consider distributions of points in a torus. Since Td = Rd=Zd is commutative,

a free subgroup has only one generator and it is isomorphic to the integers,

hence it has the form fjpg+1j=�1, where the multiples jp are modulo Zd and

at least one coordinate of p is irrational. A common orthonormal system of

eigenfunctions for the operators

�f(x) = �
dX
j=1

@2

@x2j
f(x); T f(x) = m�1

mX
j=1

f (x+ jp) ;

are the exponentials fexp (2�ik � x)gk2Zd and the eigenfunction expansions

are classical trigonometric Fourier series. The eigenvalues of these operators

can be computed explicitly, in particular � has eigenvalues
�
4�2 jkj2

	
k2Zd ,
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while

T (exp (2�ik � x)) = m�1
mX
j=1

exp (2�ik � (x+ jp))

=

�
exp (�i(m+ 1)k � p) sin (�mk � p)

m sin (�k � p)

�
exp (2�ik � x) :

Denoting by ktk the distance of t to the nearest integer,

����exp (�i(m+ 1)k � p) sin (�mk � p)m sin (�k � p)

���� � min f1; 1= (2m kk � pk)g :
If p has a rational coordinate, then kk � pk can be zero, if p has an irra-

tional coordinate, then kk � pk can be arbitrarily close to zero. In both cases

the Ramanujan estimates required by the above corollary are not satis�ed.

Nevertheless, for the distribution of points fjpg+1j=�1 the following results

hold.

Corollary 7 If 
 is a polyhedron in the torus Td, then for every " > 0 and

almost every p in Td there exists a constant c such that for every m,

������(
)�m�1
mX
j=1

�
(jp)

����� � cm�1 logd+1+"(m):

The above constant c may be chosen independent of the positioning of the

polyhedron in the torus.
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Proof. To be explicit, let 
 be a parallelepiped de�ned by
�

j � xj � �j

	
.

In this case

b�
(k) = Z



exp(�2�ik � x)dx

= exp

 
��i

dX
j=1

�
�j + 
j

�
kj

!
dY
j=1

sin(�
�
�j � 
j

�
kj)

�kj
:

Hence

jb�
(k)j � dY
j=1

min
����j � 
j�� ; ��1 jkjj�1	 :

The behavior of the Fourier transform of a polyhedron is similar, there

is a decay of order �d along directions not normal to the faces or edges

and a decay of order h � d along directions normal to h dimensional faces.

Moreover, the Fourier transform of H�;R(x) satis�es similar estimates. Also,Z
Td
H�;R (x) dx � c=R. Hence, by Theorem 5,

������(
)�m�1
mX
j=1

�
(jp)

�����
� cR�1 + c

X
0<jkj<R

 
min

�
1;m�1 kk � pk�1

	 dY
j=1

min
�
1; jkjj�1

	!
:

Finally, by a result in [12], for almost every p the last sum is dominated by

cR�1 + cm�1 logd+1+"(R) and the desired result follows by choosing R = m.

Corollary 8 If 
 is a convex body in the torus Td with smooth boundary

with positive Gaussian curvature, then for every " > 0 and almost every p in
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Td there exists a constant c such that for every m,

������(
)�m�1
mX
j=1

�
(jp)

����� � cm�2=(d+1) log2+"(m):

The above constant c does not depend on the positioning of the convex

body in the torus.

Proof. By classical estimates on the decay of oscillatory integrals with

non degenerate critical points, jb�
(k)j � c (1 + jkj)�(d+1)=2 and ��� bH�;R(k)��� �
cR�1 (1 + jkj)�(d�1)=2. See e.g. Chapter VIII in [13]. Hence, as in the previ-

ous corollary, for almost every p,

������(
)�m�1
mX
j=1

�
(jp))

�����
� cR�1 + c

X
0<jkj<R

jkj�(d+1)=2min
�
1;m�1 kk � pk�1

	
� cR�1 + cm�1R(d�1)=2

X
0<jkj<R

jkj�d kk � pk�1

� cR�1 + cm�1R(d�1)=2 logd+1+"(R):

The desired result follows by choosing R = m2=(d+1) log�2�"(m).
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