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Abstract

A model for estimation of temperature effects on mortality is presented in
this paper. The model is able to capture jointly the typical features of ev-
ery temperature-death relationship, i.e. nonlinearity and delayed effect of
cold and heat over few days. Through a segmented approximation along
with a spline-based distributed lag parameterization, estimates and rele-
vant standard errors of the cold- and heat-related risks and of the heat-
tolerance are provided. The model is applied to two data-sets of mortality
time series in Italy.

Keywords: temperature effects, breakpoints, segmented regression, dis-
tributed lag, equality constraints.

1 Introduction

Statistical models aimed to investigate temperature effects on heath are ac-
quiring considerable importance largely due to greenhouse effect and con-
sequent global warming (Bloomfield, 1992). Specifically, quantifying death
excesses related to temperature is crucial to assess how the mortality pat-
tern could change owing to variations in climate (e.g. Langford and Bentham,
1995; McGeehin and Mirabelli, 2001; Beniston, 2002). In studying tempera-
ture effects on mortality one is confronted with two noticeable features which
have to be taken into account in the data modelling process: i)nonlinearity of
the death-temperature relationship and ii)delayed effect of temperatures (both
cold and heat). Catching adequately such features is important to obtain reli-
able results and meaningful parameter estimates.
Nonlinearity between outdoor temperature and mortality has been acknowl-

edged since a long time by several authors (e.g. Gover, 1938; Kunst et al., 1993;
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Keatinge et al., 2000) with a U-, J- or V-shape relationship which has been em-
phasized in many studies: mortality increases as temperature gets colder or
hotter and reaches its minimum at some optimal value. Lately, Pattenden et al.
(2005) argue about chance of assuming a range (rather than a single value)
of optimal temperatures, leading to a ‘bath-type” shaped curve having two
breakpoints, for the cold and the heat distinctly. In this case, only extreme
temperatures act on health, whereas in the wide middle range no risk oc-
curs. Nonlinearity is usually modelled by nonparametric splines (Curriero
et al., 2002) or quadratic terms (Braga et al., 2001, 2002; Schwartz et al., 2004)
or by means of a piecewise linear parameterization (Kunst et al., 1993; Nafstad
et al., 2001; Gouveia et al., 2003; Muggeo, 2004; El-Zein et al., 2004). Besides pre-
dicted number of death excesses at fixed temperature values, the last approach
is able to provide directly also estimates of the cold- and heat-related risks (for
1°C increases, say) and of the threshold temperature value where mortality
reaches its minimum. This ‘optimal” value, which represents the breakpoint
of the segmented curve, is sometimes referred as MMT (Minimum Mortality
Temperature) and it is usually assumed as a measurement of the heat toler-
ance (Curriero et al., 2002). Many authors have recognized the heat tolerance
to be an important and meaningful parameter to be used to summarize the
temperature-mortality curve, but in spite of this no thorough (careful-detailed)
statistical model appears to be available; the most studies have determined
the MMT by visual inspection of the, possibly smoothed, scatter-plots of death
versus temperature.

Delay is a relatively recent issue, but assessment of lagged effects is worth-
while to estimate the so-called distributed lag (DL) curve. The DL curve is
useful to compute the prolonged effect and to quantify the so-called ‘harvest-
ing’: that is, how much of the temperature-induced mortality excesses are fol-
lowed by deficits (Braga et al., 2001; Pattenden et al., 2005). The final question
is whether the temperature acts only on susceptible individuals whose life is
shortened by a few days or weeks. To account for delayed effects, different
time lags for temperature and/or their combinations have been considered by
several authors; for instance means of the temperature at different lag intervals
(mean lag 0-1, mean lag 2-5,...) is a common practice in epidemiological stud-
ies (Kunst et al., 1993; Gouveia ef al., 2003; Pattenden et al., 2005). However, as
discussed nextly, including temperature as mean of lags implies strong con-
straints on the DL curve.

To obtain simultaneous estimates and standard errors of the three param-
eters describing the mortality-temperature curve, the ‘simple’ (i.e. based on a
unique lag-temperature variable) segmented approximation, although useful,
might suffer from some drawbacks since estimation depends on the strength
of the V-shaped relationship. The more clear-cut the curve, the better the es-
timate (Muggeo, 2003). In turn, the strength of the relationship depends on
the both left and right slopes, namely on the both cold and heat risks. One
could select the lag with “the best” curve, but this is a nontrivial task as it is
common knowledge that the cold effect persists for days, while hot has a more
immediate effect (e.g. Keatinge et al., 2000; Braga et al., 2001); thus the left slope
is remarkable at long lags while the right slope is steeper at short lags. Seek-
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ing a compromise between shorter and longer lags, e.g. by means of some
lag-averaged variable, is unlikely to lead notable improvement.

Therefore, due to the weight of topic, it is of practical and theoretical impor-
tance to develop a unified framework aimed to estimate temperature effects on
mortality. In this paper we propose a parameterization which allows to obtain
joint estimates of DL curves for both cold and heat risks, while providing ‘effi-
cient’ estimate of the MMT. Efficient in that its estimate is independent of any
particular lag-specific relationship, and at the same time it condenses informa-
tion from each relationship at different lag.

The proposed modelling framework is detailed throughout section 2, while
section 3 is devoted to illustration through the analysis of a few daily time
series of mortality and temperature. The section 4 concludes the paper with
some remarks and brief discussion

2 Methods

In a previous work, Muggeo (2003) illustrates a simple algorithm to fit seg-
mented relationships in regression models, with linear predictor oZ + 5(Z —
)4, where Z is the variable having a segmented relationship with the re-
sponse (on the link scale), « is the left slope and § is the difference-in-slopes
parameter when Z exceeds the breakpoint 1. Starting from an initial estimate
of the breakpoint, the method carries on by fitting iteratively a specific ‘work-
ing’ linear model and gaining at each step an improved estimate of the break-
point via the current estimates of the model parameters.

To begin with, note that the iterative working linear model being fitted may
alternatively be expressed by

oZ + U + 6{3V} 2.1)

where 3 and 1 are estimates known from the previous iteration, and U = (Z —
Y)y and V = —I(Z > ) are simple variables depending on 1. To emphasize
this dependence a more correct could be U and V, but we have simplified
notation and suppressed the ‘tilde” in the formulas. Note that expression (2.1)
is substantially equal to the original one described in Muggeo (2003), the only
difference being that the variable {3V} (rather than V) has to be included; this
implies that the updated estimate of the breakpoint is now given by 1) = ¢ + 4§
and the standard error corresponding to 4 is the (approximate) standard error
of the (current) estimate 1/3

This fairly simple re-formulation of the ‘working’ iterative model underlies
the whole modelling framework described in this paper.

Let Z the temperature variable, usually daily mean; a starting model for
the analysis of mortality-temperature could be a two-breakpoints segmented
model expressed via the left and right slopes directly (and not the difference-
in-slopes parameter):

BL(Z = 1)— + Bo(Z — o)+ (2.2)



where f3; is the log-risk for cold temperatures (i.e. the left slope, when Z <
1) and 7 is the heat-related log risk when temperature exceeds the second
threshold (the right slope, Z > ). In the optimal range [t/1,¢»] mortality is
constant at its minimum value and the risk (i.e. the slope) is zero.

Simple algebra show that the constructed variables relevant to cold and
heat for model (2.2) are given by U; = (Z — t;)_ and V; = —I(Z < 4)1), and
Uy = (Z — 152)+ and Vo = —I(Z > zﬂg), and hence the ‘working” model to be
estimated iteratively to fit model (2.2) is

BiUL + BoUs + 61 {B1V1} + 62{2Va} (2.3)

and th; = b; + 6, for the cold (j = 1) and heat (j = 2) threshold. Model (2.2),
or equivalently its working version (2.3), assumes the effect of Z to be specific
to the same-day (i.e. lag 0) exposure. To allow the cold and heat effects to
be spread over a few days, lagged variables have to be included to take into
account the distributed effects. Hence a natural extension of the (2.3) is

Li-1 Li-1 i Ly—1 Ly—1 i
> Bu Uy + Y 0w B Vin b + Y BanUsziy + Y, S21, {821, Vi, }
11=0 11=0 la=0 la=0

which models the effect from current day (lag 0) up tolag L; —1 and Ly —1, re-
spectively for cold and heat. Here it is plain the rational of using DL: environ-
mental exposure may produce risk not only on the same day of exposure but
also on the succeeding days after (through L days, say). Then mortality count
at day ¢ depends on the same-day exposure (lag 0, Z;—o = Z) plus contribu-
tions from exposures of preceding days: one-day before (Z;_; = Z;), two-days
before (Z;—2 = Z») and so on through L — 1 days before (Z;_1+1 = Z1—1).

In the model above the Uy, and Vj;; variables are defined as in the un-
lagged case (2.3), the only difference being that they are computed using lagged
temperature (Z;;) and lag-specific breakpoint (1[@); actually such model as-
sumes a segmented relationship at every lag, each with its own parameters,
cold and heat risks and thresholds as well. However, while different risks are
plausible (leading to the well-known DL curve), lag-specific heat tolerances
become difficult to interpret. Furthermore as discussed nextly, breakpoint es-
timation depends heavily on the magnitude of the relevant parameter describ-
ing the segmented curve. Hence in fitting an unconstrained segmented curve
at each lag, one could be in trouble in estimating cold-thresholds for short lags
as well as heat-thresholds for longer lags. All this causes unstable estimating
procedure (final results depending strongly on starting values of the thresh-
olds) as well as unstable and then meaningless breakpoint estimates. To over-
come such drawbacks the proposal is to constrain the MMTs to be the same
among the several lagged relationships, namely vy, = ¢ (I =0,1,...,L1—1)
and 19, = 92 (Ia = 0,1,..., Ly — 1). Such equalities imply that the search of
the common breakpoints has to be independent of any specific lag, then the
equality 6, = d; also have to hold. Under the foregoing constraints the work-
ing linear predictor becomes



Li—1 Li—-1 La—1 Lo—1

> BuUu +608 > BuVin ¢+ Y, BanUay + 028 Y P, Vat, ¢ (24)

11=0 11=0 l2=0 l2=0

Now, as in the single-lag case (2.3), the unique breakpoint estimates are given
by v; = 1; + 6; and SE(¢);) ~ SE(¢;) for j = 1, 2. Because of constraints on the
breakpoints, the terms being included are L; + 1 (rather than 2L,) for the cold
and Ly + 1 (rather than 2L,) for the heat and the two variables {Zl Bﬂ/} }-type

are the ones controlling for the breakpoint estimation. Note this exemplifica-
tion is allowed just by using the re-parameterization in the (2.1).

Each segmented relationship (from 0 to L; — 1) contributes to estimation
of 1; making things easier: stabler the algorithm, and more importantly, nar-
rower the final standard errors of the MMTs; namely, making irrelevant any
issue on ‘the more predictive lag’. It is worth emphasizing also that even coef-
ticients having opposite sign, possibly due to the mortality displacement (for
instance negative coefficients for the heat effect) describe a change in slope and
accordingly they take part in the MMT estimation as well. This is a nontrivial
advantage as the more the information on slope-change is, the more accurate
the estimate of the MMTs is. Figure 1 displays such constrained segmented
parameterization.

Figure 1: The proposed constrained segmented parameterization for the
temperature-mortality relationship: equality constraints for the threshold val-
ues in the different lag-specific relationship are imposed while the lag-varying
slopes are separately modelled by B-splines. A V-shaped model is obtained as

1 = 1.

So far, two breakpoints estimation has been discussed. However whether
the popular V-shaped relation has to be fitted, further simplifications occur. In
particular since 11 = 12 the model is

B1(Z =)+ Ba(Z — 1)+ (2.5)

and because this has to imply ; = J», the iterative ‘working’” linear predictor
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simplifies to

Li-1 Lo—1 Li-1 L1
> B Ui+ > BauyUsiy 69 > By Vi + Y Bouy Vu, (2.6)
11=0 ls=0 11=0 ls=0

which has Ly + Ly + 1 parameters to be estimated, with the single breakpoint
being given by V=1 +6.

Models (2.4) and (2.6) constrain the breakpoint(s) to be same among the
different lags, but the slopes describing the distributed lag curves (of cold and
heat) are actually unconstrained. Although in general model fitting could lead
to some results, collinearity among the lagged variables ‘Uj;,” can cause large
standard errors of the F-parameters and hence poor estimates of the shape of
the DL curves; so some parametric function is assumed to get more accurate
and reliable estimates of the lag-pattern. This is useful to obtain a smooth
curve which is more plausible from a biological standpoint and allows to gain
narrower standard errors by reducing the degree of collinearity and the num-
ber of parameters to be estimated. Such an approach has been first proposed
by Almon (1965) in a econometric context, its introduction in the analysis of
epidemiological time series seems to originate from Wyzga (1978) and fur-
ther applications include works by Braga et al. (2001, 2002) and Schwartz et al.
(2004). However these works assume that the [-parameters follow polyno-
mial functions which sometimes may heavily depend on outliers. A better
alternative is represented by splines which allow local, rather than global, fit-
ting (de Boor, 2001); here we use B-splines to smooth the shape of DL curves.
Let [By,...,Bi;,..., Bp,] the generic spline basis on the [; = {0,1,...,L; — 1}
variable with P; degrees of freedom (i.e. columns) depending on proper knot
vector and degree, usually cubic. Given two B-spline basis, the shape of the DL
curve for cold and heat separately, can be expressed by a linear combination
of single columns:

Py Py
Pu, = Z b, Bi, (11) Pai, = Z bai, Bi, (I2)

i1=1 io=1

where B and B stand for the spline bases for cold and heat with P, and P,
degrees of freedom respectively. Now it easily seen that the lagged effects
> AU in the (2.4) or in the (2.6) are modelled as a function of the P; constructed
variables (rather than the L; original ones); for instance for the cold it is

Li—1 Li1—1 Py Py Li1—1
> BuUu, = ) {Z blilBh(zl)} Uy = Y by 4 Y Biy ()0,

1,=0 =0 \ij=1 i1=1 1,=0

By putting such expressions into (2.4) or (2.6) it is clear that estimation is
carried out in terms of the P; + P, transformed variables whose b coefficients
and their covariance matrix are used to get the original point estimates and
relevant covariance matrices of the 3 parameters. For instance, using matrix
notation for the cold it is

B1=Bb,  cov(B) = Boov(b))B’



where B is the L; x P; B-spline matrix and the components of ,E:}l are the
lag-specific estimated effects having standard errors extracted from the main
diagonal of the matrix cov(3;). Thus the total net effect is given by the sum
of the estimated single effects, namely » By, = 1’31 with standard error
SE(Y_;, Bu,) = (1’cov(B1)1)"/2 being 1’ a row-vector of ones with appropriate
length. Analogous formulas hold for the heat effects estimate.

A plot of the ‘lag-specific estimates versus lag indices’ represents an esti-
mate of the DL curve from which useful information may be drawn: the shape
of the curve itself may be used to evaluate what is the pattern of the risks with
respect to time (days), whether the environmental exposure has an immediate
or delayed effect and whether harvesting occurs. With this respect, the total
effect provides a measure of the net amount of deaths induced by temperature.

3 Application

The method illustrated in the previous section is applied to daily time series
of all-natural (ICD.IX 1-799) deaths and average air temperature (expressed in
degrees Celsius, °C) recorded in two Italian cities: Milano 1980-89 (average
daily death and temperature 30.7 and 14.6°C respectively) and Bologna 1998-
2002 (average daily death and temperature 11.5 and 14.3°C respectively). Plots
of raw data (counts vs. time and counts vs. temperature) reveal the classical
pattern of mortality with noticeable picks during the winter months and some
excesses of mortality during summertime especially at higher temperature val-
ues.

Here the aim is to estimate the effect of temperature on mortality. In partic-
ular, topics of interest concern the determination of the heat tolerance (MMT)
and of the DL curve associated with heat and cold and the final assessment
whether the apparent effect of temperatures is compensated by a deficit.

Figure 2 displays smoothed point estimate of the temperature-mortality
curve (adjusted for seasonality) at different lags for the two considered cities.
The plot emphasizes how the slopes of cold (heat) are steeper at longer (shorter)
lags, making difficult to select the most predictive relationship. The constrained
segmented DL overcomes this issue and allows to take into account informa-
tion from each lag making estimate of MMT more accurate. Note that also the
information on the negative right slope shares in estimating the MMT.

We pursue the analysis by using Poisson log-linear regression, modelling
the log-expected count of death at day ¢ as a function of seasonality and tem-
perature. Temperature has been included via a constrained segmented DL
with a single threshold up to L; = Ly = 15 lags for cold and heat. Both the
DL curves are based on cubic B-spline with one knot at 7.5 (five constraints
overall, i.e. P = P» = 5). For each considered city, estimates from two dif-
ferent models are displayed in Table 1: in M; long-term trend and seasonality
have been fitted by categorical variables month plus year, while a nonpara-
metric smoother based on regression splines with 7 degrees of freedom per
year has been used in Ms. For each fitting log-likelihoods from the present
model and from an alternative approach is also displayed: to model nonlinear
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Figure 2: Smoothed estimated mortality-temperature curve at different spe-
cific lags for Milano and Bologna dataset: lag 0 (continuous line), lag 7 (dashed
line) and lag 15 (dotted line). The scales of the fitted curves at different lag are
not comparable from each other.

multi-lag relationship, Braga et al. (2001, 2002); Schwartz et al. (2004) assume
both linear and quadratic terms at each lag and constrain the relevant coeffi-
cients to fit fourth-degree polynomials. However to get comparable results,
B-splines rather than polynomials have been used, therefore observed differ-
ences should be attributed to the different parameterization (segmented versus
quadratic).

Table 1: Point estimates and 95% Wald-based confidence intervals (in paren-
theses) of the temperature parameters from some fitted models: cumulative
cold- and heat- related risks and MMT.

Temperature parameters estimate - log-likelihoodi
City modelt Cold(x10) Heat MMT A B

Milano My -0.163 0.146 25.9 11602.4 11701.2
(-0.193,-0.129) (0.115,0.178) (25.5,26.3)

My -0.045 0.134 26.2 11531.6 11605.2
(-0.094,0.004) (0.095,0.173) (25.8,26.6)

Bologna My -0.079 0.095 24.6 4800.5 4812.0
(-0.155,-0.002) (0.041,0.149) (23.4,25.8)

My 0.059 0.094 25.8 4779.1 4789.3

(-0.048,0.166)  (0.017,0.171) (24.7,26.9)

t M;: seasonality modelled by categorical variables ‘year+month’
Mo seasonality modelled by natural spline with 7 df per year

Poisson log-likelihood according to the proposed approach (segmented, A) and an alternative (quadratic, B). See text

Figure 3 displays the DL curves for cold and heat for models M;: positive



(negative) values in the curve of cold (heat) suggests harvesting which does
not seem occurring in a relevant way. By summing up such lag-specific esti-
mates, the total (net) effect estimates, as reported in Table 1, are obtained.

Results suggest that the proposed piecewise-linear model performs better
then the quadratic formulation: the log-likelihoods are always lower, although
such differences are sometimes small. However what is worth stressing, is
that the constrained segmented DL model while accounting jointly for linear-
ity and distributed effects, provides meaningful estimates of the temperature-
mortality curve: cold and hot risks (lag-specific and total) and MMT. In partic-
ular, the estimates of the unique breakpoint measuring the heat tolerance ap-
pear to be quite accurate, with fairly narrow confidence intervals. That arises
from the equality constraint set among the several lagged relationships: in-
deed, as just discussed previously, each difference-in-slope contributes to esti-
mation of the MMT parameter independently of its sign.

Substantially, results agree with many epidemiological papers with heat ef-
fects occurring more promptly, within five days approximatively, and the cold
ones being more persistent, from three days through two weeks (Zanobetti
et al., 2003; Pattenden et al., 2005).

It is also worth to highlight how the long-term smoother impacts the es-
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timate of the temperature effects. While heat and MMT estimates are sub-
stantially unchanged, severe controlling for seasonality (i.e. undersmoothing)
tends to capture death excesses in winter and, as a consequence, the cold ef-
fect falls and disappears: the relevant confidence intervals in the M, models
include the zero. Hence in practice care is needed in selecting the appropriate
smoothness for seasonality since results for cold might be seriously mislead-
ing.

Two-threshold models have been tried for both the datasets, but problems
of convergence occurred, suggesting that one breakpoint were sufficient. Is-
sues on estimation of two-breakpoints models and on model selection, will be
tackled in the Conclusions section.

4 Conclusions

In this paper we have presented an unified model-based approach to quan-
tify the temperature effects on mortality accounting for the major features that
characterize the data. By means of a multi-lag segmented approximation with
equality constraints on the breakpoints and spline-based smoothers for the DL
curves, nonlinearity and delayed effects are simultaneously taken into account
leading to parameter estimates with important physical meaning. A piecewise
linear parametrization is quite attractive: for instance, Curriero et al. (2003) in
re-visiting their previous analyses use a piecewise formulation rather than a
nonparametric approach (Curriero et al., 2002); smoothing of the DL via B-
spline is useful also to rule out the noise from the lag-specific estimates while
guaranteeing enough flexibility. The estimating procedure lies just on iterative
titting of proper linear model, therefore its implementation is also favored in
practice; an R function is available on request from the author.

Hence there is a number of advantage in using the proposed approach.
Either lag-specific and total risks for 1°C' increase are obtained for both the
cold and heat and in addition an unique breakpoint (MMT) estimate is also
provided, which can be interpreted as a measurement of the heat-tolerance.
In this connection, the equality constraints appear to be a quite ‘lucky” (good)
choice, since those enable to estimate the breakpoints with sufficient accuracy.
Likewise the computational aspect is also involved: constraints assure some
stability of the estimating procedure and initial values to start the algorithm
become substantially unimportant.

For the V-shape model, testing procedure on the existence of the break-
point also look better: the Davies test (Davies, 1987) is understood to gain
some power due to increased information on the difference-in-slope parame-
ter. Moreover in the two analyzed data-sets, interpretability is also matched
with better fit (with respect to one provided by an alternative approach), al-
though this may be not always true.

Estimates depend on the choices of lags (L1, L2) and on the B-spline used
to model the distributed effects. While different B-splines are not expected to
twist the results provided that enough of flexibility is guaranteed, lag selec-
tion will do so. Selecting longer lags (upon to 30, say) can be useful to exploit
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possible longer effects, although many parameters can lead to increase the un-
certainty of the net effect estimate. Likelihood-based criteria can be employed
to select the lags (L1, L2) and of the order of the B-spline (P, P%).

The paper does not discuss methods to discriminate among one- or two-
breakpoint models (namely between the (2.6) and (2.4)). The null hypothesis
to be tested is Hy : 91 = 12, which is a non-standard hypothesis for several
reasons; some simulations have shown the likelihood ratio statistic having a
nonstandard distribution and the relevant statistic test being greatly biased.
However a few rules of thumb can be used: one could look at the confidence
intervals of the thresholds, and select the one-breakpoint model when the Cls
are overlapped; alternatively the choice can be driven via any likelihood-based
criterium (e.g. the AIC or the BIC) and finally bootstrap procedures may be ap-
plied, although these are not favored in practice since epidemiological studies
often involve many years with quite a lot of observations. However a limited
experience on some real and simulated datasets suggest that computational
problems often indicate that the fitting model is unlikely.

Finally it should be noted that while the paper is specifically devoted to
temperature-mortality relationship, the proposed method and algorithm could
be applied to broader contexts where a segmented relationship is met in the
levels of some stratification variable and a common breakpoint has to be esti-
mated (Kim et al., 2004).
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