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A hidden Markov model for pollutants
exceedances counts

Francesco Lagona and Antonello Maruotti ∗

Abstract

Pollutant exceedances at the sites of a monitoring network are mod-
eled via a hidden Markov model (HMM), where state transition prob-
abilities depend on meteorological covariates and the observations are
modelled in a generalized linear model framework, whose parameters
depend on the hidden states. The estimated hidden states summarize
the shape of the multinomial distribution of the pollutants at each
time; define a model-driven air quality index and provide some use-
ful insights into the processes driving pollutant exceedances. Model
estimation is carried out by using a recursive forward-backward proce-
dure, by taking a maximum likelihood approach. Parametric bootstrap
is exploited to compute variances of parameter estimates. We model
sequences of several air pollutants from monitoring stations in Rome.

1 Introduction

Air quality standards are referred to thresholds above which pollutants con-
centrations are considered to have serious effects on human health and the
environment (WHO, 2006). In large urban areas, exceedances of these stan-
dards are usually recorded through a monitoring network, where concentra-
tions of a number of pollutants are measured at different sites. Exceedances
are typically counted to determine compliance with air quality regulations
and to study short/long-term effects of air pollution exposure. In particular,
daily number of stations reporting a violation of standards (i.e., the count
of exceedances) is often used as a simple air quality indicator to detect air
pollution episodes that occurred during a period of interest.

Whereas exceedances counts are helpful to communicate air conditions
to the general public, they suffer of a number of obvious drawbacks.

First, exceedances data are often unbalanced, because urban monitoring
networks are established for a variety of purposes and different stations typ-
ically measure non-homogeneous subsets of pollutants. Some pollutants are
often monitored by fewer stations, while concentrations of other pollutants
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are available at a larger number of sites. Moreover, some of these stations
are often not in operation during part of the observation period and, hence,
exceedances counts are daily computed on the basis of a time-varying num-
ber of stations. Exceedances data are therefore difficult to interpret if they
are not examined conditionally on the number of stations that are available
each day, for each pollutant.

Second, exceedances data are of little help in the evaluation of environ-
mental risk, if the analysis is not adjusted for weather conditions. Although
at present the formation and evolution of air pollution episodes in urban
areas is only understood in general terms, it is well known that meteoro-
logical covariates have a significant influence on air quality. The severity
of an episode should be therefore assessed by comparing exceedances data
between days that share similar weather conditions. In other words, ex-
ceedances should be examined conditionally on meteorological covariates, if
an analysis aims at addressing issues of environmental justice.

These drawbacks can be overcame by a conditional analysis of multivari-
ate exceedances counts, that focuses on the estimation of weather-specific,
joint exceedances probabilities. This requires the statistical modelling of
multivariate exceedances counts.

In a regression context, a simple approach could be pursued, by mod-
elling each pollutant separately and fitting a binomial regression to each time
series of exceedances counts, where the probability of a pollutant-specific ex-
ceedance depends on the available meteorological covariates through a suit-
able link function (Kütchenhoff and Thamerus, 1996). This approach relies
on an independence assumption between pollutant exceedances and can be
unrealistic if significant interactions between pollutant concentrations occur,
as it is often the case. As an alternative to independent models, finite mix-
tures of generalized linear models (Wang and Putermann, 1998) provide a
parsimonious approach to capture interactions between exceedances of dif-
ferent pollutants. In fact, in a finite mixture framework, the dependence
structure between pollutants exceedances is modelled by assuming that ex-
ceedances are conditionally independent, given a latent class. In other words,
exceedances probabilities are represented as convex combinations of reference
probabilities that can be interpreted as reference states of the air.

When a multivariate time series of exceedances counts is fitted by a mix-
ture of binomial regressions, the temporal structure of the data is ignored
and exceedances observed in different days are treated as independent sam-
ples. Temporal independence is often a strong assumption in environmental
time series such as pollutant exceedances counts, especially when a condi-
tional analysis is carried out by using a number of meteorological covariates
that capture a small portion of the data variability. Hidden Markov models
(HMM; Cappé et al. 2005) are parsimonious mixture models that account for
the temporal dependence structure of the data, by assuming that temporal
transitions from a state to another are driven by a Markov chain.
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In this paper, we focus on the statistical analysis of the multivariate
time series of exceedances counts, obtained when exceedances of a number
of pollutants are recorded by a urban monitoring network. Conditionally on
the available meteorological covariates and the number of stations operating
each day, we aim at detecting typical patterns of exceedances probabilities
that can be interpreted as reference air quality states. We specifically exploit
a non-homogeneous, multivariate hidden Markov model, where exceedances
counts are sampled from conditionally independent binomial distributions,
given the covariates and a latent air quality state. Temporal transitions
between different states are modelled by a non-homogeneous Markov chain,
driven by covariate-specific transition probabilities.

The proposed model extends the specification of finite mixtures of gen-
eralized linear models (Wang and Putermann, 1998), to account for serially
dependent data, and belongs to the family of the hidden Markov models
discussed by MacDonald and Zucchini (1997) to analyze categorical time se-
ries. It can also be viewed as a multi-pollutants generalization of the hidden
Markov model developed by Hughes, Guttorp and Charles (1999) in a study
of precipitation occurrences.

After describing the environmental data used in this study (Section 2),
the specification of a multivariate HMM is outlined in Section 3. Section
4 is devoted to discuss relevant computational details for likelihood-based
parameter estimation, while Section 5 illustrates an application to air quality
measurements from the monitoring network in Rome over the period January
- November 2000. Section 6 provides some concluding remarks.

2 Data

Our analysis is based on daily, multivariate counts of exceedances of air
quality standards, as computed from hourly pollutants concentrations that
are typically available from the monitoring network in a large urban area.

In the application discussed in the present paper, we considered the con-
centrations data of particulate matter (PM10), nitrogen dioxide (NO2) and
ozone (O3), reported by the monitoring network of Rome, during a period
of 328 days (1/3/2000 - 11/25/2000). The network includes 4 stations that
measure particulates, 9 stations that measure nitrogen dioxide concentra-
tions and 4 stations that measure ozone. The resulting 17 = 4 + 9 + 4 time
series include several missing values, because some of the stations were not in
operation during parts of the considered period. Each pollutant is however
daily recorded by at least one station, during the study period.

Daily exceedances counts were computed by counting the number of sta-
tions where (i) the 24-hour average concentration of particulate matter was
above the threshold of 50µg/m3, (ii) the maximum hourly concentration of
nitrogen dioxide was above the level of 200 µg/m3 and (iii) the maximum
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8-hour moving average of ozone concentrations exceeded the level of 120
µg/m3. According to these cut-offs, we obtained three time series (one for
each considered pollutant) of the daily number of stations where a violation
occurred.

The count data are displayed in Figure 1, together with the number of
stations operating each day.

Figure 1 about here
According to the above definitions of standards, we notice that ozone

episodes occur during summer, while exceedances of particulate matter and
nitrogen dioxide are scattered along the whole year. The severity of pollution
episodes should however be assessed by taking in account the time-varying
number of functioning stations. We also notice that the zeros in these time
series are not structural, because each pollutant was daily recorded by at
least one station, during the study period.

Figure 2 about here

In this paper, we aim at modelling the three time series in Figure 1, condi-
tionally on a multivariate time series of covariates that summarize weather
conditions. Figure 2 shows the standardized daily averages of temperature,
humidity, pressure and global radiation recorded by the network during the
study period, and used in this study to adjust our analysis for weather con-
ditions.

3 Modeling exceedances counts

In this study, hourly concentrations of a generic pollutant i, i = 1, . . . , I,
recorded by a monitoring station h, h = 1, . . . , H during day t, t = 1, . . . , T ,
are summarized by a daily binary variable yiht = 1 in case of an exceedance
and 0 otherwise. We aim at modelling the multivariate time series of ex-
ceedances counts of I pollutants, say yt = {yit, i = 1 . . . I, t = 1 . . . T},
where yit =

∑nit
h=1 yiht indicates the number of exceedances of pollutant i,

observed at the nit stations operating in day t.
A HMM specification of the distribution of yt allows for a parsimonious

specification of both the temporal dependence between exceedances and the
interactions between pollutants. In the following, we describe a two-state,
discrete time, non-homogeneous hidden Markov model (Wang and Puter-
man, 2001; Cappé et al., 2005) that we propose to model multivariate ex-
ceedances counts.

Specifically, we consider a vector of latent states s0:T = (s0, s1, . . . , sT )
and write the distribution of the observed data y0:T = (y0,y1, . . . ,yT ) as a
marginal distribution

Pr(y0:T ) =
∑

s0

∑

s1

· · ·
∑

sT

Pr(y0:T , s0:T ).
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We write the joint probability of the observed and the hidden processes
as

Pr(y0:T , s0:T ) = Pr(y0:T | s0:T )Pr(s0:T ) (1)

and assume that

Pr(y0:T | s0:T ) =
T∏

t=0

Pr(yt | s0:T ), (2)

and
Pr(yt | s0:T ) = Pr(yt | st). (3)

In particular, exceedances counts of different pollutant are assumed condi-
tionally independent, given the latent state, and modelled by the product of
I binomial distributions, as follows:

Pr(y0:T | s0:T ) =
T∏

t=0

Pr(yt | st) =
T∏

t=0

I∏

i=1

(
nit

yit

)
πyit

it (1− πit)nit−yit . (4)

The canonical parameter πit = E(yit | st,xt), i.e. the exceedance probability
for pollutant i in day t, is assumed to depend on the weather conditions of
that day, through a logit link function

logit(E(yit | st,xt)) = βi0(st) +
p∑

l=1

xtlβil(st)

where xT
t = (xt1, xt2, . . . , xtp) is a set of p atmospheric covariates and βi(st) =

(βi0(st),βi1(st), . . . , βip(st)) is an outcome-specific vector of regression pa-
rameters, depending on the latent state. This conditional independence
model for Pr(yt | st) assumes that the yit are independent conditional on the
latent state; unconditionally, counts yit will be correlated owing the influence
of the common latent state.

To complete the HMM specification, we assume that the joint distribution
of the states sequence is driven by a two-states Markov chain with state space
S = (0, 1), as follows:

Pr(s0:T ) = Pr(s0)
T∏

t=1

Pr(st | st−1) = δs0

T∏

t=1

qst−1st (5)

where δs0 = Pr(s0) and qst−1st = Pr(st | st−1). In particular, the transi-
tions probabilities at day t, qst−1st , are assumed to be non-homogeneous and
modelled as functions of linear predictors, through a logit transformation.
We specifically assume that
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logit(q00) = log
(

Pr(St = 0 | St−1 = 0,xt)
Pr(St = 1 | St−1 = 0,xt)

)
= γ00 +

p∑

l=1

xtlγ0l (6)

logit(q11) = log
(

Pr(St = 1 | St−1 = 1,xt)
Pr(St = 0 | St−1 = 1,xt)

)
= γ10 +

p∑

l=1

xtlγ1l (7)

where γst
= (γst0, γst1, . . . , γstp) is a vector of state-specific regression pa-

rameters.
The two key assumptions of our model are hence the conditional indepen-

dence between contemporaneous pollutants events, given the state (equation
4), and the Markovian dependence structure of the state sequence (equation
5).

Figure 3 about here

These two assumptions specifies the dependence structure of the HMM con-
sidered in this paper, as depicted by Figure 3, which displays the association
graph of the model.

4 Estimation

Taking into account the assumptions defined in Section 3, we will define L(·)
as the likelihood function. We can derive an expression for the likelihood in
terms of multiple sums:

L(·) =
∑

s0

∑

s1

· · ·
∑

sT

Pr(Y0:T = y0:T , S0:T = s0:T )

=
∑

s0

∑

s1

· · ·
∑

sT

δs0

T∏

t=1

qst−1st

I∏

i=1

T∏

t=0

Pr(yit | st) (8)

As it stands, this expression is of little or no computational use, because
it has 2T terms and cannot be evaluated except for very small T . Clearly,
a more efficient procedure is needed to perform the calculation of the like-
lihood. The problem of computing these factors may be addressed through
the Forward-Backward procedure (Baum et al., 1970; for a brief review see
Welch, 2003). Let us start considering the forward variable

αt(j) = Pr(y0:t, St = j), (9)

which represents the joint probability of the partial observed sequence until
time t and state j at time t. Now, recursive factorization of αt(j) is given
inductively:

α0(j) = Pr(y0, S0 = j) = δjPr(y0 | S0 = j), j = 0, 1. (10)
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αt+1(k) = Pr(y0:t+1, St+1 = k) =



1∑

j=0

αt(j)qjk



Pr(yt+1 | St+1 = k), j, k = 0, 1; 0 ≤ t ≤ T − 1.(11)

where Pr(yt | St = j) is defined as in (4). As a by-product of the forward
recursion, we obtain that the likelihood can be written as

L(·) =
1∑

j=0

αT (j). (12)

A reverse time recursion exists for the backward variable which is defined
as

τt(j) = Pr(yt+1:T | St = j), (13)

i.e. the probability of the partial observation sequence from t+1 to the end,
given state j at time t. Again we can solve for τt(j) inductively, as follows:

τT (j) = 1, j = 0, 1. (14)

τt(j) =
1∑

k=0

qjkPr(yt+1 | St = k)τt+1(k), j, k = 0, 1; t = T − 1, T − 2, . . . , 0.

(15)
The log-likelihood can be evaluated recursively, even for very long ob-

served sequences; hence it is feasible to perform parameter estimation for
HMMs by direct numerical maximization of the log-likelihood function. The
maximization can be accomplished by solving m separate maximization
problems defined by starting from a fixed initial state (Leroux and Put-
erman, 1992). An EM algorithm to find model parameter estimates can be
used (e.g. Leroux and Puterman, 1992; Hughes, 1997; Bilmes, 1998). In the
EM framework, y0:T is referred to as the incomplete data, s0:T is called the
"missing" data, while (y0:T , s0:T ) is the complete-data. Given a particular
sequence of states, the complete-data log-likelihood can be easily computed
as

'c(·) =
∑

j∈S
η∗j0 log δj +

T∑

t=1

∑

j∈S

∑

k∈S
ξ∗jkt log qjk

+
T∑

t=0

∑

j∈S
η∗jt log Pr(yt | St = j). (16)

where η∗jt is 1 if St = j and 0 otherwise, ξ∗jkt is 1 if a transition from j to
k occurred are t and 0 otherwise, and Pr(yt | St = j) and qjk are defined
as in (4) and (6), respectively. Let us define the conditional expectation of
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the complete log-likelihood function, Q(·, ·), which is obtained replacing the
components of the missing data by their conditional means:

Q(·, ·) =
∑

j∈S
ηj0 log δj +

T∑

t=1

∑

j∈S

∑

k∈S
ξjkt log qjk +

I∑

i=1

T∑

t=0

∑

j∈S
ηjt log f(yt | St = j). (17)

It can be seen that it is easy to differentiate with respect to model parameters,
add the Lagrange multipliers and solve, where

ηjt = Pr(St = j | y0:T ), (18)

the posterior probability, given the observed data, of being in state j at time
t and with

ξjkt = Pr(St+1 = k, St = j | y0:T ) (19)

the posterior probability that the unobserved sequence visited state j at time
t and made a transition to state k at time t+1, given the observed individual
sequence.

We can compute (17) using the forward and the backward variables de-
fined in (9) and (13) considering that the first and the third parts of the (17)
can be seen as smoothing probabilities, while the second one is a bivariate
smoothing probability. In fact,

ηjt =
αt(j)τt(j)

1∑
j=0

αt(j)τt(j)
(20)

ξjkt =
αt(j)qjkfk(yt+1)τt(k)

1∑
j=0

1∑
k=0

αt(j)qjkfk(yt+1)τt(k)
(21)

In the M-step, we update all model parameter estimates. The estimates
of the initial probability corresponds to the smoothing probability:

δ̂j = Pr(S0 = j | y0:T ) = ηj0. (22)

All the other estimated parameters are the roots of the following M-step
equations:

∂Q
∂γ

=
T∑

t=1

1∑

j=0

1∑

k=0

ξjkt
∂ log qjk

∂γ
; (23)
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∂Q
∂β

=
I∑

i=1

T∑

t=1

1∑

j=0

ηjt
∂ log f(yit | St = j)

∂β
. (24)

The resulting equations are thus weighted sums of score equations for
generalized linear models with common weights ξjkt and ηjt respectively. The
E- and M-steps are repeatedly alternated until the log-likelihood (relative)
difference changes by an arbitrarily small amount.

However, while the EM algorithm is useful for obtaining maximum like-
lihood estimates in such situations, it does not provide readily produce stan-
dard errors for parameters estimates.

We computed standard errors of parameter estimates using parametric
bootstrap, as standard errors based on the observed information matrix are
often unstable (see e.g. McLachlan and Peel 2000). Specifically, we re-fitted
the model to the bootstrap data that were simulated from the estimated
model. This process was repeated R times, and the approximate standard
error of each model parameter κ was computed by

ŝeR =

{
1

R− 1

R∑

r=1

[κ̂(r)− κ(R)]2
}1/2

, (25)

where κ̂(r) is the estimate from the r-th bootstrap sample and κ(R) is the
sample mean of all κ̂(r).

5 Results

Three time series of daily exceedances counts were jointly fitted by the hid-
den Markov model outlined in Section 3. Figure 4 displays the estimated
pollutant-specific exceedance probabilities, plotted against the observed ex-
ceedances proportions, i.e. the number of violations recorded each day by
the network, divided by the number of stations in operation.

Figure 4 about here

Maximum likelihood estimates of the parameters are reported in Table 1,
which displays the estimated influence of weather conditions on the condi-
tional (logit-transformed) exceedances probabilities, given the latent state
of the air, and the influence of these covariates on transition probabilities.
Estimates should be interpreted by recalling that covariates were standard-
ized. In particular we notice that the two states feature different subsets of
significant covariates.

Table 1 about here
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Estimates displayed in Table 1 can be conveniently interpreted by computing
log-odds of pollutant-specific exceedances and plotting the conditional linear
predictors, given the state (Figure 5).

Figure 5 about here

In particular, Figure 5 displays the log-odds of an exceedance at baseline and
at two extreme values of each standardized predictor (±2). Under state 0,
the baseline log-odds of an exceedance of particulate matter is greater than
the log-odds of an exceedance of nitrogen dioxide, which is greater than the
log-odds of an ozone exceedance. Under state 1, this ordering is reversed.
While a graphical examination of the data would suggest to cluster days into
days of acceptable air conditions and days of air pollution episodes, the model
exploited in this study proposes a different classification, based on two refer-
ence patterns of exceedances. State 0 represents a reference patterns, where
likely episodes of particulate matter and nitrogen dioxide are compensated
by unlikely exceedances of ozone. On the other side, the reference pattern
detected by state 1 is featured by likely episodes of ozone, compensated by
small exceedances probabilities of the other two pollutants. Days of accept-
able air conditions (unlikely exceedances) and severely polluted days (likely
exceedances) are represented as mixtures of these two reference patterns.

As well as the estimated effects of covariates reported in Table 1 capture
departures from the two reference exceedances patterns, due to changes in
weather conditions; differences between pollutants exceedances probabilities
can be either compensated or enhanced, in the presence of good or adverse
weather conditions. Differences enhancements and compensations are how-
ever different under the two states. For example (Figure 5), under state 0
log-odds differences increase as pressure and humidity increase. Under state
1, these differences decrease as pressure and humidity increase. A specular
situation occurs in the case of global radiation. The impact of tempera-
ture on exceedances probabilities is instead of a different type: under state
0, temperature has a negative influence on both ozone and nitrogen diox-
ide, while positively influences particulate exceedances; a reversed situation
occurs under state 1.

Figure 6 about here

Figure 6 represents the conditional linear predictors of exceedance proba-
bilities, as estimated in the study period. Air quality is represented as a
composition of a background state of pollution episodes (state 0: red solid
line) and a air quality state where episodes occur together with adverse
weather conditions (state 1: black solid line). Under state 0 exceedances
of particulate matter and nitrogen dioxide are likely to occur regardless of
changes in weather conditions, but are compensated by very small probabil-
ities of ozone exceedances. Under state 1, air pollution episodes are likely
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to occur in the presence of specific weather conditions, such as particulate
matter exceedances in winter (due to houses heating) or ozone exceedances
in summer (due to the adverse combination of high levels of temperature
and global radiation).

6 Concluding Remarks

Since 1970 air-quality measures have been started in several of the world’s
cities. The index design depends on both the desired objectives of communi-
cation and the research goals and, as a result, general purpose indices simply
do not exist. From a methodological viewpoint, however, design strategies
can be clustered into data-driven and model-driven strategies.

The data-driven approach (Bruno and Cocchi, 2002) is the most popular
strategy and is based on a deterministic aggregation of the hourly measure-
ments on each pollutant at every site in the monitoring network. Since this
approach does not use probabilistic assumptions on the data generating pro-
cess, there are no obvious methods either to construct these indices in the
presence of missing data or to forecast their values. As can be easily seen,
pollutants time series we recorded are characterized by a relevant number
of missing values leading to a possible bias in the estimate of an air-quality
index due to the daily and pollutant varying number of monitoring sites.

We consider a model-based approach, based on regression model, which
is used in various domains as environment for statistical data analysis when
one need to model the relationship between a response variable and covari-
ates, and which helps to build an air quality index even when missing values
are present. Air pollution data often show temporal dependence when mea-
surements are made hourly or at a shorter time intervals, hence a major issue
is the specification of a model for temporally correlated data.

This paper presents a non-homogeneous HMM, i.e. a doubly stochastic
process with an underlying stochastic process that is not directly observable
(hidden) but can be observed only through another process that produces
the sequence of observations. A parsimonious model has been considered
and model parameters have a physical meaning, especially when the param-
eter estimates aim at defining an air quality index. The aim of this paper is
to advocate the use of the HMM in analyzing environmental data when the
usual regression failed in modeling the relationship between a response vari-
able and covariates and the presence of latent states is suspected. HMM may
help to overcome the lack-of-fit if the sample is made of several unobserved
states of statistical units.

Furthermore, we adopt a multivariate model to identify factors associ-
ated with particulate matter, nitrogen dioxide and ozone. When we face
multivariate variables, and the primary focus of the analysis is not only to
build a regression model, but even to describe association among variables,
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the univariate approach is no longer sufficient and needs to be extended. In
this context, we are likely to face complex phenomena which can be charac-
terized by having a non-trivial correlation structure (e.g. omitted covariates
may affect more than one variable), which can be captured by introducing
a latent structure. Furthermore, it is well known that, when responses are
correlated, the univariate approach is less efficient than the multivariate one
(see e.g. Davidson and MacKinnon, 1993).
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PM10 NO2 O3 State Variable
Constant -1.37 -2.72 -6.33 -0.29

(0.61) (0.66) (1.25) (0.63)
Temperature 1.47 -1.35 -0.53 5.40

(0.66) (0.38) (0.56) (1.36)
STATE 0 Pressure 0.10 0.08 -0.60 2.53

(0.41) (0.29) (0.58) (0.61)
Humidity 0.33 -0.16 -0.43 0.64

(0.41) (0.78) (0.43) (0.67)
Radiation -0.42 0.26 2.85 -1.26

(0.52) (0.36) (1.21) (0.47)
Constant -8.89 -5.12 -4.79 2.13

(2.41) (1.06) (0.97) (0.25)
Temperature -1.18 -0.09 2.65 -0.35

(0.46) (0.42) (0.75) (0.42)
STATE 1 Pressure 1.56 1.22 0.45 0.76

(0.65) (0.82) (0.49) (0.27)
Humidity 0.98 0.12 -0.18 -0.47

(0.45) (0.22) (0.39) (0.35)
Radiation -2.14 0.94 0.77 -0.58

(1.20) (0.41) (0.57) (0.36)

Table 1: Parameter estimates (standard errors obtained using parametric
bootstrap are displayed in parentheses)
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Figure 1: exceedances counts (triangles) recorded by the monitoring network
of Rome in the period 1/3/2000 - 11/25/2000 relating to three pollutants
- particulate matter (top), nitrogen dioxide (middle) and ozone (bottom) -
and the number of stations in operation during the study period (solid line).
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Figure 2: standardized values of daily averages of temperature (top left),
humidity (top right), pressure (bottom left) and global radiation (bot-
tom right), as recorded by the monitoring network of Rome in the period
1/3/2000 - 11/25/2000.



st!1 st st+1

PM10 NO2 O3 PM10 NO2 O3 PM10 NO2 O3

Figure 3: association graph of the hidden Markov model assumed for pollu-
tants exceedances counts.
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Figure 4: triangles: observed exceedances proportions (the number of station
reporting an exceedance divided by the number of stations in operation,
as recorded by the monitoring network of Rome in the period 1/3/2000 -
11/25/2000; solid line: the probability of an exceedance, as estimated by the
hidden Markov model; bottom line: days classification as predicted by the
model (red: state 0; black: state 1 ).
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Figure 5: conditional log-odds of an exceedance probability, given the state,
for particulate matter (black), nitrogen dioxide (red) and ozone (blue).
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Figure 6: conditional linear predictors of particulate matter (top), nitrogen
dioxide (middle) and ozone (bottom) episodes, given the latent state of the
air (red: state 0; black: state 1), as estimated by a hidden Markov model.


