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Abstract

In this paper, concepts and methods of statistical sensitivity analy-
sis (SA) of computer models are reviewed and discussed in relation to
water quality analysis and modelling.

The starting point of this approach is based on modelling the un-
certainty of the computer code by probability distributions. Despite
the fact that computer models are generally speaking non-stochastic,
in the sense that if we rerun the code we get the same result, the sto-
chastic approach turns out to be useful to understand how the input
uncertainty is propagated through the computer code into the output
uncertainty.

We follow the standard approach to SA which is based on vari-
ance decomposition and consider three levels of SA. At the first or
preliminary level, we discuss DOFE and response surface methodolo-
gies in order to get a first estimate of the input influences on the model
output.

At the second level, going further into modelling the relationship
between computer model inputs and outputs, we assume that different
computer runs are independent. We then discuss techniques derived
from Monte Carlo input simulations and regression analysis.

At the third level, recognizing that, since the computer model is ac-
tually non-stochastic, the errors are often smoother than independent
errors, we consider the geostatistical SA which is based on assuming
that the error of the computer code emulator is a stochastic process
with positive correlation which gets higher as two inputs get closer.
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ity, Monte Carlo, Geostatistics
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1 Introduction

1.1 Computer models and recreational water quality

Computer models are widely used in hydrology and water quality studies in
general. In recreational water quality modelling and assessment, the use of
both conceptual and management models are increasingly important.

As a first example, consider real time forecasting E. coli concentrations,
which is useful for management beach closure strategies and may be ap-
proached by both mechanistic and statistical models. In this frame, Olyphant
and Whitman (2004) applied dynamical regression models including hydro-
logical, meteorological and water quality predictors to swimming beaches of
Lake Michigan.

Moreover, Vinten et al. (2004) compared soil transport models, multiple
regression models and distributed catchment models in the catchment of the
River Irvine, Scotland. In deep ocean outfall plumes off Sydney, Miller et
al. (1996) used finite element modelling, to assess both long and short term
effects.

Reynolds (1999) reviews various modelling strategies for understanding
phytoplankton dynamics in water quality and lake management. For river
and lake water quality, computer models (CM) may be used in integrated
analyses at the catchment scale where various dimensions are usually taken
into account.

Jamieson et al. (2004), in order to assess microbial pollution of rural
surface water considered liquid and solid waste generated from industry,
zootechny and domestic sources. They review some approaches to modelling
both surface and subsurface transport of the associated microorganisms and
their flow through stream networks.

Norton et al. (2004) considered the hydrologic, economic and stream
sediment sources of uncertainty in a calibrated computer model applied to
the Ben Chefley Dam, Australia.

Hydrological models are important here because they are often used as
submodels of water quality models. For example, Whitehead et al. (1997)
considered a combined flow and process based river quality model includ-
ing nitrate, dissolved oxygen, biochemical oxygen demand, ammonium ion,
temperature, pH and a conservative water quality determinand. In general,
mechanistic models have been extensively studied in hydrology, in particular
flow models and rainfall-runoff models, see e.g. Beven (2001). In dry areas,
e.g. in the Mediterranean area, water quality may be severely influenced
by reduction in flow. Becciu et al. (2002) studied a calibrated conceptual
model for minimum instream flow in Central Alps catchments by means of
regression modelling and outlier analysis.

An other issue relevant for recreational water is waste water manage-
ment. For example in heavy metal biofilter modelling, Fasso et al. (2003)
used a conceptual model based on the advection dispersion reaction equation
and modelled the multivariate response using a multivariate heteroskedastic
statistical approximation.



From the above examples, the CM outputs may be the stream discharge
or the concentration of chemicals and/or pollutants or time to next health
hazard event; and the CM relates these to anthropic and environmental pa-
rameters, initial and boundary conditions, global climate and dynamics of
meteorology.

1.2 Sensitivity analysis and paper structure

Uncertainty may be related to measurement errors, both at model output
(MO) and parameter level. Moreover it may be due to the fact that the CM
is only an approximation of the real system. Such sources of uncertainty will
be discussed in some detail in section 2 where, we extend the taxonomy of
Kennedy and O’Hagan (2001) .

In some cases, the C'M needs to be calibrated on some observational
data. It is then interesting to assess the estimation or calibration uncer-
tainty and the sensitivity of the MO to the calibration parameters. In other
cases, calibration is not explicitly considered, but once again SA is aimed at
understanding to what extent the various parameters affect the MO.

Sensitivity analysis (SA) is then intended to assess these individual sensi-
tivities and to rank various inputs with respect to certain sensitivity indexes.
If we avoid uncertainty concepts, the simplest idea for doing SA is to con-
sider first order local expansion at some internal point and use the analytical
or numerical partial derivatives to carry out this local S A.

In section 3, we discuss the approach known as global SA. The aim is to
define the global influence of each input to the uncertainty of the M O. Then,
using an appropriate global performance measure, e.g. variance, squared or
absolute fitting error or likelihood, we show how to assess and rank the sen-
sitivity to each parameter. We first review and comment the case considered
extensively in Saltelli et al. (2000) and in Fasso and Perri (2002) where the
C'M is taken for granted or, equivalently, no calibration data are available so
we assess the sensitivity of the MO without reference to observed data.

In section 4, we discuss the preliminary S'A, generally based on a reduced
number of computer runs and little statistical modelling. In such a case,
design of experiments (DOFE) and response surface methodology techniques
are of interest. At a subsequent step, when computer runs are cheap, Monte
Carlo SA is useful. This technique and modified sampling strategies (Latin
Hypercube and importance sampling) are discussed in section 5. In section
6, model based SA is discussed and the variance based SA is extended to
multivariate and heteroskedastic C'M’s; in the latter case, the residual model
uncertainty is not constant over the input domain.

In section 7, we discuss some SA techniques related to the case where
calibration data are available and C'M validation may be performed also
with SA. In section 8, we discuss the case where the uncertainty of the MO,
prior to running the C'M, is assumed to be a stochastic process indexed by
the computer model input . In the previous sections, the Monte Carlo ap-
proach was based on independent computer runs. Here, recognizing that the

3



original computer code is non-stochastic, the error smoothness is described
by a geostatistical approach.

2 Model uncertainty setup

In order to introduce uncertainty concepts, we first suppose that the true
environmental phenomenon of interest, say (, is related to some observable
multidimensional inputs = = (21, ..., xx) in some input domain, say D, and
some other non-observable or unknown inputs z*, that is

The computer model (C'M) or code is a computable function, say f(z),
which for given inputs x gives an output

z=f(x).

Usually it is a complex function and its analytical properties are difficult to
derive. In some cases, it may be a stochastic function including for example
some Monte Carlo or other simulation based components. In this paper, we
consider mainly deterministic C'M’s, in the sense that, if we re-run the code,
we get the same result. In the simple ideal case the C'M is a perfect model
so that

flx) = ¢z, %) (1)

for every x*.

2.1 Input uncertainty

In environmental C'M’s it is common to have two kinds of input parameters,
that is fixed and variable parameter vectors denoted by 6 = (6, ...,0;) and
x = (x1, ..., 7} ) respectively, giving the C'M equation

z=f(x,0). (2)

The vector 0 is often referred to as the "calibration parameter" to be esti-
mated on observational data. For example, in a hydrological model applied to
a certain watershed, the parameter set § may be related to geomorphological
and/or evapotranspiration parameters of that watershed, while x = (¢, y1, y2)
may be the time index t = 1,2, ... and meteorological conditions ¥; and dis-
charges 1, at time ¢.

We are often interested in the global behaviour of the true system (
without fixing the input z. Or in a risk analysis, we are interested in right
tail behaviour of risk-related MO’s. So, in practice, the k — dimensional
input * = (x1,...,7x) is uncertain and it may be useful to describe such
uncertainty by an appropriate k —variate probability distribution with joint
probability density function given by p (x) and cumulative distribution P (z).
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The simplest example of input distribution is given by independent rec-
tangular marginals. We will see in the following sections that when inputs
are independent the sensitivity indexes satisfy certain additivity properties.

In some cases this simple setup has to replaced by other multivariate
distribution. For example in Fasso et al. (2002b), section 4.2, considering
the SA of a heavy metal biofilter C' M, the maximum uptake constant (¢maz)
and the Langmuir constant (b) are supposed bivariate Normal with moderate
positive correlation, p = 0.30, to reflect the calibration uncertainty source of
these parameters.

2.2 Simulation and residual uncertainty

Except the simplistic case of equation (1), since x* is unknown, the C'M or
simulator z = f () is, at best, an approximation of the averaged values of (,
say p. This is given by

p(x) = Eor (C(z,27) |2)

where E,- (.|x) is the conditional expectation operator with respect to some
conditional distribution p (z*|z).

Hence, if ( is observed without error the residual uncertainty is given by
the probability distribution of

eo=¢(—p (3)

and the C'M inadequacy or simulator uncertainty is given by
e1=f—C=eé+eo (4)

where €; = (f — ) is the partial simulation uncertainty while e; is the total
simulation uncertainty. If observational data, say Z, are available about (
then measurement errors are possible and

Z:C+€C

This case may be handled in the Bayesian framework of section 8 or, under
Markovian assumption on the unobserved ¢, by the dynamical system setup
and the Kalman filter, see e.g. Fasso and Nicolis (2005) for an application of
this approach to air quality.

2.3 Emulation

The next step is to suppose that we have a simplified model, say g (x,3),
where (3 is a "regression type" parameter to be estimated in order to give a
good approximation of the CM f (z).
Of course we have partial and total emulation uncertainty given, respec-
tively, by
ea=9—f (5)



and
ea=9g—(=¢+er.

The fixed but unknown parameter 5 may be interpreted, for example, as
the minimum mean square error parameter which minimizes

E,(g(z,8) — f (2))*.

2.4 Estimated emulator

In practice we may get an estimate B using simulated data from the CM

(i, f(x)),i=1,...,n.

This gives the estimated emulator
§(@) =g (a.8)

and we have another two sources of uncertainty, say partial and total esti-
mation uncertainty, given respectively by

es=3g—g

and
es=g— [ (6)

In some cases 3 is a statistical estimate, e.g. maximum likelihood esti-
mates, and the uncertainty on S and the errors ez and €3 may be assessed
using some standard approximate normality and confidence intervals. In
other cases B is calibrated using e.g. hydrological techniques giving GLUFE
methodology which is discussed in section 7.1.

In the following sections 4 and 5, the quantities of main interest are the
emulated values § and the corresponding errors given by equation (6).

2.5 Output Uncertainty

The uncertainty on the input x propagates to the output z via the C'M,
f (z), so that, as long as x is a random vector with distribution p (z), we are
interested in the output uncertainty distribution, p (z) say, which is related
to p (z) via the code f (z). For example in risk analysis we are interested in
the cumulative output distribution P (z) and its right tail quantiles.

A typical quantity for assessing the squared uncertainty is the output
variance, which may be computed using the input uncertainty distribution

p(x):
Var() =t = [ (F12) = o p(a)da
where fo = F (2).

Moreover, the MO's may be compared with observational data of the
true system. Let e be the forecasting error according to one of the setups
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from sub-sections 2.1-2.4. For example, for an exactly observed system with
known C'M, we have e = f — pu and, for an emulated model, the forecasting
error is e = g — [L.

As can be seen from these last two quantities, such error accounts also
for model inadequacy. Therefore, the output uncertainty is generally given
by the error cumulative distribution, P (e) say. If we have replicated input
values, for example a random sample x1,...,z, from p(z) as discussed in
section 5, we can use standard statistical inference to estimate P (e) its mean,
variance, confidence intervals etc.

3 Variance based SA

Most of the remaining part of this paper is based on data coming exclusively
from the C' M. Hence, except in section 7, we will not consider in detail either
the residual uncertainty (3) or the simulator uncertainty (4) .

In principle the sensitivity of the MO’s, z, to each component of x =
(x1, ..., zx) may be based on the local approach by the partial derivatives

of

dz;

which can be computed either analytically or numerically around a "central
point" z° = (29,...,2%). Whenever this approach has been used for a long
time and is still being used, it is rather simplistic for complex nonlinear C'M.

Extending the local SA to "many" 2° € D would give more information
but, of course, would rebuild the complexity and the multidimensionality of
f () itself. So we need a "global" approach that is able to give information
for every x but is also a synthesis which reduces the original complexity.
Moreover, we search for quantities that can be "estimated" on a reduced set
of CM runs.

The basic idea of global S'A is to study the overall influence of each input
component z; to the uncertainty of the M O. In variance based SA, we assess
the uncertainty by the variance and we are naturally lead to SA measures
based on variance decomposition, for example using a main-effect model

k
Z:fo—i-ij—i-é‘ (7)

with fo = F (z) as above and

fi = E(zlz;) = fo.

Note that the error € here is non-stochastic as it is a pure model-inadequacy
quantity. Whenever the standard statistical interpretation does not hold, in
many situations such an error, being a complicated function of many inde-
pendent inputs x behaves close to a stochastic error.
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If the inputs are independent we can decompose the total uncertainty as

Var (z Z Var (f;) + Var () (8)

J=1
and the Pearson’s correlation ratio

Var (f]) (9)

0

S; =

is the natural first order sensitivity index for ;. As a matter of fact, Var (f;)
may be interpreted as that part of the uncertainty of the output which can
be reduced by fixing the j** input parameter and, correspondingly, the sen-
sitivity S; may be interpreted as the fraction of (squared) uncertainty of z
due to the uncertainty on z;

In principle, we can assess interactions of any order starting from the full
interaction model

Z—fo+ng+wa+ A+ fi, (10)

1<J

where f;; = E (z|x;, z;) — fi — f; — fo and so on.

In this case, in order to cover the effect of the interactions between x; and
the other inputs, the sensitivity index S; may be increased to get the total
effect. To see this, let x(;) be the (k — 1) — dimensional vector corresponding
to o without the j component and consider the following decomposition

2= fo+ fi+ fo) + Li)

Now, using the input independence, we have

Var (2) = Var (f;) + Var (f;)) + Var (fi))

and, following Homma and Saltelli (1996), the total sensitivity index for z;
is given by
Var (f;) + Var (f50))

2
0%

Sy =

J

=1-250).

3.1 Further details

Let D; and D;y be the input domains of z; and x(;) respectively. Then the
output response to x; is given by the (k — 1) —dimensional integral

E(zlz;)= | f(2)p(zq) dag (11)

D)

and its variance is given by the one-dimensional integral
Var (E (z|z;)) / E( |373 p(x;)dzx; — c (12)
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Moreover, Var ( f(]-)) , which enters the total sensitivity Sr,, is given by

Var (E (2|z(;))) :/ E (zl2))p (x (;)) dagy — f3-
D)

Shortcuts for estimating S(;) are discussed e.g. in Chan et al. (2000) and
their efficiency may be assessed in practice using equation (27) of Fasso and
Perri (2002) .

4 Exploratory analysis

At the early stages of the C M analysis, especially if the computer runs are
expensive, it may be worth considering a simplified emulator, based on a
reduced set of values for each input x;. For example, consider just binary
inputs which assume the values High/Low giving the new input domain, say
D*, with 2 different values. This is known as a 2* factorial design which
requires running the code 2* times and allows to identify the zero error full
interaction model (10).

When the figure 2% is too large and /or "all the interactions" are too many,
we need smaller designs such as the fractional designs 28" which allows the
estimation of a reduced version of model (10) with high order interactions
being encompassed in the error component as in model (7).

The related techniques known as design of experiment (DOE) and re-
sponse surface methodology (RSM) are well established for stochastic ex-
periments, see e.g. the classic Box et al. (1978) and the more recent Wu
and Hamada (2000). Sacks et al. (1978) considered the so-called design of
computer experiments and its optimization is also discussed in section 8.1 be-
low. Whenever at first sight, standard DOFE seems to work also in this case,
it has to be recognized that, due to the non-stochastic nature of computer
experiments, now replications, blocking and randomization loose their usual
meaning.

Moreover, for output uncertainty estimation, considering only binary in-
puts may be of limited value. One can extend to the n level factorial design
with n*¥ components or fractionally reduced, but as n and k are not very
small it does not work in practice.

5 Monte Carlo and other sampling techniques

In the previous section "optimal" systematic sampling has been considered
for the case where the response surface is fixed in advance and certain cardi-
nality reduction assumptions are in order. Using this approach for complex
emulators g (z) and/or high dimensional and high cardinality inputs is not
feasible in practice because of computational complexity. Then in this sec-
tion, we get some techniques which are not optimal but are informative for
any particular emulator.



To do this, the idea of section 2.1 which describes the input uncertainty
by a certain probability distribution, say P (z), is accomplished with the
assumption that different runs are independent. This gives a natural way to
get information about the C'M, that is simple random sampling from P (z).
This means that we need (pseudo) random numbers from P (z) and this is
easily done with standard software. Using this approach we get a (possibly
large) sample from the C'M, namely (z1, 21) , ..., (Tp, 2, ),which is informative
about the code f () and may be used for empirical modelling, estimating
and validating the emulator g (). Moreover, it is useful for estimating the
indexes of section 3 and, as z1, ..., z, is a random sample from the unknown
distribution P (z), it may be used to get the estimated output uncertainty
distribution, say P (z).

Of course this approach is especially appropriate when computer runs are
cheap and getting "a large Monte Carlo sample" is a feasible task in terms
of computing resources.

5.1 Importance sampling

Suppose we are interested in estimating the average of the positive output
function h (z) > 0

For example, we may be interested in computing the output mean, with
h(z) = |f (x)| or the variance with h (z) = (f (z) — fo)°.

Using the standard Monte Carlo approach, we would estimate ;1 by means
of a random sample z1, .., x, from p (z) and its sample average

m:%Zh(Jci).

The idea of importance sampling is to use a stratified sample from a cumula-
tive distribution @ (x) # P (x) which gives higher probability to those inputs
x, where h (x) is large. In practice the i'" stratified importance sample, /

say, is given by
1 ‘
x; — Qfl <ﬂ> (13)

n

where R; is a uniform random number and the unknown p is now unbiasedly
estimated by the weighted estimator

!/

! h (‘%)
L DTy} (14

It is easily seen that if ¢ (z) = W then m' is zero variance and, hence,

optimal. On the one hand, the sampling strategy, which increases the sam-
pling size where the C'M uncertainty is large, is more efficient than standard
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Monte Carlo sampling. On the other hand, application of this method re-
quires approximate knowledge of the C'M itself. Moreover, in equation (14),
weighting is essential to avoid bias. Finally, if x is multivariate then stratified
sampling gives the course of dimensionality of the previous section and LH S
of the next section should be taken into consideration.

5.2 Latin hypercube sampling

This sampling method, acronimized by LHS, is a multidimensional gen-
eralization of the stratified sampling which assigns each scalar sample z;,
1 =1,...,n to a different equi-probability interval or cell, ¢; say, using equa-
tion (13) with P, instead of (). In the k—dimensional case, we have a
k—dimensional grid of n* cells ¢; given by the Cartesian product of the mar-
ginal intervals ¢; ;, that is ¢; = ¢;1 X ... X ¢; .

Figure 1: FExample of a two-dimensional Latin hypercube assignment with
n =5 and rectangular marginals

The n* factorial design of previous sections would simply give one element
x; for each cell ¢;. Now in LH S, as shown by Figure 1, the cells are chosen so
that each marginal has just one observation in each of the n equi-probability
intervals and it may be seen as a highly fractionalized factorial design. As a
matter of fact, the term comes from Latin Squares where there is an array
of symbols and each occurs just once.

5.2.1 Algorithm

To do this, note that the cells ¢; are identified by k integers ranging in 1,...,n
hence the n x k matrix C' of such integers has columns which are given by
random permutations of the integers 1, ..., n.

After choosing the cell ¢; the value z; is chosen from P (x|c;) using equa-
tion (13) thanks to independence. The extension to certain correlation struc-
tures is considered by Stein (1987).

5.2.2 Optimality

It is known that if code f (x) is monotonic in each component x;, then LH.S
improves on random sampling for estimating the output mean, variance and
cumulative distribution function (McKey et al., 1979). Nevertheless, due
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to the high degree of fractionalization, this technique requires some caution
when used for high order interaction models (e.g. Hungtington et al., 1998).

6 Model based SA

In section 4, we considered response surface methodology as a way to under-

stand how the inputs affect the computer code. In this section, we are more

deeply concerned with the model emulator and its capability to give further

insight into the C'M in general and in its sensitivity indexes in particular.
Let us start by considering a linear regression emulator

:
g(x,B8) =P+ > ;B (15)
j=1

with errors (5) close to independent, homoskedastic Gaussian errors. If the
input components are uncorrelated as in section 3, we get the sensitivity
indexes \S; from the variance decomposition.

k
o? :Zagjﬂ?jtaf. (16)
j=1

To do this, using a large enough Monte Carlo sample, we can use the least
square estimates of [ to get the estimated sensitivity indexes

. 0L
Sj - 523
Ty
and from (16) we have
A 62
D S =R=1-= (17)

Y

This approach easily extends to interactions, polynomial components and
transformed inputs, using e.g. the following generalized linear model

g(@.8)=h(x)p. (18)

Some caution is required for high dimensional input sets and high order in-
teractions. For example, Helton et al. (2005), doing SA of a waste isolation
plant with more then thirty inputs, found that step-wise regression was un-
stable and they preferred separated analyses.

6.1 Nonlinear and multivariate SA

Often the code output is a vector and we are interested in assessing the
sensitivity of the C'M as a whole. For example, considering a waste water
biofilter model, Fasso et al. (2003) were interested in performance outputs
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given by the length of unused biofilter bed as well as the breakthrough time
which is the working time over which it is necessary to regenerate the fixed
bed. In this case, using the covariance decomposition which extends equation
(16) to the multivariate case, they proposed both the trace sensitivity indexes
which retain additivity as in equation (17) and determinantal sensitivity
indexes which consider also the output correlations.

Nonlinear extensions of the linear model (15) follow two main approaches.
Keeping homoskedastic independent errors, the first path focusses on gen-
eralizing the parametric emulator into nonparametric models. In the case
of additive models and independent inputs, the decomposition (8) and the
sensitivity indexes (9) may be still used.

The second nonlinearity approach arises when the emulator errors (6)
are heteroskedastic and the output uncertainty depends on certain input
parameters. For example, going on with the above biofilter example, it has
been found that the emulator errors for the length of unused biofilter bed
may be modeled as

es = e/ + oqu + agu? (19)

where ¢ is a standardized error with unit variance and u is the input para-
meter given by adsorption particle diameter. Equation (19) shows that the
model uncertainty is not constant over the input domain D and the model
predictions are more reliable for certain input values.

The sensitivity indexes may account easily for heteroskedasticity. In the
biofilter case, extending equation (16) for heteroskedasticity, the index for
the adsorption particle diameter is given by

a2 <a1E (u) + B (uQ))
Sy = U%f” + ~ .
Uy Uy

Note that in the right hand side, the second term is a part of the residual
uncertainty Var (e3) which, thanks to the heteroskedastic approach, has been
attributed to the adsorption particle diameter.

7 SA and calibration

Often a C'M, being in the form of equation (2) requires appropriate calibra-
tion and validation on some observational data sets. For example, Sincock
et al. (2003) considered a river water quality model under unsteady flow
conditions including a flow component and a water quality component. Af-
ter calibration on historical data they found that the model performance
was insensitive to algal activity while nitrification and sedimentation were
important.

We will not go much further into validation issues here, we only remark
that one of the steps in validation is the understanding of the performance
of the CM with respect to variation of fixed parameters. For example, if
the model performance is not sensitive to a parameter component ¢; then
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the observational data are inappropriate for that parameter or the C'M is
over-parametrized for that application.

7.1 Equifinality and GLUE

Hydrological modelling often requires some form of calibration so that the
fixed CM parameters 6, in equation (2) are adjusted to get a better fit
to some observed data. In this section, we consider methods developed in
hydrology, but useful beyond that for various instances of C'M calibration
and validation. For example McIntyre and Wheater (2004) considered the
calibration of a simulation model for monthly total phosphorus in Hun River,
China.

Using notation and concepts of section 2, we then have a set of observed
data

(mlaCl) PIERESY (xN7CN>

and we want to understand the influence of the parameter vector 8 = (6y, ..., 0;,)
on the forecasting performance of the CM with respect to this data. Such
performance is traditionally based on the mean of squared errors

N
. 1 2
G2y = N Z (G — [ (2:,0))
i=1
but other measures may be used, e.g. mean of absolute errors (MAFE),
maximum relative error, etc.

We then have the so-called likelihood measure, L say, discussed by Beven
(2001), which is constrained to be zero for non-behavioural values of 6 and
one for the ideal case of perfect forecasts (; = f (x;,0). The first example is
the truncated forecasting efficiency

5’2
L)= 1-= ifL>0
¢
= 0 else

which is well known to statisticians as the coefficient of determination R?. A
second example is the Box and Tiao measure

L) = (6%0) "
where, H > 0 is a subjective shaping coefficient.

Equifinality arises here since it is common in environmental applications
that L (0) is almost the same for many different values of #. In other words,
we have the well known modelling fact that, different C'M’s give forecasts
which are almost the same with respect to a certain likelihood measure L.

Hence, a natural choice is to apply output uncertainty to the new C'M
given by f (z,0) weighted by the likelihood measure. To do this, consider
n Monte Carlo simulations, 67, ...,0; of the possibly multivariate parame-
ter 0 = (64, ...,0;) with rectangular marginal distributions and consider the
normalized likelihood

- L (07)

LoD = s Ty
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Now, suppose that the quantity of interest is a function @ = Q [f (z, )] with
weighted Monte Carlo cumulative distribution given by

Fl)=PQ<q= > L. (20)
:Q(07)<q

For example, if Q) = z, equation (20) allows the computation of the weighted
forecasting quantiles. Moreover, if @ is the i"* component of #, namely
Q) = 0;, equation (20) gives the marginal cumulative distribution of §;. Hence,
S A may be performed on graphical grounds by comparing this marginal with
the uniform distribution which may be interpreted as the prior Monte Carlo
distribution. In particular, for a hypothetical example, Figure 2 shows the

reduction in output uncertainty achievable in #; by multivariate calibration
of 6.

/ ~

08 / //

/ /,/

/
06 ] /,/

o y / e
) o
/}/l nrinr rlf
02} pd — — - weighted cdf
) // | /

U:J 0.2 04 06 0.8 1

Figure 2: Weighted cumulative distribution of @ = 6;, ¢ Rectangular(0, 1),
F(0;) = Zj;e;fjgei L (0;)

8 Geostatistical SA

So far, we have used methods that assume independence of emulator errors
between computer runs. In this section, we consider methods which imply
more complex modelling and computing time. Hence, they are appropriate
for cases where the C'M is an "expensive function" and large Monte Carlo
computer experiments are not feasible. Moreover, this approach is efficient
when we are dealing with a "smooth C'M" where smoothness here means
that f (z) and f («') are highly correlated for x close to z’.

The basic idea of Oakley and O’Hagan (2004) is to consider the model
output f (z) as a stochastic process indexed by the C'M input x in the sense
that, for a fixed hypothetical sequence of inputs, say i, ..., x,, the model
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outputs, namely f (z1), ..., f (z,), are correlated random variables. This sto-
chastic process representation may be interpreted as Bayesian believes about
the M O’s, prior to running the code.

Whenever x is assumed to be nonstochastic, it is considered to be un-
known with uncertainty distribution p (x). This approach with = € D can
be seen as a geostatistical approach and, in this sense, we will use terms
like space for D. It follows that, the sensitivity quantities introduced in sec-
tion 3 are stochastic quantities, for example the spatial averages (11) and
variances (12) are integrals of a stochastic process. Given a set of MO’s
(1,21), -, (T, zn), the above spatial integrals can be estimated by the pos-
terior counterparts of f (z). For example suppose that f (x) is an appropriate
Bayesian kriging estimate of f (x) given by

f@)=E(f(x)|z,..2).
Then the spatial average (11) is estimated by
B (lwy) = | f @) p (v7) drg
@)

and similarly, the spatial variance (12) :
R N\ 2
Var' (sl = [ F@p (o) doy - ()
D)

To do this, the prior uncertainty on the model output f (x) before actually
running the C'M is modelled by a Gaussian stochastic process with mean
value given by

E(f(2)]8) =h(z)' B
where h (x) is a known input transformation as in equation (18) and [ is a
hyperparameter. The covariance function of f (x) is given by

Cov (f (2), f (2')]0?) = o”c(z,2')

where ¢ (z,2') is a geostatistical correlation function, for example, in the
stationary isotropic case, we have

c(z,a) = (e —2');

moreover, ¢ (0) = 1 and ¢ (t) decreases with increasing ¢ and, in general, may
depend on some further hyperparameters, say ~.
If v is known and the hyperparameters (/3, 0?) have prior

D (6, 02) o o2 (21)

then f and ¢ have closed form representation and, marginally to (3, 0?), the
MO’s have a multivariate ¢ distribution. In particular

f(z) = J(2)

¢(x,z)

t(z) = (22)
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has a t distribution with k + n degrees of freedom.

If the prior distribution is not as in (21) or v is unknown, the closed
form posterior distribution (22) does not hold, and Markov chain Monte
Carlo integration is required giving a considerably increased computational
burden. To avoid this, it is common practice in Bayesian Kriging to use a
plug-in approach based on substituting the posterior estimate for v, say 7,
into ¢ (z,2") and, conditionally on this use the above methods.

8.1 DOFE

In this frame, the input design is different from the Monte Carlo approach of
section 5 because here, = is nonstochastic but the integrals to be estimated
are stochastic ones. As a matter of fact, Sacks et al. (1989) discuss the
extension of the classical DOF of section 4 to DOF for stochastic processes.
In general terms, it is based on the optimization of the integrated mean
squared error

[MSE (21, ... 2) :/DE ((f (z) —f(x))2|x1,...,xn>p(x) da.

giving both sequential and nonsequential design algorithms are reviewed.
Since the M O’s are not independent, algorithms are nonstandard and may
be time consuming. Of course this is worthwhile if the computer runs are
more expensive.
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