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Abstract

We consider a nonparametric goodness of fit test problem for the drift

coefficient of one-dimensional ergodic diffusions. Our test is based on discrete

time observation of the processes, and the diffusion coefficient is a nuisance

function which is estimated in our testing procedure. We prove that the limit

distribution of our test is the supremum of the standard Brownian motion,

and thus our test is asymptotically distribution free. We also show that our

test is consistent under any fixed alternatives.
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1 Introduction

Goodness of fit tests play an important role in theoretical and applied statistics,
and the study for them has a long history. Such tests are really useful especially
if they are distribution free, in the sense that their distributions do not depend
on the underlying model. The origin goes back to the Kolmogorov-Smirnov and
Crámer-von Mises tests in the i.i.d. case, established early in the 20th century,
which are asymptotically distribution free.

This work deals with a goodness of fit test for diffusion processes. Despite the
fact that in the last thirty years diffusion models have been proved to be immensely
useful, not only in finance and more generally in economics science, but also in other
fields such as biology, medicine, physics and engineering, the problem of goodness
of fit tests for diffusion processes has still been a new issue in recent years.

The estimation theory, in both the parametric and the non parametric frame-
works, has been studied by many authors in the last twenty years. Among the
others we cite Kutoyants [13] and the references therein for the model based on
continuous time observations. Regarding the model based on discrete time obser-
vations for different sampling schemes we recall the works of Yoshida [23], Kessler
[10], Hoffmann [9], and Gobet et al. [8]. In the last paper an interesting historical
overview on this topic is presented. The methods introduced for estimation of
diffusion process have been successfully implemented and applied to financial data
to study decision to optimally consume, save and invest, portfolio choice under
many different constrains, contingent claim pricing. See e.g. Aıt-Sahalia [1] and
reference therein.

Although their great importance in application, the theory of goodness of fit
tests for diffusion has not received much attention from researcher as the theory of
estimation has. Kutoyants [13] discusses some possibilities of the construction of
such tests in his Section 5.4, where he considers the Kolmogorov-Smirnov statistics
based on the continuous observation of a diffusion process. The goodness of fit test
based on the Kolmogorov-Smirnov statistics is asymptotically consistent and the
asymptotic distribution under the null hypothesis follows from the weak conver-
gence of the empirical process to a suitable Gaussian process but these tests are
not asymptotically distribution free. Note that the Kolmogorov-Smirnov statistics
for ergodic diffusion process was studied in Fournie,[5], see also Fournie and Ku-
toyants [6] for more details, while the weak convergence of the empirical process
was proved in Negri [16] (see van der Vaart and van Zanten, [22] for further de-
velopments). Dachian and Kutoyants [2] and Negri and Nishiyama [17] proposed
some asymptotically distribution free tests but their results are based on contin-
uous time observation of the diffusion processes. One of the interesting points of
this paper is that the proposed test is based on discrete time observation, which is
more realistic in applications.

As well as Negri and Nishiyama [17], [18], we take an approach based on a
certain marked empirical process to construct an asymptotically distribution free
test, where “empirical process” actually means an innovation martingale. In Lee
and Wee [14] a similar approach based on the residual empirical process is proposed
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to study a goodness of fit test for diffusion process with the drift in a parametric
form and a constant diffusion coefficient. Our approach based on the innovation
martingale is motivated by the work of Koul and Stute [12] who considered a non-
linear parametric time series model (see also Section 7.3 of Nishiyama [20] which
is a reprint of his thesis in 1998). They studied the large sample behavior of the
proposed test statistics under the null hypotheses and present a martingale trans-
formation of the underlying process that makes tests based on it asymptotically
distribution free. Some considerations on consistency have also been done. The
approach is well expounded in Koul [11]. See Delgado and Stute [3] and refer-
ences therein for more recent information. Our work is an attempt to develope the
method in the continuous time model based on discrete time observation.

Now we turn to the description of the problem treated in this paper. Consider
a one-dimensional stochastic differential equation (SDE)

Xt = X0 +

∫ t

0

S(Xt)dt +

∫ t

0

σ(Xt)dWt, (1)

where the initial value X0 is finite almost surely, S and σ are functions which satisfy
some properties described in Section 2, and t ; Wt is a standard Wiener process
defined on a stochastic basis (Ω,F , (Ft)t≥0, P ). We consider a case where a unique
strong solution X to this SDE exists, and we shall assume that X is ergodic. We
are interested in goodness of fit test for the drift coefficient S, while the diffusion
coefficient σ2 is an unknown nuisance function which we estimate in our testing
procedure. That is, we consider the problem of testing hypothesis H0 : S = S0

versus H1 : S 6= S0 for a given S0. The meaning of the alternatives “S 6= S0” will
be precisely stated in Section 4.

We denote Log m = log(1 + m). We consider the following situation.

Sampling scheme. The process X = {Xt; t ∈ [0,∞)} is observed at times
0 = tn0 < tn1 < · · · < tnn such that, as n → ∞, tnn → ∞ and hn = O(n−2/3(Log n)1/3)
(which implies nh2

n → 0) where hn = max1≤i≤n |tni − tni−1|. 3

This condition implies hn → 0, so we may assume that hn ≤ 1 without loss
of generality. We will propose an asymptotically distribution free test based on
this sampling scheme, namely, high frequency data. We should mention that there
is a huge literature on discrete time approximations of statistical estimators for
diffusion processes; see e.g. the Introduction of Gobet et al. [8] for a review includ-
ing not only high frequency cases but also low frequency cases. However, it seems
difficult to obtain asymptotically distribution free results based on low frequency
data.

The organization of the article is as follows. In Section 2, we state some condi-
tions for (S, σ) which are assumed throughout this work. Section 3 gives the main
result under the null hypothesis. In Section 4, we prove that our test is consistent
under any fixed alternatives. A simulation study is given in Section 5. The proofs
for some lemmas will be given in Section 6 and in the Appendix I. The Appendix
II gives some simple sufficient conditions for some of our regularity conditions.
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2 Preliminaries

Let us list some conditions for the pair of functions (S, σ).
A1. There exists a constant K > 0 such that

|S(x) − S(y)| ≤ K|x − y|, |σ(x) − σ(y)| ≤ K|x − y|.

3

Under this condition, the SDE (1) has a unique strong solution X. Notice also
that there exists a constant K ′ > 0 such that

|S(x)| ≤ K
′

(1 + |x|), |σ(x)| ≤ K
′

(1 + |x|).

To see this, just put y = 0. The constant K ′ depends on the values S(0) and σ(0),
however the constant K itself depends on the choice of the functions (S, σ). So it
is convenient to introduce the notation

KS,σ = max{K,K ′}.

This notation will be used throughout this article.

A2. The diffusion process X is regular. The speed measure mS,σ is finite and has
the second moment. 3

In this case, the process X is ergodic. We denote by fS,σ the invariant density,
and introduce the metric ρS,σ on [−∞,∞] given by

ρS,σ(x, y) =

√∫ x∨y

x∧y

(σ(z)2fS,σ(z) + φ(z))dz. (2)

where φ is the density of the standard Gaussian distribution. Without φ, the above
ρS,σ may not define a metric but just define a semimetric. The weak convergence
theory which we review in the Appendix I requires that ρ is a metric, so we have
added the Gaussian density φ. It is easy to see that the space [−∞,∞] is compact
and the metric entropy condition is satisfied:

∫ 1

0

√
log N([−∞,∞], ρS,σ; ε)dε < ∞.

Here, when a metric space (T, ρ) is given, N(T, ρ; ε) denotes the smallest number
of closed balls with ρ-radius ε which cover T .

A3. The diffusion coefficient is bounded: σ2
∗ := supx∈R

σ(x)2 < ∞. The invariant
density fS,σ is bounded. Furthermore,

ΣS,σ :=

√∫ ∞

−∞

σ(z)2fS,σ(z)dz > 0.

3
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A4. supt∈[0,∞) E|Xt|2 < ∞. 3

Now, we introduce an array of constants

−∞ = xn
0 < xn

1 < xn
2 < · · · < xn

m(n) < xn
m(n)+1 = ∞

such that, as n → ∞,

max
2≤k≤m(n)

|xn
k − xn

k−1| → 0, xn
1 ↓ −∞, xn

m(n) ↑ ∞.

For example, one may consider xn
k = −n + (k/n) with k = 1, 2, ..., 2n2. Next we

introduce a sequence of functions z ; ψn
k (z) on (−∞,∞) which approximates the

indicator function 1(−∞,xn

k
].

Definition 1 Let a sequence of positive constants bn be given. For every k =
1, 2, ...,m(n), ψn

k is the continuous, piecewise linear function on (−∞,∞) defined
by

ψn
k (z) =





1, z ∈ (−∞, xn
k ],

line, z ∈ [xn
k , xn

k + bn],
0, z ∈ [xn

k + bn,∞).

Also we define ψn
0 ≡ 0 and ψn

m(n)+1 ≡ 1.

This function satisfies the following properties:

|ψn
k (z) − ψn

k (z′)| ≤ b−1
n |z − z′|;

|ψn
k (z) − 1(−∞,xn

k
](z)| ≤ 1[xn

k
,xn

k
+bn](z).

Now we make the following condition.

A5. In addition to hn = O(n−2/3(Log n)1/3), which implies nh2
n → 0, we assume

the following:
(i) b−2

n hn · Log n · Log m(n) → 0;
(ii) bnLog m(n) → 0. 3

Typically, Log m(n) = O(Log nα) for some α > 0. In this case, the above (i)
and (ii) are satisfied if we take bn = n−1/4Log n.

Let us close this section with making some conventions. We denote by Cρ(T )
the class of continuous functions defined on a metric space (T, ρ), and by ℓ∞(T )
the class of bounded functions on T . We equip the uniform metric with the spaces.
We denote by “→p” and “→d” the convergence in probability and in distribution
as n → ∞, respectively. The notation “→” always means that we take the limit as
n → ∞. See e.g. van der Vaart and Wellner [21] for the weak convergence theory
in the ℓ∞(T ) space.
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3 Asymptotically distribution free test

Throughout all this section, we shall suppose that A1 – A5 are satisfied for some
(S0, σ). We denote ρ = ρS0,σ which is given by (2).

Our test statistics is based on the random field Un = {Un(x); x ∈ [−∞,∞]}
defined by Un(−∞) = 0 and

Un(x) =
1√
tnn

n∑

i=1

ψn
k (Xtn

i−1
)[Xtn

i
− Xtn

i−1
− S0(Xtn

i−1
)|tni − tni−1|]

for x ∈ (xn
k−1, x

n
k ], 1 ≤ k ≤ m(n) + 1. We call it the smoothed score marked

empirical process based on discrete observation. This Un is an approximation of
the random field V n = {V n(x); x ∈ [−∞,∞]} defined by

V n(x) =
1√
tnn

∫ tnn

0

1(−∞,x](Xt)[dXt − S0(Xt)dt],

which is the score marked empirical process based on continuous observation stud-
ied by Negri and Nishiyama [17].

We present some lemmas which will be proved in Section 6.

Lemma 2 The random field Un takes values in ℓ∞([−∞,∞]), and the random
field V n takes values in Cρ([−∞,∞]) almost surely.

Lemma 3 supx∈[−∞,∞] |Un(x) − V n(x)| →p 0.

So, once we establish a good asymptotic result for V n, the same thing could
hold also for Un. Indeed, we have the following result for V n which was essentially
obtained by Negri and Nishiyama [17]. It is a fruit of the combination of the weak
convergence theory for ℓ∞-valued continuous martingales developed by Nishiyama
[20] and a theorem for local time of ergodic diffusion processes given by van Zanten
[24] (see also van der Vaart and van Zanten [22]).

Lemma 4 V n →d G in Cρ([−∞,∞]), where G = {G(x); x ∈ [−∞,∞]} is a
zero-mean Gaussian random field with co-variance given by

EG(x)G(y) =

∫ x∧y

−∞

σ(z)2fS0,σ(z)dz.

Almost all paths of G are uniformly ρ-continuous.

Combining Lemmas 3 and 4 we obtain the following.

Theorem 5 Un →d G in ℓ∞([−∞,∞]), where G is that in Lemma 4.

By the continuous mapping theorem, we have the following.
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Corollary 6 supx∈[−∞,∞] |Un(x)| →d supt∈[0,Σ2] |Bt| =d Σ supt∈[0,1] |Bt|, where t ;

Bt is a standard Brownian motion, Σ = ΣS0,σ, and where the notation “=d” means
that the distributions are the same.

In order to obtain an asymptotically distribution free test, we need a consistent
estimator for ΣS0,σ. The following lemma, which will be proved also in Section 6,
gives us an answer.

Lemma 7 The estimator

Σ̂n =

√√√√ 1

tnn

n∑

i=1

|Xtn
i
− Xtn

i−1
|2

is consistent for ΣS,σ.

We finally obtain our main result.

Theorem 8 Under H0 : S = S0, it holds that

T n =
supx∈[−∞,∞] |Un(x)|

Σ̂n
→d sup

t∈[0,1]

|Bt|,

where t ; Bt is a standard Brownian motion.

One may think that it is more natural to consider the random field Ũn =
{Ũn(x); x ∈ [−∞,∞]} given by

Ũn(x) =
1√
tnn

n∑

i=1

1(−∞,x](Xtn
i−1

)[Xtn
i
− Xtn

i−1
− S0(Xtn

i−1
)|tni − tni−1|]

(that is, the case bn = 0) instead of Un. At least in our proof, the uniform
approximation (Lemma 3) is due to the continuity of the function z ; ψn

k (z), so

it does not seem easy to translate the result for V n into that for Ũn. However, it
is conjectured that the same result would hold also for Ũn; see a simulation study
in Section 5.

4 Consistency of the test

In this section, we continue to assume all conditions in Section 3, including the
properties of the given function S0. We denote by S the class of functions S which
satisfies A1 – A4 and

∫ xS

−∞

(S(z) − S0(z))fS,σ(z)dz 6= 0 for some xS ∈ (−∞,∞]. (3)

The precise description of our problem is testing the null hypothesis H0 : S = S0

versus the alternatives H1 : S ∈ S.

7



We will prove that our test is consistent. Fix S ∈ S. We can write Un = Un
S +Un

∆

where Un
S (−∞) = Un

∆(−∞) = 0 and, for x ∈ (xn
k−1, xk], 1 ≤ k ≤ m(n) + 1,

Un
S (x) =

1√
tnn

n∑

i=1

ψn
k (Xtn

i−1
)[Xtn

i
− Xtn

i−1
− S(Xtn

i−1
)|tni − tni−1|]

and

Un
∆(x) =

1√
tnn

n∑

i=1

ψn
k (Xtn

i−1
)(S(Xtn

i−1
) − S0(Xtn

i−1
))|tni − tni−1|.

Now we have

sup
x∈[−∞,∞]

|Un(x)| ≥ sup
x∈[−∞,∞]

|Un
∆(x)| − sup

x∈[−∞,∞]

|Un
S (x)|.

Since S satisfies A1 – A4, by the same argument as in Section 3, the random field
Un

S converges to the corresponding Gaussian random field with S0 replaced by S.
So the second term of the right hand side is OP (1), and thus it suffices to show

sup
x∈[−∞,∞]

|Un
∆(x)| 6= OP (1).

This is actually accomplished by the following lemma.

Lemma 9 Choose xS ∈ (−∞,∞] as in (3). Then, |Un
∆(xS)| 6= OP (1).

We therefore obtain the consistency of the test.

Theorem 10 Under H1 : S ∈ S, it holds that

T n =
supx∈[−∞,∞] |Un(x)|

Σ̂n
6= OP (1).

5 Simulation study

In this section we observe finite-sample performance of our test statistics through
numerical experiments. For true (data-generating) process we adopt the Ornstein-
Uhlenbeck diffusion starting from the origin:

Xt =

∫ t

0

(−2Xs)ds + Wt. (4)

For simplicity we here focus on the equidistant sampling case, that is, hn = tni −tni−1

for every i ≤ n.
We are going to observe the following (a) and (b), in both of which we will take

xn
k = −n + k

n
for k = 1, 2, . . . , 2n2, and bn = 1

100
n−1/4Logn:

(a) asymptotic behavior of T n
0 := T n with S0(x) = −2x;

(b) asymptotic behavior of T n
1 := T n with S0(x) = −4x.
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Concerning (a), from Theorem 8 it follows that the distribution of T n
0 asymp-

totically obeys

F (x) := P

(
sup

t∈[0,1]

|Bt| ≤ x

)
=

4

π

∞∑

k=0

(−1)k

2k + 1
exp

(
−π2(2k + 1)2

8x2

)
(5)

for x ∈ R, where B is a standard Brownian motion. See e.g. 343 page of Feller [4]
for this formula. Turning to (b), in view of Theorem 10 the variable T n

1 diverges
in probability.

Throughout we take the significance level to be 0.05. Then we see that F (x) =
0.95 for x ; 2.24, hence the critical region is {x > 2.24}, and:

• P (T n
0 > 2.24) should tend to 0.05 in (a);

• P (T n
1 > 2.24) should tend to 1.0 in (b).

For several different terminal time tnn and sampling frequency hn, we simu-
late 1000 independent copies of a discrete sample trajectory of (4) to obtain, say
{(T n,l

0 , T n,l
1 )}1000

l=1 . We then compute:

• the empirical size (e.s.) defined by ♯{l : T n,l
0 > 2.24}/1000, the sample

proportion of making incorrect rejections of the null;

• the empirical power (e.p.) defined by ♯{l : T n,l
1 > 2.24}/1000, the sample

proportion of making successful rejections of the null.

Table 1 summarizes the simulation results. We observe that: for a fixed hn,
empirical power gains along with increasing terminal time tnn; on the contrary, it is
not the case when we make hn smaller for a fixed tnn. This tells us that, in order
to obtain high power of our test procedure, the large-time characteristic (i.e., the
ergodicity) of the data sequence may be more important than the high frequency.

tnn = 10 tnn = 20 tnn = 50
hn e.s. e.p. e.s. e.p. e.s. e.p.
0.1 0.043 0.438 0.059 0.633 0.067 0.943

(n = 100) (n = 200) (n = 500)
0.05 0.050 0.412 0.047 0.596 0.060 0.911

(n = 200) (n = 400) (n = 1000)

Table 1: Empirical sizes (e.s.) and empirical powers (e.p.) based on 1000 indepen-
dent statistics. Here the significance level is 0.05, and bn = 1

100
n−1/4Logn.

Figure 1 reports plots of the empirical distribution functions based on (T n,l
0 )1000

l=1

in (a). This reveals that the distributional approximation of Theorem 8 is quite
accurate even for small sample size (small observation window).

Finally, Table 2 shows results of experimental trials when bn = 0. Though in
this case our theory cannot confirm the same asymptotic behaviors of T n

0 and T n
1

as before, from the table we may expect that this is also the case.
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Figure 1: Plots of empirical distribution functions over [0, 4] based on (T n,l
0 )1000

l=1 in
(a), and the common straight lines in the six displays indicate the target distribu-
tion function (5). In each figure the two plots are almost piled up.

6 Proofs of Lemmas

Notation: For x, y ≥ 0, the inequality x . y means that there exists a constant
C > 0, depending only on KS,σ, σ2

∗ and the value sups E|Xs|2 for fixed (S, σ), such
that x ≤ Cy.

Proof of Lemmas 2 and 4. We apply Lemma 12 to the family Mn = {Mn,x; x ∈
[−∞,∞]} of continuous martingales given by

Mn,x
t =

1√
tnn

∫ t

0

1(−∞,x](Xs)σ(Xs)dWs.

The metric entropy condition
∫ 1

0

√
log N([−∞,∞], ρ; ε)dε < ∞ is trivially satis-

fied. The adapted quadratic modulus satisfies

∣∣||Mn||∗ρ,tnn

∣∣2 ≤ sup
x<y

(tnn)−1
∫ ∞

−∞
1(x,y](z)σ(z)2ltnn(z)mS0,σ((−∞,∞))fS0,σ(z)dz∫ ∞

−∞
1(x,y](z)(σ(z)2fS0,σ(z) + φ(z))dz

≤
supz∈(−∞,∞) ltnn(z)

tnn
mS0,σ((−∞,∞)),

10



tnn = 10 tnn = 20 tnn = 50
hn e.s. e.p. e.s. e.p. e.s. e.p.
0.1 0.054 0.479 0.047 0.662 0.063 0.938

(n = 100) (n = 200) (n = 500)
0.05 0.042 0.455 0.059 0.613 0.038 0.894

(n = 200) (n = 400) (n = 1000)

Table 2: Empirical sizes (e.s.) and empirical powers (e.p.) based on 1000 indepen-
dent statistics. Here the significance level is 0.05, and experimentally bn = 0.

where lt(z) denotes the local time of the diffusion X with respect to the speed
measure mS0,σ. Theorem 3.1 of van Zanten [24] says that supz∈(−∞,∞) lt(z) = OP (t)
as t → ∞. So Lemma 12 (i) implies that V n takes values in Cρ([−∞,∞]) almost
surely, and Lemma 12 (ii) yields the assertion of Lemma 4. The assertion that Un

takes values in ℓ∞([−∞,∞]) is trivial. 2

In order to prove Lemma 3, we prepare a lemma.

Lemma 11 For every ε > 0 there exists a constant K > 0 such that

lim sup
n

P

(
1

Log n
max
1≤i≤n

supt∈(tn
i−1,tn

i
] |Xt − Xtn

i−1
|2

tni − tni−1

≥ K

)
< ε.

Proof. It is sufficient to show that

E

(
max
1≤i≤n

supt∈(tn
i−1,tn

i
] |Xt − Xtn

i−1
|2

tni − tni−1

)
= O(Log n).

The random variable in the inside of the expectation on the left hand side is
bounded by 4{(I) + (II)} where

(I) = max
1≤i≤n

∣∣∣
∫ tn

i

tn
i−1

|S0(Xs)|ds
∣∣∣
2

tni − tni−1

,

(II) = max
1≤i≤n

supt∈(tn
i−1,tn

i
]

∣∣∣
∫ t

tn
i−1

σ(Xs)dWs

∣∣∣
2

tni − tni−1

.

As for (I), it follows from Hölder’s inequality that

(I) ≤ max
1≤i≤n

∫ tn
i

tn
i−1

ds
∫ tn

i

tn
i−1

|S0(Xs)|2ds

tni − tni−1

. hn sup
s∈[0,tnn]

{1 + |Xs|2}.

11



Using Hölder’s inequality again, we have

E sup
s∈[0,tnn]

|Xs|2 . E|X0|2 + E

(∣∣∣∣
∫ tnn

0

|S0(Xu)|du

∣∣∣∣
2
)

+ E

(∫ tnn

0

σ(Xu)
2du

)

≤ E|X0|2 + tnnE

(∫ tnn

0

|S0(Xu)|2du

)
+ σ2

∗t
n
n

≤ E|X0|2 + |tnn|2 sup
u

E|S0(Xu)|2 + σ2
∗t

n
n

. |tnn|2.

So E(I) . hn|tnn|2 ≤ n2h3
n = O(Log n). Here we used the assumption hn =

O(n−2/3(Log n)1/3).
As for (II), it follows from Lemma 13 that

P




supt∈(tn
i−1,tn

i
] |

∫ t

tn
i−1

σ(Xs)dWs|2

tni − tni−1

> x




= P

(
sup

t∈(tn
i−1,tn

i
]

∣∣∣∣∣

∫ t

tn
i−1

σ(Xs)dWs

∣∣∣∣∣ >
√

x
√

tni − tni−1

)

≤ 2 exp


−x|tni − tni−1|

2
∫ tn

i

tn
i−1

σ2
∗ds




= 2 exp

(
− x

2σ2
∗

)
.

Apply Lemma 14 (i) to conclude that E(II) . Log n. 2

Proof of Lemma 3. Let us introduce the random fields Y n
1 , Y n

2 and Y n
3 given by

Y1(−∞) = Y2(−∞) = Y3(−∞) = 0 and

Y n
1 (x) =

1√
tnn

n∑

i=1

∫ tn
i

tn
i−1

ψn
k (Xtn

i−1
)[dXt − S0(Xt)dt],

Y n
2 (x) =

1√
tnn

n∑

i=1

∫ tn
i

tn
i−1

ψn
k (Xt)[dXt − S0(Xt)dt],

Y n
3 (x) =

1√
tnn

n∑

i=1

∫ tn
i

tn
i−1

1(−∞,xn

k
](Xt)[dXt − S0(Xt)dt],

for x ∈ (xn
k−1, x

n
k ], 1 ≤ k ≤ m(n) + 1. We will prove:

sup
x∈[−∞,∞]

|Un(x) − Y n
1 (x)| →p 0; (6)

sup
x∈[−∞,∞]

|Y n
1 (x) − Y n

2 (x)| →p 0; (7)

12



sup
x∈[−∞,∞]

|Y n
2 (x) − Y n

3 (x)| →p 0; (8)

sup
x∈[−∞,∞]

|Y n
3 (x) − V n(x)| →p 0. (9)

Proof of (6). Using Lemma 15, we have

E sup
x

|Un(x) − Y n
1 (x)|

≤ 1√
tnn

n∑

i=1

∫ tn
i

tn
i−1

E|S0(Xt) − S0(Xtn
i−1

)|dt

≤ 1√
tnn

n∑

i=1

KS0,σ

∫ tn
i

tn
i−1

E|Xt − Xtn
i−1

|dt

.
1√
tnn

n∑

i=1

∫ tn
i

tn
i−1

|t − tni−1|1/2dt

≤ 1√
tnn

· tnn · h1/2
n

≤
√

nhn → 0.

Proof of (7). We introduce the stopping time

τn(K) = inf

{
t ∈ [0, tnn] :

supt∈(tn
i−1,tn

i
] |Xt − Xtn

i−1
|2

Log n · |tni − tni−1|
≥ K

}
.

By Lemma 11, for every ε > 0 there exists a constant K > 0 such that lim supn P (τn(K) <
tnn) < ε. So it is enough to see that max1≤k≤m(n)+1 |ξn

k | →p 0 where

ξn
k =

1√
tnn

n∑

i=1

∫ tn
i
∧τn(K)

tn
i−1∧τn(K)

(ψn
k (Xtn

i−1
) − ψn

k (Xt))σ(Xt)dWt.

Clearly ξn
m(n)+1 = 0. For every 1 ≤ k ≤ m(n), note that ξn

k is a terminal variable
of a continuous martingale. To apply the exponential inequality for continuous
martingales, let us compute the predictable variation of ξn

k :

1

tnn

n∑

i=1

∫ tn
i
∧τn(K)

tn
i−1∧τn(K)

|ψn
k (Xtn

i−1
) − ψn

k (Xt)|2σ(Xt)
2dt

≤ 1

tnn

n∑

i=1

∫ tn
i
∧τn(K)

tn
i−1∧τn(K)

b−2
n |Xtn

i−1
− Xt|2σ∗dt

≤ 1

tnn

n∑

i=1

∫ tn
i
∧τn(K)

tn
i−1∧τn(K)

b−2
n KLog n|tni − tni−1|σ2

∗dt

≤ Kσ2
∗ · b−2

n hnLog n.

Hence, by Lemmas 13 and 14, we have

E max
1≤k≤m(n)

|ξn
k | .

√
Kσ2

∗ · b−2
n hnLog n

√
Log m(n) → 0.

13



Proof of (8). We introduce the stopping time

τn(K) = inf

{
t ∈ [0, tnn] :

supz∈(−∞,∞) lt(z)

tnn
≥ K

}
,

where lt denotes the local time of X with respect to the speed measure mS0,σ. By
Theorem 3.1 of van Zanten [24], for every ε > 0 there exists a constant K > 0 such
that lim supn P (τn(K) < tnn) < ε. So it is enough to see that max1≤k≤m(n)+1 |ξn

k | →p

0 where

ξn
k =

1√
tnn

n∑

i=1

∫ tn
i
∧τn(K)

tn
i−1∧τn(K)

(ψn
k (Xt) − 1(−∞,xn

k
](Xt))σ(Xt)dWt.

Clearly ξn
m(n)+1 = 0. To apply the exponential inequality for continuous martin-

gales, let us compute the predictable variation of ξn
k :

1

tnn

n∑

i=1

∫ tn
i
∧τn(K)

tn
i−1∧τn(K)

|ψn
k (Xt) − 1(−∞,xn

k
](Xt)|2σ(Xt)

2dt

≤ 1

tnn

n∑

i=1

∫ tn
i
∧τn(K)

tn
i−1∧τn(K)

1[xn

k
,xn

k
+bn](Xt)σ

2
∗dt

= σ2
∗

1

tnn

∫ ∞

−∞

1[xn

k
,xn

k
+bn](z)lτn(K)(z)mS0,σ((−∞,∞))fS0,σ(z)dz

≤ σ2
∗KmS0,σ((−∞,∞)) sup

z
fS0,σ(z) · bn.

Hence, by Lemmas 13 and 14, we have

E max
1≤k≤m(n)

|ξn
k | .

√
σ2
∗KmS0,σ((−∞,∞)) sup

z
fS0,σ(z) · bn

√
Log m(n) → 0.

Proof of (9). It is sufficient to show that

max
1≤k≤m(n)+1

sup
x∈(xn

k−1,xn

k
]

|V n(xn
k) − V n(x)| →p 0.

Notice that Lemma 12 implies also that for every ε, η > 0 there exists δ > 0 such
that

P

(
sup

ρ(x,y)<δ

|V n(x) − V n(y)| > ε

)
< η.

Since ρ(x, y) ≤ (supz(σ(z)2fS0,σ(z) + φ(z)))
√
|x − y| ≤ constant

√
|x − y|, we

have max2≤k≤m(n) ρ(xn
k−1, x

n
k) → 0. Also, it is clear that ρ(−∞, xn

1 ) → 0 and
ρ(xn

m(n),∞) → 0. Hence we have (9).

Now (6) – (9) have been proved, and the proof of Lemma 3 is finished. 2

Proof of Lemma 7. By Itô’s formula, we have

|Xtn
i
|2 − |Xtn

i−1
|2 = 2

∫ tn
i

tn
i−1

XsdXs +

∫ tn
i

tn
i−1

σ(Xs)
2ds.
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Since

|Σ̂n|2 =
1

tnn

n∑

i=1

{
|Xtn

i
|2 − |Xtn

i−1
|2 − 2Xtn

i−1
(Xtn

i
− Xtn

i−1
)
}

,

it is enough to show that

1

tnn

n∑

i=1

∫ tn
i

tn
i−1

(Xs − Xtn
i−1

)dXs →p 0

and
1

tnn

∫ tnn

0

σ(Xs)
2ds →p Σ2

S,σ.

The latter is nothing else than the ergodicity. As for the former, observe that

1

tnn

∣∣∣∣∣

n∑

i=1

∫ tn
i

tn
i−1

(Xs − Xtn
i−1

)dXs

∣∣∣∣∣

≤ 1

tnn

n∑

i=1

∫ tn
i

tn
i−1

|Xs − Xtn
i−1

||S(Xs)|ds +
1

tnn

∣∣∣∣∣

n∑

i=1

∫ tn
i

tn
i−1

(Xs − Xtn
i−1

)σ(Xs)dWs

∣∣∣∣∣ .

By Lemma 15, the expectation of the first term on the right hand side is

1

tnn

n∑

i=1

∫ tn
i

tn
i−1

E(|Xs − Xtn
i−1

||S(Xs)|)ds

≤ 1

tnn

n∑

i=1

∫ tn
i

tn
i−1

√
E|Xs − Xtn

i−1
|2

√
E|S(Xs)|2ds

.
1

tnn

n∑

i=1

∫ tn
i

tn
i−1

√
hn

√
E|S(Xs)|2ds

≤
√

hn sup
s

√
K2

S,σE(1 + |Xs|)2

→ 0.

On the other hand, the expectation of the square of the second term on the right
hand side is

1

|tnn|2
n∑

i=1

E

∫ tn
i

tn
i−1

|Xs − Xtn
i−1

|2σ(Xs)
2ds

.
1

|tnn|2
n∑

i=1

∫ tn
i

tn
i−1

|s − tni−1|σ2
∗ds

≤ 1

tnn
hnσ

2
∗

→ 0.

This proves the consistency of our estimator. 2
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Proof of Lemma 9. We write Un
∆(xS) =

√
tnnA

n
1 , where

An
1 =

1

tnn

n∑

i=1

ψn
k(n)(Xtn

i−1
)(S(Xtn

i−1
) − S0(Xtn

i−1
))|tni − tni−1|

and k(n) is the number k such that xS ∈ (xn
k−1, x

n
k ]. It suffices to show that An

1

converges in probability to a constant which is not zero. Now, by the ergodicity
we have

An
4 =

1

tnn

∫ tnn

0

1(−∞,xS ](Xt)(S(Xt) − S0(Xt))dt

→
∫ ∞

−∞

1(−∞,xS ](z)(S(z) − S0(z))fS,σ(z)dz 6= 0, almost surely.

Hence, introducing

An
2 =

1

tnn

n∑

i=1

∫ tn
i

tn
i−1

ψn
k(n)(Xtn

i−1
)(S(Xt) − S0(Xt))dt

and

An
3 =

1

tnn

n∑

i=1

∫ tn
i

tn
i−1

ψn
k(n)(Xt)(S(Xt) − S0(Xt))dt,

we will show that An
1 − An

2 →p 0, An
2 − An

3 →p 0 and An
3 − An

4 →p 0.
To see An

1 − An
2 →p 0, notice that

E|An
1 − An

2 | ≤ 1

tnn

n∑

i=1

E

(∫ tn
i

tn
i−1

ψn
k(n)(Xtn

i−1
)|S(Xtn

i−1
) − S(Xt)|dt

)

+
1

tnn

n∑

i=1

E

(∫ tn
i

tn
i−1

ψn
k(n)(Xtn

i−1
)|S0(Xtn

i−1
) − S0(Xt)|dt

)
.

Using Lemma 15, the first term on the right hand side is bounded by

1

tnn

n∑

i=1

∫ tn
i

tn
i−1

E|S(Xtn
i−1

) − S(Xt)|dt

≤ 1

tnn

n∑

i=1

KS,σ

∫ tn
i

tn
i−1

E|Xtn
i−1

− Xt|dt

≤ 1

tnn

n∑

i=1

KS,σ

∫ tn
i

tn
i−1

√
E|Xtn

i−1
− Xt|2dt

.
1

tnn

n∑

i=1

∫ tn
i

tn
i−1

|t − tni−1|1/2dt

≤ 1

tnn
· tnn · h1/2

n → 0.
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The second term is also estimated in the same way.
To see An

2 − An
3 → 0, notice that

E|An
2 − An

3 | ≤ 1

tnn

n∑

i=1

E

(∫ tn
i

tn
i−1

(ψn
k(n)(Xtn

i−1
) − ψn

k(n)(Xt))|S(Xt)|dt

)

+
1

tnn

n∑

i=1

E

(∫ tn
i

tn
i−1

(ψn
k(n)(Xtn

i−1
) − ψn

k(n)(Xt))|S0(Xt)|dt

)
.

The first term on the right hand side is bounded by

1

tnn

n∑

i=1

E

(∫ tn
i

tn
i−1

b−1
n |Xtn

i−1
− Xt||S(Xt)|dt

)

≤ 1

tnn

n∑

i=1

∫ tn
i

tn
i−1

b−1
n

√
E|Xtn

i−1
− Xt|2

√
E|S(Xt)|2dt

.
1

tnn

n∑

i=1

∫ tn
i

tn
i−1

b−1
n

√
|t − tni−1|dt

≤ 1

tnn
· tnn · b−1

n

√
hn → 0.

The second term is also estimated in the same way.
To see An

3 − An
4 →p 0, notice that

|An
3 − An

4 | ≤ 1

tnn

n∑

i=1

∫ tn
i

tn
i−1

1[xn

k(n)−1
,xn

k(n)
+bn](Xt)|S(Xt)|dt

+
1

tnn

n∑

i=1

∫ tn
i

tn
i−1

1[xn

k(n)−1
,xn

k(n)
+bn](Xt)|S0(Xt)|dt.

Using the local time lt, the first term on the right hand side is bounded by
mS,σ((−∞,∞)) times

∫ ∞

−∞

1[xn

k(n)−1
,xn

k(n)
+bn](z)|S(z)| ltnn(z)

tnn
fS,σ(z)dz

≤
√∫ ∞

−∞

1[xn

k(n)−1
,xn

k(n)
+bn](z)fS,σ(z)dz

√∫ ∞

−∞

|S(z)|2
∣∣∣∣
ltnn(z)

tnn

∣∣∣∣
2

fS,σ(z)dz.

Since (tnn)−1 supz ltnn(z) = OP (1), the right hand side is oP (1). The second term is
also analyzed in the same way, and the lemma has been proved. 2

Appendix I

First, let us review the theory of random fields generated by continuous martingales
developed by Nishiyama [19], [20]. Let T be a set which is totally bounded with
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respect to a metric ρ. Let a family Mn = {Mn,x; x ∈ T} of continuous martingales
t ; Mn,x

t be given, where the underlying stochastic basis (Ωn,Fn, (Fn
t )t≥0, P

n)
is common for all x ∈ T . Let a finite stopping time τn be given. We define the
quadratic modulus t ; ||Mn||ρ,t by

||Mn||ρ,t = sup
x 6=y

√
〈Mn,x − Mn,y〉t

ρ(x, y)
.

Since T is not necessarily countable, ||Mn||ρ,t may not have any measurability. So
we introduce the adapted quadratic modulus t ; ||Mn||∗ρ,t as any ([0,∞]-valued)
adapted process such that ||Mn||ρ ≤ ||Mn||∗ρ almost surely. We denote by N(T, ρ; ε)
the smallest number of closed balls with ρ-radius ε which cover T . Then, we have
the following result.

Lemma 12 Suppose
∫ 1

0

√
log N(T, ρ; ε)dε < ∞.

(i) If ||Mn||∗ρ,τn < ∞ almost surely, then there exists a uniformly ρ-continuous
version of the random field Mn

τn = {Mn,x
τn ; x ∈ T}.

(ii) If ||Mn||∗ρ,τn = OP (1), and if 〈Mn,x,Mn,y〉τn →p C(x,y), then the random
field Mn

τn is asymptotically uniformly ρ-equicontinuous in probability and converges
weakly to G in Cρ(T ), where G = {G(x); x ∈ T} is a zero-mean Gaussian random
field with the co-variance EG(x)G(y) = C(x,y). Almost all paths of G are uniformly
ρ-continuous.

Proof. See Theorems 2.4.3 and 3.4.2 of Nishiyama [20]. The essence is the maximal
inequality for continuous martingales; see Theorem 2.3 of Nishiyama [19]. 2

Here, we state the exponential inequality for continuous martingales.

Lemma 13 Let M be a continuous martingale, and let τ be a bounded stopping
time. For every x, v > 0 it holds that

P

(
sup

t∈[0,τ ]

|Mt| > x, 〈M〉τ ≤ v

)
≤ 2 exp

(
−x2

2v

)
.

The following lemma, the maximal inequality for general random variables, is
used in connection with Lemma 13 and plays a key role in our approach.

Lemma 14 (i) Let X1, ..., Xm be arbitrary random variables which satisfy

P (|Xi| > x) ≤ 2 exp
(
−x

a

)

for all x and i and a fixed constant a > 0. Then there exists a universal constant
C > 0 such that

E

(
max

1≤i≤m
|Xi|

)
≤ Ca log(1 + m).
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(ii) Let X1, ..., Xm be arbitrary random variables which satisfy

P (|Xi| > x) ≤ 2 exp

(
−x2

b

)

for all x and i and a fixed constant b > 0. Then there exists a universal constant
C > 0 such that

E

(
max

1≤i≤m
|Xi|

)
≤ C

√
b
√

log(1 + m).

Proof. Use Lemmas 2.2.1 and 2.2.2 of van der Vaart and Wellner [21]. 2

The following lemma is well known.

Lemma 15 Let X be a solution to the SDE (1) for (S, σ) which satisfies A1. Let
k ≥ 2. Then, there exists a constant Ck > 0, depending only on k, such that for
any 0 ≤ t < t′ with |t′ − t| ≤ 1

E sup
u∈[t,t′]

|Xu − Xt|k ≤ CkK
k
S,σ sup

s
E(1 + |Xs|)k|t′ − t|k/2.

Proof. Use Hölder’s inequality and Burkholder-Davis-Gundy’s inequality. 2

Appendix II

For convenience we here give two sets of simple sufficient conditions for
∫ ∞

−∞
x2fS,σ(x)dx <

∞ (the last part of A2) and A4, under the conditions A1 and σ2
∗ < ∞ (a part of

A3).
(a) There exist some constants a, c,K > 0 such that E exp(aX2

0 ) < ∞ and that
xS(x) ≤ −cx2 for every |x| ≥ K.

(b) S is bounded, and there exist some constants a, c,K > such that E exp(a|X0|) <
∞ and that xS(x) ≤ −c|x| for every |x| ≥ K.

To see these statements, we may apply the proofs for Propositions 1.1 and 5.1
in Gobet [7]. Another way is to apply the argument of the proof for Theorem 2.2
in Masuda [15] with Lyapunov-test functions such as x 7→ x2.
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