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The bi-Hamiltonian geometry

of integrable systems
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Dipartimento di Ingegneria dell’Informazione e Metodi Matematici

Università di Bergamo, Viale Marconi 5
I-24044 Dalmine (BG), Italy
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Abstract. This is the text of a talk given in Dalmine on May 9, 2007, during
one of the “scientific meetings” of the Faculty of Engineering of the Bergamo
University. Since the aim of these meetings is to bring together scientists work-
ing in different fields, this presentation was intended to be understandable also
for non-mathematicians. Using the example of the open Toda lattice, we give a
very brief account of the history of integrable systems and we present the main
ideas of a geometric approach based on the notion of bi-Hamiltonian system.

1 Integrable systems

Around 1855, right after the birth of Hamiltonian mechanics, an important re-
sult was found by Jacobi and Liouville. It states that under suitable assumptions
the motion a given (mechanical) system can be (almost) explicitly described.
In order to understand the nature of these assumptions, let us consider a sys-
tem coming from the modern theory of integrable systems, namely, the open
Toda lattice. It appeared in the study of nonlinear crystals and, in its simplest
form, consists in n particles (with masses equal to 1) moving on the line under a
nearest-neighbor interaction of exponential type. If we denote with qi the posi-
tions of the particles and with pi their momenta (coinciding with their velocities
in this case), then we can write the kinetic energy and the potential energy of
the system as

T =
1

2

n
∑

i=1

pi
2 , V =

n−1
∑

i=1

e qi−qi+1 ,

so that the Hamiltonian is given by

H = T + V =
1

2

n
∑

i=1

pi
2 +

n−1
∑

i=1

e qi−qi+1 .
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The equations governing the motion of the system are the Hamilton equations

q̇i = Hpi
, ṗi = −Hqi

, i = 1, . . . , n , (1)

where the dot denotes a derivative with respect to time and expressions like fx

stand for the partial derivative of f with respect to the variable x. In matrix
form the Hamilton equation can be written as























q̇1

...

q̇n

ṗ1

...

ṗn























= P























Hq1

...

Hqn

Hp1

...

Hpn























,

where P is the 2n × 2n matrix

P =

(

0 I

−I 0

)

.

A function I = I(q1, · · · , qn, p1, · · · , pn) is said to be a conserved quantity if it
remains constant during the motion of the system. It is not difficult to check
that it happens if and only if {I,H} = 0, where

{I, H} =

n
∑

i=1

(Iqi
Hpi

− Ipi
Hqi

) (2)

=
(

Iq1
, · · · , Iqn

, Ip1
, · · · , Ipn

)

P























Hq1

...

Hqn

Hp1

...

Hpn























is the so-called Poisson bracket between I and H. For example, the total mo-
mentum

∑n

i=1 pi and the energy H are clearly conserved quantity for the Toda
lattice. Moreover, it can be shown that the Toda lattice is an integrable system,
that is, there exist n conserved quantities I1, . . . , In which are (independent and)
in involution. This means that their Poisson brackets are all zero: {Ij , Ik} = 0
for all j, k.

After the discovery, made in 1890 by Poincaré, that one of the most im-
portant systems in celestial mechanics — the three-body problem — is not
integrable, the field of integrable systems was gradually abandoned. Nowadays
it occupies again a central place in mathematics and in physics thanks to the
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invention (made in 1967) of the inverse scattering method for the solution of
the Korteweg-deVries equation

ut + uux + uxxx = 0

and for other so-called soliton equations. This led to the notion of infinite-
dimensional integrable system and to new methods for studying finite and
infinite-dimensional integrable systems, such as the Lax representation and the
bi-Hamiltonian formulation (to be discussed in the following sections). In this
“new era” a lot of new examples of finite-dimensional integrable systems were
found. The Toda lattice is one of these.

2 Lax representation

In 1968 Peter Lax found what is now called the Lax representation of the
Korteweg-deVries equation, and he explained in this way some features of this
equation. Some years later, Flaschka and Manakov found such a representation
for the Toda lattice. Let us see what this means in the case of 3 particles. We
introduce the Lax matrix

L =







p1 e
1
2
(q1−q2) 0

e
1
2
(q1−q2) p2 e

1
2
(q2−q3)

0 e
1
2
(q2−q3) p3







of the system, and the matrix

B =
1

2







0 e
1
2
(q1−q2) 0

−e
1
2
(q1−q2) 0 e

1
2
(q2−q3)

0 −e
1
2
(q2−q3) 0






.

It can be easily checked that the Hamilton equations (1) imply that L̇ = [L, B],
where [L,B] = LB − BL is the matrix commutator. A very important conse-
quence of this fact is that the functions Ik = 1

k
trLk are conserved quantities.

Indeed, İk = 1
k
tr[Lk, B] = 0. It is not difficult to show that I1, I2, and I3 are

independent, whereas the proof of the involutivity is more complicated. We
notice that I1 =

∑

i pi is the total momentum, while I2 = H. The physical
meaning of I3 is still unclear.

3 Bi-Hamiltonian systems

We have just seen that the Lax representation allows one to construct conserved
quantities for a given system, but it does not explain why these quantities are
in involution. Now we will show that the bi-Hamiltonian formulation clarifies
this point. This idea is mainly due to Magri.
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Starting from the end of the 1970s, a particular attention in the theory of
integrability has been payed to systems admitting more than one Hamiltonian
representation. The first examples belonged to the class of infinite-dimensional
systems, like the Korteweg-deVries equation, but it was realized soon that also
finite-dimensional integrable systems are likely to possess a bi-Hamiltonian rep-
resentation.

Let us consider again the three-particle open Toda lattice. We have seen
that the equations of motion are



































q̇1 = p1

q̇2 = p2

q̇3 = p3

ṗ1 = −e q1−q2

ṗ2 = e q1−q2 − e q2−q3

ṗ3 = e q2−q3

(3)

Let us introduce the vector field

X =



















p1

p2

p3

−e q1−q2

e q1−q2 − e q2−q3

e q2−q3



















associated with the system. We know that it admits a canonical Hamiltonian
formulation

X = P



















Hq1

Hq2

Hq3

Hp1

Hp2

Hp3



















where

P =



















0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0



















.
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But Damianou showed that the Toda vector field X can also be written as

P ′



















Kq1

Kq2

Kq3

Kp1

Kp2

Kp3



















,

where K = I1 = p1 + p2 + p3 is the total momentum and

P ′ =



















0 −1 −1 p1 0 0

1 0 −1 0 p2 0

1 1 0 0 0 p3

−p1 0 0 0 −e q1−q2 0

0 −p2 0 e q1−q2 0 −e q2−q3

0 0 −p3 0 e q2−q3 0



















.

There are two important points. First of all, the matrix P ′ defines a Poisson
tensor, meaning that

{F,G}′ =
(

Fq1
, Fq2

, Fq3
, Fp1

, Fp2
, Fp3

)

P ′



















Gq1

Gq2

Gq3

Gp1

Gp2

Gp3



















has the same formal properties of the canonical Poisson bracket (2) associated
with P . Secondly, the Poisson tensors P and P ′ are compatible, i.e., their linear
combinations are still Poisson tensors. For these reasons, the Toda vector field
X is said to be a bi-Hamiltonian vector field.

Finally, we will show how this property can be used to construct a maxi-
mal set of integrals of motion for the Toda lattice, that are automatically in
involution. For any function F = F (q1, q2, q3, p1, p2, p3), let us denote with
dF =

(

Fq1
, Fq2

, Fq3
, Fp1

, Fp2
, Fp3

)

its differential. We have that

X = P (dH)T = P ′(dK)T ,

where ( · )T stands for the transpose of a matrix (in particular, of a vector). One
can consider the vector field X2 = P ′(dH)T and show that it is bi-Hamiltonian
too. This means that there exists a function I such that X2 = P (dI)T . It turns
out that I coincides with the conserved quantity I3 constructed with the Lax
matrix. Using the fact that the matrices P and P ′ are skewsymmetric, it is very
easy to prove that, e.g., K and I are in involution. Indeed,

{K, I} = dK P (dI)T = dK P ′(dH)T = −dH P ′(dK)T = −dH P (dH)T = 0 .
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The generalization to an arbitrary number n of particles is straightforward. The
Toda system is still bi-Hamiltonian, and one can use the bi-Hamiltonian formu-
lation to find n conserved quantities and to show that they are in involution.

Further reading
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