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Abstract

In this work we deal with linear second order partial differential oper-
ators of the following type:

q q
H=0—-L=20;— Z ai; (t, ) X X —Zak (t,z) X — ao (t,2)

ij=1 k=1

where X1, Xs,...,Xq is a system of real Hormander’s vector fields in
some bounded domain @ C R", A = {ay; (¢,z)}],_, is a real symmetric

*2000 AMS Classification. Primary: 35H20, 35A08, 35K65 Secondary: 35H10,
35A17 Keywords: Hoérmander’s vector fields, heat kernels, Gaussian bounds, Harnack in-
equalities



uniformly positive definite matrix such that:

q
ATHEP < D iy (te) &gy S ALEPP VEER € Qt € (Th,Th)
ij=1
for a suitable constant A > 0 a for some real numbers 77 < T5. The

coefficients a;j, ak, ag are Holder continuous on (771, 7%) X £ with respect
to the parabolic CC-metric

dp ((tax)v(say)) = d(m,y)2—|—|t—s|

(where d is the Carnot-Carathéodory distance induced by the vector fields
X;’s). We prove the existence of a fundamental solution h (¢, z;s,y) for
H, satisfying natural properties and sharp Gaussian bounds of the kind:

e—ed(@v)?/(t—9) o—d(@v)?/e(t—s)

—— < htz;s,y) <c———F——
B (ovi—s)| < MEme) < gy

|X'h(t T8 )|< c e_d(ﬂcay)Q/c(t—s)
ih(t, @58,y T Vit—=s|B(z,vt—s)|

e e—d@m)?/et—s)
<
S TS By

where |B (z,7)| denotes the Lebesgue measure of the d-ball B (z,r). We
then use these properties of h as a starting point to prove a scaling invari-
ant Harnack inequality for positive solutions to Hu = 0, when ago = 0.
All the constants in our estimates and inequalities will depend on the
coefficients a;j, ak, ao only through their Holder norms and the number A.

|X7~X]h‘ (t7 z;s, y)' + |ath (t7 T;s, y)
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Introduction

Object and main results of the paper
Let us consider the heat-type operator in R**+!

q q
H = at — L = Bt — Z aij (t71') XZ‘Xj - Zak (t,l‘) Xk — Qg (t,.’t) (01)
i,j=1 k=1

where:

(H1) X1,Xs,...,X, is a system of real smooth vector fields which are
defined in some bounded domain €2 C R™ and satisfy Hérmander’s condition in
Q: rank Lie{X;,i=1,2,...,q} = n at any point of  (more precise definitions
will be given later);

(H2) A ={aij; (¢, x)}?’jzl is a real symmetric uniformly positive definite
matrix satisfying, for some positive constant A,

q
ATHEP <Y ai (b o) &85 < Mg

ij=1

for every £ € R, z € Q,t € (T1,T3) for some T7 < Th.
If d(z,y) denotes the Carnot-Carathéodory metric generated in 2 by the
X;’s and

dp (), (5,9)) = \Jd (2,9)° + |t - 5]

is its “parabolic” counterpart in R x 2, we will assume that:

(H3) aij, G, ag are Holder continuos on C = (17, T5) x Q with respect to
the distance dp.

Under assumptions (H1),(H2),(H3), we shall prove the existence and basic
properties of a fundamental solution h for the operator H, including a represen-
tation formula for solutions to the Cauchy problem, a “reproduction property”
for h, and regularity results: namely, we will show that h is locally Holder con-
tinuous, far off the pole, together with its derivatives X;h, X;X;h, 0;h. To be
more precise, an explanation is in order here. The operator H is defined only
on the cylinder C. On the other hand, dealing with fundamental solutions, it is
convenient to work with an operator defined on the whole space. For this reason
we will extend the operator H to the whole R™*!, in such a way that, outside
a compact set in the space variables, it coincides with the classical heat oper-
ator, and henceforth we will study the fundamental solution for this extended
operator.

Strictly related to the proof of the existence of h, and of independent interest,



are several sharp Gaussian bounds for h that we will establish:

e—cd(z.y)?/(t—s) e—d(@.y)? /e(t—s)

c|B (m,\/t—s)| s h{tzsy) SC|B(ar:,\/t—s)|

—d(z,y)?/c(t—s)
Xoh (t, 255, y)| < ——mee 1T

Vi=s[B eV )

| X Xk ( )+ 10:h ( ) e e—d@y)?/e(t—s)
iXih(t,z;s,y)| + |0ch (t,x;8,y)| <
| t=s|B (2, vi—s)]

where 2,y € R",0 <t —s < T and |B (z,r)| denotes Lebesgue measure of the
d-ball B (z,r). The constant ¢ in these estimates depends on the coefficients
aij,ax,ag only through their Holder moduli of continuity and the ellipticity
constant A.

A precise list of the results we prove about A is contained in Theorem 10.7,
stated at the beginning of Part IT (see also Remark 10.9).

A remarkable consequence of these bounds is a scaling invariant Harnack
inequality for H, and for its stationary counterpart L in (0.1), which will be
proved throughout Part III. In that part we will assume aq, the zero order term
of H, to be identically zero. Precise results are stated in Theorems 15.1 and
15.3 at the beginning of Part III.

As we mentioned before, all the results we have described so far are proved
for an operator defined on the whole space, which extends H, initially defined
only locally. At the end of this work (see Section 19) we will also show how to
come back to the original operator, deducing local results from the above global
theorems (see Theorems 19.1 and 19.2). We could also say that the final goal
of all our theory is to prove local properties of our operators, so that the theory
itself is local, in spirit, although it exploits, for technical convenience, objects
that are defined globally.

An announcement of the results contained in this paper has appeared in [13].

(0.2)

Previous results and bibliographic remarks

Gaussian estimates for the fundamental solution of second order partial differ-
ential operators of parabolic type, or, somehow more generally, for the density
function of heat diffusion semigroups, have a long history, starting with Aron-
son’s work [1]. The relevance of two-sided Gaussian estimates to get scaling
invariant Harnack inequalities for positive solutions was firstly pointed out by
Nash in the Appendix of his celebrated paper [46]. However, a complete imple-
mentation of the method outlined by Nash was given much later by Fabes and
Stroock in [22], also inspired by some ideas of Krylov and Safonov (see [32], [33],
[50]). Since then, the full strength of Gaussian estimates has been enlightened
by several authors, showing their deep relationship not only with the scaling
invariant Harnack inequality, but also with the ultracontractivity property of
heat diffusion semigroups, with inequalities of Nash, Sobolev or Poincaré type,
and with the doubling property of the measure of “intrinsic” balls. We directly



refer to the recent monograph by Saloff-Coste [51] for a beautiful exposition of
this circle of ideas, and for an exhaustive list of references on these subjects.
Here we explicitly recall just the results in literature strictly close to the core of
our work.

For heat operators of the kind

q
H=0-> X} (0.3)
i=1

with X; left invariant homogeneous vector fields on a Carnot group in R",
Gaussian bounds have been proved by Varopoulos ([57], [58], see also [59]):

L —cllytoa|"/t e llyroall?
< < v toa|"/et
073¢ <h(t,z,y) < elEhe (0.4)
for any x,y € R™,t > 0, where @ is the homogeneous dimension of the group,
and ||-|| any homogeneous norm of the group. Two-sided Gaussian estimates

and a scaling invariant Harnack inequality for the operator

q
H=0,— Z Xi (ai;X5)

ij=1

have been proved by Saloff-Coste and Stroock in [52], where {a;;} is a uni-
formly positive matrix with measurable entries, and the vector fields X; are left
invariant with respect to a connected unimodular Lie group with polynomial
growth.

In absence of a group structure, Gaussian bounds for operators (0.3) have
been proved, on a compact manifold and for finite time, by Jerison-Sanchez-Calle
[30], with an analytic approach (see also the previous partial result in [53]), and,
on the whole R" ™1, by Kusuoka-Stroock, [35], [36], using the Malliavin stochastic
calculus.

Unlike the study of “sum of squares” Hormander’s operators, the investi-
gation of non-divergence operators of Héormander type has a relatively recent
history. Stationary operators of kind

q
i,j=1

with X7, ..., X, system of Hérmander’s vector fields have been studied by Xu
[60], Bramanti, Brandolini [10], [11], Capogna, Han [15]. A first attempt to
study Cordes and/or Alexandrov-Bakelman-Pucci estimates for operators (0.5)
with measurable coefficients a;; and particular classes of vector fields X; are
contained in [19], [20], [21].

Evolution operators of kind (0.1) have been considered by Bonfiglioli, Lan-
conelli, Uguzzoni [3], [4], [6], Bramanti, Brandolini [12]. In [9] also more general
operators of kind

q
L= Z Qij (l‘) X X +ag ({E) Xo (06)
ij=1



with Xg, X1, ..., X; system of Hérmander’s vector fields have been studied.

In these papers, the matrix {a;;} is assumed symmetric and uniformly el-
liptic, and the entries a;; typically belong to some function space defined in
terms of the vector fields X; and the metric they induce. In particular, these
operators do not have smooth coefficients, so they are no longer hypoelliptic.
Therefore the mere existence of a fundamental solution is troublesome. For the
operators (0.1) (without lower order terms) with X; left invariant homogeneous
Hormander’s vector fields on a stratified Lie group and under assumptions (H1),
(H2), (H3), it has been proved by Bonfiglioli, Lanconelli, Uguzzoni in [3], [4],
[5] that the fundamental solution h exists and satisfies Gaussian bounds of the
kind (0.4). As a consequence of these estimates, in [6] it is proved a scaling
invariant Harnack inequality for the operator H.

A particular class of operators (0.6), namely ultraparabolic operators of
Kolmogorov-Fokker-Planck type, has been studied by Pascucci and Polidoro
in relation both with Harnack inequality and Gaussian bounds for the funda-
mental solution; see [47].

Previous results about Harnack inequality for general Hormander’s opera-
tors date back to Bony’s seminal paper [8], where a first qualitative version of
this result is proved. A first scaling invariant Harnack inequality for heat-type
Hormander’s operators was proved later by Kusuoka-Stroock [35].

Strategy and structure of the paper

Following the general strategy used in the case of homogeneous groups in [3], [4],
[6], our study proceeds in three steps, corresponding to the Parts of this paper.
In Part I we consider operators of kind (0.1) with constant coefficients a;;, and
no lower order terms. For these operators, existence and basic properties of the
fundamental solution h4 are guaranteed by known results (see Section 3). Here
the point is to prove sharp Gaussian bounds on hy, which have to be uniform
in the ellipticity class of the matrix A = {a;;}.

In Part II we study operators with variable Holder continuous coeflicients
aij, 0k, ag, and apply the results of Part I to establish existence and Gaussian
bounds for the fundamental solution of these operators. This is accomplished by
a suitable adaptation to our subelliptic context of the classical Levi’s parametrix
method.

Finally, thanks to the results of Part II, the proof of a Harnack inequality
for H can follow the lines drawn in [6], and inspired by Fabes-Stroock’s paper
[22]: this is accomplished in Part III.

For the reader’s convenience, we have included at the beginning of each Part
of the paper more details about the strategy, the techniques, and the main new
difficulties we had to overcome to reach our results.

A motivation

Many problems in geometric theory of several complex variables lead to fully
nonlinear second order equations, whose linearizations are nonvariational op-



erators of Hormander type (0.5). Here we would like to present one of these
problems whose source goes back to some papers by Bedford, Gaveau, Slod-
kowsky and Tomassini, see [2], [56], [54].

Let M be a real hypersurface, embedded in the Euclidean complex space
C"*1. The Levi form of M at a point p € M is a Hermitian form on the complex
tangent space whose eigenvalues A\ (p), ..., A, (p) determine in the directions of
each corresponding eigenvector a kind of “principal curvature”. Then, given
a generalized symmetric function s, in the sense of Caffarelli-Nirenberg-Spruck
[14], one can define the s-Levi curvature of M at p, as follows:

Sy (M) = 5 (A1 (p) s e A (p)).

When M is the graph of a function u and one imposes that its s-Levi curvature
is equal to a given function, one obtains a second order fully nonlinear partial
differential equation, which can be seen as the pseudoconvex counterpart of the
usual fully nonlinear elliptic equations of Hessian type, as studied e.g. in [14].
In linearized form, the equations of this new class can be written as (see [43,
equation (34) p.324))

2n
Lu= Z aij (Du, D*u) X; X;u = K (z,u, Du) in R***! (0.7)

ij=1

where:

the X;’s are first order differential operators, with coefficients depending on
the gradient of u, which form a real basis for the complex tangent space to the
graph of u;

the matrix {a;;} depends on the function s;

K is a prescribed function.

It has to be noticed that £ only involves 2n derivatives, while it lives in a
space of dimension 2n + 1. Then, £ is never elliptic, on any reasonable class
of functions. However, the operator £, when restricted to the set of strictly
s-pseudoconvex functions, becomes “elliptic” along the 2n linearly independent
directions given by the X;’s, while the missing one can be recovered by a com-
mutation. Precisely,

dim (span {X;, [X;, X;],4,7 =1,...,2n}) =2n+1

at any point (see [43, equation (36) p. 324]). This is a Hérmander-type rank
condition of step 2.
The parabolic counterpart of (0.7), i.e. equation

Owu (t,x) = Lu(t,z) for t € R, x € R*"T! (0.8)

arises studying the evolution by s-Levi curvature of a real hypersurface of C*+!
(see [29], [42]).

Satisfactory existence results of viscosity solution for equation (0.7) are al-
ready known (see [18], and references therein). In [44] a sort of hypoelliptic-
ity theorem is proved for the s-Levi equation: every strictly s-pseudoconvex



Cfo’s‘ solution to the equation (0.7) is of class C°° whenever K is of class C.
Existence of classical solutions and optimal regularity results for the viscosity
solutions are still widely open problems. One of the motivations of the present
work is to provide the linear framework for s-Levi equations (0.7) and (0.8), by
performing a deep analysis of the general class of Hérmander heat-type opera-
tors (0.1). For instance, an application of our stationary Harnack inequality is
the following: let u be a positive smooth strictly s-pseudoconvex solution to the
s-Levi equation (0.7), with K of class C*°. Then u satisfies a scaling invariant
Harnack inequality of type:

supu < Cinfu

B, B,
where B, is the Carnot-Carathéodory ball of radius r, related to the vector fields
X1, Xo, ..., Xop in (0.7). The unpleasant fact is that the constant C' depends on
the solution w in an unspecified way. Understanding how C' depends on w is an
interesting and seemingly difficult open problem.

10



Part 1
Operators with constant
coefficients

1 Overview of Part 1

Let us consider the heat-type operator in R**+!

q
HA :at—LA :at— Z ainin (11)

ij=1

where:

(H1) X1,X2,...,Xq is a system of real smooth vector fields which are
defined in some bounded domain 2 C R™ and satisfy Hérmander’s condition of
some step s in ). Explicitly, this means that:

Xi = bix(z)0a,
k=1

with b € C (), and the vector space spanned at every point of € by: the
fields X;; their commutators [X;, X;] = X; X; — X;X;; the commutators of the
X’s with the commutators [X;, X;];...and so on, up to some step s, is the
whole R™.

(H2) A= {aij}?,j:1 is a real symmetric positive definite matrix with
constant entries, and A > 0 a constant such that:

q
AeP < Z ai;&:& < AleP

ij=1
for every £ € R?. When condition (H2) is fulfilled, we will say briefly that
A €&,

As we have already noted, for these operators (or, more precisely, for a
suitable extension of these operators to the whole R™*!, see Section 3), existence
and basic properties of the fundamental solution h4 are guaranteed by known
results. The goal of Part I is to prove the following:

Theorem 1.1 (uniform Gaussian bounds on hy) For any T > 0 there ex-
ists ¢ > 0 such that, for any t € (0,T),xz,y € R™ the following bounds hold:
1. Upper and lower bounds on ha:

-
c|B (. Vi)

e=ed@t < py (43, y) < e d@y) et (1.2)

|B (V)]

11



2. Upper bounds on the derivatives of ha of arbitrary order:

I~J ot ¢ —d(z,y)?/ct
| X2 X, 0tha (t,2,y)] < PR \/5)\6 (1.3)

3. Estimate on the difference of the fundamental solutions of two operators
(and their derivatives):

¢ ||A — B” efd(:v,y)2/ct
ti+|1|‘*2'\J\ |B (,Z‘, \/i)|

| X2 X, 0tha (2, y) — Xp X, Ohp (1, 2,y)| <

(1.4)
(here I,J are arbitrary multiindices, A, B € £x). The constants depend on the
matriz A only through the number \; in (1.3), (1.4), the constant also depends
on the multiindices. The same estimates hold for ha (t,y,x).

The above theorem will be proved in Corollary 6.18 and Theorem 7.1 (bounds
(1.2)), Theorem 8.1 (bounds (1.3)), and Theorem 9.1 (bounds (1.4)). We also
refer to these theorems for more precise statements.

To prove Theorem 1.1, the techniques used in [3] for homogeneous left in-
variant vector fields are not suitable. Instead, here we follow an approach that
just uses the results in [3] and which is basically inspired to the work of Jerison
and Sanchez-Calle [30], integrated with several other devices to overcome the
new difficulties. The main of them are the following: first, we have to take into
account the dependence on the matrix A, getting estimates depending on A
only through the number \; second, our estimates have to be global in space,
while in [30] the Authors work on a compact manifold; third, our estimates on
the difference of the fundamental solutions of two operators have no analog in
[30].

The strategy and plan of Part I is as follows. In Section 2 we will show how
to extend to the whole space the vector fields X;, so that the distance induced
in R™ by these extended vector fields could enjoy suitable global properties,
which will be used throughout the paper; in particular, the Lebesgue measure
will satisfy globally the doubling condition w.r.t. metric balls. Consequently,
in Section 3 we will extend to the whole space R**! the operator Hy, in order
to assure the existence of a global fundamental solution h 4, satisfying natural
properties. The rest of Part I is devoted to the proof of the uniform Gaussian
bounds (1.2), (1.3), (1.4) for this fundamental solution h4. The hardest step is
the proof of the upper bound in (1.2), which will go through Sections 4 to 6.
The strategy is the following. First, one proves the upper bound for ¢ € (0,1)
and € < d(x,y) < R. In this range, the bound is equivalent to:

ha (t,z,y) < ce” /¢ (1.5)

and is proved by means of estimates of Gevray type. This means that the
exponential decay of h 4 for vanishing ¢ is deduced by a control on the supremum
of the time derivative of any order of a solution to H u = 0. Establishing these

12



bounds is the object of Section 4. This technique makes the constant ¢ in (1.5)

depend on:
T
sup/ dT/ ha (1,2,y)dx.
yeR™ Jo e<d(z,y)<R

So the next problem is to prove a uniform upper bound on this quantity (i.e.,
depending on A only through ). This is accomplished in Section 5, exploiting
suitable estimates on fractional and singular integrals on spaces of homogeneous
type, and uniform subelliptic estimates. Next, one has to prove the upper bound
in (1.2) for ¢t € (0,1) and d (z,y) < e. This is performed in Section 6, applying
Rothschild-Stein’s technique of “lifting and approximation”. This allows, by
a rather involved procedure, to deduce the desired uniform bound from the
analogous result proved, in the context of homogeneous groups, by Bonfiglioli-
Lanconelli-Uguzzoni [3], and therefore completes the proof of the upper bound
in (1.2) for ¢t € (0,1) and d(z,y) < R. To prove the same upper bound for any
xz,y € R" and ¢ € (0,T), we will use a comparison argument, exploiting the ad
hoc extension of the operator H 4 performed in Section 3.

In Section 7 we prove the lower bound in (1.2), exploiting the same con-
struction already used in Section 6. Again, uniformity of the lower bound relies
on the analogous uniform lower bound which holds in the case of homogeneous
groups.

In Section 8 we prove the Gaussian bound (1.3) on the derivatives of h4.
Like in [30], this bound is deduced by the upper bound on i 4 (proved in Sections
4 to 6), applying a powerful result proved by Fefferman and Sanchez-Calle [24],
which assures the existence of a local change of coordinates which is a good
substitute of dilations (which in our context do not generally exist).

Finally, in Section 9 we prove our estimate (1.4). The basic estimate, on the
difference of two fundamental solutions h4 — h g, relies on a suitable use of basic
properties of the fundamental solution and on the uniform bound (1.3) on the
derivatives of h 4. The estimate on the difference of derivatives of two funda-
mental solution is then derived by the basic estimate, with the same techniques
used in Section 8.

2 Global extension of Hérmander’s vector fields
and geometric properties of the CC-distance

The aim of this section is to show how a system of Hormander’s vector fields
initially defined in a bounded domain of R™ can be extended to the whole space
to a new system of Hérmander’s vector fields enjoying some good properties,
among which a global doubling condition for the induced CC-distance. These
facts can be also of independent interest. Moreover, in the next section we will
apply this procedure to extend the differential operator H 4 to the whole space,
and assure the existence of a fundamental solution defined in the whole R™*+1.
We will also prove several estimates related to the CC-distance, which will be
used throughout the paper.

13



We start recalling the standard definition of Carnot-Carathéodory distance
induced by a system of vector fields X1, ..., Xj.

Definition 2.1 Let () be a domain in R™. We say that an absolutely continuous
curve v : [0, T] — Q is a sub-unit curve with respect to the system of vector fields
X1, Xo,..., Xy if

q
Y (1) =Y NOX;((t)
=1
for a.e. t €10,T], with 37%_, Ai(t)? <1 a.e. In the following, this number T
will be denoted by 1 (7).
For any x,y € Q, we define

do(z,y) = inf{l (v) |y is X-subunit, v(0) =z, v(l (7)) = y}.

It is well known (Chow’s theorem) that, if the vector fields satisfy Horman-
der’s condition, the above set in nonempty, so that do(z,y) is finite for every
pair of points. Moreover, dg, is a distance in €2, called the Carnot-Carathéodory
distance (CC-distance) induced by the vector fields X;’s.

A known result by Fefferman-Phong [23] states that

Vo —y| <da(z,y) <clz—y|"* (2.1)

for every z,y € K € €, where s is the step of Héormander condition. In partic-
ular, this means that dg induces the usual topology of R™. Moreover, Sanchez-
Calle [53] and Nagel-Stein-Weinger [45] prove that the CC-distance is locally
doubling with respect to the Lebesgue measure, i.e., denoting by B (z,r) the
do-ball of center z and radius r:

B (z,2r)| < ¢|B(z,r)| (2.2)
at least for x ranging in a compact set and r bounded by some ryg.

We will now proceed as follows. First, we will assume to have a system of
Hormander’s vector fields defined in the whole R™ and such that, outside a com-
pact set, it coincides with (0,0, ..., 0, Ox,, Ousyy -, Oz, ) - Under these assumptions,
we will prove several properties of the induced CC-distance and metric balls.
Next, we will show how any Hormander’s system in a bounded domain can be
extended to R™ in order to satisfy these assumptions.

2.1 Some global geometric properties of CC-distances

Throughout this subsection, X = (X1, X, ..., X;) (m > n) will denote a fixed
system of Hérmander’s vector fields defined in the whole R™, and such that

X =(0,0,...,0,0y,,0,, .., 0z,) in R™\

where €) is a fixed bounded domain.
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Notation 2.2 We shall denote by d the Carnot-Carathéodory distance induced
by X, and by B(x,r) the balls in the metric d. Fuclidean balls in R™ will be
denoted by Bg(x,r).

Also, throughout Section 2 we will denote by ¢ any positive constant only
depending on X1, ..., Xy, ; we will write ¢ (f1, f2, ..., fx) for any positive constant
also depending on the arguments f1, fo, ..., fx. Note that a different convention
on the constants will be made in Section 3, for the remaining sections of Part I
(see Notation 3.3).

We are interested in establishing some global properties of d. We first prove
the following

Lemma 2.3 If either Bg(z,r) CR™\ Qy or B(z,r) CR™\ Qo, then we have

d(l‘,y) = “/I‘. - y| Vy € BE(:L"T)

and
B(z,r) = Bg(x,r).

Proof. Clearly, if 7y is an absolutely continuous path contained in R™\ Q, then
v is X-subunit iff [7/| <1 a.e.

First suppose Bg(z,r) C R™\ Qy and let y € Bg(z,r). Obviously d(z,y) <
|z — y|, since the segment 77 is X-subunit. Let now v be a X-subunit path
connecting = and y. If v is contained in Bg(x,r), then |4'| < 1 a.e. and thus
I(y) > |x — y|. Otherwise, there exists ¢y < I(7) such that y(ty) € dBg(z,r)
and 7[[ 4, is contained in R™ \ Qy. Hence |y'| < 1 a.e. in [0,] and we get
|z —y| < r <ty <I(y). Therefore d(z,y) = |z — y|. This immediately yields
B(z,7) 2 Bg(z,r). On the other hand, if £ € R™ \ Bg(x,r), then for every
X-subunit path v connecting = and £ we have (arguing as above) I(y) > r and
then d(z,&) > r. This proves that also B(z,r) C Bg(z,r).

Now suppose B(z,7) C R™\ Q. It is sufficient to see that B(z,r) 2 Bg(z,r)
and then use what we have already proved. Let us argue by contradiction and
suppose that there exists y € Bg(x,r) \ B(z,r). Letting v = Z7, there exists
to < I(y) = |z —y| < r such that 3 = 7(to) € OB(x,r) and o = 7|j, is
contained in B(z,r) C R™\ Q. Then o is X-subunit and d(z,y") < Il(0) =ty <
r, which gives a contradiction. m

Lemma 2.4 We have

|z —yl <cd(z,y) Vr,yeR", (2.3)
d(z,y) <c(o)|lr—y| Va,y eR": max{[z —y|.d(z,y)} 20 >0. (2.4)

As a consequence, for every domain Q@ 3 Qq, d is equivalent to the Fuclidean
distance in R™\ Q. Moreover,

B(z,r) C Bg(z,cr) Ve e R", r >0, (2.5)
B(z,7) D Bg(z,c(o)"'r) Ve e R", r >0 >0. (2.6)
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In particular
clo) 'r" <|B(z,r)| < cr” Ve eR", r>o>0. (2.7)

Proof. The proof of (2.3) is a standard consequence of the boundedness of the
vector fields X = (X7,...,X,,). Indeed, for every X-subunit path v connecting
x and y, we have

1(7) .
\x—y|:/ o (t) dt
0

() m
<[ X nox 0 <

i=1

m

vy | ™
< [ AR S G ) < 1) ] < ).

i=1
Let us now prove (2.4). Let Qg be as above and denote

£e€Qo £€Q

diam 4 Qo = max d(¢,¢)  diamg Qo = max [¢ —¢|.
£,§'€Q §,§7€0

With no loss of generality we can assume dg(z,Q) > dg(y,Q). Fix R >
2diamg Qg such that Qo C Bg(0, R/2).

If |z —y| < dr(x,Q0), we have y € Br(z,dr(z,Q)) € R™\ Qo and then
d(z,y) = |z — y| by Lemma 2.3.

Assume now |z — y| > dg(z,Q) and = ¢ Bg(0, R). There exist Z,7 € Qo
such that dg(z, Q) = |z — T|, de(y, Q) = |y — y|. From Lemma 2.3, it follows
that d(z,%) = |z — T, d(y,7) = |y — y|. Thus

d(z,y) < d(z, ) + diamg Qo + d(y,7)
< dg(z,Q) + R/2+ dg(y, ) < 3dp(z,Q) < 3|z —y|.

Finally, if [z — y| > dg(z,Q) and 2 € Bg(0,R), then we have [y| <
dr(y,Q0) + R/2 < dg(z,Q) + R/2 < 2R. Therefore, by the continuity of

d,
d (&, v
(,9) < max (&,9) = c(o), if |z —y| > o,
2 =Yl 7 ¢0eB0.2R), l¢-0]>0 € — VI
|z —y| : € — 9|
> min =
d(T,Y) ~ £9eBR(0.2R), d(,0)>0 A&, V)
This completes the proof of (2.4).

Now, if Q2 3 Qq, to prove the equivalence of d with the Euclidean distance,
let

c(o)™t, if d(z,y) > o.

§ = d (0,0
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and let z,y € Q. If d(z,y) < 4, then y € B(x,6) C () and by Lemma 2.3
d(z,y) = |z —y|. If d(z,y) > 4, then by (2.3)-(2.4) we have

|z —y| < cd(z,y) < c(d) |z -yl

Finally, (2.5) follows by (2.3), (2.6) follows by (2.4), and (2.7) follows by
(2.5)-(2.6). m

Next, we prove that for the CC-distance d, the doubling condition holds
globally. This will have several useful consequences.

Proposition 2.5 We have
|B(z,2r)| < c¢|B(x,r)| VzeR™ r>0. (2.8)
As a consequence, there exists a positive constant Q (> n) such that
|B(z, M7)| < cM®|B(z,r)] YM>1,zecR" r>0. (2.9)
We also have
|B(z,7)| < c(o)r® Vr>o>0,z€R", (2.10)
|B(z,7)| > c(R)"1r? VOo<r<R,zeR" (2.11)

Proof. As we have already noted (see (2.2)), we know that (2.8) holds locally,
ie.,

VK @ R" drg(K) > 0,A(K) > 1:
|B(z,2r)| < A(K) |B(z,r)]| Vee K, 0 <r <ro(K)

Let Ko = {y € R"|d(y,Q) < 2}. This is a compact set, by (2.3). Set o =
min{ro(Ko),1}. If z € Ky, 0 <7 < o, then we have

|B(z,2r)| < A(Ky) |B(z,r)| = c|B(z,r)|.

If ¢ Ko, 0 < r < o, then we have B(x,2r) C B(z,2) C R"\ Qy and, by
Lemma 2.3, B(z,r) = Bg(z,r), B(z,2r) = Bg(z,2r), which immediately gives
|B(x, 2r)| = 2"|B(x, 1)|.

Finally, if » > o, then (2.7) yields |B(z,2r)| < c(o) |B(z,7)| = c|B(z, ).
This proves (2.8).

The proof of (2.9) is now standard: let ¢ > 2™ be as in (2.8) and set
Q =log, cyg. We have 2P < M < 2P*! for some nonnegative integer p. Applying
(2.8) p+ 1 times, we get

|B(a, Mr)| < |B(x,2PTr)| < bt [B(z,r)| = €279 |B(x,7)| < coM?|B(x,7)|.

Finally, (2.10) and (2.11) are easy consequences of (2.7) and (2.9). m
A first easy consequence of the global doubling condition is the following
(see also Proposition 5.11 in [36]):
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Lemma 2.6 For every ' < (3 there exists c(8,0') > 0, such that for every
x,y € R™"t >0,
o—Bd(z.)*/t o~ B'd(w.)*/t
/

7<C , -
RGN IORYG]

Proof. If d(x,y) < /t, then the doubling condition implies |B (m,\/f)| ~
|B (y, \ﬁ)‘, and (2.12) holds for any 3’ < 8 with ¢ independent of 3,5’. If
d(z,y) > Vi, by (2.9)
Q
o 00 <[ ste - 0) e (“=5) o ()

Vit
<e(120) 5 2, v3)]

(2.12)

Then

e—Bd(zy)?/t d(x,y))Q efﬁid(z,;y)z , 6*5'7{1(‘”;?’)2
- < < S
EIeR] <e(“% IR IR

because for any 8 > 0,8’ < 3, there exists ¢ > 0 such that
uQePv’ < ce#'" for any u > 0.

2.2 Global extension of Hormander’s vector fields

We start with the following general fact on CC-distances:

Lemma 2.7 Let X', X2 be two systems of Hormander vector fields defined,
respectively, in two domains Ay, As of R™, and assume that in some domain
A’ €@ Ay N Ay the two systems coincide. Then, for every subdomain A” € A’,
the CC-distances dy,dy induced by X', X? are equivalent in A”.

Proof. Let 6, = dy (4”,(A)°), M = max, , cqm da (§,7), and let z,y € A”.

If dy (z,y) > 61, then do (z,y) < M < %dl (x,y) .

On the other hand, if dy (z,y) < 01, then y € By, (z,41) C A’, and there
exists a sequence 7, of X!-subunit curves joining x to y, contained in By, (z,d;)
and realizing d; (z,y). Since By, (z,01) € A’ and X' = X2 in A, v, will be
also X?2-subunit curves. Hence ds (2,y) < d; (2,7) .

We have therefore proved that ds (z,y) < edy (z,y) for every z,y € A’
Exchanging the roles of di,ds we get the assertion. m

Next, we need a technical lemma:

Lemma 2.8 For any couple of bounded open subsets of R™ Ay € As, there
exists another open set A, with A1 € A € Ay such that:
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1. A has smooth boundary;

2. there exists ¢ € C§° (A2),0 < ¢ < 1, such that ¢ (v) = 1 if and only if
z € A.

Proof. Let . be a standard family of mollifiers, that is ¢, () = e ™ (z/¢)
for any € > 0, where

¢ € C5° (R™) with suppy = Bg (0,1);¢ >0; [ ¢ (x)dz = 1. (2.13)
Rn

Let us prove 1. It is known that there exists a function f € Cp (A42),0 < f <
1, such that f(x) =1if z € Ay. Let f. = f x .. Since f € Cy (43), we know
that f. — f uniformly. Then, pick gy such that sup |f — f.,| < 1/8. Hence

>1-1in Ay

feo (x){ < lin (Ag) (2.14)

Let
Dy ={a: foy (2) = 1}
13

Since f., is smooth, by Sard’s theorem, for a.e. ¢t € [Z’ Z] the level set T’
does not contain critical values of f.,, and therefore is the smooth boundary
of the open set {z : f., (z) > t}. For a fixed to for which this happens, define
A={z: f, () >to}. Then by (2.14), we have 4; € A € Az, and point 1 is
proved.

To prove 2, we will prove the following more general fact: if A; €@ A € A,
where A is a bounded open subset of R™ satisfying a uniform exterior ball
condition, then property 2 holds.

Let g9 > 0 be such that:

Vz € 9A,3Bg (z,¢0) s.t. Bg (z,60) N A= @ and Bg (z,50) N A = {z}.

(This is exactly the uniform exterior ball condition). Now, for some ¢ < €y/2,
let
Ac ={x:dg (z,A) < e},

X4, be the characteristic function of A, and

be (2) = (xa, * o) = /A Ve (@ — y) dy.

Then 0 < ¢. < 1,supp ¢. CE, and by (2.13), ¢ (z) = 1 if and only if
Bg (z,e) C A.. Clearly, if x € A, then Bg (z,e) C A., and so ¢, (z) = 1. The
point is to prove that, conversely,

Bg (7,e) C A. =z € A (2.15)
To do this, pick an x ¢ A, and let us show that Bg (z,¢) ¢ A Itdg (z,A) >
€, this is obvious because © ¢ A.. If x ¢ A and dg (z, A) < €, let z € QA such
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that dg (z,2) = dg (z,A) = § < €. Let ¢ be such that By (zg,c0/2)NA = {2},
and let 7 be the diameter of By (z0,£0/2) passing through z. Then x € r, and for
any point ' € 7, one can say that dg (2',2) = dg (2', A), because the segment
7 is also the radius of the ball Bg (zg,£0) C A°. Therefore we can find a point
' € r, such that dg (2/,2) = e —$ and dg (2, 2) = dp (z,2) +dp (2/,2) = e+ 3.
Hence 2’ € Bg (z,¢) \ A: and (2.15) is proved. We have therefore constructed,
for any ¢ < g¢/2, a function ¢. € C5° (R™) such that

0 < ¢. < 1,supp ¢. C As., ¢ () = 1 if and only if z € A.
Choosing 2e < dg (A, As) ,we have supp ¢ C Az and the assertion is proved. ®

Theorem 2.9 Let Z = (Zy,...,2Z,) be a system of vector fields defined in a
bounded domain Q@ C R™ and satisfying Hormander’s condition of step s in
Q. Then, for any domains 3 € Qo € , there exists a new system X =
(X1, X2, ..., X;n) (m = g+ n) of vector fields, such that the vector fields X;’s
are defined on the whole space R™ and satisfy Hormander’s condition of step s
mn R™; moreover:

X = (Zl,ZQ, ...,Zq,0,0,...,O) m Ql; (216)
X =(0,0,...,0,05,, gy oy B, ) in R™\ Qp. (2.17)

Furthermore, denoting by dz,dx, respectively, the CC-distances induced by
Z in Q and X in R™, we have:

1. for any domain Qo € 4, dx is equivalent to dy in Qo;
2. dx is equivalent to the Euclidean distance in R™ \ §;

8. dx satisfies the global doubling condition:
B (2,2r)] < ¢|B (z,7)| V& € R"r > 0.

Proof. Applying Lemma 2.8 to Q; € g, let A be a smooth open set and
¢ € C§5°(Q) a cut-off function such Q; € A € Q and p(z) = 1 if and only if
x € A. Let us define:

Xi=¢Z;, i=1,...,q, Xgte=1=¢)0s,, k=1,...,n

Relations (2.16), (2.17) are obvious, so we only need to check Hoérmander’s
condition. Fix a point € R™; if ¢ (z) # 1, then in a neighborhood of x the
system Xi,...,X,, contains nonvanishing multiples of the n fields 0, , which
span; if ¢ () = 1, then 2 € A and the fields X; = ¢Z;, i = 1,...,q, satisfy
Hormander’s condition at x because at that point

(X, X;5) = [0Zi, 0Z5) = ©* [Zs, Zj) + ¢ (Zsp) Z; — ¢ (Z3p) Zs = | Zi, Z]

since, in A, p = 1 and ¢,, = 0 for every k. Iterating the above relation, we see
that at the point x the system X; (i = 1,...,¢q) and the system Z; (i =1,...,q)
generate the same Lie algebra, that is the whole R”.

Property 1 follows from Lemma 2.7; property 2 follows from Lemma 2.4;
property 3 follows from Proposition 2.5 =
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3 Global extension of the operator H, and exis-
tence of a fundamental solution

As we have already mentioned in the Introduction, it is convenient to deal with
an operator H 4 satisfying (H1)-(H2) on the whole space R"*1. By Theorem 2.9,
we immediately have the following:

Theorem 3.1 Given an operator of type (1.1),

q
HA :8t —LA :8t — Z aijZiZj,

i.j=1

where Z1, . .., Zy satisfy the assumptions (H1) in some bounded domain Q@ C R™,
and the matriz A = {a;;} satisfies assumptions (H2), and given Qy € Q, there
exists a new operator of type (1.1)

/ / G / / {aij}('l j=1 0
Hy =0, —Ly=0,— Z a3 Xi X, {ai;} = { 0T g } ;o (31)
ij=1 "
such that:
i) the vector fields X;’s are defined on the whole space R*11;
ii) H', coincides with Ha for x € Qq;
i11) H', coincides with the classical heat operator for x outside §2;
iv) H'y satisfies (H1) and (H2), with the same constant \.

Remark 3.2 Conditions (H1)-(H2) imply that H'y can be rewritten as a stan-
dard “sum of squares” Hormander’s operator, and therefore it is hypoelliptic in
R™*1. Let us recall that a linear differential operator P with C coefficients is
said to be hypoelliptic if, whenever the equation Pu = f is satisfied, in distrib-
utional sense, on some open set ), then f € C*°(Q) implies u € C(Q).

>From now on we shall always work with the new vector fields X7, ..., X,
defined in Theorem 2.9 and we shall denote H; simply by H4 and aj; by a;;.
More generally, throughout the rest of Part I it will be enough to work in the
following setting:

Hypotheses. Let X = (X1, Xs,..., X)) (m =n+q) be a fized system of
Hérmander’s vector fields defined in the whole R™, and such that

X =(0,0,...,0,04,,0sy, .., Oz, ) In R™\ Qp

where Qq is a fived bounded domain. For a fived constant A > 1, let By be the
set of matrices of the kind

_ m_ [{agt- 0
O R
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with {aij}ijzl € Ex. For every A € By, we set

HA = 8t — LA = 8,5 — Z ainin.
3,j=1

Notation 3.3 From now on, in the rest of Part I, we will denote by c any
positive constant only depending on Xi,...,X,, and the number A\. We will
write ¢ (f1, fa, ..., fx) for any positive constant also depending on the arguments
fi, fos .-, fu. Note that a different convention on constants will be made in Sec-

tion 10 (see Notation 10.6) for Parts II and III.

The remarkable fact is that the operator H 4 possesses a global fundamental
solution, as stated in the following result, which is essentially contained in the
paper [37] by Lanconelli, Pascucci.

Theorem 3.4 There exists a global fundamental solution ha(t,x;s,y) for Ha
in R with the properties listed below.

(i) ha is smooth away from the diagonal of R"1 x R*HL,
(i) ha > 0 and ha vanishes fort <s.
(iii) For every (s,y) € R hu(+;s,y) is locally integrable and
Haha(55,y) = 0(s,y)
(the Dirac measure supported at {(s,y)}).

(iv) For every test function p € C§°(R™1), we have
Ha (/ ha(ss,9) ¢(s,y) dsdy) =/ ha(sss,y) Hap(s,y) dsdy = .
Rn+1 Rn+1

(v) Ry(t,z;8,y) = ha(s,y;t,x) is a fundamental solution for the formal ad-
joint operator H} = —0; — Z;nj:l a;,; X7 X7 and it satisfies the dual state-
ments of (iit) and (iv).

(vi) For everyt > s, we have

ha(t,z;s,y)dy = 1. (3.2)
]R'n.

(vii) For every compact set K C R™ and for every T > 0 there exist positive
constants M, R,§ such that, for |x| > R

sup  ha(t,z;s,y)+  sup  ha(t,y;s,x) < M exp(—d|z|?).
yeK, s<t<T yeK, s<t<T
(3.3)
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(viii) ha(t,x;s,y) depends on t,s only through t — s. Hence, from now on we
will always write
h’A(t7 Zz;5s, y) = h’A(t -5, y)

Corollary 3.5 Let f : R™ — R be a bounded continuous function. Then, the
function u (t,x) = fR" ha(t,z,y) f(y)dy is a classical solution to the Cauchy
problem

Hau=0 in (0,00) xR", w(0,-)=f.

Proof. Let ¢ € C°(R™), k € N, be cutoff functions such that 0 < ¢, < 1,
dr(x) =1 for |z| < k. Let us set ug (t,x) = [z, ha(t,z,y) f (y) ¢x (y) dy. From
Theorem 3.4-(i),(iii), it follows that we can differentiate under the integral sign
and obtain Huy (t,x2) = 0 for ¢ > 0. Moreover u, — u pointwise. Indeed

lug (t,2) —u (¢, z)| <sup|f] ha(t,x,y)dy — 0 as k — oo.
ly|>k
Thus, for every test function ¢ € C§°((0,00) x R™), we have
0= VH qup, = / upHyp — uwH 3 as k — oo,
Rn+1 Rn+1 Rn+1
by dominated convergence, observing that
lug (t,2)] < sup|f| | ha(t,z,y)dy = sup|f|
RTL

by (3.2). Therefore Hyu = 0 in (0,00) x R™ (recall H4 is hypoelliptic). Let
now o € R™ be fixed and let us prove that u (t,z) — f(zo), as (¢, z) — (0, ).
Recalling again (3.2), we get

(e SIS [ hat) ) Sl dy

+ 2sup |f| ha(t,z,y) dy.
ly—zo|>d

The first integral can be made small choosing ¢ small enough, since f is con-

tinuous and (3.2) holds. Once § is fixed, the second integral goes to zero as

(t,x) — (0,z0) by dominated convergence, using Theorem 3.4-(i),(ii),(vii). m
We will use several times the following weak maximum principle:

Proposition 3.6 Let Q be an open subset of R™ and let Ty < Ty. For any
u e CQ((T(),Tl) X Q), Zf

Hu < 0 m (TQ,Tl) x )
limsupu <0 in ([To,T1) x Q) U ({To} x Q) and at infinity,

then u < 0 in (T, T1) % Q.
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The above result is essentially due to Picone; a proof can be found in [37,
Proposition 2.2].

Corollary 3.7 For every xz,y € R", t > 0 and s > 0, the following reproduc-
tion property holds

ha(t+ s,z,y) :/ ha(t,z,2)ha(s,z,y)dz. (3.4)
Proof. Let us denote by v (¢,2) and u (¢, x) respectively the functions in the
left and in the right hand side of (3.4). From Theorem 3.4 and Corollary 3.5
it follows that Hav = 0 = Hau in (0,00) x R™, u(0,-) = v(0,-). Moreover v
vanishes as |z| — oo, uniformly in any strip 0 < ¢ < 7', by means of (3.3). Thus
we only need to see that the same holds for u, in order to get (3.4) from the
weak maximum principle for H4 (Proposition 3.6). Let us write

u(t, x) :/ hA(t,:c,z)hA(s,z,y)dz—i—/ ha(t,z,2) ha(s,z,y)dz
lz—y|>R lz—y|<R

=0L+ L.

>From (3.3) it follows that, for any fixed € > 0, we can choose R = R, > 0 such
that ha(s,z,y) <eif |z —y| > R. Hence

I < e/ ha(t,z,z)dz =¢
by (3.2). On the other hand, once R is fixed, (3.3) gives

sup Iy < Mexp(—46 |$|2)/ ha(s,z,y)dz — 0, as |z| — oo.
0<t<T lz—y|<R

Therefore supg, . u (t,2) — 0, as |z| — oo, and the proof is completed. m

4 Uniform Gevray estimates and upper bounds
of fundamental solutions for large d (x,y)

Following the plan we have explained in Section 1, from now on in Part I we
will study the fundamental solution h4, whose existence and basic properties
are granted by Theorem 3.4. We will adopt Hypotheses and Notation stated in
Section 3.

In this Section we follow, adapt and complete the arguments of [30], §2-
3, the important difference being that we are considering a class of operators
(depending on the matrix A = {a;;}) instead of a single one.

The strategy is to deduce the exponential decay, for vanishing ¢, of solutions
to the equation H u = 0, from sharp estimates on time derivatives of any order
of w. This will allow to establish the exponential decay of h4, for vanishing
t and (z,y) away from the diagonal, uniformly for A € By. This argument is
based on the following fact:
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Lemma 4.1 Let f € C*([0,1]) be such that the k-th derivative f*) (0) =
0,k=0,1,2,... and such that

sup ’f(k) (t)‘ < RF*1 (k!)2 for some R > 0.
0<t<1

Then |f (t)] < Re~Y(eEY fort < 1/(eR).
Proof. See Lemma 2 in [30]. m

Remark 4.2 The bound on f*) which appears in the assumptions of this Lemma
is the condition appearing in the definition of the Gevray class G?, whence the
term “Gevray estimates”.

Notation 4.3 Only in this section, we will denote by Bg (r) the Fuclidean balls
in R™*1 centered at the origin and we will use the notation:

Fogh= [ F(t)g () dedas 1] = 1l

We will use several times the following instances of Cauchy-Schwarz inequal-
lty for £ = (fla f27 seey f‘m) 8 = (917 g2, -+ g’m) ; and

m

b(fa g) = Z Qi <fiagj>7

i,j=1

|b(f7 g)‘ < V b(f7f) ’ b(g7g) (41)

Also, we will use
ATy I£:]1* < b(£,£) < Ay 1 £:ll?
i=1 i=1

We will also use the more elementary form of (4.1):

m m m
Z aij&ing| < Z aij&i&; Z igning (4.2)
ij=1 ij=1 ij=1

Remark 4.4 on cutoff functions. For a couple of concentric Fuclidean balls
Bg (R),Bg (r) in R with 0 < r < R < 1, we will write

Bg(r) X ¢ < Bp (R)
to say that ¢ is a cutoff function with the following standard properties:
€ C (R"),0< ¢ (t,x) <1 for every (t,z) € R*Y
¢=11inBg(r),¢ =0 outside Bp (R),|0;0%¢ (t,z)| < c(a, k) (R — py~lel=k

Due to the global boundedness of the coefficients of the vector fields X; (and
their derivatives), if ¢ is as above, then it is also true that

08X 10 (t,2)| < e (k, 1) (R—7)" 117"
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Lemma 4.5 There exists ¢ > 0 such that

Jrul* < e 11D — La)ull® + lul* | (4.3)

for every u € C§° (R™+1).

Proof. We start noting that, if X, X5, ..., X,, are general Hérmander vector
fields, X; = >°" | bj; (z) O,,, and the matrix A is symmetric, then

X7 =-X;+a; witha; = =Y _ s, (b))
i=1

*
m m m

Li= D ayXoX;| =) ayXiX; =) ay(-Xi+a)(-X; +a;) =

ij=1 ij=1 ij=1

= LA —+ Z aij (_Xz (aj~) — G,Z‘Xj —+ aiaj) .

ij=1
Suppose that u € C§° (R"!) ; then

(Opu,u) = (u, —Oyu) = — (Qyu,u) , hence (Oyu,u) =0

((Or — La)u,u) = (—Lau,u) = < Z aininu,u> =

ij=1

= Z Qi <Xju, Xlu — aiu> Z

i,j=1

m

m m
Sl = o S IXaul® |3 flasul* >
i=1 i=1 i=1

1 2 2
LSl — e ]
i=1

Y
> =

Y

so that .
Sl < e {10 — La)ull® + )} (4.4)

i=1

Next, we note that, since d; commutes with L4 and L%,

(Opu, (La + L) u) = ((La + L) u,—0u) implies (Qzu, (La + L) u) = 0.

26



Therefore (subtracting 1 (9yu, (La + L%)u)), we have
|0yul|* = (Byu, Oyu) = (O — La) u, Oyu) + (Syu, Lau) =
1
= (0 — La) u, Opu) + 3 (Opu, (Lg — L) u) =

1 m
= (0 — La) u, Opu) + 3 <8tu, Z aij (X; (aj°) + a; X; — a;a;) u> <

1,j=1

IN

10 = La) ull |ull + ¢ || Opull

2
DXl + Jfuf ¢ <
i=1

1 m
< 5 0wl +c {n(at — La)ul® + Y Xl + ||u||2} <
=1
by (4.4)
< &0l + e 1@ — La)ul® + [l }
<5 lloy
and finally
ol < e {110 — La)ul® + Jlul* |
u

Lemma 4.6 There is a constant R (depending on A only through \) such that
if Hau (t,z) = 0 in Bg (1), then

k k+1 2 _
||atu||L2(BE(1/2)) < RMH () ull 2y for kb =0,1,2...

Proof. We will prove by induction that there exists Ry such that for any e,
0 < € < 1 and any nonnegative integer k,

k k+1_—2k
||8t UHLQ(BE(172k€)) <Byte ||“HL2(BE(1)) ) (4.5)

This implies the Lemma because if we put € = ﬁ we obtain

2
[[0Ful| .- < RGF6M R [lull 2,0 < BY R ull o g0

(Br(1/2))

for R = 16e?Ry (where we have used k! > kFe=F/2rk).
The case k = 0 is trivially true provided Ry > 1. For k > 1, choose two cutoff
functions ¢y ¢, ¥, such that

Bp (1—2ke) < ¢p. < Bp(1— (2k—1)e)
BE (1 - (2]6— 1)5) j"/)k,a j BE (1— (2/€—2)E)

Then we have

||8§:UHL2(BE(1—2kE)) <10 (k.08 tu)|
by (4.3) < ¢ (||(8 — La) (r.c0F "u) || + |lon.c0f uf) -

27



Let us compute
(O = La) (pr.c0; " u) = (O — La) pre) O ut

-2 Z aij (X;0k.e) X;af_lu) + k0 (8 — La)u)

7,7=1

Because (0; — La)u = 0 and using the hypotheses on ¢y ¢, we have

||8tkuHL2(BE(1—2ks))
=c (5_2 HafiluHLQ(BE(I—(Qk—l)E)) + Z aij (Xjon.e) (Xi0f ™) ) :
ij=1
(4.6)
Now,
> ai (Xjene) (Xi0f )
i,j=1
S\lzaij(xi(pks j‘Pke'\JZ U Xakl (Xakl)
ij=1 =1
S CEl’(/)k-@\l Z Aij (Xﬁf_lu) (on"'f_lu)
i,j=1
so that
. 2
Z aij (Xj(pk,s) (Xzafflu)
i,j=1
m
-2 Z a”/ ¢k5 X081 u) (Xjaf_lu) dzdt
1,7=1
=ce? Z aij (V7 - (X0 ), (X500 ). (4.7)
i,j=1
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On the other hand,

m

37 ai (WE . (Xi0F ) L (X500 ) =

i,j=1

- Z ai; (X; (V7 ) (X0 u) ,0F tu) +
i,j=1

=+ Z Qjj <CL]"Q/J]%’E (Xiafflu) ,8571’LL> +

ij=1
- <¢1%,saf_1 Z a;; X; Xju ,35_1u> =
ij=1
=A+B+C (4.8)

Using the equation dyu = L 4u,we have
C = — (¥ Ofu,0f ~'u)
We note that
(VR 0w, 0y M) = (0 (V7 08 M), 0F M) — (O o) OF M, O )
= — (VF 0w, 0fu) — (07 ) OF ', 0F )

hence
_ 1 _ _
01 = (w2 ok, 06~ = (@) b, 08

_ _ 2
<ee! H@f 1u||L2(BE(17(2k72)8)) (4.9)

To bound A, B in (4.8), we make the following remark. For every ¢ € C§° (R”*l) ,
(WX j0,0) = (X; (o) ,0) = (X;9) v,0) = (v, Xjv) = (X;0)v,0) =
= - <¢UanU> + <¢Ua CLj’U> - <(XJ¢) ’U,’U>

hence

(WXjv,v) = 5 ((Yv, ajv) — (X;9) v,v))

DN =

and
(X0, 0)] < & (5D [0 012 qupp) + 509 X501 10132 upp 0 ) - (4:10)

For v = 07 'u, (4.10) implies

1Bl =S ayy (agd. (X0 ), 0F )| < e [|oF !

2
UHLZ(BE(l—(Qk—Q)E))
ij=1

(4.11)
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Similarly,

Al = aij (X; (V7o) (Xi0F '), 0f "ty | =

3,7=1

= Z aij (20, (Xj¥k,e) (Xiatk*lu) ,3fflu> <

4,j=1

< e 2|l

(Br(1-(2k—2)¢)) (4.12)

Inequalities (4.6), (4.7), (4.8), (4.9), (4.11), (4.12) imply

Hatk“||L2(BE(1—2ke))

< e ? || Ml +

(Be(1—(2k—1)¢))

+cet Z a;j <w,%76 (Xiafflu) , (Xjafflu)>
i=1

ce 2 of~! "

uHL2(BE(17(2k71)5))

+ee! {5_1/2 }’afiluHLQ(BE(17(2k72)s)) +e! H8571UHLQ(BE(lf(Qka)s))}
(4.13)

Therefore,

H‘?f“Hw(BE(kzke)) <ee? ||6f—1u||LQ(BE(17(2k72)5))

by the inductive assumption
—2 pk_—2k k+1_—2k
< ceTPRpe ||U||L2(BE(1)) =Ry"e™? H““LZ(BE(l))
choosing Ry = c¢. This proves (4.5), and so the Lemma. m

Remark 4.7 We will need Lemma 4.6 in the following form, adapted to a ball
of radius r: for any r > 0, there is a constant R such that if Hau (t,z) =0 in
Bg (r), then
k k+1
HatuHLz (Bgp(r/2)) = < R (k') Hu||L2(BE(r)) . (4-14)

To get this inequality, we can argue as follows. With the same reasoning of the
proof of Lemma 4.6, using cutoff functions adapted to the balls By (r (1 — 2ke))
etc., one proves, by induction, that there exists Ry such that for anye, 0 <e < 1
and any nonnegative integer k,

k
|oF < RE (@) ull 2 () - (4.15)

u||L2(BE(7(1 2ke))) =
This implies (4.14) because if we put € = ﬁ we obtain

[0Full 52y < BE 16K

(Be(r/2))
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Now,
RETI168 Ry =2k < RFFIER e 2Ror < AL (k1)

where the first inequality holds provided we choose

16¢2 16e2 . 16¢?
<1, R=Ro—S if r: > 1.

R=R, if

r2 r2

To transform the L? bound of the previous Lemma in a supremum bound
on dFu, we will make use of the following subelliptic estimate, uniform in A:

Lemma 4.8 For every couple of cutoff functions p1, s, with po = 1 on supp ¢1,
and every s > 0, there exists a constant ¢ (¢1,p2,8) (depending on A only
through A), such that

1wl s < €1, 02,8) {llp2 (O = La) wll e + [[p2w]]} (4.16)

for every w € C (suppysz). Here H® denotes the ordinary Sobolev space of
fractional order on R,

This classical bound (see for instance Kohn [31]) holds uniformly with respect
to A in By, as pointed out in [9]; moreover, the same reasoning of [9] applies when
X1, ..., X, are general Hormander vector fields (not necessarily left invariant
with respect to a Lie group structure). Recall also that, by Sobolev’ Lemma,
for any s > (n + 1) /2 we have

sup [prw] < e (s, ¢1) [prwl| (4.17)

Proposition 4.9 Let r > 0; there exists a constant Ry = c(r) such that, for
any ball Bg (r) C R"1 if (8; — La)v =0 in Bg (r), then for any nonnegative
integer k,
sup |0Fv| < R (RD? (0]l g2 p e - (4.18)
Bg(r/4)

Proof. Applying (4.16) to w = dFv (which satisfies (0; — La)w = 0 in Bg (1))
and (4.17), and choosing two cutoff functions

Bg (r/4) <1 = Bg (3r/8); Bg (3r/8) < p2 X Bg (r/2)
we get

sup |8tk”u| < su%) |<p18tkv| < cHgolatkaHs

Bg(r/4) Be(r
< e {[liez (@ = La) vl g + [[e20r ]} =
=c|lw20pv] < c ||3tk”HL2(BE(7-/2)) < cRM(R1)? [0l 22 (B
which gives (4.18) with Ry = cR. In the last inequality we have applied (4.14).

]

We now apply to the fundamental solution of H 4 the previous results, to get
an upper Gaussian bound for h 4, which holds when d (z,y) is bounded away
from zero.
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Theorem 4.10 There exists a constant T such that for any R > ¢ > 0 we have
ha (t,x,y) < ci(e,R)e /"
for every t € (0,7), x,y € R™ withe < d(z,y) < R.
Proof. For any fixed y € R", let
C=C.r={(t,x):0<t<1le<d(z,y) <R}.

Let us cover C' with a finite number of balls B; such that the balls B} concentric
with B; and with radius four times the radius of B; are at positive distance from
the origin, let C' = (J B;. Applying Proposition 4.9 to ha in each ball, and
then passing to the sup with respect to the family B; we have

sup |0Fha(,9)| < BE (B [BaCo - 0)l 2oy < eRF (KY)® (4.19)

for the uniform L? bound on h4 contained in the next theorem. Note also that
the number of balls B; can be chosen independently of y. Then Lemma 4.1
implies the theorem. m

Theorem 4.11 For any R > ¢ > 0,T > 0, there exists a constant c (¢, R, T,
such that

T
sup / dT/ ha(r,2,y)° dz < c(e,R,T)
yeR™ Jo e<d(z,y)<R

This fact will be proved in the next section.

5 Fractional integrals and uniform L? bounds of
fundamental solutions for large d (z,y)

The goal of this section is to prove Theorem 4.11, and therefore complete the
proof of Theorem 4.10. To prove this uniform bound on h 4, we will follow the
approach used by Bramanti, Brandolini in [9], §4, which in turn is based on ideas
contained in the papers by Rothschild-Stein [49] and Kohn [31]. The basic tool
is an L? estimate for the fractional integral operator with kernel h 4, uniform
for A ranging in the class B) (see Section 3). The suitable framework for this
fractional integral estimate is that of spaces of homogeneous type, in the sense
of Coifman-Weiss [16].

Recall that the symbol B (z,7) = B, () denotes balls with respect to the
CC-distance d, that we have defined and studied in Section 2. We will also use
the “parabolic CC-distance” in R**1,

dp (t,2),(5,9) = y/d ()" + |t — s
and the corresponding balls

Bp ((t,x),r) ={(s,y) € R™ 1 dp ((t, ), (s,y)) < r}.
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Note that

1Bp ((5,9),VE = 5) g = (t =) |B (3, VI = 5) |

where |-|p, denotes the Lebesgue measure in R™. It is easy to prove that dp is a
distance, which satisfies a global doubling condition (since the same is true for
d, by Proposition 2.5). Furthermore:

Lemma 5.1 For any (tg,zq) € R Ry >0
(Bp ((to, z0) , Ro) , dp, dtdz)

s a space of homogeneous type, that is the doubling condition holds within this
space; explicitly, this means that

|Bp ((t,x),2r) N Bp ((to, 20) , Ro)| < ¢|Bp ((t,x),7) N Bp ((to, z0) , Ro)|

for any (t,x) € Bp ((to,x0), Ro),r > 0. Moreover, the constant appearing in
the doubling condition can be chosen independently of (to,xo)-

Proof. This fact immediately follows from the global doubling condition which
holds for dp, plus the following property, proved in Proposition 3.8 of [12]: there
exists ¢ > 0 such that

|Bp ((t,2),7) N Bp ((to, z0) , Ro)| = ¢|Bp ((t,z),7)]
for every (t,z) € Bp ((to,20),R0),0 <7 < 2R;. m

Now, let
BO = Bp ((thmO)aRO)

and let ha (t,7,y) be the fundamental solution of H4 in R"*1; also, set
Ga ((tvx) ) (S’ y)) =ha(t—s, xay) :

Notation 5.2 Keeping our convention about constants, in this section we will
write ¢ (A) for a constant depending on the coefficients of the matriz A in any
unspecified way, and c for a constant depending on A only through the ellipticity
constant A.

By the (nonuniform) Gaussian bounds proved by Jerison-Sanchez-Calle [30]
or Kusuoka-Stroock [35], [36], we know that, for (¢,z),(s,y) € Bo,

_ed.w)?
t—s

1B (y, vt = 5)|

d(x,y)?
e_c t—s

’Bp ((s,9),Vt— s)‘ '

GA ((t7 JJ) ’ (Say)) <c (A7 R0>T)

<c(A, Ry, T)(t—s)

Similarly, setting

Ga((t,2),(s,y)) = Xjha(t = s,2,y) forany j=1,2,...,m
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we have

_c d(z,y)?
t—s

qu((tax),(s,y))SC(A,R(),T)vt_S|BP((S y) \/Q)\

With these bounds, we can prove the following:

(5.2)

Lemma 5.3 For (t,z),(s,y) € By,

Ga (), (o) S < T) G )
dp ((t’x) ) (87y)
1Bp ((s,9) . dp ((t,2), (s,9)))|

Proof. Let us assume s < ¢, otherwise the kernels G4 ((t, ), (s,y)), G4 ((t,2),(s,9))
vanish. The doubling condition for dp implies the existence of some « > 0 such

that N
m <c (;) for any p <7 (5.3)

It is not restrictive to assume « > 2, say a = 2 + €. Then

GA ((t,l‘) ) (Say)) <

)
(s,9)

@y () (5.9)) < € (A, Bo,T) 2

dp ((t2), (5:9)* e F () +1e— s
= W0 D B (o) de (o) o) ( o
dp((t,iﬂ),(say))Z
<c(A, Ry, T) |Bp ((s,y),dp ((t,z),(5,9)))]
because

i (d(my)? -\
A:e c t—s ’y
- |t — s

d(x

(z.)?
is bounded: if d (z,y)? < |t — 5|, then A < ce "¢ <c;ifd(z,y) > |t — s,

then /2
T,y 2 2 }
A< ce e (d () ) <c

|t = s

because e “u/? is bounded for v > 0. Analogously, by (5.2), one proves the
bound on G'. m

Lemma 5.4 In a bounded space of homogeneous type (X,d,dx), let

Tf (x) =/XG<x,y>f<y>dy
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with
o A@y)"”
1B (z,d(z,y))]

Then T is continuous on LP (X) (for 1 < p < o0), with norm dependent on ¢, a,
the doubling constant and the diameter of X.

for some a > 0.

G (z,y)] <

Proof. Let us show that
sup/ |G (z,y)] dy—l—sup/ |G (z,y)| dz < ¢ < 0.
T Yy

This implies the continuity of T" on LP for every p € [1,00] (see e.g. Theorem
6.18 p.193 in [25]). Since X is bounded, for some R > 0 we have

d(z,y)"
G lay)|dy < e / — I gy <
/' (@)l Z d(ay)~R2-+ |B (2, d(z,9))]

ZBxRQk)k 1||B(QER2 )|

< cR“ 22_1““ =c
k

by the doubling condition. The other estimate is similar, since

|B (z,d(x,y))| ~ B (y,d(z,y))],
again by the doubling condition. m

Proposition 5.5 Let

TAg(t,x):/ ha(t—71,2z,y) g (1,y)drdy.
Bo

Then, for 1 <p < co:

i)
||TAgHLP(BO) + HXjTAg”LP(BO) < C(Avpa RO) ||g||LP(B0) fO’f’j =1,..m
i)
||XinTAg|‘Lp(BO) <c (A7p7 RO) HgHLP(BO) fO’}“ ’ij = 17 -1
iii)

1Tagll 12,y < c(Ro)llgllp2(s,) -

Remark 5.6 The key feature of the above proposition is that the constant in
estimate 11i) depends on the matriz A only through the number \.

35



Proof. i) follows by Lemma 5.3 and Lemma 5.4. ii) is a consequence of the
following estimate, which is essentially contained in Rothschild-Stein [49]: for
every u € C* (R"*1)

[ XiXjull 1oy < (5.4)
<c(4,p, Ro) {||U||Lp(230) + Z [ Xeull 1o2m,) + ”HAU’“LP(QBO)}
k

(with 2By = Bp ((to, o) ,2Rp)). As to the dependence of ¢ on the domain By,
we note that: for Ry fixed, when By is contained in a fixed compact set, then c
can be chosen independently of (¢p,xg) by a simple covering argument; on the
other side, if (¢o, o) is far away from the origin, then H 4 is the heat operator,
and estimates (5.4) are the standard translation invariant parabolic estimates.
Now, let g € C§° (By), and u = T4g. Then the above inequality and point i)

imply

”XinTAg”Lp(BO) <

<c(A,p, Ro) {TAg”LP(QBO) + Z ||XkTA9HLp(2BO) + ||9||Lp(280)}
k

S C (Aap7 RO) ||g||L17(2BD) =cC (A7p7 RO) ||g||L:n(BO) .

iii) follows from i) and ii) with the same reasoning of [9], Lemma 3 p.414-5. m
Recall that our task is to prove Theorem 4.11, that is a uniform bound of
the kind

T
sup / dT/ ha (T,m,y)de <c(e,R,T).
0 e<d(z,y)<R

yER™

Remark 5.7 It is enough to prove the above bound for T = R?, since

T r2
/ dT/ ha (T,x,y)2 dx < / dT/ ha (1, :z:,y)2 dx
0 e<d(z,y)<R 0 e<d(z,y)<r

with ¥ = max (R, \/T) .
Hence, for any fixed z € R™, let
C=Cyer= {(t,y) 0<t<R:e<d(zxy) <R};
C'=C,.rn={(ty): 2 <t < R*+2,e<d(z,y) < R};

Q={(ty): 2 <t<R*+2.,d(z,y) <R},

and choose Ry, comparable to R, such that

Q C By.
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For any g € C§° (C'), define

Tag (t,z) = / ha(t—7,2,y)9(7,y)drdy
Q

The following proposition states a result similar to what we have to prove, with
an interchanged role of the variables x,y.

Proposition 5.8
R2
sup / dT/ ha (7',at,y)2 dy < c(e,R)
zeR™ Jo e<d(z,y)<R

Proof. For a fixed x € R", pick two cutoff functions ¢, ¢ such that
(0,R*) x By (z) < ¢ < (—&,R* + &) xB.ja (z) < o1 < (—2¢, R+ 2¢) x B: ().

Let g € C§°(C) with ||lg|l, < 1, and let f = Tag. Since Haf = g, by the
hypoellipticity of H 4, f is smooth. Since g = 0 in (07 RQ) X Be, then 19 =0,
and by the uniform subelliptic estimate (4.16) and Proposition 5.5 iii), we can
write

lofllgs < e(s,01,9) llpifllge <
< (8,01, 0) 1f L2 ((—26, R2426)x Br(a)) = € (8,01, 0) [[Tagll L2y <
< c(5,901,9) 1 Tagll 25y < €(5,901,0) 9l p2(py) < c(s,01,9) .

This bound, with a suitable choice of s, implies, by the standard Sobolev em-
bedding theorem, that

sup  |f(t,2)[ <c(e, R).
[0.R2]x Be ya(w)

For t = R? and z = = we get

/ChA (R2 - T,x,y) g (1,y)drdy| <c(e, R)
for any g € C° (C) such that ||g[|;2(c) < 1. This implies
/chA (r,2,y)" drdy < c(e,R).
]
Conclusion of the proof of Theorem 4.11. To get Theorem 4.11 from the

previous proposition, we have to interchange the variables z,y. To do this, we
now use the fact that h% (¢,2,y) = ha (¢,y,x) is the fundamental solution of

m
H:l = 8t - Z az]X;‘XJ*

i,j=1
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where we recall that
Xi=-Xi+a;

for some smooth function a;. Then, if we set

Tiig(t,ﬂﬁ):/ Ry (t—7,2,y) g (1,y) drdy

we can see that Proposition 5.5 holds with X, Ty replaced by X, T%. Namely:
i) holds because it relies on the estimates of Lemma 5.3, which are symmetric
in the variables z, y.

ii) holds because —X; and X, Hs and H} differ by lower order terms;
therefore (5.4) holds with X;, T4 replaced by X, T%:

|7 X

o) <

< ”Xinu”Lp(Bo) +c

lull 2o () +Z|Xku||LP(BO)‘| <
k
< c{|u“LP(2Bo) + Z [ Xkull 1o 25, + HAULP(2B0)} <
k
< C{|U||Lp(2Bo) + Z [ Xeullpo2py) + 1HAU] 102,y + I(Ha — H}) uLP(2Bo)}
k

<c {|U||Lp(zBo) + Z HXZU’”LP(QBO) + |HZU|LP(QBO)} :
k

iii) follows from i) and ii) as said before. With this remark, we can repeat
the proof of Proposition 5.8 and get

R2
sup / dT/ R (7, z, y)2 dy <c(e,R)
zcR™ Jo e<d(z,y)<R

which, by Remark 5.7, is Theorem 4.11. m

6 Uniform global upper bounds for fundamental
solutions

In this section and the following one, we will make extensive use of results and
formalism mainly developed by Folland [26] and Rothschild-Stein [49]. We have
collected in the following subsection a number of known definition and results,
to fix notation and make more self-contained the exposition.
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6.1 Preliminaries on homogeneous groups and the “lifting
and approximation” technique

Homogeneous groups

Following a terminology introduced by Stein (see [55], p. 618-622) we say that
a homogeneous group G is RY endowed with a Lie group structure (such that
the group operation is written u o v and called translation; the inverse is de-
noted by u~!, and the identity is the origin, 0), and a one parameter family of
automorphisms (called dilations and denoted by D())), which act as follows:

D) : (u1, ..., un) — (Aug, ..., A% un) VA >0

for suitable fixed integers 0 < a1 < as < ... < ay. The number

is called the homogeneous dimension of G. If ¢ : (]RN,O) — (RN,*) is any
group isomorphism, we can also say that

v = (u)

is another choice of a system of coordinates in G.
The following structures can be defined in a standard way in G.
e Homogeneous norm ||-||: for any u € G, v # 0, set

1

ll=p © 'D<p>u=1,

where |-| denotes the Euclidean norm; also, let ||0|| = 0. Then:
IDN)ul| = Alju| for every uw € G, A > 0;
the set {u € G: |lu|| = 1} coincides with the Euclidean unit sphere )~ \;
the function u — ||lu|| is smooth outside the origin;
there exists ¢(G) > 1 such that for every u, v € G

luovl < c(lul +lvl)  and  [lut|| < cllull;

1 )
“fol < ol < e ol i ol < 1.
C

e Quasidistance d:
d(u,v) = |[o™" o ul|

for which the following hold:

d(u,v) >0 and d(u,v) =0 if and only if u = v;

1
- d(v,u) < d(u,v) < cd(v,u);
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d(u,v) < ¢ {d(u,z)+d(z,v)}

for every u, v, z € R and some positive constant ¢(G) > 1.

If we denote by B(u,r) = B,(u) = {v € R": d(u,v) < r} the metric balls,
then we see that B(0,7) = D(r)B(0,1). Moreover, it can be proved that the
Lebesgue measure in RY is the Haar measure of G. Therefore

|B(u,r)| = |B(0,1)] ¥,

for every u € G and r > 0, where @ is the homogeneous dimension of G.
e The convolution of two functions in G is defined as

(Fro)@) = [ fworowd= [ ol on) )y
RN RN
for every couple of functions for which the above integrals make sense.
Let 7, be the left translation operator acting on functions: (7, f)(v) = f(uo
v). We say that a differential operator P on G is left invariant if P(7,f) =
Tu(Pf) for every smooth function f. From the above definition of convolution
we read that if P is any left invariant differential operator,

P(fxg)=1[xPg

(provided the integrals converge).
We say that a differential operator P on G is homogeneous of degree 6 > 0
if
P (f (D(u)) = A (Pf)(D(A)u)
for every test function f, A > 0, v € RY. Also, we say that a function f is
homogeneous of degree 6 € R if

F (D)) =X f(u) for every A >0, u € RY.

Clearly, if P is a differential operator homogeneous of degree d; and f is a
homogeneous function of degree ds, then Pf is homogeneous of degree d9 — d1.
For example, uia%j is homogeneous of degree |o;| — |-

A differential operator P on G is said to have local degree less than or equal
to ¢ if, after taking the Taylor expansion at 0 of its coefficients, each term
obtained is homogeneous of degree < ¢. For instance, if P is a vector field (that
is a differential operator of degree one), saying that P has local degree < ¢
explicitly means that for any positive integer K, we can write

K
P=3 (Z CakjPij () % +9(u) ai)

acA \k=0

where: cqy; are suitable constants; py; (u) are all the homogeneous monomials
of degree k, such that each differential operator py; (u) % is homogeneous of

degree |a| =k < ¢, g(u) =0 <||u||K) for u — 0.
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Homogeneous Lie algebras

Let G (s,m) be the free Lie algebra of step s on m generators, that is the
quotient of the free Lie algebra with m generators by the ideal generated by the
commutators of length at least s+ 1, and let N =dimgG (s, m), as a vector space.
One always has N > n.

If e1,. .., e, are generators of G (m, s), for every multiindex o = (avy,. . ., ag)
with 1 < o; < m, we define

€a = [eada [eadfn"'[eoézaeal]"']] )

and |a| = d. We call e, a commutator of the e;’s of length d. Then there exists
a set A of multiindices « so that {e,}aca is a basis of G (m,s) as a vector
space. This allows us to identify G (m,s) with RY. Note that Card A = N
while max,ea |a] = s, the step of the Lie algebra. The Campbell-Hausdorff
series defines a multiplication in RY (see e.g. [53]) that makes RY the group
N(m, s), that is the simply connected Lie group associated to G (m,s). We can
naturally define dilations in N(m,s) by

DO ((a)aea) = (Nua) -
acA

These are automorphisms of N(m, s), which is therefore a homogeneous group.

We will call it G, leaving the numbers m, s implicitly understood.

Once we have introduced this structure of homogeneous group in RY, we
can give a concrete visualization to the abstract elements e; of the Lie algebra,
as follows. Denote by Y; (j = 1,...,m) the left-invariant vector fields on G
which agree with a%j at 0. Then Yj; is homogeneous of degree 1 and, for every
multiindex «, Y, is homogeneous of degree |a|]. The system of vector fields
{YJ};":1 satisfies Hormander’s condition of step s in RY, and their Lie algebra
coincides with G (m, s). These Y;’s are uniquely determined by the choice of a
system of coordinates u in G.

It is sometimes useful to consider also the right-invariant vector fields Z;,
which agree with a%j (and therefore with Y;) at 0; also these Z; are homogeneous
of degree one.

As to the structure of the left (or right) invariant vector fields, it can be
proved that the systems {Y;} and {Z;} have the following “triangular form”
with respect to Cartesian derivatives:

0 N0
Y= B, + Z i (u) Dur
k=i+1

Z; =

0 N D
(‘3u+ Z 7; (u) 53—

ou
L pZip1 k

where ¢F,g" are polynomials, homogeneous of degree aj, — a; (the a;’s are the
dilation exponents). This implies that any Cartesian derivative 9, can be
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written as a linear combination of the Y;’s (and, analogously, of the Z;’s). In
particular, any homogeneous differential operator can be rewritten as a linear
combination of left invariant (or, similarly, right invariant) homogeneous vector
fields, with polynomial coefficients. The above structure of the Y;’s also implies
that the formal transpose Y;* of Y; is just —Y; (as in a standard integration by
parts).

Sublaplacians and homogeneous fundamental solutions

With the above notation, we see that the sublaplacian:

L= zmjyf
i=1

is a left invariant, homogeneous of degree 2, hypoelliptic operator on G; also,
note that L* = L. At this point we recall a fundamental result by Folland [26]:

Theorem 6.1 (Existence of a homogeneous fundamental solution) Let
L be a left invariant differential operator homogeneous of degree two on a homo-
geneous group G, such that L and L* are both hypoelliptic. Moreover, assume
Q > 3. Then there is a unique fundamental solution I' such that:

(a) T € C= (RN \ {0});

(b) T is homogeneous of degree (2 — Q);

(¢) for every distribution T,

LT*xD)= (L)« =7
The previous representation formula also implies that, for any test function w:
YiYju= PV ((Lu) *Y;Y;I') + ¢;; Lu

where ¢;; are constants.

General Hérmander’s vector fields: “lifting and approximation”

Let us consider now a generic system of Hérmander’s vector fields X, X, ..., X,,.
Rothschild and Stein [49] have found a way to exploit Folland’s theory for ho-
mogeneous groups to study the more general operators

q
L=> X?orH=0,—L.
i=1
This is accomplished by the famous “lifting and approximation” result contained
in [49]:

Theorem 6.2 Let Xy,..., X, be C* real vector fields on a domain @ C R™
satisfying Hormander’s condition of step s at some point xg € 2,



Let G (s,m) be the free Lie algebra of step s on q generators, G the corresponding
homogeneous group on RN (N = dimG (s,m) > n). Then in terms of new
variables, hi,...,hn_yp, there exist smooth functions c¢;;(z,h) (1 <i<m, 1<
Jj < N —n) defined in a neighborhood U of &0 = (20,0) € Q x RN~ = Q such
that the vector fields )Z'Z given by

N—n
)le:XZ-i- Zcij (m,hl,h27...,hj,1)6hj 1=1,...,m

j=1

satisfy Hormander’s condition of step s. Moreover, if we choose a system
{X0(€)}aeca such that {Xo(£0)}aca be a basis for RN | then there exists a choice
of coordinates u,, in G such that, for £,n € U, the map

@71(5) = (ua)aEA

with

€ = exp <zx> ,

acA

1s well-defined, and satisfies the following properties. There exist open neigh-
borhoods U of 0 and V,W of & in RY, with W € V such that:

a) ©, |V is a diffeomorphism onto the image, for every § € V;

b) ©,(V) DU for everyn € W;

¢) ©:V xV — RN, defined by ©(&,m) = 0,(£) is C (V x V);

d) In the coordinates given by ©,, we can write )Z'Z =Y.+ R] on U, where
Y; are the homogeneous left invariant vector fields on G, coinciding with 0y, at
the origin, and R are vector fields of local degree < 0 depending smoothly on
n € W (the superscript n does not denote the variable of differentiation but the
dependence on the point n). Explicitly, this means that for every f € C3° (G):

Xi (£(©,(:)) (€)= (Yif + RIf) (©,(8)).

e) More generally, for every o € A we can write

Xo =Y, +R]
where R is a vector field of local degree < |a| — 1 depending smoothly on 1.

Roughly speaking, the above theorem says that the original system of vector

fields {X;}" | defined in R" can be locally lifted to another system {5(1}
i=1

defined in U € RN (N > n), such that the X; can be locally approximated by
the homogeneous left invariant vector fields Y;. The remainder in this approx-
imation process is expressed by the vector fields R] which have the following
good property: when they act on a homogeneous function, typically of negative
degree (that is, with some singularity), the singularity does not become worse.
The vector fields Y;, R} must be thought as acting on the group G; the vector
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fields X; as acting on the “manifold” R¥, the change of variables between the
two environments being realized by the map ©,,. Here below we add some other
miscellaneous facts, related to the above concepts, which will be needed in the
following.

e Under the change of variables £ — u given by u = ©,(£), the measure
element becomes:

g = c(n) - (1 + O ([[u]))) du,

where ¢(n) is a smooth function, bounded and bounded away from zero in V.
For the change of coordinates n — u given by v = ©,,(§), an analogous relation
holds:

dn = c(€) - (1 + O ([[ull)) du.
o If, for £, € V, we define

p(&mn) =10En)l

where ||-|| is the homogeneous norm defined above, then p is a quasidistance,
locally equivalent to the CC-distance d induced by the vector fields {)?l}

e Although there is no easy relation between the CC-distance d induced
in R” by the X;’s and the CC-distance d induced in RN by the X;’s, a more
transparent relation holds between the volumes of corresponding balls. This
fact is described by the following result by Sanchez-Calle:

Lemma 6.3 (See [53], Lemma 5). Let B, B denote metric balls with respect to
d (in R™) and d (in RY ), respectively. There exist 1o > 0 and § € (0,1) such
that for any (x,h) € Q,r < 1o,y € B (x,dr) one has

rQ o ‘E((x,h),r)‘ ~ |B (z,7)| - Hh’ eRVY": (4, h') € E((m,h)yr)}‘

where || denotes Lebesgue measure in the appropriate R™, and the equivalence
a ~b means cia < b < coa for positive constants c1,co independent of v, x,y, h.

e Sometimes we will integrate a function of NV variables with respect to the
“lifted variables” only; the resulting function is defined in R™, and its derivatives
with respect to the original vector fields X; can be expressed by the following
useful identity:

Lemma 6.4 Let f € C§° (U), then

Xy (&) dh = X5 f(€)dn
RN-n RN—n
(writing & = (z,h)).
Proof. Recall that:

N—n

Xi=X;+ > cij (@, hay hay oy hj1) O,
=1
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N-—n
- /RN_ XEFE)+ D On, (ij (@, hoy ooy hy1) £ (€)) dh =
! =1
’ N—n
= X; Ranf(g) dh + ; /RN?H?1 dhl---dhj—ldhj-‘rl-"th—n/Rahj (g (€))dh;

= X7 dh
WG
because [, On, (g (£))dh; =0. =m

Parabolic context

In the following, we will apply the procedures described above to the space
variables, while time will play the role of a parameter. It is worthwhile to note
explicitly the following fact:

Remark 6.5 If G = (RN, o,D ()\)) is a homogeneous group, we can naturally
define its “parabolic version”, setting, in RN1!:

(t,u) op (s,v) = (t+s,uov); Dp(A) (t,u) = (\*,D (N u).

The “parabolic homogeneous group” Gp = (RNH, op,Dp ()\)) has homogeneous
dimension @ + 2.

With respect to this structure, the hypoelliptic differential operator in RV +1

m
HA = at - Z ain;;Y;-
i,j=1

is translation invariant and homogeneous of degree 2. Then, by the general result
of Folland recalled above, H 4 has a fundamental solution g4 (¢, u) , homogeneous
of degree —(@Q). Moreover, for this operator, uniform Gaussian bounds have been

proved in [3, Theorem 2.5 p.1160]; we recall here these estimates, which will be
crucial in the following (actually, we will use only (6.1), (6.2)):

Theorem 6.6 For every nonnegative integers p, q, for every u € R™, t > 0 and
A, B € By, the following uniform Gaussian bounds hold

1= Q/ 2P /e < g (4 ) < et QU2 lull et (6.1)
|yil Y, (9))% ga (t,u)| < c(p, q)t—(Q+p+2q)/2e—Hqu/ct (6.2)

[Yiu Y, (87 (94— g1) (1,0)] < e(pyq) |4 = BJ[Y/* ¢ (@4r+20 2wl e
(6.3)
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where s denotes the step of the Lie algebra of G.

6.2 Upper bounds on fundamental solutions

As we mentioned in the Overview of Part I, the procedure to deduce the desired
uniform upper bound on hy from the analogous result proved in [3] for homo-
geneous groups, is rather involved. So, to orient the reader, we want to sketch
here the main steps of this proof, adapted from [30]. Applying Rothschild-Stein
technique, we “lift” locally, our operator H 4 to another operator H 4, living in a
higher dimensional space, which is locally approximated by a third operator H 4,
left invariant and 2-homogeneous on a homogeneous group, whose fundamental
solution g4 (t,u) satisfies the uniform Gaussian bounds stated in Theorem 6.6.
Starting with this g4, we form the kernel (see (6.9))

Ko (t,6,n) =x(t)a(€)b(n)ga(t,© (&),

(where x (t),a(€),b(n) are suitable cutoff functions), which, morally speaking,

should be a first approximation of the fundamental solution of H 4. Namely (see
(6.10)),

ﬁg[}O (tv 57 77) =a (5) 6(0,77) (t7 5) + EO (tv 57 77)

where the “error term” Eo satisfies the Gaussian-type estimate that we would
expect from the first order derivative of Ky. A suitable inductive procedure
allows to improve this gain, building a sequence of kernels K; (see (6.12)) such
that:

1) K; satisfies the Gaussian bound we expect for the fundamental solution
of ﬁA;

2)

HﬁKz (t7 ga 77) =a (f) 6(0,71) (t7£) + El (ta 57 77) ;

3) the “error term” E; is bounded by a function of the kind t¢~1/2g, (we
can think that “it is small in sense of Gaussian bounds”).

To keep track of the uniformity (with respect to A) of these bounds on
IN(i, E‘i, the preliminary study carried out from Definition 6.7 through Lemma
6.11 is crucial; this study makes extensive use of (6.1), (6.2).

Then, one could hope to prove that this sequence I~{l approximates the fun-
damental solution hy of H 4 (thus giving the Gaussian bounds for h4) and this,
in turn, could imply analogous Gaussian bounds for h4, the fundamental solu-
tion of Hy. However, this idea does not work (one of the reasons being that
the fundamental solution of H4 is not unique). Instead, a more indirect link
is established from K; to h4: first (see (6.13)), one defines a new sequence of
kernels K;, living in the “original” space R™ where H 4 is defined:

K; (m,y):/ / K, (t,€,m)dh dh/'.
RN-n JRN-n

Then, one proves that H4 (K; — ha) is smaller and smaller, for increasing j, in
the sense of Gaussian bounds (see Lemma 6.13). Finally, the construction of
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suitable barriers (see Lemma 6.15) enables to show (see the proof of Theorem
6.16) that in the region d(z,y) < e,z € B(0,R) (for & small enough), the
desired Gaussian bound holds for (K; — h4), if j is large enough, and therefore
holds for h 4. Since, on the other side, in the region d (z,y) > & we have already
proved the upper bound in Sections 4 and 5, we are done. We now come to the
precise construction.

Here we keep all notation introduced in the previous subsection; in particu-
lar, we will denote by B, B the metric balls with respect to d (in R™) and d (in
RY), respectively.

Fix a large ball B (0, R) C R™, with R to be chosen later, and cover it with
a finite collection of balls B (z¢,r), with r small enough so that in each ball
we can perform the procedure of lifting and approximation. Let {ay (z)} be a
partition of unity of B (0, R) induced by the family {B (x¢,7)}. Set & = (z4,0),
and define

ac (€) = ar (2) o (h) for € = (,h) (6.4)

where ¢ is a cutoff function in the h variables, fixed once and for all, with
/ o (h) dh = 1. (6.5)
RN—n

We now fix one of the points &, and in a suitable neighborhood U, of the
kind B (z¢,7) x (—=6,8)" " c RN we perform the following construction. Let
)?f,)?f, ...,)?f;t be the lifted vector fields defined in (7‘7; with the notation of
Theorem 6.2,

XL(£ (0" &m)) = (Vif + BT (6" (&,m)

where the map @f] (€) = ©f(¢&,n) is defined for ¢ and 7 in U’. In the above

formula, the derivative )N(f is taken with respect to &; the derivatives Yi,Rf’"
are taken with respect to the variable u in the group G = (RN ,o)7 and the

coefficients of the vector fields Rf’” depend on the fixed point 7 (and on u). Let

ﬁ-g = 3t - Z aij)?f)?f, (66)
i,j=1
and .
HA = 8t — Z ain-Yj7 (67)
i,j=1

then the above approximation relation becomes:

HAF (1 (0 (1m)) () = (Haf) (1,01 (€m) + (E5"F) (1O (€m)  (68)
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with

m

(Ef{" f) = (Esz" f) _

7,7=1

I
.MS

Qj (Yin’nf + Rf’anf + Rf’an’"f)
1

,J

(observe that the differential operator Ef{" does not depend on t).

The reason why this approximation procedure is helpful is that the operator
Ha in (6.7) is homogeneous of degree 2 and translation invariant on Gp (see
Remark 6.5), and for its fundamental solution Gaussian bounds are known (see
Theorem 6.6).

Definition 6.7 Denote with ga (t,u) the homogeneous fundamental solution of
Ha. For any integer p, we define the class Fl’f‘ as follows: k € Flf1 if:

i) ke C* (R xG\{0,0});
i) k(t,u) =0 fort <0;
iii) for every integer p and every multi-index o
10PYk (t,u)| < ¢ (p, a, p) tH2720710D/2g  (Ct u) for any t > 0,u € G

where the constants c (p, a, 1) depend on the matriz {a;;} only through the
ellipticity constant A and C depends on p,« and the kernel k, but not on
A.

Note that, by (6.1), (6.2), ga € F5'. Also, note that
M1<M2$F,;42 CFlﬁ'
In the next lemma we summarize some of the properties of the classes Ff.

Lemma 6.8

1) If k € Fit with pn > Q+2, and we define k (0,0) = 0, then k € C° (R x G).

2)Ifk e F/j‘ and P is a homogeneous differential operator of degree d in the
u variable, then OV P (k) € ELA—d—Qp‘ In particular one can take in the definition
of Fl‘f‘ the right invariant vector fields Z1, Zs, ..., Zy, instead of Y1,...Y,,. Also
if k € Fl‘f and P is a differential operator of local degree < d, then OV P (k) €
F;f‘fd72p‘

3) Given v > 0 we can find pu so that F,f1 CC"RxG).

4)Ifkc FA he FA, uy,pe >0 and

p1? p2’

(k*h)(t,u)://kz(t—s,uov_l)h(s,v)dvds

then (kxh) € Fy, 4 p,-
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Proof. 1) is a simple consequence of Definition 6.7 and (6.1).

To show 2) observe that any homogeneous differential operator of degree d
can be written as > 1, (u) Y* where 7, is a homogeneous function of degree
|a] — d. We have

07 P (k)| = | > 7l () OFY k| <

<3l e (py @, p) t02210D2g, (Ctw)

«
jal—d
u
< <”\/y> c(p,a,p) tH272P7 D20, (et u) .
<c(pa,p) W22 D29, (C't,u)

where the last inequality is a consequence of (6.1). Indeed,

<”\1/Ly> o ga (Ct,u) < c <”\%|> o % exp (* ||U||2 /Ct)

< Cga (C/ta u) .

This proves the first assertion in (2). Moreover, since the right invariant vec-
tor fields Zy, ..., Z,, are homogeneous of degree 1, and since it is also true that
any homogeneous differential operator of degree d can be written as >, (u) Z%,
where 7/, is a homogeneous function of degree |«| — d, the above reasoning also
implies that in the definition of the class F /f‘ one can use these Z;’s instead of
the Y;’s. The case when P is a differential operator of local degree < d can
be proved in the same way observing that if P = " f, (u) D then the Tay-
lor expansion of f, (u) D ~ 3 capu”D® is the formal sum of homogeneous
differential operator of degree < d.

3) The fact that Flf‘ C C7" (R x G) when p is large enough is a simple
consequence of (6.1).

4) Let ¢ € Cg° (R x G) such that ¢ (t,u) = 1if ||(¢t,u)| <1 and ¢ (t,u) =0
if ||(t,w)|| > 2. Define ¢5 (t,u) = ¢ (Dp (9) (t,u)) and write

(k*h)(t,u)://k:(t—s,uov_l)h(s,v)dvds
://¢5(s,v)k(s,u)h(t—s,v*1ou)dvds
+//¢5(s,v)h(s,v)k(tfs,uovfl)dvds

+//[1—¢5 (t—s,uovfl)—d)g(s,v)]k:(t—s,uovfl)h(s,v)dvds
=L+ 1+ Is.

Let C such that |[(t 4+ s,uov)|| < C(||(t,w)] + ||(s,v)]|) and observe that for
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(s,v) € supp ¢s one has

- [l @ u)] 2
|(t=s,0 7" ou)|| > & — (s, )] > & T3
[t w)l
- 2C

whenever § > H(t u)H This shows that 1, I and I3 are in C*® (R x G \ {0, 0}).

The fact that (k = h) (¢,u) = 0 when ¢ < 0 follows from the analogous property
of k and h. Let us write

(kxh)(t,u) =

// (t—s,uov™") h(s,v)dvds

0
t/2 t

:/ /k(t—s,uov_l)h(s,v)dvds—i—/ /k(t—s,uov_l)h(s,'v)dvds
o Jo t/2JG
t)2 t/2

:/ /k(t—s,uov—l)h(S,v)dvds—i—/ /k(s,w)h(t—s,w—lou)dvds
o Jo o Je

I+11I.

Let Z° denote any right invariant differential operator homogeneous of de-
gree . Then

o7 (1) :af/om/@zak (t— s,uov) h(s,0) duds
:aft/é/zak (t —ts,uov™") h(ts,v) dvds
—p/ / sV LT 20K (¢ (1 — 5) ,uov™Y) h(ts, v) dvuds
—|—tA / P Z (t(1—s),uov™ ") h(ts,v)dvds

where we used the fact that 2= (tg (t)) = ng™= b (t) + tg™ (¢).
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For the first term we have

/§ / (1—s)P 1O 2% (t (1 — 5) ,uov™t) h(ts,v) dvds
o Je

1
< C/2 (1 — S)P_l (t (1 _ 8))(,‘L1—2P-|0¢D/2 (ts)(MZ_Q)/2 '
0

. / ga (ct(1—s),uov") ga(cts,v)dvds
G

1
2

< cga (ct,u)/ (1- S)P—l (t(1— 8))(#1—%—\04)/2 (ts)(uz—2)/2 ds

0

1

< cga (ct, u) t0n=20-1aD/2y(u2=2)/2 /2 §(12-2)/2
0

< cga (ct,u) t(m+p2—2-2p—|al)/2

The second term can be controlled in the same way. In a similar way one
can estimate 0;Y® (IT) where Y* is a homogeneous left invariant differential
operator of degree a. m

Definition 6.9 We say that K is a kernel of type u in U’ if
K (t,&m) =Y x; (t)a; () b; () k; (t,0°(&,m))
j=1

where x; € C3° (R), aj,b; € C§° (RN) (with supports small enough so that
0% (¢,n) is well defined for & € suppa; and n € suppb; ), x; (t) = 1 for small t,
bj =1 on suppa; and k; € Flf‘, We also assume that

sup |D%a;| + sup |[D*b;| < ¢ (o)

de

sup dtm] <c(h)

for every integer k and multiindex o.

In particular, note that if K is of type u in U* then

K (8,6 m)| < 072 2g,4 (ct,0° (€,m) D x5 (1) a; (€) by (n)

Jj=1

Remark 6.10 We are now going to make some computations in a single fived
neighborhood U*. In order to make more readable our expressions, the index {
will be suppressed. We will use it again later, to explain how global objects can
be built gluing together local pieces.
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Lemma 6.11 Let K (t,£,n) = x(t)a (&) b(n) k(t,0 (&,n)) be a kernel of type
w. Then

HEK (t,6,m) = x (£) a(€) b (n) HE (£,0 (&,m) + E (£, €,n)
where E is a kernel of type i — 1. Moreover, HSK is a kernel of type p — 2.
Proof. By (6.8) we have
HEK (t,¢,7)
X (#)a(€)b(m) H [k (t,6 (&) + X (£)a(&)bm)k(t6 (&n))

b)Y s { (% (9) 5 (1.6 (€m) + 25 (©) K, (.0 (€.m)]}

3,j=1

=X (1) 0 (€)b () [k (1,0 (€, 1)) + (Eyh) (O (1) , )] +
£ () a©)bm) k(0 (&) () > ai { (X% (©) k(t.0 (6 m) +

i,j=1

+2X,a(€) [(V5) (1,0 (¢,m) + (RTE) (1, (,n))]}
X () a(§)bn)HE (0 (& )+ E(tEmn)

where E (t,£,n) is the sum of the following terms:
") a(§)b(n
—x (@) b(
—x (@) b(

X )k (t,©(£,m)), kernel of type p;
(b)Y aij (XiX;a(9)) k(0 (6 m), kemel of type
i,j=1
(b)Y aij2Kia () (Vi) (1,0 (€m) , kernel of type i — 1
i,7=1
X () a(©)bm)

(§)b(n) (Eyk) (t,0 (€,m)), kernel of type p — 1;

(m) Y ai;2X;a (€) (R7k) (£, (&,m)) , kernel of type pu— 1.

2,j=1

This follows from Lemma 6.8, point 2, since Y is a homogeneous differential
operator of degree 1, while E,, and R? are differential operators of local degree
< 1. Therefore E is a kernel of type y — 1. Finally, since H is a homogeneous
differential operator of degree 2,

X (t)a(&)b(n)Hk (t,0©(£,n)) is a kernel of type 1 — 2

and therefore HSK (t,&,m) is a kernel of type p— 2. m
We now set:

Ko (t,6,m) = x () a () b(n) ga (£,© (£,m)) (6.9)
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where x (¢),a(€),b(n) are cutoff functions as in the Definition 6.9, and a (&) is
the function ay (§) defined in (6.4)-(6.5). Note that Ky is a kernel of type 2 in
U¢. By Lemma 6.11,

HSKo (t,€,m) = x () a (&) b(n) Haga (t,0 (£,1)) + Eo (t,&,1) =
= a(€) 80, (t,€) + Eo (t,€,7) (6.10)

where Eo is a kernel of type 1, which can be written as:

Eq (t,€,n) ZX] bj (n) k; (t,© (&) (6.11)

with k; € F{'. Next, we define:

K (t,€,m) = Ko (¢,€,m) Z bj (n) (kj * ga) (£, © (£,m))
Claim 6.12
i) The convolution (kj * ga) makes sense

ii) - R
HE Ky (t,6,m) = a(€) 60 (1) + Ex (,€,7)

where El is a kernel of type 2.

Proof. Since g4 € F3' and k; € F{*, (k; * ga) exists and belongs to Fj'. By
(6.10), (6.11) and Lemma 6.11, we can compute

ﬁf[?l (tvan) =

HEE, (1,€,n) ng bj () (kj * ga) (1.© (§,m)) | =

=a (5) 6(0,7}) (t’ g) + Z Xj (t) a; (5) bj (77) kj (t7 © (f, 77)) -

j=1

= x5 (8 a; (€) by () [H (kj + ga)] (£,© (€,m) + Ex (,€,m)
=1

where E is a kernel of type 2. Finally, since [H (kj * ga)] = k; we get

HEK (t:€,m) = a(€) (0. (1,€) + B (t,€,m)

]
Proceeding inductively, using Lemma 6.11 and the argument of the previous
Claim, we can build two sequences K, F; such that:

ﬁgf?i (tv 3 77) =a (5) 5(0,7}) (t7 f) + EL (t7 ga 77) (612)
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where Ei is a kernel of type 7 + 1 which can be written as
(t,&m) me @i, (§) bij () kij (£,0(&,m))

with k; ; € Ff,, and
I?iJrl (tv & 77) = t 57 Z Xz,] a’b,j b 1,5 (77) (kiyj * gA) (tv S} (gv 77)) :

Moreover, K; is a kernel of type 2 for every i.
We now recall that this construction can be performed in each of the neigh-
borhoods U*. Therefore we can define

K (t,&m) = ZK”En

and

E; (t,&,m) ZEZ t,&,m)

We now want to come back to the original (unlifted) variables. Let:

§= ($7h),77 = (yvhl)
and define:

K (t,2,y) = / / R, (t.€,n) dh di'; (6.13)
]RN—n RN—n

E; (t,z,y):/ / E; (t,€,n)dh db'.
]RN—n RN—n

Lemma 6.13 There exists a constant 5 > 0 and, for every positive integer j
there exists a constant ¢ (j) > 0 such that, for any x,y € B(0,R),t € (0,1),

Then:

HY™ (K = ha) (t2,9) = E; (t,2,9)

with oy
— T,y t
E; (t,z,y)| < c(j)ti-D2
|E; (t,z,9)] 2 B (o)
Also,
—Bd(z,y)?/t
K ()] < e () S
|B (2, V)|
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Proof. By Lemma 6.4 we have

Hy /RN% K;(t,&,n)dh = Hy /RM %:%f (t,€,m)dh
_ 74 ~g
- ;/RN" HAKZ (t7§7"7) dh
= Z/ (ae (&) S,y (t,€) + EE (t,€, 77)) dh
7 RN-n

N /Rw_n (a(&) S0 (6:€) + B (t,6,m)) dh

Therefore

YK, o) = #3 [ [R e dnai
RN—-n JRN-n

- / Hy™ / K (t,&,m) dh db’
RN-n RN-n
/ / &) 80 (6, + B (1,€, )) dhdh’
RN—-n JRN-n

/ / &) 00, (t,€) dhdh’ + E; (t, 2, y) .
RN—-n JRN—-n
By (6.5) we have

RN—-n JRN-n
and since Haha (t,z,y) = 0(0,y) (t,2) We obtain

HY K (t,y) = Haha (t:2,9) + Bi (£.3,y) -
Now recall that

‘Etifn)’<c “/QZgAct@fn th a; (€) b; ()

hence
|Ej (t,xc,y)| <

N 4-1)/2 ¢ = (0l (€) B 4
<c(j)t /RM dh/RN,n [;QA (ct, 0% (&, m)) ;xz (t) a; (€) i (n)| dh

(6.14)
2
c(j )t(J 1y/2€ —Bd(z,y)°/t

|B (=, V1)

where the last inequality follows from the next Lemma; the same argument
proves the bound on Kj;, remembering that K; is a kernel of type 2. This
finishes the proof. m
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Lemma 6.14 For each term appearing in the integral in (6.14) the following
bound holds,

" 2
e—c d(@,y)"/t

/RNW dh n ga(ct,©(&n))a(&)b(n)dh’ < C/m-

This Lemma can be proved as the Remark on p.848 of [30], making also use
of the uniform Gaussian bounds of [3]; in [30] the Authors write that “the proof
is very similar to that of Lemmas 8, 9 in [53], where the ‘elliptic’ case is dealt”.
For seek of completeness we present a detailed proof of this fact.

Proof. By (6.1),

Lo aaerocmabmar

< ca(x) / © (h) dh £=Q/2=BdEM* [ty () /.
RN—n

RN-n

Then we distinguish two cases.
Ist case: d? (z,y) >t. Then

/ +—Q/2,—Bd(Em) /1y (n) dW
Ran

- Z/ th/Qe*,BJ(g,n)Q/tb(n) dh/
im0/ {2k d(a,y) <d(gm) <2+ d( ) }

By Lemma 6.3,
(@ +d(w.y)? = |B ((@.h), 2 d (20) |

= |B (@, 2 d @y)|- [{1: d((@h), (.1) <2 d (@) |

(strictly speaking, to apply Lemma 6.3 we should replace 2% with 6 =%, where &
is the small number appearing in the Lemma); then

/RN_ t*Q/%*ﬁg(ﬁ,n)Q/tb(n) dn’

. (2k+1d(x,y))Q .
|B (z,281d (z,y))| —

o0
< Zf@/zefﬁz%d(x,y)z/t
k=0

1 d(x y))Q = —B2%% d(z,y)>
< ) e oY) /to(k+1)Q <
Feaea (i)
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. d o2k 2 _go2k—1_2
since s = 428 > 1 and sQe=A2"s* < g A2 s

NG
< el 1 viip2 Z —B27 Y d (2 )? /1o (k+1)Q
Bd(w’y) /t 2k—1 5d(w’y)2/t
_ B -1) gkt 1)@ <
Beve T )

2nd case: d? (z,y) < t. Then

/ 1= Q/2,—Bd(Em) /1y (n) dn’
RN n

/ .dh’+Z/ dn.
n:d(€,m)<2Vt} 1/ {p 2R vEd(g <2k tivi}

Again by Lemma 6.3,

() = [ (200
~ ‘B (x,?’”‘lﬂ)‘ : Hh cd((z,h), (y, b)) < 2’f+1\/£}‘

hence
0o . Q
Z/ dn < thQ/%*ﬁ?%M <
h':2k/E<d(€,m) <281/} et ’B (x 2’“‘1\/7?)‘ -
i B2k 2k+1 Q <
k

_ e _ P’
T B (V)| T B (2, V1)

because e~ Ad(@v)*/¢ > ¢ > 0, being d? (z,y) < t. Analogously one bounds the

single term
...dh’.
/h’ d(&m <2\/}

This completes the proof. m

Our next task is to build a suitable barrier function f;, to be compared with
(Kj - hA):

Lemma 6.15 For any fixred R,e > 0 and every positive integer j large enough,
there exist a function f; (t,x,y) and positive constants c;= c (j,, R), 71 (¢, R),
Y2 (€, R) such that for any t € (0,1), z,y € B(0, R):

i)

e D < (1 2,y) < e i d(z,y) e (6.15)

|B (. V)]

57



i)
HED [ (6 2,y) > ¢ | By (4 2,y)] - (6.16)
Proof. By (6.14), we know that, for z,y € B (0, R),

|Bj (t,2,y)| < e (j) VD72

S [ an [l (en. 6 €m) o @0 (] an

¢ i=1

With this notation, let

i (t,2,y) = B;tU+/2,
£ ’
Z;xz /RNndh/ A (ct, 08 (6,m) a (€) B (n)) dh

with B; constant to be chosen later. Just to simplify notation, we will write the
proof assuming that

Byt <e@ 2 [ an [ gatet0En)a@bman

and

it = B2 [ an [ ga(en @ En)a (@b ar.

By Lemma 6.14,
—pd(x,y)* /t e—Bd(x,y)*/t
fi(tay) <eBitDRl___— _ <ept T
’ B VAl = BV

since t < 1.
To prove the first inequality in (6.15), we start noting that

d(&n) < cle,R)d(z,y)

since d (¢,7) is bounded and d (z,y) ~ . By the lower bound in (6.1), taking
into account the supports of a, b, and since d (z,y) ~ ¢

£ (tay) chthH—Q)/z/ dh o~ d(Em)? [e(e B)E gy
hi<e  Jinri<e

> oBje-dlan)? /ety +1-Q)/2
> che_’52/‘:tt(j+1_@/2 > che_EZ/c/t

> CBje—d(myy)z/C’t > e—d(f&y)Q/C/t
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by a suitable choice of B;.
To prove (6.16), we use Lemma 6.4 and compute:

HDf (tx,y) =

e
:BJJ;F t(J—l)/2/

RN—-n

+ BtUtn/2 dh /R o H [ga (ct,© (&,m)) a (©)]b (n) b’

RN-n

dh [ aalet.®(En)a (b di'+

by Lemma 6.11,

L
—p it [ [ gaene ) a@bman+
RN-—n RN-—n

# Bt [ an [ ((Maga) (0 €n) a(©)b(n) + B (8.6 m)] di

RN-—n RN-—n

for some kernel F (t,&,n) of type 1
1
—p e [ [ gaene ) a@pman+
2 RN*’I?, RN*’IL
+ Bjt(j“)/?/ dh/ E(t,&,m)dh
RN-n RN-n
where we used the fact that t(j+1)/26(0@) (t,y) = 0. Now,

t(j+1)/2/ dh/ E (t,&,m)dn’
RN—-n RN—-n

< cti/? / dh g (ct, 0 (&,m)) a (€) b () db’
RN-n RN-n

<at 2 [ et €@ bman
Ran Ran
since t < 1; therefore, for j large enough,
HX’I)fJ (tvxay) >
> cBti=D/? / dh / ga (ct,© (&,m) a (&) b(n)dh' > ¢; |E; (t,2,y)|.
RN—TL RN—n
]

Theorem 6.16 There exist T = ¢ and S = ¢ such that, for every R > 0 we

have e—Bd(z,y)?/t
ha(t,z,y) <c(R) m

for every t € (0,7),xz,y € R", with d(x,y) < R.
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Proof. By Theorem 4.10, for any fixed e > 0, if ¢ < d(z,y) < Rand t € (0,7)
we have:

hA (ta xZ, y) S Ceic/t S CGiCd(z’y)Q/RQt S
e-Cd(w,y)2/R2t
I

C _ 2/ p2
e cd(z,y)* /Rt <c

SBG) ST @V

Hence we have to worry only for d (z,y) < . We will proceed in two steps: first
we will prove the upper bound assuming d(x,y) < € and « € B (0, R); then we
will consider the case d (z,y) < e and = ¢ B (0, R).

Step 1. It is enough to prove that, for x € B(0,R),d(z,y) < &,t € (0,1)
and j large enough,

e Bd(@y)?/t

|Kj (t,2,y) —ha (t,z,y)] < c(j) B

To show this, we want to apply the maximum principle on the cylinder

(6.17)

{(t,z) :t€(0,1),d(x,y) < e}, fory fixed,
to the functions
where f; is as in Lemma 6.15, and A; will be chosen later. We know that, for

d(z,y) > ¢, both hy (t,z,y) and K; (¢,z,y) are bounded by c (j) %,

therefore (6.17) holds for d (z,y) ~ e,t € (0,1). Note also that, for d (z,y) > ¢,
—Bd(x.y)?/t ,
¢ et for any 3 < 8

|B (=, ve)| ~

(because |B (z,v/t)| > ct™/?™). Then for d(z,y) ~ &, € (0,1), we can say
that ,
|Kj — ha| < ce M@/t < A f; (6.18)

Moreover, by the subelliptic estimates on Hy, since Ha (K; —ha) = E; is as
smooth as we need, for large j, even at t = 0, then (K; — h4) is continuous at
t =0, and therefore vanishes (because for t < 0 both K; and ha vanish), hence
(6.18) holds also for t = 0,d (z,y) < e.

On the other hand, by Lemma 6.13,

Hy(Kj—ha) =E;
hence, by (6.15),
Ha (£ (Kj —ha) = Ajf;) < |Ej (t2,y)| — Aje; [Ej (8 @,9)] <0
for suitable A;. Therefore, by the maximum principle (Proposition 3.6),

|K; —ha| < Ajf; for d(z,y) <e,t€(0,1). (6.19)
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This ends the first step.

Step 2. We can assume R large enough such that H4 is the standard heat
operator in the complement of B (0, R/2). Let z ¢ B(0,R) and d(z,y) < &;
recall that in this region d equals the Euclidean distance, by Lemma 2.3. Let
ho (t,2,y) be the fundamental solution of the heat operator in R"*!. Adapting
the technique of Step 1, we now simply choose

fitz,y) = ct%ho (t,z,y) .
Then, one easily checks that, in this region,
e~ nd@y)?/t < i (t,z,y)
for a positive constant v1, t € (0,1), and d (x,y) ~ ¢, and that
H{ f; (t,2,y) > 0.

One can now repeat the argument of step 1: choosing K; = hg and exploiting
the fact that
HY™ (hg — ha) =0

one proves (6.17). This completes the proof. m

We eventually have to prove the upper bound on h 4 removing the assump-
tion d (x,y) < R. Again, this is accomplished exploiting the fact that outside a
compact set H 4 is the heat operator:

Theorem 6.17 There exist 7' = ¢ and ' = ¢ such that,

ha ( ) e—Bd(zy)?/t
Atz y) <cqT—=F—F7=+

|B (V1)
for every t € (0,7') and z,y € R™.

Proof. Fix R large enough so that Q¢ C B(0,R) and outside B (0, R) the
operator H 4 reduces to the heat operator. For any fixed y € R™ we define

R ifd(y,0) > 3R

p(y) =
5R otherwise.

It is easy to check that
x€0B(y,p(y)) = B(z,R)NB(0,R) = 2. (6.20)
Also observe that by Theorem 6.16

_ Bd(z,y)?
t

ha(t,z,y) <c(R) m

(6.21)
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for every = € B (y,p (y)), t € (0,7).
Let now

Y (t’ .13) =ha (t7 T, y)
ws (t,2) = K (6t, & —y) where K (t,2) =t "/?e”
D, = (0.7) % (R"\Bly.p()))

with 7/ to be chosen later, 7/ < 7. We aim to apply the maximum principle
(Proposition 3.6) on D, to show that v < ¢ (J, R) ws. The parabolic boundary
of D, is

]2

|
t

O0pDr =0y U1
where
9o = {0} x (R"\ B (y,0(y)))
and
o0 = [OaTq x 0B (yap(y)) .
Let (t,z) € 01; by (6.20), B (x, \/77) N B(0,R) = o, since we can assume
V7! < R. This implies that {B (x, \/i)| = ¢,t"/? | by Lemma 2.3. Then by
(6.21), and since d (z,y) > c|z — y| by Lemma 2.4, we have

cla—y|?

<c(R)t™™2e~ "7 ~ < c(R) 5" ?ws (t,zx)

Bd(z,y)?
_ Bd(z.y)?

7 (ta) < c(R)E /%

for a suitable 0 (large enough). Note that on dy on has v (¢t,2) = 0 = ws (¢, x).
Moreover for (t,x) € D,, using the global, non-uniform estimates in [35] we
have

2
y o)< 1 " o S
m sup y(¢f,z) < Ilm sup c —
L0 4e0,77] L0 4e(0,7] |B (2, V)|

lz—y|?

< lim sup c(A)t "/2e e@r =0,

T—00 te[0,77]
The above arguments show that
v (t,z) < c(R) 6™ 2ws (t, )

on the parabolic boundary of D, and at the infinity, for § large enough. We
now want to prove that in D, again for ¢ large enough,

Ha(y) < Ha (c (R) 5”/2105) .

Since H4 () =0 in D, it is enough to show that H4 (ws) > 0
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We first compute:

%{ (t,z) = K (t,2) (—%t‘l + \x|2t—2> ,
O (1) = K (1) (~2t7'a),
J
K

axiaxj (t,z) = K (t,z) (*2157151‘]‘ + 4t72xixj) .

Writing explicitly the differential operator L 4 in Cartesian coordinates we have
that

" /]9
|Laws (t,2)| <c Y (‘a? (t,x)‘ +

82w5
axiaxj (t, 1‘) ‘)

2e—yl 2 4|xy|2>

ij=1

S ek (0tz—y) ( 5t 5t T o

Moreover

s\ v 59K 5y o= Y Bl i
5t (t,x)féat (6t,x —y) = K (0t,x y)( 2t+ 52 .

By Lemma 2.3 and the definition of D., for (t,2) € D, we have |z —y| > R.
Therefore

Ows
ot

K (6t,z —y) not 2 4z —y?
W{( 7+|CE y) C<2t$ y|+2t+T
K (0t,x — y) 2 n ot 27" 27" 4

s 1T {(‘232“ “NER TR TS

Now, for 7/ = 1/§2, and § large enough depending on R, we get H4 (ws) > 0 in
D, . Hence the maximum principle implies that

Hy (’UJ(;) = (t, x) — Laws (t, :v)

Y

v (t,z) < c¢(R) 6™ w;s (t,x) in Dy,

that is ,
ha (t,z,y) < c(R)t~2e~le=vl7/et for (t,2) € D,.

We now use the fact that, for (¢,2) € D,, |x —y| > R > 1, so that by (2.3),
(2.4) in Lemma 2.4

C_ld(l‘,y) S ‘IL‘ _y| S Cd(x7y) .
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Then:
ha (t,x,y) < C(R) t*"/Qe*‘m y|? /2ct —|z—y|?/2ct <
C(R) (tfn/Qefl/Qct) ef|mfy\ /2ct <

c (R) efd(:v,y)Q/?ct <

2
e—d(@.)? /2ct

SRR TPV

IN

IN

because, by (2.7),
)B (33 \/i)‘ <|B(z,1) <ec.

]
Corollary 6.18 There exists 5 = ¢ such that, for any T > 0 we have

e—Bd(z,y)?/t
!B( Vi)

hA (t,w,y) S C

for every 0 <t <T and z,y € R™.

Proof. For T' > 0 fixed, let k be an integer large enough so that T < 7', where
7’ is the number appearing in the previous Theorem. Then, by the reproductlon
property (3.4) and the previous theorem,

t t
/ ha ( , T y1> ha <k7y17y2) ha (kayk17:‘/> dy1dys...dy 1 <

_ Bd%(a.y1) _ Bd2(y1.v9) _4“2(1’}“’1’@‘)
t/k

&k e 7 B
/n /n ‘B >‘ ‘B (yl,\/ﬁﬂmc’B (ykil’ \/%>‘dy1dy2...dyk1.

We now use the global, long time estimates from below and from above, proved
in [36, Corollary 3.25 p.182] for the fundamental solution kg of the operator,
fixed once and for all,

Hy=0; - ij;Xi,

namely:
K —Brd(z,y)?/t e—Bad(z,y)?/t

BV =Y =T )

for z,y € R™ t € (0,00), with constants ¢y, co, 81, 82 only depending on n and
the vector fields X7, ..., X,,. Hence

hA (t,.T, y) S
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t t t
< ck / / ho (c’k,x,yl) ho <c’k,y1,y2) ...ho (c’k,yk_l,y> dyydys...dy_1 =

e—Bd(z,y)?/t

B (V)]

= Fho ('t 2,y) < o(T)

7 Uniform lower bounds for fundamental solu-
tions

In this section we want to prove the following

Theorem 7.1 There exists 8 = ¢ such that, for any T > 0 we have

c(T)  _gagy?/
ha(t > ) Y
A( ,x,y) = ‘B(l‘,\/i)‘e

forallt e (0,T),z,y € R".
This result will be deduced by the following
Lemma 7.2 There exists € = ¢ and ¢1 € (0,1) such that

ha (t,z,y) > (7.1)

|B (V)]
whenever d(x,y)2 <cit andt<e,x,y € R".

Proof of the Lemma. The proof relies on the same construction of the pre-
vious section. From the proof of Theorem 6.16, Step 1, we read (see (6.19))

|(Kj _hA) (tvxvy)l SAJf7 (t,x,y) (72)
for a suitable j, © € B (0, R),d (z,y) small enough and any ¢ € (0, 1), where
tG+1)/2

fi (tz,y) < c(j) (7.3)

B (@, V)|
Next we will show that for every j there exists € such that for z € B(0,R) ,t < &

and d (z,y)° < cit one has

c(4)
K;(t,z,y) > m (7.4)

To prove this, we start recalling the following reformulation of Lemma 6.3: there
exists ¢, € (0,1) such that for d (z,y)* < c1t, we have

=Q2qp > <0

/{h: & ((2,h),(y, )<t} |B (2, V)|

Moreover, we need the following:

(7.5)
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Claim 7.3 For every i there exists € such that for t < e and 8(5777)2 <1 one

has _
Ki (t,&,m) > c (i) t~@/2, (7.6)

Proof of the Claim. We will prove (7.6) by induction. By the lower bound
n (6.1), we have

(t,&m) ZX b (n) ga (t, 0" (&,m))
> Ct—Q/Qe—d(ﬁm) /ct > ct—@/2

for d (¢,m)? < t. We now assume that (7.6) holds for K;. Recall that

Kip1 (t,€n) = K; (t,€,n) — ZZXW &) bi ; (1) (kij * ga) (£,0° (&)

¢ j=1

where k; ; € F{},, so that by Lemma 6.8 we have k; ; * g4 € F/}4 and

ZZXW &bl (n) (kij = ga) (.0 (&) | <
¢ j=1
it1-Q
Set® qu O, () ga (1,0 (€,m)) < ot 7.
Therefore
Kip1 (4€,1) > et/ — ot ™5 > ¢yt~ @/2

for sufficiently small ¢. This proves the Claim. =
We can now prove (7.4) as follows: by the Claim, (7.5), and the definition

of Kj7
ity = / / 5 (t.&,n)dh dh' >
RN—-n JRN-n

/ t=9/%dn
{h: @((@,h),(y,h") <t}

~>__ %%

~ BVl
Lemma 7.2, under the further assumption « € B (0, R), then follows from (7.2),
(7.3) and (7.4). To end the proof of Lemma 7.2, assume now that ¢ B (0, R),
with R large enough such that H4 is the standard heat operator in the comple-
ment of B (0, R/2). Reasoning like in Step 2 of the proof of Theorem 6.16, we
then prove that

|(h0 - h’A) (t7$7y)‘ < Ajfj (t7$7y)

where hg is the heat kernel,

fi (tx,y) = ct'F ho (t,2,y)
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and for t < e and d (z,y)* < ¢;t (recall that here d (z,y) = |z — y|) one has

C (&

[B(e V] o7

Then we conclude as in the case z € B(0,R). m

We now come to the
Proof of Theorem 7.1. (This proof is similar to that of Theorem 4 in [30],
p.853, with minor corrections). Let d(z,y) = p > 0 and take a subunit path
~ connecting x and y, with [ () < 2p. Take k+ 1 points zg, 21, ..., T on y with
xo=2, xp =y, d(xs,xi41) < 2p/k,i=0,....,k — 1, and let

ho (L, z,y) >

Bi=B(21,0),i=0,...,k—1

with o to be chosen later. Note that if y; € B;, then d (y;,vi+1) < 2p/k + 20.
By the reproduction property (Corollary 3.7),

ha(t,z,y) =

t t
/ / ha ( T yl) ha (k,yl,w) ha (k,yk_l,y) dyrdys...dyy—1 >
t t t
> // ha (k,mn) ha <k7y17yz> ha (kyykhy) dy1dys...dyk—1
Bl><...><Bk,1

(7.7
To apply Lemma 7.2 to each factor in the integral (7.7), we need to know that
2 Clt t
d (yi,yi+1) < - for any y; € B;,and z <e.

This follows from

which, in turn, hold provided

1 T 162
o= k> Lana k> 92
4 k € cit

Then we choose k such that

16p> T
P s i 1<k+1
cit 3

k<

and get, by (7.7) and Lemma 7.2,

NI
‘o
=
~+
N————
]
=)
VR
8
>
|
-
=
:r‘ﬁ
-
N———

co Co ‘B (xh

o) [ o)

hA (t,l’,y) >
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by the doubling property

k k—1 —ak
c3Cy e

* [5 (e i)~ BV

2 2
Now: if 282 > T then k < 322 and
cit e cit

e—ok e Be @)/t

>c )
|B (V)| —|B (2, V1)

ha(t,z,y) > c

e 16p> - T 2T
if ot < —, then k < == and

e—ok e*BT/E e*ﬁd2(l,y)/t
—BT /e
ce

c >c > —_
|B (@, ve)| ~ |B (z,vE)] ~ |B (V)]

So in any case we get the conclusion. m

hA (t,fE, y) >

Remark 7.4 From Theorem 7.1 and the doubling condition, we also read that,
for any 8’ >0, any A € B,

T o T haer ()0

—— =7 =¢ s A(C1 t,z,y

|B (z,v?)]

forany t € (0,T),z,y € R". We will use several times this property, in the
following sections.

8 Uniform upper bounds for the derivatives of
fundamental solutions

Following a technique already exploited in [30], in this section we will show how
the uniform upper bound proved in Theorem 6.16 implies an analogous upper
bound on the derivatives of h4:

Theorem 8.1 There exists f = c such that, for every nonnegative integer i,
multiindices I, J, and for any T > 0, we have
e Pd@y)*/t

NXEXYhy (¢ <c(iI.JT) t—i=+n/28 7 °
’ t<1 <> A(,CB,?J)‘_C(@, y ¢y ) |B(x’\/i)’

for every xz,y e R™t € (0,T).

The key tool to prove the above Theorem is the use of suitable “dilations”
which exist even in this non-homogeneous context, due to the following result
of Fefferman and Sanchez-Calle (see [24], Lemma 3 p.253; see also [30], Lemma
3 p.851), which we state here in a fashion adapted to our context:
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Lemma 8.2 There exist constants c,c’ € (0,1) such that given any metric ball
B = B(x,r) C R" there is a smooth invertible map ®p : [-1,1]" — B, satisfy-
ing:

i) @5 ([-1,1]") 2 B (z,cr) 2 @5 ([-c,c]"), @5 (0) = =;

ii) the push-forward (@Bl)* (X;) = (X; [fo®3']) o®p =7171Z; p, the coeffi-
cients of Z; p having all their derivatives bounded independently of B;

i) If LG is defined by

m

LE(f)=[r’La(fo®5")] o ®p, [LE= Z a;jZi,Z;,B

ij=1

then the family {LE} s uniformly subelliptic, which means in particular that:
for every couple of cutoff functions 1,2, with wa = 1 on supp 1, and every
s > 0, there exists a constant c (s, @1, p2) such that

lorwllge < e(s,01,02) {[|2 (8 — LY) wl| o + lp2wll 2} (8.1)

for every w € C™ (supp ¢2) . In particular, c is independent of B, and depends
on A only through \. (Actually, we will prove (8.1) only for s even integer, but
this will be enough to complete the proof of Theorem 8.1).

iv) Finally, if we replace La with L* and L% with (le)B, (8.1) still holds for
(L))"

Proof of the Lemma. The map ®p is the one constructed by Fefferman-
Sanchez-Calle in [24, §1], depending on the vector fields X7, X, ..., X, and the
ball B (but not the coefficients a;;). They prove 1), ii); they also prove iii) for a
fixed matrix A. In order to obtain uniform subelliptic estimate adapted to our
context (that is, uniform with respect to both the matrix A and the ball B) we
can revise the proof of these estimates as given by Kohn in [31]. This inspection
shows that:

1. Replacing the operator > Z2 with " a;;Z;Z; is harmless, since the few
inequalities which explicitly involve the coefficients a;; (and not only the vector
fields) can be carried out by our ellipticity assumption (H2), getting constants
depending on the a;;’s only through the number A (this fact has already been
pointed out in [9, Theorem 20]).

2. Replacing a “fixed” system of vector fields with one depending on a
parameter (as the system Z; p depending on the ball B) keeps uniform bounds,
as soon as we check that:

2.a. The coeflicients of the vector fields Z; p and their derivatives are
bounded independently of B (we already know this fact by point (ii)).

2.b. Any direction w; can be obtained by means of the vector fields Z; g and
their commutators using coefficients that are uniformly bounded. More precisely
one can write 8wj = >, ar pZ,p with coefficients ay g bounded independently
of B. (This is needed in the “Proof of Theorem H”, see [31, p. 65]).

2.c. If we define the operator A® setting:

—

®he=(1+1?)" Fo
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then the commutator
(23, A7]
is of type s + 1, uniformly with respect to A, B, that is:
| (L5, A°] uHL2 < c||ul| gess for any s >0,

where H? is the standard Sobolev space of fractional order. (This is needed in
the proof of (11) in [31, p. 64]). So, let us prove 2.b and 2.c.
Proof of 2.b. Let

Ygg (2) =77 0u; l9(®5 ()] (25" (2)) -

By [24, Lemma 1] [0,,®p (w)| < ¢r and therefore Yp has uniformly bounded
coefficients. Assume that Ypg (r) = > a;0,,. Applying Hormander’s to 0,
shows that we can write

Ypg (z) = Z ar,sX1g ()
1

for suitable uniformly bounded coefficients o p.
By Lemma 8.2 ii) we have X;g =771Z; 5 [g(®5 ()] and consequently

r 00, [9 (@p ()] =" Y arsZiplg (@5 ()]
I

that is
Ow,; = ZaI,BZI,B-
7

Proof of 2.c. The bound
I[L2 AT ull 2 < cllull g

will be proved as soon as we show that the commutator [a, A®], where a denotes
multiplication by a smooth function a, is of type s — 1, that is

lla, AT ull 2 < elfullgo-i s (8.2)

with ¢ depending on a only through upper bounds on @ and its derivatives. Let
us prove (8.2) for s even integer. Let A be the standard Laplace operator. For
any positive integer h, we have

—

(ARf) (&) = (=1)" eI £ (&)
hence

o —

@) ) = (1+16%) o) =

= _ (,’j) IGE Z (ﬁ) (—1)" (A" ) ()



and i
k
A= <)1hM
f §h< )t anf

is a constant coefficient differential operator of order 2k. Therefore [A%, a} is a
differential operator of order 2k — 1, with coefficients given by a and derivatives
of a of order up to 2k. This proves (8.2), and therefore (4.16), for s even integer.
As to point iv), the same reasoning of point iii) applies. =
Proof of the Theorem. Here we follow the argument in [30], pp.851-2.
Fix tp € (0,T),z0,y0 € R™. While in [30] the Authors only have to care
about the case ty < d (o, y0)2 , we have to handle separately two cases.
i) 4ty < d(z0,y0)*. Making the change of variables t = tys,z = ®p (2), with
B = B (wo,/t0), we see that the function u(s,z) = h(t,z,yo) satisfies, by
Corollary 6.18,

(0s — LE) u(s,2) = 0if [s| <2,]2| <1
e~ Bd(z.y0)?/t e—Bd(x0,y0)* /to

B = B v

because: ’B (z, \/f)’ ~ |B (2o, \/%)‘ since ¢t ~ tg and x € B (20, v/%0) ; d (z,y0) ~
d (z9,y0) since d(zg,yo) > 2v/to > 2d(z,20). Now, apply (8.1) to u choos-
ing o1 = 1 on {3/4<|s] <3/2,]z] <c'},pa = 1 on sprtep;, and sprtps C
(1/2< s/ < 2|2 < 1}

1
lu(s,2)] < c(T) if 5 <[s| <2zl <1

lo1ull o < e (o, 01, 92) [l@2ull 12

hence, for any integer k (applying the previous inequality with o = o (k) large
enough)
] ( ) e—Bd(z0.y0)* /to
wll e r o <c(T k) e
Ck({3/4<]s1<3/2,]z|<c’}) |B (3307 \/%)|

In particular, by Lemma 8.2 ii),

0iXTha (to, zo,0)| = to V2 |82 Z1 pu (1,0)]

—i—ll\/2‘
)

< ct; |ul

CiHI1({3/4<]5|<3/2,]2|<c’})
e—ﬁd(zmyo)z/to

|B (20, Vo) |

< c(T,i, |T)) ;71112

il) 4tg > d (o, y0)2 . With the same change of variables, we see that
1
(0s — LE)u(s,2) =0 ifi <s<2,0z2 < 1.

Note that in this case, conditions d (z,z0) < v/to and 4ty > d(wo,y0)2 allow z
to reach yg; nevertheless, condition % < s < 2keeps t far off 0, so ha (¢, z,y0) is



a solution in the corresponding region. By Corollary 6.18, if % <s<2zl <1

e—Bd(x,y0)?/t
lu(s,2)| <c(T) W
<e) e—Bd(w,y0)?/t <e) e—Bd(wy0)?/t
|B (V)| |B (w0, Vo)
because d (x,20) < /%o implies |B (z, /)| ~ | B (20, V)]
1 e~ B'd(x0,y0)* /to

<c(l)—F——<c(l) ————+

|B (w0, vto) | |B (w0, Vo) |
because 4ty > d (xo, yo)2 . Hence the same argument of case i) can be repeated,
to conclude the proof. The estimates of the derivatives in y follow as in the
proof of Theorem 3, p.852, [30]: we will present this technique in detail in the
proof of next Theorem 9.1. =

9 Uniform upper bounds on the difference of the
fundamental solutions of two operators

In this section we want to prove the following

Theorem 9.1 For A, B € By, let ha,hp be fundamental solutions of Hy, Hp,
respectively. Then, for any nonnegative integer i, couple of multiindices I, J,
and T > 0, we have

|(0i XFXTha — 0, X7 X5hp) (t,2,y)| < (9.1)

—c'd z, 24
<c(i,1,J,T)||A- B t—i—(|1|+|J|)/2M
B (2, V)

for every x,y e R™ ¢t € (0,T).

Proof. It is enough to prove (9.1) when A, B differ for a single coefficient, and
then iterate; so, assume:

Hpo—Hp = (8- a) (XY +YX)

where XY are any two of the vector fields X1, ..., X;,. Due to our assumptions
on the X;’s and the structure of the matrix A € B) (see the Hypotheses in
Section 3), the vector fields X,Y will vanish outside a compact set. Also, we
will write hq, hg, Hy, Hg for ha, hp, H 4o, Hp respectively.

The proof proceeds in three steps.

Step 1. We will prove first (9.1) when ¢ + |I| + |J| = 0. We start noting
that:

Ho (ha — hg) = (Hg — Ho) hg = (o = B) (XY hg + Y Xhg) (9.2)
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where all the fundamental solutions are written as h (¢, z,w), with pole at the
point (0,w). Let T} be the distribution (XY hg) (0, -, w), i.e.

—+oo
T = [ [ hs e w) Y X 40 s
n Jo
+oo
:/ Yohg (¢, 2,w) X (¢, ) dtdx
RTL

0
“+oo
= lim/ / Yohg (¢, z,w) X ¢ (¢, ) dtdx

e—0

e—0

+oo
= lim/ / X, Yohg (¢, z,w) ¢ (¢, x) dtd.
nJe

Let

e—0

+oo
up (1,y) = lim / / Xy Yohg (6, z,w) he (T — t,y, x) dtdz
n e
“+o0

= / Yohg (6,2, w) Xphe (T — t,y, x) dtdz
nJo

We want to show that
Haul - Tl;
i.e.
<U'17 HZQO> = <T1a <)0> .
We have

+oo
/ / uy (7,y) Hop (7, y) dydr
+oo +oo
= / / (/ Yohg (6,2, w) X he (T —t,y, x) dtdx) H:o(1,y) dydr
Y — R JO
“+oo “+oo
= lir%/ / (/ Yohg (6,2, w) Xphe (T —t,y, x) dtdx) H:o(1,y)dydr
=0 Jrn J oo R Je
+o0 +o0
= lim / / </ XoYohg (6, w) by (T — t,y, ) dtd:zc) Hyo(r,y)dydr
=0 Jrn J_ o R Je

+o0 +oo
= lir%/ / X Yohg (t,z,w) </ / ho (1=t y,x) H:p (T,9) dyd7'> dtdx
e nJe nJ—o0

+oo
= lim / / X Yohg (t,z,w) o (T, x) dtde
mJe

e—0
= (T1, )

where we used the fact that
oo
[ hatr =t g () dydr = o (t.0)
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since HY h, (1 —t,y,2) = (4,2 (7,y) . Analogously, if we define

“+oo
u(r,y) = / /0 Yohg (t,z,w) Xphe (T —t,y, x) dtdz+

+
+ / Xahg (t,x,w) Y he (T —t,y,x) dtdx
n O

we find that Hou = (XYhs + Y Xhg) = H, (h;:gﬁ) 50 that v = u— (h;:gﬂ)
satisfies the equation H,v = 0 in the whole space, in distributional sense. Next,

we recall that, for any fixed «, 3,

he — hg
a—p

for any z,y € R™ and t € (0,7) by Corollary 6.18 and Remark 7.4. Here
h stands for the fundamental solution of the operator Hs where A =identity
matrix. We are going to show that u satisfies a similar bound, uniformly in
a, B, for any x,y € R™ and ¢ € (0,7). This implies that:

i) v vanishes at infinity and therefore is identically zero, by the maxi-
mum principle (Proposition 3.6), so u = (ha — hg) / (8 — @);

if)

(t,a;y)’ <c(a,8,T)h(cit,z,y)

hg : ZB (t71',y)‘ = |u (tvxvy” <c (T) h (C1t,:L'7y)
and finally
[(ha = he) (t,2)| < (T) |5~ af h(ct, z,y) 9.3)
< T e—c/d(z,y)2/t
<c(T)|B—al m

for any z,y € R™ and t € (0,7T), again by Corollary 6.18. So, let us prove the
bound for u; analogously one can prove the bound for the whole u. Recall that

uy (1,y) = / / Yiohg (¢, 2, w) Xy he (T — t,y, x) dtdz.
nJo
By Theorem 8.1 and Remark 7.4
[Yohg (t,2,w)] < c(T)t™/2h (cit, z,w) for z,w € R™,0 <t < T.

Also,
Xohe (ty,2) = —=Xzho (8 y,x) + ¢ (2) ha (8,9, )

hence

efcld(zvy)z/t
| Xoha (ty,2)] < ¢ (D)t 2 < e (1)t 20 (ert, y, @)
|B (y. V1)
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for z,y € R",0 <t < T. This implies that
+oo
lur (1,9)| < / / |Yohg (6,2, w) X he (T — t,y, x)| dtde <
R~ Jo

—+o0
sc(T)/ / 120 (eot, 2 w) (1 —8) P hi(ey (T —t),y,2) dtds =
RN JO
=cC (T) / t_1/2 (T - t)_1/2 dt-h (C1T7ya w) =c (T) h (ClTvva)
0

where we used the reproduction property (3.4). This ends the proof of (9.3).
Step 2. Our next goal is to extend this result to:

(0 XTha — 0 X7 hg) (t,2,y)] < e(T2i, 1)) 18 — o t=712h (ert,wyy) . (94)

Here we follow the same technique of the proof of Theorem 8.1.
So, let 4ty < d (o, y0)2 , and make the change of variables t = tps, 2 = ®p (2)
with B = B (mo; \/%) Let

u(s,z) = (ha — hg) (t,2,90) -
By (9.2), we know that, for 1/2 < s < 2,|2| <1,
(05 — L]j) u(s,z) =to(a—B) (XYhg+YXhg) (t,z,90) .
Also, by (9.3), in the same region we have

e—Cd(x,y0)2/t

|B (=, V1)

‘ e*Cd(io,yo)Q/to
"B (20, v0)|

where the last inequality is proved as in the proof of Theorem 8.1, case i). On
the other hand,

u(s,2)] <e(T)[B - af

<c(T)|p

|0iXF (ha = hg) (o, z0,y0)| < 15" (0215 (1,0)] <

—i—|I]/2
Stol |11/ ||uHci_H1|(%<|s\<%;|z|<1)

for o large enough ‘
<ty " lorull

by the uniform subelliptic estimate (4.8), choosing the same cutoff functions as
above

e—cd(zo 0)* /to

< 013 el T s 0 L) e

(6]



But:
@2 (05 — LE) u(s,2) = pato (a — B) (XY hg + Y Xhg) (tos, 5 (2),y0) -
Recalling that, by Lemma 8.2, ii),
(@3'), (X)) = ty*Z; 5

we have:

|Zj.8 [to (XY hg +Y Xhg) (tos, 5 (2) , o)

= 8/ (X, XY hy + XY Xhg) (tos, @5 (2) , 0)
e—cd(z0.y0)*/to
|B (w0, Vo) |

by Theorem 8.1. Iterating this argument, we find that

<c(T

10y Zj,,BZj5,B---Zjy B [to (XY hg + Y Xhg) (tos, ®p (2),y0)]|

k;) e—Cd(zo,yo)Q/to
|B (0, Vto)|

Expressing standard derivatives in terms of vector fields, one has

< c(T,p,

) e*Cd(fo,yo)Z/to
|B (mOa \/%) |

and finally (recalling that o only depends on i, |I|)

ez (9 = LZ) ull . < e(Tio

e—Cd(ﬂCo,yo)2/t0
|B (0, v/t0)|

The case 4ty > d (o, y0)2 can be handled similarly, adapting the proof of The-
orem 8.1, second case.

Step 3. Finally, we come to the estimates on y-derivatives. We start noting
that, if X1, X, ..., X,, are general Hormander vector fields, X; = Y% | bj; (z) 0,,,
then

01X (ha = hs) (to, w0, 30)| < e (T, [1)) "~ ? |a — ]

X7 =—-X;+a; with a; = —ZC% (bji)
i=1

With a slight abuse of notation, here we will write:

Since the matrix A is symmetric, the fundamental solution of HZ is h* (t,z,y) =
h(t,y,z), and

Hp, (i, = hj) (62,y) = (Hj = HY) b = (Lg — Lp) h =
= (a—B){(XYh} +YXhj) +aXhj +bY hj + chi} (t,x,y)
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for suitable smooth functions a, b, ¢ depending only on the vector fields X;; the
fields X, Y and the operator H} act on the x variable. Differentiating the above
identity with respect to 9 XY (which commutes with X,Y, H), we write:

H} (0, XYhy, — 0, XYh%) (t,,y)
= (a—B) { (0} XY XYh% + 0jY X XYh%) +
+ad; X XYh + b0;Y XYy + cO; XY (t,2,y)} .

We only treat the case 4tg < d (o, yo)2 , the other case being similar. With the
same change of variables as above, let

u(s,z) = (8§X§h2 — 8;X§h*ﬁ) (t,z,90) -
Step 2 of the proof shows that

e—Cd(l’O;yo)Q/to

< . —i—|J|/2 . )
|u(s,z)\ 7C(T,Z7‘J|)t0 |5 a' ’B (an\/%)‘

On the other hand

[(BiXFXURE — 0} XFXURE) (to, w0, y0)| < to"? | Z1 pu(1,0)] <

—|I|/2
Scto‘ |/ ||u||cu|(%<|s‘<%,|z|<1)

—|I
< ety " orul 7o

e*Cd(fI/’o’yo)z/to Y B
|B (20, /b)) +ee (2= %),

(9.5)
where we have applied uniform subelliptic estimates (for some o only depending

Scﬂm”{dﬂau>6“m”W—a|

on |I|) to the operator (LZ)B, that is point (iv) of Lemma 8.2. Again Lemma
8.2, and the structure of the operator L}, imply:

po (00— (L)) uls,2) =
= (0= ) {2 (tOI XY XYy + 1o} XXYhj; + aty >0, X XY
b1 205 XYhj + Ol XY ) } (tos, @ (2) o)

This, by the same argument of the first part of this proof, implies that

e—Cd(Zmyo)z/to

H<P2 (35 - (LZ)B> UHHU < C(|f|)tai_m/2 18— «af m

which inserted in (9.5) gives the desired final result. m
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Part II

Fundamental solution for
operators with Holder continuous
coefficients

10 Assumptions, main results and overview of
Part 11

In this part, we will deal with variable-coefficient complete operators, of the
kind:

m

H=0,- Y a;{t2)XiX; - ap(t,) X — ag (t,2). (10.1)
i,j=1 k=1

To exploit the results proved in Part I, we will make the same assumptions
stated in Section 3 on the vector fields and the structure of the matrix of the
coeflicients in the principal part. Moreover, the coefficients a;j, ar,ap will be
assumed globally defined and Hoélder continuous with respect to the parabolic
CC-distance dp; the matrix {aij}ZLj:l will be assumed symmetric and uniformly
positive definite. Under these assumptions (which we will state more precisely
in a while) we will prove the existence of a (global) fundamental solution for
H, satisfying natural basic properties and sharp Gaussian bounds. A precise
list of our results is contained in Theorem 10.7 here below. Before stating it,
we need to introduce some precise definitions, notation and assumptions we will
use throughout Parts IT and III.

Assumptions on the vector fields

We will assume that:
X = (X1,X2,...,Xm) (m=n+q) is a fixed system of Hérmander’s vector
fields defined in the whole R™, and such that

X =(0,0,...,0,0,,, 05y, ., ) in R™\ Qg (10.2)

where ) is a fixed bounded domain.

Function spaces

We start with the following
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Definition 10.1 The intrinsic-derivative along the vector field X; of a function
v(z) at a point zo € R™, is defined to be

Xpu(ao) = 2| v(0)

(if such derivative exists), where vy is the solution to

V(o) = X;(v(0)),  (0) = z0.

Remark 10.2 The reader could ask why, only at this point of the paper, we
need to give a precise definition of the derivative X;v. This fact is related to a
deep difference which exists between Part I and Part II: in Part I we have studied
the differential operator H s with smooth coefficients (being the a;;’s constant),
which is hypoelliptic, hence the functions involved in our estimates were always
C*, and the meaning of the derivative X;v was obvious. In contrast with this,
in this part we will study a differential operator H with Holder continuous coef-
ficients, and will build a fundamental solution for it, which we cannot expect to
be smooth: instead, its degree of reqularity will be the object of a careful study.

We can now introduce some function spaces which will be useful in the
following.

Definition 10.3 Let U C R be an open set. We denote by €2(U) the class of
functions u (t,x) defined on U which are continuous in U w.r.t. the pair (t,z) and
such that u(t,-) has continuous intrinsic-derivatives up to second order along the
vector fields X1,..., X (w.r.t.x, for every fived t) and u(-,x) has continuous
derivative (w.r.t.t, for every fixed x), in their respective domains of definition.

We will denote by d the Carnot-Carathéodory distance induced by the sys-
tem {X;}/", in the whole R"™ and by B(z,r) the balls in the metric d. Moreover
dp will be the corresponding “parabolic-CC-distance”. These distances have
been introduced and studied in Sections 2 and 5. We can introduce “parabolic
CC-Holder spaces” related to dp.

Definition 10.4 For any « € (0,1] and domain U C R [et:

Moy = { ey g+ () €060 £ 09

lullga @y = [ulca @y + 1l Lo 0y

c*(U) = {u: U—=R:ullgaqy < oo}.
Also, for any positive integer k, and domain U C R™ 1, let

ch(U) = {u U =R ull gy < OO}
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with

lullera@y = Do 1100X | o
|T|+2h<k

where, for any multiindex I = (1,142, ..., 1s) , with 1 <1i; < g, we say that |I| = s
and
X = X;, Xy,... X, u.

We explicitly remark that in the definition of C*® we are assuming that the
derivatives of u involved exist as intrinsic derivatives.

Remark 10.5 (Continuity and compactness properties of Holder functions)
Note that, by (2.1), a functionu € C* (U) is also continuous in Fuclidean sense.

For the same reason, all the derivatives O X Tu involved in the definition of C**

are continuous in Euclidean sense. This fact has also the following consequence:

if U is any bounded domain of R"*! and f € C*(U), then f can be continu-

ously extended up to the boundary of U, preserving C* (U) norm. Therefore,

f can be thought as belonging to C'* (U) This fact will be implicitly used is

some compactness arquments. For instance, it allows to apply Ascoli-Arzela’s
theorem to a bounded sequence of functions in C* (U).

Assumptions on the coefficients

Throughout Parts IT and III we will assume that:
the matrix {a;; };njzl has the following structure:

{aij}i ;=0 0
m = .
A= {aij}i,jzl = [ O’L’J ! I, 5 (103)
the functions a;; = aj;, a, ap, are defined on R"™! and satisfy, for some
a € (0,1] and for some positive constants A, K,
q

At \w|2 < Z ai; (t, ) wiw; < A |w|2 Yw € RY, (t,z) € R*!
i,j=1 (10.4)

Haz‘cha(RnH) + llakllca @iy + llaollgagniry < K.

Notation 10.6 Here we collect some notation which will be used extensively
throughout Part II and III.

We shall denote by ¢ any positive constant only depending on X1,...,Xm
and the parameters A\, K, o appearing in (10.4). Moreover, we will write c(f1,..., fp)
if ¢ also depends on f1,..., fp.

The points of R™T1 =R x R™ will be denoted by

z=(a); C=(1.8); n=(s9)
For the sake of brevity, we shall use the notation

B(e,€,1) = | Ble, VO~ exp (—‘““"ff’) . mEERY, 150,
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Main results
We can now state the main results we will prove in Part II.

Theorem 10.7 (Fundamental solution for H) Let H be as in (10.1). Un-
der the above assumptions, there exists a function

h: R x R* - R
such that:
i) h is continuous away from the diagonal of R"*1 x R"*1;
it) h(z,C) is nonnegative, and vanishes for t < ;
iii) for every fived ¢ € R* ! we have
h(Q) € Cd R™IN\{CY),  H (h(50) =0 in R\ {¢};

iv) the following estimates hold for every T > 0,z = (t,z), ( = (1,£) € R* T,
O<t—7<T:

c(T) ' E(z,&, ¢ (t— 7)) < h(20) < (D) E(z,& c(t — 7)),
X5 (A(50)) ()] < e(T) (t = 7) V2 E(z, & et — 7));
XX (h(:0) ()] + 10 (h(:0)) ()] < e(T) (¢ = 7) 7 B2, &, et — 7));

v) for any f € C* (R"+1) , g € C(R™), both satisfying suitable growth con-
dition at infinity (see Theorem 12.1 for an exact statement), T € R, the
function

w(tr)= [ h(t.x:T.€)g(€) de + / Wt x:7.€) f(r,€)dr d

R» [T,t] xR™

s a C’lc;g solution to the following Cauchy problem

Hu=f in (T,00) x R™,
wT,)=g inR"

vi) the following reproduction formula holds

h(t, z;m,8) = | h(t,2;5,y) h(s,y; 7, §)dy,
R’!L

fort>s>71 and x, £ € R™.
Remark 10.8 By Lemma 2.6, we know that
E(z,¢,t) < cE(&, z, ct)
for any x,& € R™,t > 0. Hence the Gaussian bounds in point (iv) of the above

Theorem are not so asymmetric in x,& as it could seem.
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The above theorem collects several facts which will be proved throughout the
following sections of Part II, namely: Proposition 11.4 (Gaussian bound from
above for h), Proposition 11.7 (continuity of h outside the diagonal), Theorem
11.8 (upper bounds on the derivatives of h; h is a solution to Hu = 0 outside
the pole); Theorem 12.1 (solution to the Cauchy problem); Proposition 13.3
(positivity of h); Proposition 13.4 (reproduction property for the fundamental
solution); Theorem 13.6 (Gaussian bound from below for h); Theorem 14.4
(012 _*-regularity of h outside the pole).

The statement of point (v) in this Theorem has been simplified with respect
to the sharper result proved in Theorem 12.1.

Remark 10.9 Our assumptions (10.2), (10.3), as well as the fact that both
the vectors fields and the coefficients are defined on the whole space, are just
made to have a convenient setting to prove the existence of a global fundamental
solution, but are not really restrictive. Namely, assume we have an operator

q q
Hjpe = O¢ — Z a;; (t,2) X; X, — Zak (t, ) X — ap (t,x)

i,j=1 k=1

where X1, Xo, ..., Xq 15 a system of Hérmander’s vector fields defined in a bounded
domain Q of R™, the coefficients a;;,ar,ao are defined and Hélder continuous
in some domain U C R x Q, and the matriz {aij}gjzl satisfies

q
A Hw]? < Z a;j (t, ) wyw; < A lwl*> Yw e RY, (t,z) € U.

ij=1

Then, applying some results proved in Section 2, we will show in Section 19
how to define a new operator H, satisfying all the assumptions we have made
above and such that, in some compact subdomain of U, H coincides with Hj,.,
and the CC-distances of the two operators are equivalent. This fact will allow
to deduce local results for the operator Hy,. from the results we have proved for
our globally defined operator H (see Theorem 19.1).

Overview of Part II and relations with Part I

The proofs of all the results of Part II, that we have collected in Theorem 10.7,
is strictly based on the achievements of Part I. Namely, let
HCO = 815 — LCO = 615 — Z ai’j(ého)Xin (105)
i,j=1

be the operator obtained from the “principal part” of H by freezing the co-
efficients a;; (but not the vector fields X;) at any point {, € R"™!. By the
assumptions we have made above on H, the operator H, fits the assumptions
of the theory developed in Part I; let us denote by h¢, its fundamental solution
(with the notation of Part I, h¢, (2,() = ha (2,() where A = (a;; (Co))z”jzl).

For the reader’s convenience, we now recall the properties of h¢, that we
have proved in Part I, and will play a crucial role in the following.
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Theorem 10.10 (Properties of h¢, proved in Part I) The function he, is
smooth away from the diagonal of R"T1 x R*+1 and

Hey(heo(€)) =0 in R™1\ {(}. (10.6)
Moreover, for every (o € R and T > 0 we have
heo(tz, 7,8)dE =1, ift > 71, x € R", (10.7)
R"L

heo (B, 7,8)de < c(T), if0<t—7<T, £ €R”, (10.8)
R’Vl

heo(tx,7,€) :/ heo(t, @, 8,y)he, (5,9, 7,8)dy if t > s > 71, ,§ € R".
R”'L
(10.9)

The following uniform Gaussian bounds hold: for every T > 0 and for every
nonnegative integers p,q, we have

c(T) 'E(z, &, t — 7)) < hey(t, 2,7, €) < c(T)E(x,&,c(t — 7)),
|

i, X3, (00" ey (7€) (8,2)] < o(T,p,q)(¢ = 7) P+ 2Ba, € et — 7)),
(10.10)

|Xi1 e Xip (at)q (hfo('v’ra 5) - hCl("’n g)) (ta (L’)|
< e(T,p.q) dp(Go, Q1) (t = 7)"PH20PE(2, € et — 7)), (10.11)
ZfO <t—-7<T, .’E,§ € R™ and CU = (T()7§0), Cl = (7—1761) e R+,
We refer to Theorem 3.4, Corollary 3.7, Corollary 6.18, Theorem 7.1, The-

orem 8.1 and Theorem 9.1, for the proof of the above statements (recall also
(10.4)). We remark that (10.8) follows from (10.7) and (10.10), using (2.12).

The above results will be the key ingredient to prove the existence of a
fundamental solution for the operator (10.1), using the Levi parametrix method,
as will be explained in Section 11. Other tools will be the geometric properties
of d proved in Section 2, plus some other miscellaneous properties which we
collect here below.
Some auxiliary estimates
Proposition 10.11 i) There exists ¢ such that

for every B> 1, x,£ € R", ¢t > 0.
ii) For any p > 0, there exists ¢ (u) such that
(A, €)% /)" B, €, M) < (1) M E(w, €, 2)1) (10.13)

for every A >0, z,£ € R", t > 0.
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iii) For any e > 0 and p > 0, there exists ¢ (u,€) such that
t™ E(z,&,t) < c(e, p) (10.14)
for every x,& € R™, t > 0 such that d(z,£)* +t > ¢.
iv) There exists a positive constant § = ¢~ such that, if 0 < u < §/T, then
E(z,&,t) exp(ulé]*) < ¢ E(z, &, 2t) exp(2ulz/?) (10.15)
for every x, £ e R™ and 0 <t <T.

Proof. In order to prove (10.12), it is sufficient to observe that
B, VA)| > 16792 | Ba, /B

by (2.9). Let us prove (10.13). Since max,e(o,oc) s €xp (—5/2) = c(u) < o0,
taking s = d(z,£)?/(\t), we get

(d(, €)% /t)" Bz, € \t) < c(u) N exp (—s/2)|B(x, V)| !
< c(p) M E(z,§,2M),

by the doubling condition (2.8). We now turn to the proof of (10.14). If t > /2,
we use (2.7) and get

R B(x, 6, t) < c(e)t TP 2 exp (—e?/t) < cle, p).
If0 <t <e/2, we use (2.11) and get
1 B(,6,1) < e(e)t ™ P exp (—d(, €)% /1)
< c(e)t 9 exp (—¢/(2t)) < c(e, ).
We finally prove (10.15). From (2.3), it follows that
€l < 2u(la? + |z — €%) < 2plal + copd(, €)*.
Hence, choosing § = (2¢o) ™!, we have cou < (2¢)~! and, using (2.9), we obtain

E(z,¢,t) exp(plé]?) < exp(2p]]*)| Bz, VE)| " exp((cop — 1/t)d(, €)?)
< ¢ E(x,&,2t) exp(2ul|z]?).

Corollary 10.12 If0<t—7<T andt > s > T, then we have
/ E(z,y,c1(t — 9)E(y,&,ca(s — 7)dy < c(T)E(z,&,c(t —7)), (10.16)
for every x, £ € R™. Moreover

/ E(z,{ ct)d¢ < c(T), (10.17)

if0<t<T, zeR".
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Proof. Fixed {; € R"™! and setting c; = max{cy, ca}, from (10.12) and (10.10)
we obtain

E(.’L‘, Y, Cl(t - S)) < CE(.’L‘, Y, C3(t - S)) < C(T)hCO (.’I?, Y, C4(t - S))’

E(yv é-u CQ(S - T)) S CE(yv 57 Cg(S - T)) S C(T>hC0 (yu 67 04(8 - T))

We can now use the reproduction property (10.9) for h¢, and then the esti-
mate from above in (10.10) to get (10.16). Finally (10.17) is an immediate
consequence of (10.10) and (10.8). =

We close this section pointing out the following mean value theorem on X-
subunit paths, which will be useful in the sequel:

Lemma 10.13 For every d-ball B(xqg, 1), € B(xg,r), any continuous function
u such that X;u exists and is continuous in B(xg,r) fori=1,2,...,m, we have

[u(z) — u(xo)] < d(z,z0) max |Xu| (10.18)

zo,T

. o\ 1/2
where | Xu| = (Z¢:1 | X ul ) .

Proof. Fix z € B(x,7), and let € > 0 be such that (1 +¢)d (zo,x) < r; let
be a subunit curve joining xg, x such that:

V) =D N () Xi (v (1)
=1

v(0) =wo; 7(T)=a; T < (1+¢)d(wo,2).
Observe that v C B (xg,r): namely, for any z € v, let 7, be the portion of v
which joins zg to z, v (T;) = z, then
d(zo,2) KT, <T<(1+¢)d(z,x) <
Now, assume for a moment that u is smooth. Then we have
u(z) —u(zo) = u(y(T)) —u(y(0) =
T d T m
- [ Gatona= [ Yxw e (o)
i=1

hence

lu(y) —u(@) < sup  |Xu(z)]-T<(+e)d(zo,x)- sup [Xu(z)]
z€B(xo,r) z€B(z,r)

and, for vanishing e, we have the desired result. If u is not smooth, let u., be
a sequence of smooth functions obtained from u with a standard (Euclidean)
mollification procedure. In has been proved in [7, Proposition 2.2.] that

Xjue, — X;u

uniformly on compact subsets of U, and this is enough to get our assertion in
the general case. m
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Plan of Part II

In Section 11 we build a fundamental solution h for H and prove Gaussian
estimates from above for it; in Section 12 we show how the solution of a Cauchy
problem can be represented by this fundamental solution; in Section 13 we prove
a Gaussian estimate from below on h and a reproduction property for it. The
fundamental solution constructed, so far, possesses only a partial regularity:
space derivatives of h are continuous for fixed ¢, and viceversa. In Section 14 we
prove some regularity results, which allow to show that i belongs to the space
C?? in any region excluding the pole.

11 Fundamental solution for H: the Levi method

The “Levi method” is a classical technique that allows to construct the funda-
mental solution of a variable coefficient differential operator, starting from the
fundamental solution of the corresponding operator with constant coefficients.
This method was originally developed by E. E. Levi at the beginning of 20th
century to study uniformly elliptic equations of order 2n (see [40], [41]) and
later extended to uniformly parabolic operators (see e.g. [27]).

In the context of hypoelliptic ultraparabolic operators of Kolmogorov-Fokker-
Planck type, Polidoro in [48] managed to adapt this method, thanks to the
knowledge of an explicit expression for the fundamental solution of the “frozen”
operator, which had been constructed in [38]. For operators of type (10.1),
structured on homogeneous and invariant vector fields on Carnot groups, no
explicit fundamental solution is available in general. Nevertheless, Bonfiglioli,
Lanconelli, Uguzzoni in [4] showed how to adapt the same method, exploiting
suitable sharp uniform Gaussian bounds on the fundamental solutions of the
frozen operators.

Here we will follow the same line, thanks to the results of Part I. We start
with a brief outline of the scheme of Levi method.

Let us consider the fundamental solution h¢,(z,{) of the “frozen” operator
H¢,; the function z — h¢(z, () is called parametriz. The idea of the Levi method
is to look for a fundamental solution h (z,() for H, which could be written in
the form:

B (2,0) = he(2€) + / [ hafem® o0 (11.1)

for a suitable, unknown kernel @ (z, ¢). This seems reasonable because we expect
h to be a small perturbation of the parametrix, as the integral equation (11.1)
expresses. The following formal computation suggests how to guess the right
form of @ (z,() . If we set

Z1(z¢) = —H (2= he(2,0) (),  z#¢eR™!
and apply the operator H to both sides of (11.1) for z # ¢, we find:

0=—Z1(z;¢) + //nzlzﬁ (n,¢)dn
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This means that ® solves the integral equation

2e0=00- [ [ Acnenos
which, defining the integral operator T" with kernel Z;, can be rewritten as
Zi=1-T7)%
whence, formally,

o0 o0
d = ZT’% = sz.
k=0 k=0

To make the above idea rigorous, we will have to reverse the order of the
previous steps: we will start studying the properties of the function Z;, then
Zy, then ® = 3" Zj,, then

10= [ [ mGnemom

and finally
h(z,¢) = he(z,0) +J (2,0) .
Let us now start this hard job.

Definition 11.1 We set
Zu(z¢) = —H (2 = he(2,0) (), 2# ¢ eR™! (11.2)

and, for every j € N,

Zj+1(z;C)=/Rn - Zi(zm) Zj(m; Q) dn, 2= (t,x), (= (1,€) eR" ' t>7.

Proposition 11.2 For every j € N, Z;(z;() is well defined and satisfies the
following estimate:

1Z(2: Q)] < er(T) bj(a) (¢ = 7) "2 hey (.6 €2 (t = 7)), 0<t—7<T,

(11.3)
for any (o € R*1, where

o= (3) (%)

(here T' denotes the Euler Gamma function, and « is the Hélder exponent ap-
pearing in our assumption (10.4)). As a consequence, the series

O(%¢) =Y Zi(2)

j=1

87



totally converges on the set
{0<t—7<T,dp(2,()>1/T}
(for every T > 0), and satisfies the estimate
1®(2;0)| <e(T)(t—7)2 'E(z,6,c(t—1), 0<t—7<T. (11.4)

Also, we have

B(2;0) = Zu(:0) + / Zy () B (75 ), (11.5)

R7 x[,1]
for every z = (t,x), { = (1,€) e R ¢t > 7.
Proof. Let us prove (11.3) by induction. For j = 1, by (10.6), we have
Zi(z0) = Y (ai(2) — i) XiXshe (- O)(2)

4,J=1

m

+Zak(Z)th<(~,C)(Z) +a0(2)hc(z,<). (11.6)

k=1

Moreover, by (10.4), (10.10) and (10.13), if 0 < ¢t — 7 < T', we have

1Z1(=:0)] < e(D)E(w, & (t = 7)) (dp (2,0 (E=7) 7+ (E =) /2 + 1)

o(T)(t—7)2 ' E(z,&e(t 1))
e(T) (t = 7)% T hey (2,6, ¢t — 7)), (1L.7)

for every (o € R"*!. Assuming now that (11.3) holds for a given j € N, we get

IN A

[ 12 20l dn < e (TP bi(a)
R™ X [7,t]
t .
=9 = [ b gcalt - 9) e (01 cals — D)y
e 1 N ja
=TV by (o) e (o€ (= M) = 1) S [
0

In the last equality, we have used the reproduction property (10.9) of h¢,. Re-
calling the definition of b;(«), we obtain (11.3) for j + 1. Observing now that

the power series
o0

Z bj () w
j=1
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has infinite radius of convergence we get, using again (10.10),
(o)
B(z; 01 <D 1Z5(2: Q)] <
j=1

<(t-7)F g (e (1= 1) Y by(a)er (T)TUD2 <

<.
—

<c(T)(t—71)2YE(x,&c(t—1)).
Finally, to prove (11.5), it is enough to observe that the above computations

also show that the series

oo

Z/ﬂw[m] |Z1(z5m) Zj(n; Q)ldn

j=1

is convergent. Hence

NE

/ Z1(z;m) ®(n; ¢)dn = / Z1(z3m) Zj(n; Q)dn
R™ X [7,t] R x[7,t]

Jj=1

Ziv1(2;¢) = @(2;¢) — Z1(2; ().

o

-
I
A

This ends the proof. m

Definition 11.3 For every z = (t,x), ( = (1,€) € R"L ¢t > 7, we set

S = [ ) @O (118)

and
h(z;¢) = J(2:€) + he(2 Q). (11.9)
We also agree to extend h(z; () to be zero fort < .

Proposition 11.4 The integral in (11.8) is convergent and the following esti-
mate holds, for0 <t—7<T:

[T(z: 01 < e(T) (¢ = 7)% Bz, &, c(t — 7). (11.10)
Moreover, the function h satisfies
|h(z Q)| < e(T) E(z, &, c(t — 7)), (11.11)

Jor every z = (t,z), ¢ = (1,€) e R, 0 < t =7 < T.
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Proof. By means of (10.10), (11.4) and (10.16), we have (for 0 <t —7 <T)

/ [y () ®(n; )| m <
R™ X [7,t]

<olt) [(s=7) 1 [ Blopalt- 9B geals - r)dyds (1112)
<c(T)(t— T)% E(z, ¢, c(t—71)).

This proves the first part of the Proposition. As to h, (11.11) immediately
follows from (10.10) and (11.10). m

To show that the function h actually satisfies the desired properties of the
fundamental solution, we have now to investigate some regularity properties of
the functions Z;, ® and J that we have defined.

Lemma 11.5 For every z,z',£ € R™ and 0 <t —7 < T, we have
‘Zl(t7$;77£) - Zl(t7x/;7_a )|
<c(T)d(x, ") (t—7)57" (B(z,&c(t—7) + B, & c(t—1)).

Proof. If d(z,2’) > v/t — 7, it is sufficient to use (11.7). We then suppose
that d(z,z') < v/t — 7. >From (10.4), (10.10) and (11.6), it follows that (¢ =

(ﬂf)az = (t"r) 2= (t’x,))

Z(%0) = Z1(50) = f_:l(ai’j (2) = ai; (') XiXjhe(2', )
+ f_:l(ai,j (2) = a5, (Q)) (XiXjhe(z, () = XiXjhe(Z',Q))
+é(ak (2) — ar(2")) Xphe (2 +Zak ) (Xihe(z,¢) = Xphe(2,0))
+ (;o (2) = ao(2) he (2, €) + a0 (2) (he(2,€) = he(2',0)) -

Hence,
1Z1(2:¢) = Z1(2; O] < e(T) d(w,2")* (t = 7) " B(/, &, ¢ (t = 7))

tedp(z Z |XiXjhe(2,¢) — XiX;he (7€)
4,5=1

+c(T)d(z,2)* (t —7)"YV2E( &, c(t—7))

+e) | Xihe(2,¢) — Xphe(2,0)]

k=1

+e(T) d(z,2")* E(2',§, ¢ (t — 7)) + c|he(2,0) = he(2, Q)]
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We now use the mean value inequality proved in Lemma 10.13. Recalling also
(10.10), we have

Z |X1th<(z, C) - XinhC(Z/a C)‘
i,j=1

< d(l‘,{l)l) Z 5 max - |XXLXJhC(t77C)|
ij=1 (z,2d(z,z"))

< C(T)d(x7 ;C/)(t - T)_3/2 sup E(7 é-a C (t - T))
B(z,2d(z,x’))

Moreover, recalling (2.9) and using the fact that d(z,z") < v/t — 7, it is not diffi-
cult to see that the above supremum is lower than ¢ E(z, &, c (¢t—7)). Analogous
estimates can be made for Y ;| | Xihe(2,¢) — Xphe(t, 2,7, €)] and |he(2,¢) — he(t, 2/, 7, €)|.
Using again that d(x,z') < v/t — 7, we finally get
|Z1(t,25C) = Zu(t, 25 Q)| < e(T) d(w,2")* (t — 7) T B2’ &, e (t — 7))
+edp(z,Q) d(w,a)(t = )" Bz, € e (- 7))
+e(T)d(x,2')* (¢t —7) 72 E@@, & et — 1))
)t =) PE(x, € e (t - 7))

+c(T)d(z, 2’
+c(T)d(z, 2" )Y E(z',&,c(t —T)
+c(T)d(x,2")E(z,§, ¢ (t — T))

<c(T)d(z,z)2 (t—7)57 1 [B(r, &, c(t—7)) +E(z,& c(t —71))].
]
Proposition 11.6 Let T > 0. We have
|D(t, x;7,&) — D(t, 2’57, )| (11.13)
< c(T)d(z,a")% (¢ —7)T7! (Ble,& c(t— 1))+ E(@' & c(t - 1)),

for every xz,a',£ € R", 0 < t —7 < T. Moreover, ®(-;¢) and ®(z;-) are
continuous functions in their domains of definition.

Proof. >From (11.5), (11.4), Lemma 11.5 and (10.16), it follows that

[©(t,2;7,§) — (¢, 25 7,8)|
S |Zl(t7x;7—, E) - Zl(tax,;Tv £)| +

b el mis ) - Ztalis )| dds
R™ X [T,t]
¢
<|Zi(t,z;7,&) — Z1(t,2"; 7, &) —|—c(T)d(m7x’)%/ (t—s) 1Hi(s— 7)1+,

B els = 1) (B (- 5)) + B!,y (¢ - )] dyds
< (e, ) (¢~ 1) [Ble, & ot =) + B, (=),
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which proves (11.13).

We now turn to the proof of the last statement of Proposition 11.6.

Since (11.13) and (10.14) hold, in order to prove the continuity of ®(-; (), we
only have to see that ®(-, z; () is continuous. This will follow from the continuity
of Z;(-,z;¢), j € N. For j =1, such continuity follows immediately from (10.4)
and the definition of Z;. We now fix j € N and prove that Z; (-, 2;() is
continuous at tg > 7. We have

| Zj1(t, 25 C) — Zj1a(to, z; Q)]

to—9

<[ [ 1Z6w0l Atmisy) - Zitas)lduds
t

[ 126,50 2ty
to—0 n

to
—l—/ / |Z;(s,y; Q) Z1(to, x; 5, y)|dyds.
to—§ n

By using (11.3), (10.9), (10.10) and (10.14), it is easy to see that the last two
integrals in the right-hand side are small if |t — tg] < § and § is small enough.
On the other hand, from (10.4), (10.10), (10.14) and (11.6) it follows that, for
[t — to] < /2 and for every s € (7,t9 — d), we have

|Z1(t07$; S,y) - Zl(ta Zz;s, y)|

< Z [laij(to, z) — aij (t,2)] | XiX ks, (to, x,5,y)| +

ij=1

+ |a’ij (t,l’) - aij(s7y)| |Xinh(s,y)(thx,s7y) - Xinh(s,y)(taxa Say)H
+ Z Uak(toam) — Gk (t,$)| }th(s,y) (to,ﬂ?, Say)|
k=1

+ |ak (tv x)‘ |th(s,y)(t0a z,s, y) - th(s,y)(ta z, s, y)H
+ |a’0(t0a 33) — Qo (t,.’E)| |h(s’,y) (t()vmv Svy)|
+ |a0 (t7 .’L‘)| |h(s,y) (th z,s, y) - h‘(s,y) (ta €, s, y)|

m
< c(to,7,0) <|t —to|® + |t —to] + Z lak(to, z) — ak (¢, 2) | + |ao(to, @) — ao (¢, ) |>
k=1

= c(to, T, 0)ery,z (1),

where ¢, ,(t) vanishes as t — ¢y, recalling that ay,ao are continuous. In the
last inequality we have used (10.10) and (10.14) in order to get
|X1X]h(9,y) (th Z, s, y) - XZth(s‘,y) (tv Z,s, y)|

<[t —to| sup |9 XiX;h(sy (52, 8,y)|
t*€(to,t)

< c(to, 7) [t — tol(t” — 5) °E(z, y, c(t* — 5)) < e(to, 7,0)[t — tol
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and to find analogous estimates for | Xyh(, ) (to, z, 5,y) — Xih(s4)(t, z,s,9)| and
1P (s, (to, 2, 8,y) — hsy(t,2,5,y)]. As a consequence, using also (10.8) and
(11.3), for |t — to] < §/2 we obtain

to—9

to—9

/ / 1Z;(s,y: Ol [ Z1(to, @5 8,y) — Za(t, @35, y)|dyds
T Rr

< clto,7.0,5) i) |

(s — T)flejTa (
to—9

S C(t()vTv 57]) htm‘r(t)/ (S - T)_1+j7a S S C(to,’]', 67.7) hto,m(t)'

T

hO(y7 ga C(S - T))dy) ds

Rn

In this way the continuity at ¢y of Z;11(-, x;() is proved.

We are only left to prove that ®(z;-) is continuous. To this end, it is sufficient
to show the continuity of Z;(z;-) for every j € N. For j = 1, it is easy to see
that Z3(z;-) is continuous by using (11.6), (10.4), (10.11), and (10.14). One can
then prove the continuity of Z;(z;-) by induction, showing that Z;11(z;-) is a
uniform limit, as ¢ — 07, of the continuous functions

(= (1,8~ Z1(z3m) Zj(n; ¢)dn,
R™ X [T+0,t]

on the compact subsets of R x (—o0,t) (by using the estimates (11.3), (10.10),
(10.14) and (10.7), see also the proof of Proposition 11.2). m

Proposition 11.7 The function h is continuous away from the diagonal of
R+ x R*HL,

Proof. The function h(z;() is obviously continuous in the set {t = 7, x # &},
since, when xg # &, (11.11) and (10.14) give

E(z,&,c(t—171)) <c(zo,&)(t—7) =0

as (t,z,7,&) — (x0,t0,&0,t0), t > 7. Therefore, we only have to prove that h is
continuous in the set {t > 7}. Let us show that the function (z;¢) — h¢(2;()
is continuous away from the diagonal {z = (}. Namely,

hC(Z; ¢) - he, (215¢1) = [hC(Z; ¢) - he, (2 C)] + [hCl (2:¢) — he, (213 Cl)] :

The first term vanishes as z — z; by (10.11) and (10.14). The second term
vanishes as (2;() — (z1; (1) since he¢, (+;-) is smooth outside the diagonal (recall
that t > 7).

To complete the proof, it is enough to show that J is continuous in {¢t > 7}.
This can be done by showing that the functions

Jo(2;¢) = / hay(z3m) @(n; C)dn
R” X [t+0,t—0]

are continuous and converge uniformly to .J, as ¢ — 0T, on the compact subsets
K of {t > 7}. The continuity of J, follows from the continuity of A, and of
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®(n;-) (see Proposition 11.6), by dominated convergence, observing that, as
(Z’C) - (Z0>CO) S K7
X(r+0o,t—0o) (S)|h’7] (Z, 77) (I)(na C)| < C(K’ 0) exp(ic(K)ild(xa y)z)X(‘rg,to) (S)

< c(K,o0) exp(—c(K)_l|y|2)x(mt0)(s) € Li(R")
(xr1 denotes the characteristic function of I). Here we have used (10.10), (11.4),

(10.14), (2.11) and (2.3). On the other hand, for every K € {t > 7}, arguing as
in (11.12) and using (10.14), we obtain

T+0o t
sup [J, — J| < sup (/ +/ )/ |hun(23m) @ (15 €) | dy
K (z,0)eK T t—o R

<c(K) sup E(z,&c(t—1)) </TT+U+/;U> (s—7)"1*% ds

(z,0)eK
<c(K)o*? — 0,

aso—07. m

To prove that Hh (-,¢) = 0 in R**1\ {¢}, we now turn to the study of differ-
entiability properties of the function h. Although our final goal is to show that
h(-,¢) e Ch™ (R"T1\ {¢}) , as a first step we shall show that & (-, () belongs to

loc

the larger function space €2(R"*1\ {¢}), that we have introduced in Definition
10.3.

Theorem 11.8 For every fized ¢ € R*!, we have
h(5¢) € RN}, H(h(5¢)) =0 in R"T\ {C}. (11.14)
Moreover, the following estimates hold for 0 <t —7 <T':
15 (h(5.0)) ()] < (T) (t = 7) "2 E(e, & e(t — 7)); (11.15)
XX (A5 0)) ()] + 10 (A(:0)) ()] < e(T) (¢t = 7) 7 Bz, &, ¢t — 7))
In the proof of Theorem 11.8 we shall use the following simple fact:

Lemma 11.9 Let (u;)ien be a sequence of continuous functions, defined on an
open set A C R™, with continuous intrinsic-derivative along X;. Suppose that
u; converges pointwise in A to some function u and that X;u; converges to some
Sfunction w uniformly on the compact subsets of A, asi — oo. Then there exists
the intrinsic-derivative of u along X;, X,u(z) = w(x), for every x € A.

Proof. For any fixed € A, let v : [-T,T] — A, 7v(0) = z be an integral curve
of X; passing through x. Define the following functions of ¢ € [T, T:

i) =uwi(y@); f @) =u(y();9() =w(y ().

By definition of intrinsic-derivative we also have:

fi (8) = (Xjua) (v (£) 1 £ (1) = (Xju) (v (1))
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and, by assumption, f; — f pointwise and f; — ¢ uniformly in [-T,T]. Then
there exists f' (0) = ¢ (0), that is there exists

Xju(z) = w(z).
]
The main step in the proof of Theorem 11.8 is the following lemma.
Lemma 11.10 For every fived ( = (7,€&) € R+,
J(5¢) e ({z=(t,z) eR" it > 7))

and we have

X GOV = [ Kb ®l0: O (116

XX, (J(5)) (2) = lim XiXjho(2,m) ®(n; Ody, (11.17)

e—=0% JRnx[r,t—e]
21 (J(50) (2) = @(z: ) + lim Doz, m) O ). (11.18)
e=0% JRn x[r,t—e]
Moreover, the following estimates hold for 0 <t —7 <T':
X5 (J(50)) (2)] < elT) (t = 1) D2 E(w, €, ot — 7). (11.19)
|X: X5 (J(50)) (2)] + 10¢ (J(+5€)) (2)] (11.20)
<c(T)(t— r)(e=2)/2 E(z, ¢, c(t—71)).
Proof. The continuity of J(+;¢) has been proved in Proposition 11.4. In order

to prove that there exist the intrinsic-derivatives in (11.16) and (11.17), we shall
use Lemma 11.9. Let us set

K0 = [ ) @O (11.21)

so that J. pointwise converges to J, as ¢ — 0F. Making use of (10.10), (11.4),
(10.14) and (10.8), it is not difficult to see that J.(t, -; ¢) has continuous intrinsic-
derivatives up to second order along the vector fields Xi,...,X,,, obtained
deriving (11.21) under the integral sign. In order to prove (11.16) it is then
sufficient to show that

sup / | X (2,m) @(n;¢)|dn — 0, ase— 0",
z€R™ JR™ x [t—e,t]

This is an easy consequence of the estimates (10.10), (11.4), (10.16) and (2.11).
Indeed the above supremum is bounded by

c/t (t— 5)71/2 (s — T)_l+a/2 sup /n E(z,y,c1(t — s))E(y,&, ca(s — 7))dyds

—€ rER™
< c(t,7)e"/? sup E(x, &, c(t — 7))

zeR”
< c(t,7)et? sup |B(z,c vVt —7)|7t < c(t, )t/ (11.22)
zeR”

95



By Lemma 11.9, in order to prove (11.17), we now only have to show that there
exists the limit in (11.17), uniformly in z € R™. To this end, let us consider the
integral

I= / XiXjhy(t,z,s,y) ®(s,y;7,8)dy, T<s<t
Using (10.10), (11/]11%)/ and (10.16), it is easy to see that
1] < e(T) (t— )L (s — 7) "2 B, €, ¢t — 7)). (11.23)
Moreover, for every fixed yo € R", we have I = I; + I + I3, where
I = /Rn XiXjhy(t, 2, 5,y) (2(s,5;¢) — B (5,905 ())dy,

I = (D(Sa Yo; C)/R X’in (h(s,y) - h(s,yo)) (t7 z,s, y)dy7

IS = (I)(SayOaC)/ Xinh(s,yg)(t7$757y)dy'
R'ﬂ
Since
. R(syo) (7, 8,y)dy = 1

by (10.7), differentiating the integral we obtain I3 = 0. This is possible in view
of (10.10), (2.11) and (2.3), which ensure that

| X5 s0) (B T, 8, 9)|5 [ Xi X5 his yo) (B, 2, 8,9)]
< (s, 7)E(z,y,c(t — 5)) < c(s,7) exp(—c(t, 5) "z —y|?).

We now choose yp = = and we estimate I, I5.
Making use of (10.10), Proposition 11.6, (10.13), (10.16), and (10.17), for
0 <t—7 <T we obtain

L) (=9 =0 [ dwy)? Byl - 5):

: (E(yagv C(S - T)) + E(:C,f,C(S - 7))) dy
<e(r) (t= 9= 7)1 (Blocls =) [ By ol - )y

+ [ Bl ols = 1) Bloaclt - )iy
< efT) (1= 3)(s — 7)) (B8 et 7)) + Bl & els — 7).

(11.24)
Using (11.4), (10.10), (10.11), (10.13) and (10.17), we obtain
bl < o(T) (s — 1) ”2E@57@—T»
e (=) Bl — ) dy
<c(T)(t—s)"2 (s —7)7 12 B(x, &, ¢(s — 7). (11.25)
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Collecting the above estimates and recalling (10.12) we finally obtain
11| < e(T) ((t=7)(t — )" B, & et — 7)), (11.26)
ifo<t—7<T, TTH < s < t. Recalling also that

sup E(z,&,¢c(t —71)) < c(t, 1)
xeR™

(see (11.22)), it is now easy to recognize that the limit in (11.17) exists and it
is uniform in z € R™.

In order to conclude the proof of the first statement of Lemma 11.10, we are
only left to prove that J(-, z; () has continuous derivative given by (11.18). To
this end, it is sufficient to show that J.(-,z; ) has continuous derivative, given
by

0L (t,:0) = [ B (bt = 2,9) B¢~ 2,33 C)dy
RTL
+ / ath(s,y)(taxasay) (I)(S,y,C)dde (1127)
R™ x [T,t—¢]
and that

up ]¢><z;c) -/ h@6,y><t,x,t—ay)@(t—s,y;ody] 0 )
te K n

t
sup/
teK Jt—e

as e — 07, for every K CC (7,00).
We have

7 (Je(t+ hy;¢) = Jo(t, %3 C))

t—e+h
:/t %/R" hs, ) (t+ h,x,5,y) (s, y; ¢)dyds

Deh o (b2, 5,1) (s, y: ody\ ds — 0, (11.29)
R"L

+ /R Lol b = b)) SO dn. (1130
nx|r,t—e

The second integral in (11.30) converges (as h — 0) to the second integral
in (11.27), by dominated convergence (use the mean value theorem and recall

(10.10), (10.14), (11.4), (10.8)).
The first integral in (11.30) is equal to

1
/ / h(t—e+rh7y) (t + h7 z, t—e+ Thv y) (I)(t —e+ Thv Y C)dydr,
0 n

which converges to the first integral in (11.27) (as h — 0) by dominated con-
vergence, as one can easily recognize, using (10.10), (10.12), (10.17), (11.4),

97



(10.14), (10.11) and Proposition 11.6. This proves (11.27). Using the proper-
ties just recalled, it is also easy to see that 9;J.(z, ;) is continuous, again by
dominated convergence. We now prove (11.28) and (11.29). Recalling (10.7),
the supremum in (11.28) is bounded by S; + Sz + S5, where

Sl = tsullg/ ’(h(tfs,y) (tw%'ut - 572/) - h(tfs,z)(tﬂmt - an)) q)(t — &Y C)’ dy7
e "

Sy = tsu}g/ hit—ez)(t,x,t —e,y) |O(t — €,y;¢) — P(t — &, 2; ()| dy,
e n
Sy =sup |®(t — e, x;¢) — ®(t,2:¢)|.
teK

>From the continuity of ®(z,-;() (see Proposition 11.6), we infer that S5 — 0,
as € — 07. Using (10.11), (11.4), (10.14), (10.13) and (10.17), we obtain

S <e / d(,y)* B(z,y,ce) (t— &) T2 By, £ c(t— e — 7)dy

<c(K,7)e? / E(z,y,ce)dy < c(K,7)e?.
Hence S; — 0, as € — 07, In a similar way (exploiting (10.10) and Proposition
11.6), one can see that also Sy vanishes as ¢ goes to zero. This proves (11.28).
The proof of (11.29) closely follows the lines of the proof of (11.17) and therefore
is omitted.

We finally turn to the proof of the second statement of Lemma 11.10. The
estimate (11.19) can be obtained arguing as in (11.12). Moreover, from (11.23)
and (11.26), it follows that

1Xi X5 (J(550)) (2)]
<c(T)E(z, & c(t— 7))

(t+7)/2 t X
' (/ (t*S)’l(S*T)’”%ds+/ (t—s)(t—7)) 'F7% d,;)

(t47)/2
< C(T) (t - T)71+% E(x7§7 C(t - T))

The estimate of 9;J(z, -; ) is analogous (also recalling (11.4)). m

Proof of Theorem 11.8. By means of Lemma 11.10 (and recalling (10.10)
and Proposition 11.4), we only have to prove that H(h(-;{))(z) =0 for ¢t > 7.
We explicitly remark that, by (10.14),

(t=7)"E(x,€, ¢t — 7)) < e(d)(t—7)

if d(x,£) > § > 0, t > 7: this allows to recognize that h(-,z,7,¢) € CY(R) if
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x # &. Making use of (11.8), (11.16), (11.17) and (11.18), we obtain
H (h(-:0)) (z) = H (he(5€)) (2)
+ lim H (hy(5m)) (2) @(; Q)dn + @(2; ()

=0 Jrnx [7,t—e]

=4O [ AG R Od 20 =0

by means of (11.2) and (11.5). This completes the proof. m

12 The Cauchy problem

The aim of this section is to prove the following theorem.

Theorem 12.1 There exists a positive constant 6 = ¢~ such that the following
statement holds for every pu > 0 and Tb > T satisfying

(Tr = Th)p < 6.

Given a continuous function f (t,x) on [T, To] xR™, locally d-Hélder continuous
in x, uniformly w.r.t.t, and given a continuous function g(x) on R™, satisfying
the growth condition

|f (t,2)], lg(x)| < M exp(p|z]*)

for some constant M > 0, then the function

u(ta) = [ wese T o©de+ [ htwn frededs

[Ty ,t] xR"
belongs to the class
(T, Tz) x R") N C ([T, Ty] x R™)
and is a solution to the following Cauchy problem

Hu=f in (T1,Ty) x R™,
w(Ty,) =g inR™

Remark 12.2 As we will see in Theorem 14.4, if f € C}. (in the sense of
Definition 10.4), then u € ClQO’?.

We split the proof of Theorem 12.1 in some lemmas.

Lemma 12.3 The statement of Theorem 12.1 holds if f = 0.
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Proof. We only prove that u (¢,z) — g(z¢), as (¢, z) — (T1,x0), for every fixed
zg € R™. The other properties of u easily follow from Proposition 11.4 and
Theorem 11.8 observing that, if T} + 0 <t < T5, ¢ > 0, then for any operator
De {Xj,X,’Xj,at,Id} we have

|Dh(’ Tlv f) (t’ {L') g(£)| < C(U7 9, ,U,)E(il,', 57 C(t - Tl)) exp(,u|§|2)
< c(0, g, p) exp(p([¢]* — () 1d(z,€)?))
< C(Uagwu’) EXP(M(K‘Q - 2|.’IJ - £|2))7

by (10.12), (2.11) and (2.3), if ¢ is chosen small enough.
Making use of (11.9) and (10.7), we can write

lu(t,z) —g(zo)| <L+ 1o+ I3+ Iy + I,

where

h=[ T g,
d(z0,8)>p
B= [ Enl
d(xo,8)<p
I3 = / |(h(T1,E) (Z; T17£) - h(Tl,zo,)(z;Tlag)) g(§)| d§7
d(xo,8)<p
14 :/ |h(T1,$o)(z;T17§) (g(é)—g(mo))’df,
d(z0,§)<p

I5 = [g(o) | W1y o) (23 T, €)| dE
d(z0,§)>p

and 0 < p < 1, d(z,2z0) < p/2 and 0 < t —T7 < 1. From (11.10), (2.3) and
(10.17) we get

I, < c(g,x0)(t — T1)*/? / E(z,& et — T1)) d < c(g, o) (t — T1)*/?,
d(zo0,6)<p

which vanishes as (t,z) — (11, zo). Moreover, if p = p (¢, 2o, g) is small enough,
we have

I < (g, o) / A0, €)°B(x, €, et — T1)) d€ < c(g, 20)" < .
d(x0,8)<p

by means of (10.11), (2.3) and (10.17), and
L<e | Bt —T)lg(e) - oloo)lds < ee,
d(z0,§)<p

by means of (10.10), and (10.17). Finally, using (11.11) and (10.10),

L+ Is < (g, z0) / o Bl Eelt 1)) explp) e
ZTo,5)2pP
< clg.paonp) | exp (s = (et = 1) o - ) de
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which vanishes as (t,z) — (T1,20). In the last inequality we have used (10.13),
(2.11), (2.3) and the fact that d(z,zo) < p/2, in order to estimate

t—1,

Q/2
E(z,{,c(t—-T1)) <c (d@,g)?) E(z, & c(t —Th))
c(p)(t = T1)¥*E(z, &, c(t — Th))
(p) exp(—(c(t — T1)) " 'd(,€)?)
(p) exp(—(c(t — T1)) |z — &)

ININIA

c
c
This completes the proof. m

Lemma 12.4 Let > 0 and Ty > Ty be such that (To — T1)p is small enough.
Let f (t,x) be a continuous function on [Th, Ta] x R™, locally d-Hélder continuous
in x, uniformly w.r.t.t, satisfying the growth condition

|f (t,2) | < M exp(ulz]?)

for some constant M > 0. Then the function
Vi = [ hmidn s= (6 e DT xR (12)
[Tl,t]X]Rn
belongs to the class €2((Ty, Ty) x R™) N C([T1, Tz] x R™) and we have

B =)= [ i 2= () € (0T xR (122

Proof. V; is well-posed since, by means of (10.10), (10.15) and (10.17), we have
(we use the notation z = (¢,x), n = (s,y))

\hy(z,m) f ()| < (T1, Ta, f, ) E(m,y, co(t — s)) exp(uly|®)

<
< C(Tla Ty, f? LL)E(Q?, Y, QCO(t - 8)) exp(2,u|m|2) € L:]((Tlv t) X Rn)

Using the estimate (10.15) in a similar manner and following arguments similar
to those in the proof of Lemma 11.10, one can see that V has the required
regularity and

X;Vy(2) = / X (z,m) f(n)dn,
[Tl,t] xR™

XiX;Vi(z) = lim XiX;hy(z,n) f(n)dn,
e=0" JI1y t—e]xRn
O Vy(z) = f(z) + lim Oihy(2,m) f(n)dn.

e=0T J Ty t—e] xR7

Recalling the definition (11.2) of Z;, we obtain (12.2). m
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Lemma 12.5 Let > 0 and Ty > Ty be such that (To — Th)p is small enough.
Let f be a continuous function on [Ty, Ta] x R™, satisfying the growth condition

|f (t,2)] < M exp(p|z])

for some constant M > 0. Then the function
for= [ samidn s= (o) e T xR (123)
[T1,£] xR™

is continuous on [T1,Ta] X R™. Moreover, f 1s locally d-Holder continuous in x,
uniformly w.r.t. t, and satisfies the growth condition

£ ()| < M exp(2p|z]?)
for some constant M > 0.

Proof. The growth estimate of f immediately follows from (11.4), (10.15) and
(10.17). The Holder continuity easily follows from Proposition 11.6, (10.15) and

(10.17). We only need to prove that f(x,-) € C([T1,Tz]) for every fixed x € R™.
We have

Fe+ o)~ Feo| < [ (@t ) — B(t, ) £ )|

[T1,t—0] xR™

+/ @@+MameWM+/ (¢, 27) ()] dn.
[t—o,t+h]xR™ [t—o,t] XR™

The first integral in the right-hand side vanishes as h — 0, by dominated conver-
gence, by making use of (11.4), (10.12), (10.15), (10.17) and Proposition 11.6.
On the other hand, the other two integrals are smaller than c(f, u, z)(o + h)®/?
and c(f, u, x)0®/? respectively, again by means of (11.4), (10.15) and (10.17).
[

Lemma 12.6 The statement of Theorem 12.1 holds if g = 0.

Proof. We set
w=V;+Vz

where [ is defined by (12.3) and V¥ is defined by (12.1). From Lemma 12.4 and
Lemma 12.5, it follows that

w e @2((T1,T2) X Rn) n C([Tl,TQ] X Rn)
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and we have (using the estimates (11.7), (11.4), (10.15) and (10.17))

o) = 1G) = [ (0 - 8(E0) SO

- / Z(z1) < / ;) £(C) d<> dn
[T ,t] xR™ [Th,s] xR™

- f(Z) - /[Tl,t]xR”

since the expression [...] in the last integral vanishes by (11.5).
It is now sufficient to recognize that w = u:

we =i+ [ 50 ( [tz a0 n> &

- / £(0) (he(5 Q) + T (.0)) dC = u(2).
[Ty ,t] xR™

Z1(2:¢) — B(2:C) + /

[T, t] xR™

Z1(z;m) ®(n; C)dn] f(Q)d¢

This ends the proof. =
Proof of Theorem 12.1. It directly follows by Lemma 12.3 and Lemma 12.6.
]

13 Lower bounds for fundamental solutions

We begin with the following weak maximum principle for H in the class €2,
which is a consequence of the results in [7].

Theorem 13.1 Let U be a bounded open subset of R"t! and let ty € R. If
uwe C(U), Hu <0 in UN{t < to}, limsupu < 0 in OU N {t < ty},
then w <0 in UN{t < to}.

Proof. The scheme of the proof is classical. The new difficulty is due to the
“weak regularity” of u, namely u € €2(U). Let us show that 4 < 0 in

Ur = Uﬁ{t <T},
for every T' < ¢y, by proving that
ve (1) = (u(t,) — 2g(t)) exp(—2Kt) <0

in Up for every € > 0, where

2K R?
), R=  max [t—1|
T—t (t,2),(t' ') €T

g(t) = exp(
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(K has been introduced in (10.4)). Let z € Up be such that supyny, ve =
supy,. ve for every neighborhood V' of Z. If z € Ur, then we immediately get
ve < 0in Ur, since limsupve < 0 in OUr, by the definition of v., the continuity
of w and the hypothesis on lim sup u (we stress that u is continuous in the pair
(t, ), by the definition of €?). Suppose now that Z € Ur. Then Z is a maximum
point of v in Ur. We can then use Proposition 2.4 in [7] and obtain

vaf(i) = 0 ] = ]- m, 8{1‘}6(7) = 07
doim1 XiXjve(Z )wzwj <0 VweR™.

Since (a;,;(Z)),; is positive definite (see (10.4)), we get

m

> i j(2)XiX;v:(%) < 0.

ij=1
Therefore (recalling the definition (10.1) of H),
Huv.(Z) > —aop(Z)ve(Z). (13.1)

On the other hand, recalling that |ag] < K (see (10.4)) and using the hypothesis
Hu <0, we also have

Hu.(2) = exp(~2K7) (Hu(z) — = (¢ @) — a0(2)g(D)) — 2K0.(2)  (13.2)
< exp(~2K7) (= (¢/ @) ~ Kg(D))) — 2K.(2).

A direct computation gives:

2K R? 2R2
' Kg=g¢g —" _ _Kg=Kg|—— -1|>K
g-Kg=9- 7z~ Ks 9<(T_t)2 >_ g

since (T —t)° < R2. Inserting the last inequality in (13.2), by (13.1) we have
—ag(Z)ve(Z) < —eKg(t) exp(—2Kt) — 2Kv.(Z).
As a consequence,
1:(Z)(a0(Z) — 2K) > exp(—2Kt)eKg(t) > 0

and ve < v.(%Z) < 0 in Ur. This completes the proof. m
The following version of the weak maximum principle in infinite strips easily
follows from Theorem 13.1.

Corollary 13.2 Letu € €((Ty, Tz) x R™) be such that Hu < 0 in (11, Tp) x R™
and limsupu < 0 in {T1} x R™ and at infinity. Then u <0 in (T1,Ts) x R™.

Proof. Fix ¢ > 0 and find R, > 0 such that

sup u(z) < eexp(KTh)
|Z|ZRE
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(which is possible by our assumption on limsup at infinity). Apply Theorem
13.1 to the function u — e exp(Kt) in the set

Ca,p:{zE(TlaTQ) X R™ |Z‘ <p+RE}
(for some fixed p € R). Recalling that ag < K by (10.4), we have
H (u—eexp(Kt)) = Hu+ (ag — K)ecexp(Kt) < Hu <0

so that
u —eexp(Kt) <0in Cg ).

Lettin p go to infinity and e go to zero, we get the assertion. m
Using Corollary 13.2 we can prove the following

Proposition 13.3 h is a nonnegative function.
Proof. We fix g € R", tg > 79 and we set
v = h(to, Zo; 7o, ).

We will show that fRn vg > 0, for every non-negative test function g € C5°(R").
By the continuity of v (see Proposition 11.4), this will imply the assertion.
Recall that v € LY(R™), by (11.11) and (10.17). From Theorem 12.1, it follows
that

u(e) = [ b€ g(©)de

belongs to the class €2({t > 79}), Hu = 0 in (79,00) x R" and u — g > 0 for
t — 79. Moreover, using the estimate (11.11),

swp [ult,a)| < (g, to, 7o) / sup  B(a, & colt — 70))de

To<t<to+1,|z|>R suppg To<t<to+1,|z|>R

< c(g,to,70) exp(—c(to,To)_le) — 0, as R — oo.

In the last inequality we have used the fact that, if £ € suppg and |z| is large
enough, then d(x,£) > ¢! (see (2.3)) and (2.9), (10.14) give

E(LL', 3 CO(t - TO)) < E(.’L‘, & 2C0(t - TO)) exp(—(2c0(t - TO))_ld(xa 5)2)
< coxp(—c(to, 1) LF?).

Therefore u goes to zero at infinity in the strip (79,0 + 1) x R™. We now apply
Corollary 13.2 and obtain w > 0 in (79,0 + 1) x R™. In particular, we get

Jgn vg = u(to,20) > 0. m

Proposition 13.4 (Reproduction property for the fundamental solution)
We have

n

h(t,x;7,&) =/ h(t,x;s,y) h(s,y; 7,€)dy,

fort>s>71and x, £ € R".
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Proof. We fix 7,£, s as above and we set

U= & h’(v Say) h(S,y, 7, g)dya v = h’(a 7, 5)

>From Theorem 12.1 it follows that (for T > T7 = s)
u € 62((3,T2) x R™")NC([s, To] x R™),

Hu=0in (s,T2) x R™ and u (s,-) = v (s,) (note that v (s,-) is continuous and
bounded, by Proposition 11.4 and (10.14)). On the other hand, from Theorem
11.8, we know that v € €2(R" T\ {(7,€)}), Hv = 0 in R**1\ {(7,€)}. Thus,
we only need to show that

sup lu(t,z) —v(t,z)| — 0, as R — oo, (13.3)
s<t<Ty,|z|>R
in order to get u = v in (s,T3) x R™ from the weak maximum principle in
Corollary 13.2. Let us prove (13.3). Using the estimates (11.11), (10.16), (2.11)
and (2.3), we see that the supremum in (13.3) is lower than

o(Tnr)  sup (E<x,5,c<t—f>>+ / E(m,y,c%t—s>>E<y,s,c"<s—T>>dy)

s<t<Ty, |z|>R

n

d2(%£)>
<c(Ty,T5,7) sup exp | —
S (1 2 )|x|>PR p( C(TQ,T)

Iw—€|2>
<c(Ty,T5,7) sup exp | — — 0, as R — oo.
<c(Th, Ty )Iw\>pR p( (T2, 7)

(]
The following lemma is the main step in the proof of the lower bound of h.

Lemma 13.5 There exists a positive constant § = ¢~ L, such that
h(t,z;7,€) > ¢ Bz, &, ¢ (t - 7)),
if0<t—7<d and d*(z,£) <3 (t—7)|log(t —7)|.

Proof. Let 0 < t—7 <& < 1 and d*(z,£) <4 (t —7) |log(t — 7)|. From (11.9),
(11.10), (10.10) and (2.9) it follows that (z = (¢,x), ¢ = (7,£))

h(2;¢) = h¢(z0) + J (% C)
> cgl E(x,{,cfl(t —7))—ca(t— 7)% E(z, &, c3(t — 7))

> ey E(x, & e (t— 7)) (1 —cy(t—1)% exp <01 d?@,g))) .

t—T

We now choose § < min{1, 32, (2c4)~%*} in order to get
ci(t—7)% exp (01 d*(x,€)/(t — T)) <c t—7)2 0 <ey(t—1)7 < %
This completes the proof. m

We are now in position to prove the main result of this section.
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Theorem 13.6 (Lower bound for the fundamental solution) For every T >
0, there exists a positive constant ¢(T) such that

h(t,z;7,€) > o(T) ™ E(z,§,¢7 (t — 7)), (13.4)
forO<t—7<T and x, £ € R™.

Proof. This proof is similar to that of Theorem 7.1 in Part I.
Let § < e~! be as in Lemma 13.5 and let us fix T > §, z,& € R” and
0 <t—7<T. Let k be the smallest integer greater than

max{7 6,16 d*(x,£) (5(t — 7))~ '}

and let us set 1
o= St—7)/(k+1).

There exists a chain of points = zg,z1,...,2x+1 = &, laying on a suit-
able X-subunit path connecting the points « and ¢, such that d(z;,xz;411) <
2d(x,&)/(k + 1), for j = 0,..., k. Moreover, we pick t = tg,t1,...,tk41 = T
such that t; —¢;11 = (t —7)/(k+1) for j =0,...,k. Using Proposition 13.4
repeatedly, we obtain

h(t,.’L';T,f) :/ h(twr;tlayl)h(tlayl;Tvg)dyl
:/( kh(t,x;thyl)h(tl,yutz,yg)~-~h(tk,yk;ﬂ€)dy1---dyk
R )k

>

/ h(to,yo;ti, 1) -+ Wtk Yri tert, Yrr1) dys - - - dyg
B(x1,0) XX B(z),0)

(here we have set yo = , yp41 = £). We claim that 0 < t; — ;41 < ¢ and
P (yj,yj41) <6 (t; — tj) log (¢ — )| if d(zj,y;) < o
Indeed, by the definition of k and of o, we have
ti—tip1=0t—-71)/(k+1)<T/(k+1) <,
and

d(yj,yj+1) < d(y;, v5) + d(zj, 2541) + d(Tj41,Y541)

2d(x,§) ké(t —T)
1l 2T 5%

o(t—r)
Thr1) <O (tj —tiv1) [log (t; —tj41)|

< 20+
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since t — 7 < § < e~!. Thus, we can apply Lemma 13.5 and obtain that

h(t,z;7,8) >

k
>c ! exp(—ck)/ H |B(y;,co\/t; — tj+1)| ' dys -+ - dys

B(z1,0) XX B(xk,0) j_q

-1 -1 : ‘B(xj,0)|
> ¢t exp(—ck)| Bz, c10)[ T ] |B(x;,c10)]
=1

> ¢ Bz, Ve(t — 7)) exp(—ck),

by (2.9) and the definition of o. Now, if d?(z,&) > T(t — 7)/16, from the
definition of k it follows that exp(—ck) > exp(—cd?(z,£)/(t — 7). On the other
hand, if d?(z,€) < T(t — 7)/16, the definition of k gives exp(—ck) > c(T)7L.
Using again (2.9) we finally get (13.4). =

14 Regularity results

In this section we will prove that ¢2 solutions to the equation Hu = f, with
f € C%, actually belong to C%“. In particular, this implies that A (-,¢) € 0120’3-
This regularization result will follow using the Schauder theory developed in
[12] and the weak maximum principle for €2 solutions contained in Theorem
13.1, together with some classical results due to Bony [8]. We start recalling
two theorems which are proved, respectively, in §10 and §11 of [12].

Theorem 14.1 (Schauder estimates for H) For any domain U' € U there
exists a constant ¢ (U,U") > 0 such that for every u € C’fo’g (U) with Hu €
C*(U) one has

el oy < € U {IH 8l gy + Nl o } (14.1)

Recall that the exponent « is the one appearing in our assumptions on the
coefficients of H (see (10.4)).

Theorem 14.2 (mollifiers on C?) Let h(t,z,vy) be the fundamental solution
of the operator

H=0,-L=0->» X,
i=1
fiz a positive test function n € C§° (R) such that [n(t)dt =1 and set

e (t,,y) = 'h(e,z,y)n (z) :

For any B € (0,1), f € CP (R"*1) set

folt) = [ 6= sm9) (su0) dsdy.
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Then:
fellcs < cllflles

with ¢ independent of f,e;
il_{% Hfs - f||LOC(Rn+1) =05

if a;; satisfy ellipticity condition in (10.4), then a;; satisfy the same condition,
with ellipticity constant independent of €.

We will also need the following compactness lemma:

Lemma 14.3 Let {u;} be a sequence in C*P (U), for some positive integer k,
B €(0,1), and U bounded domain in R" 1, such that

||uchk,/3(U) <c
with ¢ independent of j. Then, there exists a subsequence u;, and a function

u € C*P(U) such that
o' X uj, — o' X' u

uniformly in U for any m,I with 2m + |I| < k.

Proof. For any m, I such that 2m + |I| < k, the functions 9;"X’u; are equi-
bounded and equicontinuous (in classical sense), hence by Arzela’s theorem
there exists a subsequence 9" X’w;, uniformly converging in U to some func-
tion vy, 7. (See Remark 10.5). Moreover, we can extract a single subsequence
uj, such that all these conditions simultaneously hold. Set u = vy 9. By Lemma
11.9, this implies that the derivative 97" XTu exists and equals v,, ;. Finally,
passing to the limit in the inequality

|07 X Ty, (@) — 07" X Ty, (5,9)] < cdp ((t,2) , (5,9))"
we find that actually u € C* (U). m

Theorem 14.4 Let u € €2 (U) be a solution to the equation Hu = f, with
feC*(U). Then u e C2*(U) and satisfies (14.1). In particular, for every

loc

¢ € R™*1 the fundamental solution h (-,¢) belongs to C2*(R" 1\ {¢}).

loc

Proof. This proof is similar to that of Theorem 11.5 in [12]. Let u € €2 (U),
f=Hue C*(U). Assume first that ag satisfies the sign condition

ap (t,z) < —c < 0 for any (t,z) € R™ ™% (14.2)
Let now a;;, a5, ag, f© be the mollified versions of a;;,a;, a0 and f, and set
Hf =0, — Z ag; (t,z) X; X — Zaf (t,x) X; —ag (t, ) .
i,j=1 i=1
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Recall that the a;’s satisfy the ellipticity condition in (10.4) with constant
A independent of €. Since H® has smooth coefficients, it can be written as a
Hormander operator. This, together with condition (14.2) (note that also af
satisfies this condition), allows to apply known results of Bony [8]: for every
point of U’ we can find a neighborhood D where we can uniquely solve the
classical Dirichlet problem:

Héuf = f¢ inD
ut =u on 0D

Moreover, the domain D satisfies the following regularity property which will
be useful later (see [8, Corollary 5.2]): for every point (t1,z1) € 0D there exists
an Euclidean ball of center (tg,z) ¢ D which intersects D exactly at (t1,z1).

Since H€ is hypoelliptic, the solution u¢ belongs to C*° (D), then we can
apply our a-priori estimates (14.1), writing

1 oy < € (& D, DV gy + 16 ey } -

The constant C (g, D, D') depends on the coefficients af;, a5, aj only through

their C* (D)-norms and the ellipticity constant, hence by Theorem 14.2, C' can
be bounded independently of e. For the same reason || f<||ca(py < €|l fllca(p) -
To get a bound independent of € also on [[ucl| o (py , let

v° (t) = max [uf| + e/~ M max | f°|
oD D
with M =min, ,\pt. Then
Heo® (t,x) = e "M max | f| — ag (t,z) v° > M max | |
D D

> max |f¢| > f (t,x) = H.u® (t,x) in D
D

while
v® > u® on 0D,

hence by Theorem 13.1,
”uEHLOO(D) < HUEHLOO(D) < ||UHL°°(8D) +Cm§X\fE‘ <
<l oo opy + € 1fll gy
This means that, for any D’ € D,
[ ez oy < © (D D) { ey opy + I lcoqy } - (143)

Hence, by Lemma 14.3, for every D’ € D we can find a sequence ¢, — 0 and a
function v € C%® (D’) such that

GZ"XIuE" — GZ”XIU

110



uniformly in D’, for 2m + |I| < 2. By a standard “diagonal argument”, we
can also select a single sequence ¢, — 0 and a function v € Cl2 ~% (D) such that

oM XTysn — 9 X1y locally uniformly and pointwise in D. Moreover,
Herut = f, — f, but also H*"u*" — Hv

hence
Hv= fin D.

Our next task is to show that v = u in D; this will imply u € Cfo’f (D),
that is the desired regularity result. To do this, we will make use of a classical
argument of barriers, taken from [8], to show that u = v on dD; this will imply
that v = w in D, again by the maximum principle (Theorem 13.1).

Fix a point (t1,21) € dD; let (to, o) be the center of the exterior ball that
touches 0D at (t1,z1), and set:

w(t,z) = efN[|:vfzo\2+(t7to)2] _ efN[|:v17wo|2+(t17to)2]
with N a positive constant to be chosen later. By construction, w (¢,2) < 0
in D. A direct computation shows that, by the construction of D made in
[8], Hw (t,z) < 0 in a suitable neighborhood D; of (t1,x1), choosing N large
enough. Next, we compute, for another large constant M:

HMw+t (v —u)=MHw=E(f*—f)<0inD;ND

for M large enough, since (f€ — f) is uniformly bounded with respect to . Let
us show that
Mw+ (v —u) <0ond(D;ND).

On Dy N 9D, we have Mw + (u® —u) = Mw < 0; on the other hand, on
0D, N D we have w < ¢ for some ¢y < 0, while (u® — w) is uniformly bounded
with respect to ¢; hence for M large enough Mw + (u® — u) < 0. The maximum
principle then implies

Mw+ (u*—u)<0in DyND

that is
|u® —u| < —Mw in Dy N D, uniformly in €.

For ¢ — 0 we get
|(v—u)(t,2)] < —Mw(t,x) for (t,z) € D1ND

and, for (¢t,2) — (t1,z1) we get v (t1,21) = u (¢1, 1) . This ends the proof of our
result, under the additional assumption (14.2). In the general case, if u satisfies
Hu = f, then

v (t, ) = eFlu (t, )

satisfies
(H - k) Uk (tvx) = ektf (t7x) .
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For —k > 0 large enough, we can apply the previous argument to H — k, getting

HUHCQ#I(U’) sc ”kaC?vﬂ(U’) <c {HektfHC@(U) + ||Uk||L°°(U)} <

< c{Iflcaq) + Iullpmor -

[

We also point out the following proposition. Although it will never be used
in the following, it completes the picture of regularization properties, assuring
that, when the coefficients of the operator are smooth, our “weak” €2 solutions
are also solutions in distributional sense:

Proposition 14.5 Suppose the coefficients a; ;,ar, a0 of H are smooth. Then
H is hypoelliptic in R"*! and, for every fived ( € R* 1,

H(h(:;¢))=6c inD'(R™). (14.4)
Moreover, given an open set U C R"1, we have
(u € €(U), Hu=0inU) = (u € C(U)). (14.5)

Proof. It has already been noted that if the coefficients are smooth, then H
can be rewritten as a Hormander operator, hence H is hypoelliptic. Moreover,
the adjoint operator H* is well defined, hence by standard computation, the
representation formulas written in Theorem 12.1 also imply (14.4), once we have
proved the following claim: if a continuous function u has continuous intrinsic
derivative Xju, then X;u is also a derivative in the sense of distributions. This
fact, together with hypoellipticity, will also imply (14.5). To show this, let u.,
be a sequence of smooth functions obtained from u with a standard (Euclidean)
mollification procedure. It has been proved in [7, Proposition 2.2.] that

Xjue, — Xju

uniformly on compact subsets of U. Then we have, for any test function o,

/uX;@:nlLH;O uan;-‘go: lim (Xjusn)ap:/(Xju)cp.

n—oo

This proves the claim. m
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Part III

Harnack inequality for operators
with Holder continuous
coefficients

15 Overview of Part II1

In this part we come to one of the main goals of our theory, namely the proof
of invariant Harnack inequalities for evolutionary or stationary operators of the
kind

H:Eit— Z Qg5 (t,.’L‘)XZ‘Xj —Zak (t,:E) Xk (15.1)
i,j=1 k=1

or
m m

L= ai;@)XiX;+ > a(x) Xy, (15.2)
i,j=1 k=1
respectively. Our assumptions are the same as in Part I (as stated in Section
10; see also Remark 10.9), except for the vanishing of the zero-order term (ag
in (10.1)), that here will be assumed.
Our main result is the following:

Theorem 15.1 (Parabolic Harnack inequality) Let H be as above. Let
Ry >0,0< hy < hy <1 and vy € (0,1). There exists a positive constant
M = c(hy, ha,7, Ro) such that for every (19,&) € R"™, R € (0, Roy] and every

u € €((ro — R?,79) x B(&, R)) N C([r0 — R?, 7] x B(&o, R))
satisfying Hu =0, u > 0 in (10 — R?,79) x B(&, R), we have:

max u < M u(ro,&)-
[To—h2R?,70—h1 R2]x B(£0,7R)

Remark 15.2 The space €2 has been introduced in Definition 10.3. Recall that,
by Theorem 14.4, any solution in €2 also belongs to C*<.

The above theorem immediately implies the stationary version:

Theorem 15.3 (Harnack inequality for stationary operators) Let L be
as above. Let Ry > 0. There exists a positive constant M = c(Ry) such that for
every & € R, R € (0, Ry] and every u € €2(B(&,3R)) satisfying

Lu=0, u>0, in B(&,3R)

one has

max v <M min u.
B(&o,R) B(&o,R)
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The strategy we follow to prove “parabolic” Harnack inequality for operators
(15.1) is inspired to the paper by Fabes-Stroock [22], who, in turn, exploited
the original ideas by Krylov-Safanov about parabolic operators in nondivergence
form (see [32], [33], [50]). In Fabes-Stroock’s paper, Harnack inequality is de-
rived by a fairly short but clever combination of estimates based only on the
Gaussian bounds (from above and below) on the Green function for a cylinder.
The radius of the cylinder incorporates the essential geometrical information,
giving dilation invariance to the Harnack estimate.

About at the same time of Fabes-Stroock paper, the same deep ideas were
applied by Kusuoka-Stroock [35] in the context of Hérmander’s operators 0y —

7 X2. Much more recently, this general strategy has been adapted by Bon-
figlioli, Uguzzoni [6] to study nonvariational operators structured on Horman-
der’s vector fields in Carnot groups.

Here we will follow the same line. The striking feature of this proof is
the “axiomatic” nature of its core: it depends only on the suitable Gaussian
estimates for the Green function, a maximum principle for H, the fact that
constants are solutions to Hu = 0 (absence of the zero order term), and some
geometric properties of CC-distance and balls, like the doubling property for
the Lebesgue measure of metric balls. Then, also in our subriemannian setting,
and for operators in nondivergence form, we recover an axiomatic link between
Gaussian bounds, scaling invariant Harnack inequality, and properties of the
underlying metric structure, as the one stressed by Saloff-Coste and Grigor’yan
for divergence form parabolic operators on Riemannian manifolds (see the book
[51] and references therein).

However, in pursuing our aim, a first problem arises: for our operator H
with Holder continuous coefficients, the existence of the Green function is not
yet granted. Therefore it is convenient, as a first step, to make the qualita-
tive assumption of smoothness on the coefficients, study the Green function in
this setting and derive the Harnack inequality for operators with smooth coeffi-
cients. Since the Gaussian bounds on the Green function will be derived by the
analogous bounds on the fundamental solution, established in Part II, all the
constants will depend on the coefficients a;j, a, only through their C*-norms
and ellipticity (the constants K, A defined in (10.4)). This will allow to get,
by a limiting procedure, Harnack inequality in the non-smooth case. But a
second problem arises: even for the operator with smooth coefficients, which is
hypoelliptic and fits the assumptions of the classical theory developed by Bony
[8], the cylinder based on a metric ball could be a bad domain for the Dirichlet
problem, so that the existence of the Green functions for this kind of domain
is still troublesome. Nevertheless, Lanconelli, Uguzzoni have recently proved
in [39] that given two metric balls B (§,0R),B (£, R), (with ¢ € (0,1)), there
always exists a domain A (£, R), regular for the (stationary) Dirichlet problem,
and such that B (£,0R) C A({,R) C B(§, R) (see Lemma 16.2). The Green
function for H on R x A (§, R) must be thought as the natural substitute of the
Green function for the cylinder R x B (&, R). In the final limiting procedure, we
will also use the fact that the domain A (£, R) can be suitably chosen in order
for it to be “uniformly regular” for the family of approximating operators H,
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(see Lemma 18.1 for the exact statement of this property). This is another fact
proved in [39].
Plan of Part III

In Section 16 we study operators with smooth coefficients, and construct a
Green function G for regular domains. Then, we prove the Gaussian bounds
from above and below on G. In Section 17 we derive from the Gaussian bounds
on G the Harnack inequality for operators with smooth coefficients. This is the
axiomatic core of the proof, strictly reflecting the line of [22]. Finally, in Section
18 we settle a suitable limiting procedure to prove parabolic Harnack inequality
in the nonsmooth case. Harnack inequality in the stationary case is then an
easy consequence.

16 Green function for operators with smooth
coefficients on regular domains

Throughout Sections 16 and 17, we shall make the qualitative assumption that
the coeflicients a; j, ar of H are smooth. In Section 18, we shall turn back to
Holder continuous coefficients and complete the proof of the Harnack inequality
in Theorem 15.1, by an approximation argument.

We start with the following definitions:

Definition 16.1 We shall say that a bounded cylinder
D = (T1,Ty) x Q C R* !
18 H-regular, if for every continuous function ¢ on the parabolic boundary
0,D = ([T1, T] x 0Q) U ({T1} x Q),
there exists a (unique, by Theorem 13.1) solution u, to
vweC®D)NC(DUID), Hu=0inD, wu=¢ ind,D. (16.1)

We shall also say that a bounded open set Q C R™ is H-reqular if, for any
Ty < Ty, the cylinder (Ty,Ts) x Q is H-regular.

By the maximum principle (Theorem 13.1), if D is an H-regular domain, for
any fixed z € D, the linear functional

T:C(0,D) — R,
T : v+ uy,(z) with u, as in (16.1)

is continuous. Therefore there exists a measure u (supported on 9,D) so that

_ D
g (2) = /6 OB
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The measures {12 }.cp are called H-caloric measures.

The following lemma, proved in [39], states that it is always possible to
approximate any bounded domain @ C R"™ by H-regular domains, both from
the inside and from the outside.

Lemma 16.2 Let B be a bounded open set of R™. Then for every § > 0 there
exist H-regular domains A°, As such that

{x € Bld(z,0B) > 6} C As C BC A° C {z e R"|d(z, B) < 6}.

The first goal of this section is to prove the existence and basic properties
of the Green function for any regular cylinder R x 2.

Theorem 16.3 Let ) C R"™ be an H-reqular domain. Then there exists a Green
function G = G on the cylinder R x Q, with the properties listed below.

(i) G is a continuous function defined on the set {(z,¢) € (R x Q) x (Rx Q) :
z # C}. Moreover, for every fized ( € Rx Q, G(:;¢) € C*((Rx )\ {¢}),

and we have
H(G(¢) =0 in (R x )\ {¢}, G(+;¢) =0 in Rx90.

(ii) We have 0 < G < h. Moreover G(t,x;7,£) =0 if t < 7.

(iii) For every ¢ € C(Q) such that ¢ = 0 in O and for every fized T € R, the
function

u(t,ax):/QG(t,x;7',§)<p(§)d§7 zeQ, t>T

belongs to the class C°°((1,00) x Q) N C([1,0) x Q) and solves

Proof. For a fixed cylinder D = (T1,T5) x Q we set
W) = [ hmodl). s ceD,
orD
so that GP(2;¢) = h(2;¢) — \Il?(z) solves

GP(5¢) € C=(D\ {¢})
H(GP(:;¢))=01in D\ {¢}
D

GP(5¢)=0in 9,D
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(recall (14.5)). Moreover, applying the weak maximum principle for H (see
Theorem 13.1) first in the set (77,7) x ©Q and then in the set (7,T2) x €2, we
obtain

GP(t,x;m,6)=0ift <7, GP(t,z;7,6) >0 ift > 7. (16.2)
We now cousider the sequence D,, = (—n,n) x 2 and we observe that
GP» =GP+ in (D, Ud,D,) x D,.
This easily follows from (16.2) and from the weak maximum principle for H

applied to the function GP (; () —GPn+1(:;¢) = \Il?"+1 —\IICD” in the set (7,n) x
Q. As a consequence, the following definition of G = G* is well-posed:

G(z;():GD"(z;(), for z € D,, U0,D,,, ¢ € D,.

Moreover, G solves H(G(+;¢)) =0 in (R x Q) \ {¢}, G(-,¢) = 0 in Rx9Q. We
also define U = U by

U(z;¢) = h(2;¢) — G(2¢)

(e, U(z¢) =WP(2) for ( € D = (T1,Tz) x Q, z € DUI,D). We claim that
¥ e C ((RxQ) x (RxQ)). (16.3)

Since ¥(-;() is continuous on Rx €, it is sufficient to prove that, for any ¢y €
RxQ and T > 0,

sup  [U(2;¢) — ¥(2560)] — 0, as ¢ — .
z€[-T,T]xQ

Setting for brevity D = (—=T,T) x Q and we = U(-;{) —¥(+; (o), w¢ is a solution
to Hwe = 0 in D, we = h(-;¢) — h(+;¢o) in [-T,T) x 0Q, we(—T,-) = 0in Q
(if T is chosen large enough). Hence, by the weak maximum principle for H
(Theorem 13.1), since

lwe (2)] < sup  |h(+;¢) — h(:;¢o)| for z € 0,D
[-T,T]x0Q

we obtain

sup Jwe(2)] < sup  |A(25€) = h(z;Go)

2€D 2€[—T,TIx0Q
which vanishes as ( — (p, since h is continuous away from the diagonal of
R+ x R™ "L (see Proposition 11.4). Thus (16.3) is proved and the continuity of
G away from the diagonal of (R x ) x (R x ) immediately follows. Therefore,
the proof of (i) is completed. On the other hand, (ii) directly follows from (16.2)
and by observing that ¥ > 0 by the definition of \I!? . We now turn to the proof
of (iii). We first need the following lemma.
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Lemma 16.4 LetY € {X;, X;X;, 0:|i,j=1,...,m} and let O, U be bounded
domains of R"*1 such that O € U € R x Q. We have

1¥(; Olleze 0y < €(0,U) sup [W(z;0)] ¥V (eRxQ, (16.4)
() = Y(¥(50))(2) is continuous in (z;¢) € (R x Q) x (RxQ), (16.5)
s V(RGO < oo (16.6)

2€0, CE[-T,TIxQ

Proof. >From Theorem 14.1, recalling that H(¥(-;¢)) = 0 in  x R, (16.4)
straightforwardly follows. Since Y (¥(-;()) is continuous on R x Q2 for every fixed
¢ € R x Q, in order to prove (16.5) we only have to show that

sup [Y (¥ (+50))(2) = Y(¥(560))(2)] — 0 as ¢ — (o (16.7)
z€0
for every fixed (y € R x 2 and every bounded domain O € R x €. To this end,
we apply Theorem 14.1 to the function ¥(-;¢) — ¥(-;¢p) and obtain that the
supremum in (16.7) is lower than

19(0) = U0 lommg) £ €(0,Q)  sup [ U(5C) — W(z: o),
2€[~T(0),T(0)]xQ

which vanishes as ( — (o, by (16.3). This proves (16.5). Let us now prove
(16.6). Let O, U, V be bounded domains of R"*! such that O € U € V € Rx.
Applying Theorem 14.4 to ¥(+;{) we get

_ sup CY(E(;50))(2) < sup  [[¥(50)[lc2e(0)
z€0, CE([-T,TIxQ)\V CE([=T,TTx)\V
<¢(0,U) sup [W(z Q)|
z€U, Ce([-T,TIxQ\V
<¢c(0,U) max h(z;¢) < oo,

2€U, Ce([-T,TIxQ)\V

since h is continuous away from the diagonal of R**! x R"*1. On the other
hand, (16.5) directly yields

sup Y (¥(+5¢))(2)] < oo.
z€0, eV

Thus (16.6) is completely proved. m

We are now in position to complete the proof of Theorem 16.3, (iii). Let ¢ €

C(Q), p = 0in 99 and let 7 € R be fixed. We agree to extend ¢ to be zero
outside Q. Then, by means of Theorem 12.1 and (14.5), the function

U1 (t,x):/n h(t,x;7,€) p(&)dE, zeR"™ t>r,

belongs to the class C°((1,00) x R") N C([r,00) x R™) and it is a solution to
the Cauchy problem Hu; =0 in (7,00) X R™, uy(7,-) = ¢ in R™. On the other

118



hand, recalling (16.3), the fact that ¥ < h, and the continuity of h away from
the diagonal, the function

us (1) = / U(t, i, €) (€)dE

is well-defined and continuous in (7,00) x . Moreover, by means of Lemma
16.4, us has continuous intrinsic-derivatives up to second order along the vector
fields X7, ..., X,,, and continuous derivative along 0, on (7, 00) x 2, obtained by
differentiating under the integral sign. As a consequence, Hus = 0 in (7, 00) x .
Furthermore, us € C*((1,00) x Q) by (14.5). Recalling that G = h — ¥ and
that u = u; — ug, in order to complete the proof of Theorem 16.3 we are only
left to show that

us (t,x) — 0, as (t,x) — (wo,7), V x0€ Q. (16.8)

If 29 € Q we choose ¢ > 0 such that B = B(x,d) C 2 and we write
o t2) < [ WmmOle@le + [ Wit a0 ol
B B

Recalling (16.3) and the fact that U(s,y;7,£) = 0 for s < 7, the first integral
vanishes as (t,2) — (7,z¢); on the other hand, using the estimate ¥ < h, the
second integral goes to zero as well. Thus (16.8) holds for zg € Q. If o € 99,
we use Theorem 12.1 and we obtain

2 (8, 2)[ < [ kit 27 ) [@(OldE — [@(20)| =0, as (¢, 2) — (7, z0).

This completes the proof. m

Corollary 16.5 Let Q C R" be an H-regular domain and let G denote the
related Green function as in Theorem 16.3. The following reproduction property
of G holds:

GOt 27, €) = /Q GOtz 5,) G2(s, y; 7, ) dy,

for everyt > s> 71 and x, £ € Q.

Proof. We fix 7,¢, s as above and we set ¢ = G(-,5;7,¢). Then ¢ € C(Q),
» = 0 in 99, by Theorem 16.3-(i). Therefore we can apply Theorem 16.3-(iii)
and obtain that the function

u(t,z) = / GOt wi5,9) p(y)dy, @€ T, t> s,
Q

satisfies u € C((s,00) x Q) N C([s,00) x Q), Hu = 0 in (s,00) x , u = 0 in

[5,00) x 0Q, u(s,-) = ¢ in Q. It is now sufficient to observe that G**(-; 7, ¢) has
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the same properties and to use the weak maximum principle for H (see Theorem
13.1). m

We now specialize our study of Green functions to cylinders based on regular
domains which approximate metric balls. For these Green functions we shall
prove Gaussian bounds from above and below.

Fix 6o € (0,1). By Lemma 16.2, for every § € R™ and R > 0, there exists
an H-regular domain A(§p, R) of R™ such that

B(&o,00R) € A(&o, R) € B(&o, R). (16.9)
Then:

Lemma 16.6 Let Ry > 0 and 6 € (0,00). There exists a constant p =
(3,00, Ro)~* € (0,1), such that

GACOR) (¢ 27, €) > ¢(Ro) L E(x, &, ¢t — 7)),

for every & € R™, R € (0, Rol, x € A(&, R), £ € B(&,0R), t,7 € R satisfying
d*(z,8) <t—1 < pR2.

Proof. Let &, R, z,&,t, 7 be as above. Let us set
D=(r-1,t+1)x A(&,R).

Observing that pf; . ((t,t + 1] x dA(&, R)) = 0 and using (11.11), (11.9), (2.9)

and (2.12), we obtain

UACOR (57, €) = W ¢ (L) :/8 (s, 4 7,€) 1, 2 (5, 9)
D

p

< e(Ry) / E(&,y, (s — 7)) 15 (5,9)
[T,t] x0A(&o,R)

<c(Ro) suwp [BE V) exp<_<50—5>R>,

o<r<t—1 Ccr

In the last inequality we have used the fact that £ € B(£p,dR) and that

(recall the operator H is homogeneous). We now exploit Theorem 13.6, (2.12)
and (2.9) and obtain

A (1,37, ) = h(t, 5 7,€) — WA 1,237, )

> () B(E VT e (o 2D

Ceim an BERDI ( Pg R
_1 2(R0) 0<7"<It?—7' |B(§, \/F)| P ( t—7 C(575O)T>:|
2 C3(R0)_1 E(xa§7c_1(t - T))X

Q/2 2
=) e ()
X |1 —cyq(R, - .
i 4( 0) 0<§’1ilg'r< r P 0(5,50)7’
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It is now sufficient to observe that the expression between square brackets is
greater than 1/2 if p = p(d, do, Rp) is small enough, as one can easily recognize
by showing that the function

h— (ph)?/? exp(—h/c(6, o))
is monotone decreasing on the interval [p~!,00). ®
Theorem 16.7 Let Ry >0, T > 1 and v € (0,0¢). We have

& (x,¢)

GA(ng) (tv Z5T, f) > C(T7 Y, ROv 50)_1 ‘B(f, Vit — T)‘_l eXp <_C(’Ya R07 50) t—T

for every & € R™, R € (0, Ro], #,& € B(0,vR), and 0 <t —71 < T R?.

Proof. The way Theorem 16.7 follows from Lemma 16.6 is similar to the way
Theorem 7.1 follows from Lemma 7.2. Compare also with the proof of Theorem
13.6.

We set § = (7 + d0)/2 and choose p = p(d, do, Rp) as in Lemma 16.6. Let us
also fix &y, R, x, &, t, 7 as above. Let k be the smallest integer greater than

M(v,60) max {T/p, d*(z,€)/(t = 7)},
where the constant M (v, dp) > 1 will be chosen later, and let us set
1

o= t—7)/(k+1).
We claim that there exists a chain of points of R" x = z¢,x1,...,2541 = £ such
that
d(z,§)

d(‘rja .’Ej+1) < C(’yv 50)

rry k) < R, (16.10)

Indeed, if d(x,€&) < R(dp — 7v)/8, we can choose 1, ...,z laying on a suitable
X-subunit path connecting = and &, so that d(z;,z;41) < 2d(z,€)/(k+ 1) and

d(xj, &) < d(x, x5)+d(z, §o) < 2d(x, §)+d(z, &) < R(do—7)/4+7R = R(d+7)/2.

On the other hand, if d(z,£) > R(dp — )/8, then we can choose z1,...,T)
laying on suitable X-subunit paths connecting x with &y and &y with &, so that

d(zj,xj41) < 2yR/(k +1) < 167d(z, ) (o — ) " *(k+ 1)

and d(z;,&) < yR. Observing that, by the definition of k and o, we have
o < M(v,80)" 2R, from (16.10) it follows that we can choose M (v, ) such
that

B(.’L‘j,O‘) - B(&),(SR) (16.11)

Moreover, up to a new choice of M(vy,dp), we also have

t—T1

kE+1

d(yj, yj41) < for every y; € B(zj,0), yj+1 € B(zjt1,0). (16.12)
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Indeed, from (16.10) and the definition of % it follows that

1
Ay, yj+1) < 20 +d(zj,2j41) < 3 \/ k—l— 1 (77, 60)

t—T1 _
<y (34 e d0) M(3.60)77).

Let now ¢ = tg,t1,...,tg11 = 7 be such that t; — t;41 = (¢t — 7)/(k + 1) for
j=0,...,k. Using Corollary 16.5 repeatedly, we obtain (we set G = GA&oR)

Yo = T, Ypt+1 = &)

d(z, €)
E+1

G(taCU;T,f):/ G(t,x5y1,t1) Gy, ty2,t2) - G(yk, tes 7, §) v+ Yk
(A(&o,R))*
2/ HG yj7 ti;Yi+1, j+1)y * Yk,
Hf 1B($J70')_] =0

by 16.11. Moreover, from (16.11), (16.12) and the definition of k, it follows that
Yj+1 S B(EOv 6R)7

P (yj,yj01) < (t—7)/(k+1) =t; —tj11 <TR?/(k+1) < pR>.

Therefore, we can apply Lemma 16.6 and obtain (arguing as in the proof of
Theorem 13.6)

G(t,z;7,8) > C(Ro)f(kﬂ)/ . HE (¥ Yjr1o € (g — tja))dy -~ dy,

j= 1B($J7U)J =0

k
C(RO)—l eXp(—C(RO (z CU) H |Bxx],c(7 )|

> ¢(Ro) ! B(z,co)|~ 1exp( c(Ro) )

> e(Ro) M Bla, VE— 1) exp(—c(Ro) k),

by the definition of o. Now, if d?(x,&) > T(t — 7)/p, from the definition of k it
follows that k < c(v, do) d*(x,€)/(t — ) and then

t—T

G(t,237,8) 2 e(Ro) ' [B(@, VE=7)| ™ exp <_C(%Ro,§o) e O) .

On the other hand, if d?(z,&) < T(t — 7)/p, the definition of k gives k <
c(v,80)T/p and then

G(t71';’7',§) 2 C(T7 v, R07 50)_1‘3(‘7:7 \/ﬁ”_l'

This completes the proof of Theorem 16.7. m

122



Remark 16.8 All the results proved in this section actually hold for the com-
plete operator H defined in (10.1) (i.e. with a smooth, but not necessarily
vanishing, coefficient ag). Here we have assumed ag = 0 only for consistence
with the rest of Part III. The only points where the presence of ag would require
slight changes in our arguments are the following:

1. In the final part of the proof of Theorem 16.3, if ag is not zero we should
compare we with the barrier

v(t,z) =exp(k(T'+1)) sup |h(:;¢) = h(; o).
[=T,T]x0Q
2. In the proof of Lemma 16.6, we used the fact that ug,z) (0,D) = 1; if
ag 1s not zero, we would have instead to prove the boundedness of the function
(s,y) — ,u@m (0pD) comparing it with (s,y) — exp(k(s — 7+ 1)) by the weak
maximum principle (Theorem 13.1).

17 Harnack inequality for operators with smooth
coefficients

Also in this section we consider operators with smooth coefficients. We keep
the notation introduced in the previous Section; in particular, recall that the
regular domain A(&p, R), for which in Section 16 we have estimated the Green
function G401 depends on the choice of a number &, € (0,1) (see (16.9)).
Several results in this Section involve this number dy, which will be eventually
chosen in a suitable way.

Lemma 17.1 Let Ry > 0 and v € (0,60). There exists a constant p € (0,1),
p = c(v, Ro, d0), such that for every (10,&) € R"™, R € (0, Ro] and every

u € C((1o — R?,79) x B(&y, R)) N C([ro — R*,70] x B(&, R))
satisfying Hu = 0 in (19 — R?,79) x B(&, R), we have

osc u<p 0sc u. (17.1)
[ro—7?R?,70] x B(§0,7R) [ro—R2,70] X B(§0, )

Proof. We set
D = (10 — R?*,15) x A(&, R)

and
S = {z € B(¢,7R) | u(z,70 — R*) > (M +m)/2},

where M = maxpu, m = minyu. We also define w = u —m and (for z €

A(EO? R)a t> T0 — R2)

o(t,z) = / GAER) (1 o my — B2, y) w(ro — B, y) o(y)dy,
A(&o,R)
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where ¢ € Cy(A(&), R)) is a cut-off function such that 0 < ¢ <1 and p =1
in B(&p,yR). By means of Theorem 16.3-(iii), v is a solution to Hv = 0 in D,
v =0 in [rg — R?,79] X A(&0, R), v(-,70 — R?) = w(1o — R?,-) ¢ in A(&, R).
Moreover Hw = 0 since we are supposing that ag = 0. Therefore, by the weak
maximum principle for H (see Theorem 13.1), v < w in D. As a consequence,
using the estimate in Theorem 16.7, for every

(t,l‘) € D’Y = (TO - ’YQRQaTO) X B(fo,’}/R)

we get

w(t,x) >v(t,x) > /GA(&”R)(t z;10 — R%,y) (M2 —m) dy

—d(w,y)Q/c(t—T-i-Rz) M—md
/|B t—T+R2)|e z

> ¢(v, Ro, 80) ' | B(x, R)| 7" M5 [S]
> ¢y, Ro, 00) ' [B(&o, R)| 7 H5™ |S.

Now, if |S| > 1|B(&,yR)|, we infer that

minu —m > c(v, Ry, dg) " (M — m)
D'Y

and then
oscy 4 < M —minu <M —m — c(%Ro,(SO)_l(M —m)
vy D—y
= (1 —c(y, Ro,80)"") oscu.

D

Recalling that A(&o, R) € B(&, R), we have proved (17.1) when |S| > 1|B(&,vR)|.
On the other hand, if |S| < %\B(EO,'yR)L the argument above can be applied

to & := —u, since (with the natural notation) |S| > 1|B(&,vR)|. As a con-
sequence, we get (17.1) for @ and the proof is completed, since oscu = oscu.
]

Lemma 17.2 Let Ry > 0, h € (0,1) and v € (0,d0). There exists a positive
constant 8 = c(h,~, Ry, 00) such that

sup o |{y € B(é-OaPYR) ‘U(S,y) Z U}| S B ‘B(£03R)| U(g(),’l'o)
>0, s€[to—R?,70—hR?]

for every (&, 70) € R* R € (0, Ry] and every
u e COO(B(go,R) X (7'0 — Rz,To)) n C(B(g(),R) X [TO — RQ,T()])

satisfying Hu = 0, u > 0 in B(&, R) x (1o — R2, 79).
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Proof. Let us fix s € [rp — R%, 70 — hR?]; set A = A(&, R) and

w(t,z) = / GAtyass,y)uls,v) o(y)dy,  ced, t> s
A

where ¢ € Cy(A) is a cut-off function such that 0 < ¢ < 1 and ¢ = 1 in
B(&,vR). By means of Theorem 16.3-(iii), w is a solution to Hw = 0 in
(s,0) x A, w = 0 in [s,00) x A, w(s,-) = u(s,:) ¢ in A. Therefore, by the
weak maximum principle for H, w < u in [s,7] x A. As a consequence, using
the estimate in Theorem 16.7, we obtain

cu (s, y) ¢ (y) —d(€0,y)?/c(r0—3)
u (7o, > w(7o, > — o A0y /eS8 g
(o) > o) > [ e 2o ’
since 70 — s > hR? and d (£y,y) < cR

c(h,%Ro,fso)/
N Do P u(s,y) dy
[B(&o: B)| JB(¢oR) (v

c(hy, Ro, bo) | )
|B(&0, R)| {y € B(&,VR) |u(s,y) > o}

for any o. This ends the proof. m
Next theorem follows from the previous two Lemmas, with the same tech-
nique used in [22]. We will present a detailed proof, anyhow.

Theorem 17.3 Let Ry > 0, 0 < hy < ho < 1 and v € (0,1). There exists
a positive constant M = c(hy,ha,y, Ry) such that for every (&,79) € R,
R € (0, Ro] and every

u € C®((ro — R*,70) x B(&, R)) N C([ro — R*,70] x B(&, R))
satisfying Hu =0, u > 0 in (19 — R%,79) x B(&o, R), we have

max u < M u(&,m0). (17.2)
[To—h2R?,79—h1 R?]xB(£0,vR)

Proof of Theorem 17.3. Recall that our previous estimates depend on a
number Jy € (0,1) which can be arbitrarily chosen (see (16.9)). Then, for any
fixed v € (0,1), pick dp = (1 + ) /2. We will apply all our previous results with
this particular choice of dg.

Let p = u(%)7R0,(50) € (0,1), 8 = B(hq, 7§5°,R0,60) > 0 be as in Lemma
17.1 and Lemma 17.2 respectively. Let ¢g be as in (2.9). We define r : (0,00) —

(00 1/Q

K=0Q+u"/2

and we set
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and
M=r1 (50 (1= ha) (o — ) (1 — K—l/Q)/4) .

We now argue by contradiction and suppose that there exist &y, 7, R and u
satisfying the hypotheses of the theorem, for which (17.2) is not true (with the
above choice of M). We first observe that u(7,&p) # 0, since otherwise (17.2)
would follow from Lemma (17.2). Let now v = u/u(70,&p). Since v is bounded,
in order to get a contradiction and thus prove the theorem, it is sufficient to show
that there exists a sequence of points {(s;,y;)}jen in [10 — R?, 7o) x B(&, R)
such that

v(sj,y;) = KM, (sj,v5) € [to — R?,70] x B(&, R).

Indeed, recalling that K > 1, this would give v(s;,y;) — oo. To construct
this sequence, we will prove by induction the existence of points (s;,y;) €

[10 — R?,70] x B(&), R) such that:
v(sj,y;) = KM (17.3)
(s0,%0) € [0 — haR?, 70 — h1R?] x B(&,VR)
(s5,95) € [8j-1 = pf_1,85-1) X Blyj—1,pj—1) if j > 1
with p; = 20 'r(K'M)R
The existence of (sg,y0) € [To—haR?, 70—h1R?| x B(£y, vR) such that v(sg, ) >
M follows from the assumption that u does not satisfy (17.2). We now suppose
that, for a fixed ¢ € N, (s0,%0), - - -, (Sq, Yq) have been defined and satisty (17.3)

for every j € {0, ..., q}. We have to prove that we can find (sq+1, Yq+1) satisfying
(17.3) for j = g+ 1. We claim that

B(yq, pq) S B(&o, (v + 60) R/2). (17.4)

Indeed, if d(y, y,) < pq, then recalling the definition of M and using (17.3) for
j€10,...,q}, we obtain

q

d(y, &) < d(€o,90) + Y d(y-1,y5) + (g )
=1

q [e’e]
<YR+20,'RY r(K'M) < yR+25,'r(M)RY K~'/?

i=0 =0
=(v+ (1= h2)(00 —7)/2) R < (v +do)R/2.

Moreover, with a similar computation we can prove that

[sq = P2y sq) C (10 — R*, 70 — M R?). (17.5)
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Indeed, s <551 <--- < s <19 — hiR? and
q
2 2
sq— Py =s0+ Y (s5—s5-1) =}
=1

oo
> 1o — haR? — 4652 (r(M))*R* Y T K~%/9
=0

> o= (ha+ (1= ha)(1 = K7/9)(1+ K~/9)7) R? > 0 - B2

We now apply Lemma 17.2 (with ¢ = (1 — u)K?M/2) to v and we obtain
(recalling (17.5) and the definition of r)

{y € B(&o, (v +00)R/2) |v(y, 54) = (1 — p) KM /2}|

26|B(¢0, R)| 1 _y (r(K'M)\?
= U= KM 2C01< 2 ) Bl 1)
Q

<ot (") 1B 20 < B (D).

In the last inequality we have used (2.9) and the fact that r(K?M) < 2, which
follows from the definition of M (see the proof of (17.4)). As a consequence,
since also (17.4) holds, there exists

Y € B(yq, 7(KM)R)
such that
v(s4,7) < (1 — p)KIM/2.
Therefore, recalling that we are supposing that (17.3) holds for j = ¢, we have
(1+ ) KTM/2 = KOM — (1 — g KIM/2 < (54, 5g) — 0(547)

< 0sC v< 0sC v
{sq}xB(yq,r(K1M)R) [Squgvsq]XB(yquq)

by means of Lemma 17.1, (17.4) and (17.5) (note that p, < Ry by the definition
of M). Since v > 0, it follows that there exists

(sq+17yq+1) € [Sq - Pz, Sq] X E(yqapq)

such that
U(Sq115Yq1) > p (1 + p) KIM/2 = K9 M.

This completes the proof of Theorem 17.3. =

18 Harnack inequality in the non-smooth case

In this section we complete the proof of the Harnack inequality in Theorem 15.1.
Throughout the section the coefficients a;;, a; of H will not be supposed to be
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smooth as in Sections 16-17, but only Holder continuous according to (10.4).
We shall approximate H by suitable smooth coefficient operators

H, =0 — Z ag; (t,2) X; X; — Zai (t,z) X,
ij=1 k=1

where a; ; and aj are regularized versions of a;; and ay as in Theorem 14.2.
The following result has been proved in [39].

Lemma 18.1 For every & € R*, R > 0 and 6 € (0,1), there exists a domain
A, H_-regular for any € > 0, such that

B(&,0R) C AC B(&, R)

and with the following property: for any bounded cylinder D = (T1,T3) X A and
for every ¢ € C(9,D), letting ue be the solution to Heue =0 in D, u. = ¢ in
OpD, we have

lue(z) — w(20)| — 0, as z — zg, uniformly i 0 < e < 1, (18.1)
for every zy € 0,D.

We are finally in position to conclude the proof of our invariant Harnack
inequality for H.
Proof of Theorem 15.1. Chosen

d = (max{~, h§/4} +1)/2,

let A be as in Lemma 18.1. We set D = (10 — R?,79) X A, ¢ = uls,p and we
denote by u. the solution to Heue = 0in D, u. = ¢ in d,D. With this notation,
(18.1) holds, thanks to Lemma 18.1. On the other hand, applying to H. the
a-priori estimates in Theorem 14.1 for every e, and the maximum principle in
Theorem 13.1, we obtain, for every bounded domain O € D,

el c2e0) < €(O, D) sup |ue| < ¢(O, D) max|ul.
D 0pD
By Lemma 14.3, there exists v € Cﬁf (D) satisfying Hv = 0 in D such that for

some €, — 0, u., — v uniformly on any compact subset of D. Let us show that
vla,p = @. For any zy € 0D, we have:

[v(2) =@ (20)| < [v(2) = te, (2)] + |ue, (2) = (20)] -
By (18.1),
lue, (2) — ¢ (20)| < n whenever d(z,29) < p (uniformly in ey)
while, for any such z we have

[0 (2) —ue, (2)] <1
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for 4, small enough (possibly depending on z). Hence v|s,p = ¢, and from the
maximum principle for H it follows that v = win D. In particular u., uniformly
converges to u on the compact subsets of D. We now want to apply Theorem
17.3 to u., (recall that u. > 0 since ¢ > 0). Since Hu,, = 0in (10 — R?,70) x 4,
we note that ue, (70, ) could be discontinuous; hence, to check the assumptions
of Theorem 17.3 we have to consider u., on the cylinder

(1o — R"?,7,) x B(&, R)),

where R’ = 6R, 7, = 70 — cR'? and o > 0 is small. Let also h) = v/hy and
~" =~/4. By our choice of the parameters, we have:

7 <1
Y'R' = 9R;
R4 R > hoR?;
hR?* < h1R?;

therefore

max U, < max Ue

[ro—haR2,ry—hy R XBEAR)  |ro—hiR2,mp—hi B2 x B0 )
S C(h’17 h’?v v RO) Ugy, (7—0'7 50)

by Theorem 17.3. Letting first k£ go to infinity and then ¢ go to zero, from the
above inequality we finally get

max u < C(hlah2377R0) U(To,fo).
[To—h2R?,70—h1 R?]x B(£0,7R)
[
The above theorem easily implies also the analog stationary version.

Proof of Theorem 15.3. Since u is also a nonnegative solution to Hu = 0 in
R x B (&, 3R), by Theorem 15.1 we know that

max u < Mu(&). (18.2)
B(&o,R)

Now, let zg € B (&, R) such that u (xg) = ming gy u, let r = d(x9,&) and

r" = (r + R) /2. Then & € B (xo,r'), B (x0,2r") C B(£,3R), hence again by
Theorem 15.1 we have

u (&) < max u < Mu(xg) =M min u
B(zo,r") B(&o,R)

and

max u < M? min u.
B(&o,R) B(&o,R)
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Epilogue

19 Applications to operators which are defined
only locally

As we have already pointed out, the final goal of our theory is to establish some
local properties for an operator H defined in some bounded domain of R**!,
deducing them from the properties of the globally defined operators that we
have considered so far. We come at last at this point.

Assume H is an operator of type

q q
H=0,-L=0,— Y ay(t,x) ZiZ; — > ax(t,x) Zr — ao (¢, )

i,j=1 k=1

where 71, Z>, ..., Z, are smooth Hérmander vector fields in some bounded do-
main Q of R™; let dz be the CC-distance induced by the Z;’s in €0, and dzp
the corresponding parabolic CC-distance defined in R x . Assume that the
coeflicients a;;, ar,ap are bounded and dzp-Holder continuous in a cylinder
C=(T1,T5) x Q (—o0 < Ty < Ty < o), and let {a;;} satisfy the following
uniform positive definiteness condition in the same cylinder:

q
A w3 g (tm) wiw; < Mwl® Yw € RY, (t,2) € (T, To) x Q. (19.1)

ij=1
Then:

Theorem 19.1 (Local fundamental solution for H) Under the above as-
sumptions, for any domain Q' € Q, there exists a function

h:R"E xR S R
such that, setting C' = (T1,Ts) x £, we have:
i) h is continuous away from the diagonal of R™"*1 x R"*1;
ii) h(z,C) is nonnegative, and vanishes for t < T,
i) for every fived ¢ € R™ ! we have

h(:5¢) € CR(C\ACY), H (h(+¢) =0 in C'\{C}:

iv) there exists T > 0, depending on V', such that the following estimates hold
for every z = (t,x), (= (1,) €', 0<t—7<T:

125 (h(:0)) (2)] < et =) 72 B, & et = 7));

¢ E(x, & ¢t = 7)) < h(2¢) < cB(a,& et — 7)),
\
1ZiZ; (h(:;Q)) (2)| + 10: (h(€)) (2)] < e(t —7) 7" E(x, &, e(t — 7));
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where

E(w,8,) = | Ba (2, V| exp (‘W)

and ¢ is a positive constant that depends only on the vector fields Z;, the
Holder norms of the coefficients, the number \ and the domains ,;

v) for any f € C§ (C'), the function
uta) = [ bt fr.€drdg
Rn+1

belongs to C2% (C') and solves the equation

Hu=f inC

vi) the following reproduction formula holds

Wt 27, €) = / h(t,: 5,9) h(s, y; 7, )dy,

n

fort>s>71 and x, £ € R™.

In the above theorem the Holder spaces are taken with respect to 71, ..., Z,,
and (dz)p analogously as in Definition 10.4.
Proof. For Q' € Q fixed, we choose domains §; such that

D eQe eQe

By Theorem 2.9, there exists a new system X = (X3, Xo, ..., X;,,) (m = ¢+n)
of vector fields, such that the X;’s are defined on the whole space R™ and satisfy
Hormander’s condition in R™; moreover:

X = (Zl,ZQ, ...,Zq,O,O,...70) in Ql;
X =(0,0,...,0,04,,0xy, ..., 0z, ) in R™\ Qg;

dx is equivalent to dz in 5.

Now, we extend the coefficients a;;, ax, ap to the infinite cylinder R x €2, just
setting:

(J,Z‘j (t,x) = aij (T1,.Z‘) if ¢ S Tl; aij (t, $) = aij (TQ,.’L‘) ift Z TQ

(and analogously for the ay’s and ag). Clearly, the C'§ norms of the extended
coefficients in R x  are equal to those of the original coefficients in (77, T5) x 2.
Next, we take a cutoff function ¢ (x) such that

Q< ¢ < Qo
and define
Ziz-j = ¢aij + (1 — (]5) 51’]’ fori,j=1,...,q.

131



Since a;; € C% (R x Q), we also have a;; € C% (R x Q) and therefore a;; €

C% (R x §22), by the equivalence of dx and dz in €. On the other hand, in

R x QS the a;;’s are constant, so a;; € C% (R"™), with norms controlled by

lla;; ||CQ(RXQ). It is also immediate to check that the matrix {a;;} still satisfies
z

(19.1) with the same constant A. Finally, we set

P [{aij%g,j:l 0} .

ij=1 " I,

As to the coefficients ay, ag, we make an analogous (but simpler) extension,
just setting

ay = ¢ay,

and repeating the above reasoning.
With this construction, we see that the operator

m q
H=0,- Y G (t,x) X;X; = Y ax (t,x) X — do (t,7)
i,5=1 k=1

fits the assumptions of Part II, as stated in Section 10. Hence we can apply
Theorem 10.7 to H. The global fundamental solution h of H is then a local
fundamental solution for H, satisfying all the properties required in points i) to
vi). This simply follows from the fact that, in C’, H coincides with H and d X
is equivalent to dz.

We just note that the number T has to be chosen small enough, so that
Ba, (x,V/cT) C Q9 whenever z € Q'; this fact assures that By, (z, /%) is well
defined, and its measure is equivalent to Bq, (z,/?), for any t € (0,¢T). =

Analogously we have:

Theorem 19.2 (Harnack inequality) Assume H satisfies all the above as-
sumptions; moreover, take ag = 0. For any domain Q' € Q there exists a
constant Ry > 0 such that, for every 0 < hy < hy < 1 and v € (0,1), there
exists M > 0, depending only on hy, ha,~y, 2, Q' A, the vector fields Z; and the
Hélder norms of the coefficients, such that for every (19,&0) € C' = (T1,T2) x Y,
R € (0, Ro] and every

u € ¢*((1g — R?,79) x B(&y, R)) N C([r0 — R*,70] x B(&, R))
satisfying Hu =0, u > 0 in (10 — R?,79) x B(&, R), we have

max u < M (1, o).
[To—h2aR?,790—h1R?]x B(&0,7R)

All the balls are taken with respect to d.

Remark 19.3 Recall that, by Theorem 14.4, if u is a €2 solution to Hu = 0,
then w € C>“. Here the space €2 is defined as in Definition 10.3, but with

loc

respect to the vector fields Z;.
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Proof. With the same construction explained in the proof of the previous
theorem, we build an operator H which satisfies the assumptions of Theorem
15.1 and such that in C’, H coincides with H and dx is equivalent to dz. Then,
one can repeat the whole proof of Theorem 15.1 using the distance dz instead
of dx, and conclude that our assertion holds. Analogously one can restate the
stationary Harnack inequality (Theorem 15.3) in this local setting. =

20 Further developments and open problems

The results proved in this work leave some problems open, and suggest further
developments of our study. Here we shall briefly illustrate some of them, which
we would like to address in the future.

Fundamental solution for the stationary operator

Let us consider the stationary operator
m
L= Z Qg (.’L‘) XZXJ
ij=1

A scaling invariant Harnack inequality for L has been deduced by the analogous
(parabolic) result for H, see Theorem 15.3.

It would be interesting to prove the existence of a fundamental solution I'
for L, enjoying natural properties, among with bounds of the kind:

d(z,y)? cd (,y)°
—————= <I'(z,y) < ——F;
By =Y S B Gy

- cd (z,y)

C

XX (2, y)| < ————.
XEXT @9l < 15 )

A possible way to prove these results, already followed in [4] for vector fields
on Carnot groups, is to consider:

T (z,y) :/Oooh(tm,y)dt

where h is the fundamental solution of the evolution operator d; — L. Obviously,
to make this definition meaningful, one needs to establish long time estimates
for h, like

h(t,z,y for t € (0,00),z,y € R"™.

)= 1B (VD)

The proof of these long time estimates on h is a nontrivial extension of our
results, which seems to require some new ideas.
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General Hormander’s vector fields defined on the whole R"

Our theory has been developed to treat the case of a system of Hormander’s
vector fields defined on a bounded domain of R™. The system has then been
extended to the whole space in a suitable fashion. A harder challenge would
be to consider any system of Hormander’s vector fields defined on the whole
R"”, i.e. without assuming that outside a compact set they take a particular
form. Clearly, some requirement must be done on the behavior of the vector
fields X; = Z;L:1 bij (z) Oz, at infinity, in terms of the coefficients b;; and of
their derivatives, and / or in terms of some global property of the Carnot-
Carathéodory metric induced by the vector fields.

Time-dependent and rough vector fields

Motion by Levi curvature involves fully nonlinear partial differential equations
whose linearizations take the form:

2n
H =0 - Z aij (t,2) X;Xju = f (t,x) for (t,x) € R*"?
ij=1

with
2n-+1

Xi = Z bij (t,x) 0zj.
j=1

Hence, the vector fields have time-dependent coefficients, even though they still
act as differential operators in the space variables only. For any fixed ¢, these
X;’s are a system of vector fields in R?"*!, satisfying a Hormander’s rank condi-
tion of step two when, for instance, the previous equation describes the motion
of strictly pseudoconvex real hypersurfaces. On the other hand, the variable ¢
in the coefficients b;; cannot be seen just as a “parameter”, since the operator
H also involves the derivative with respect to t. Extending our theory to this
setting is likely to pose new interesting problems.

Deepening the above analysis, one should also take into account the necessity
to deal with rough coefficients b;; (t,x) . Indeed, in the original fully-nonlinear
equation these coefficients depend on the solution u (t, ), which a-priori could
be nonsmooth. A general study of second order “Hérmander’s operators” built
with nonsmooth vector fields seems at present out of sight, but one could try to
handle some more simply structured situation, sufficient to cover the particular
application we have described.
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