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Abstract

We propose a wavelet-based spectral method for estimating the (directional)

Hurst parameter in isotropic and anisotropic non-stationary fractional Gaussian

fields. The method can be applied to self-similar images and, in general, to d-

dimensional data that scale. In the application part, we consider denoising of

2-D fractional Brownian fields and the classification of the clouds/temperature
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satellite images. In the first application, we use Bayesian inference calibrated by

information from the wavelet-spectral domain to separate the signal, in this case

the 2-D Brownian field, and the noise. For the classification of geophysical images

we first estimate directional Hurst exponents and use them as an input to selected

machine learning algorithms.

KEY WORDS: Scaling, Wavelets, Self-similarity, 2-D wavelet spectra.

1 Introduction

It is more the rule than the exception that high frequency data collected in real-

life experiments, scale in a regular fashion. This scaling is manifested as regular

“propagation of energy” when observations are inspected at different scales/frequencies,

and this regularity is often described as ubiquitous or omnipresent. Examples are

numerous: high frequency bio-responses, atmospheric data, stock market and ex-

change rates fluctrations, internet data, etc. In many scenarios involving analysis

of such data, standard statistical modeling techniques are simply not applicable.

The methodology used to analyze scaling is based on analysis of autocovari-

ances. The covariance dynamic in the domain of original data corresponds to the

“energy” scaling in the frequency or scale domains. The term “energy” is an infor-

mal name for the squared coefficients in frequency/scale representations of signals

and images. The standardly accepted measure of regular scaling is the Hurst ex-

ponent which can also be connected with measures of long memory, dimension,

and fractality in signals and images.
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Many strategies for assessing the Hurst exponent exist. This assessment can be

done in the domain of the original measurements or in some transformed domain

(usually scale/frequency domains such as Fourier or wavelet). From the statisti-

cal point of view the Hurst exponent can be viewed as an informative summary

of data and in many cases standard statistical techniques are applied not on the

data directly, but on their scaling exponents (classification, regression, statistical

design).

The literature on the topic is vast (Beran, 1994; Chan and Wood, 2000; Con-

stantine and Hall, 1994; et al., 1995; Mandelbrot and Van Ness, 1968; Pesquet-

Popescu, 1999a,b; Pipiras, 2004, 2005; Taqqu et al., 1997). Most of the published

research concerns the scaling in one-dimensional data. The 1-D theoretical mod-

els are well understood, the estimation and simulation methodology is conceptu-

ally and computationally straightforward, and univariate high frequency signals

that scale are abundant. The definition of scaling in higher dimensions is more

complex since multiple formulations are possible. If the scaling is spatial, various

directions and choices of neighborhoods are possible, leading to the definition

of various anisotropies. Also, the computational complexity of estimation and

simulation methods is higher. However, in geophysical, medical, and other appli-

cations the scaling analysis of images and higher-dimensional objects is critically

important.

The contribution of the paper is in formal definition of d-dimensional wavelet

spectra, assessment of some of its properties, and in providing real-life applica-
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tions for two dimensional case.

The definition of d-dimensional spectra is conceptually straightforward but

computationally challenging due to lack of d-dimensional wavelet transforms in

standard software. Parra et al. (2003) consider 2-D spectra based only on a hi-

erarchy of diagonal detail spaces, while Heneghan et al. (1996) consider general

definition based on continuous wavelets.

The idea behind the definition of d-dimensional wavelet spectra is the follow-

ing: since the tensor-product wavelet multiresolution analysis of d dimensional

data comprises of 2d − 1 detail spaces, with each space containing the hierarchy

of subspaces with nested dyadic resolutions, it is quite natural to assess the en-

ergy scaling in each hierarchy. This leads to 2d − 1 concurrent power spectra

describing a single d-dimensional data set. For example, multiresolution analy-

sis of images leads to three detail spaces described as “horizontal”, “vertical” or

“diagonal,” depending on the selection of the decomposing 2-D wavelet, or equiv-

alently, the order of applications of high- and low-pass wavelet filters on the rows

and columns of 2-D objects. Each of the three directional detail spaces contains a

nested hierarchy of submatrices corresponding to image details at different scales

and each leads to a distinctive power spectrum.

In this work we provide a simulation study to show that the 2-D wavelet spec-

tra gives a consistent estimator of H . In the isotropic case, it can be considered an

alternative method to the estimation procedures proposed by other authors (Istas

and Lang, 1997; Chan and Wood, 2000; Zhu and Stein, 2002). Moreover, in the
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anisotropic case, we show that it can be proposed as a simple and fast new method

for estimating the directional Hurst exponents. We then provide two applications

in which the 2-D wavelet spectra is instrumental. In the first application we use

the 2-D spectra to estimate the Hurst exponent in the signal part of a noisy image

and use this information in deconvolution of noise. In the second application we

use the 2-D spectra parameters as discriminatory descriptors in classification of

geophysical images. These type of images are influenced by “background condi-

tions” (such as clouds, wind, temperature level, humidity, etc.) which can be well

summarized by directional Hurst exponents.

The paper is organized as follows. In Section 2 we discuss the theoretical

background necessary for describing self-similarity and scaling in d dimensions.

In Section 3 we define the wavelet based directional spectra and discuss some of

its properties. Section 4 provides simulational and comparative study in which a

noisy fractional Brownian field is filtered using properly calibrated Bayes rules.

In this section a real-life application of the proposed methodology is discussed:

classification of satellite images with respect to time of their acquisition. In Sec-

tion 5 we provide conclusions and delineate some possible directions for future

research.

2 Background

In this section we review the most popular statistical model for data that regularly

scale, the fractional Brownian motion. In one dimension, this process is a unique
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Gaussian self-similar process with stationary increments. We also briefly discuss

multidimensional wavelet domains since the spectrum will be defined there.

2.1 Fractional Brownian motion and extensions

The fractional Brownian motion (fBm) is one of the most popular models for

modeling self-similar phenomena. It is a Gaussian, zero mean, non-stationary

stochastic process, originally proposed by Mandelbrot and Van Ness (1968). This

process is indexed by self-similarity parameter H , also known as the Hurst expo-

nent. In a one-dimensional case the fBm process, denoted by {BH(t), t ∈ R}, is

characterized by the following correlation function

RBH
(t, s) = E{BH(t)BH(s)} =

σ2
H

2

[
|t|2H + |s|2H − |t − s|2H

]
, (1)

where σ2
H = Γ(1 − 2H) cos(πH)

πH
and 0 < H < 1. As it can be seen from (1),

the fBm is a non stationary process (RBH
(t, s) is a function of |t − s|), but it

has stationary increments. In addition, the fBm is a self-similar process, that is,

for all a > 0 it satisfies BH(at)
d
= aHBH(t), where

d
= denotes the equality in

distribution. Because of its nonstationarity, the spectrum in the strict sense does

not exist. From the correlation function (1) and the definition of generalized power

spectrum (see Reed et al., 1995) we obtain the “power spectrum” of BH(t) as

SBH
(ω) = |ω|−2H−1 . (2)

These definitions can be extended to any dimension. Unlike the 1-D case the

generalization of fBm to higher dimensions is not unique. A simple generalization
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to a 2-D surface is the fractional Brownian field (fBf). The fBf is a Gaussian, zero

mean, random field BH(u), where u denotes the position in a selected domain,

usually [0, 1] × [0, 1]. Then, the autocorrelation function is

RBH
(u,v) = E [BH(u)BH(v)] =

σ2
H

2

(
‖u‖2H + ‖v‖2H + ‖u − v‖2H

)
, (3)

where 0 < H < 1, the variance σ2
H is

σ2
H =

2−(1+2H)Γ(1 − H)

πHΓ(1 + H)
(4)

and ‖·‖ is the usual Euclidean norm in R
2. The increments of a fBf represent

stationary, zero mean Gaussian random fields: the variance of such increments

depends only on the distance ‖h‖ so that

E [BH(u + h) − BH(u)]2 = σ2
H‖h‖2H ,

where σ2
H is given in (4). As in the one-dimensional case, the power spectrum of

a fBf is obtained from the correlation function (3) and the 2-D Generalized Power

Spectrum can be defined as

SBH
(ω) = ‖ω‖−2H−2 . (5)

The extension to a d-dimensional case is straightforward (see Reed et al.

1995). For a d−dimensional fractional Brownian motion the correlation function

is given by Eq. (3) with u, v in R
d and

σ2
H =

2−1−d−2HΓ(1 − H)

π
d
2 HΓ(d

2
+ H)

, (6)
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In this case, the power spectrum is

SBH
(ω) = ‖ω‖−2H−d

(7)

Many generalizations have been proposed to define anisotropy in Gaussian

random fields. Bonami and Estrade (2003) defined an anisotropic fractional Brow-

nian field, with stationary increments, by considering a spectral density of the

form

S (ω) = ‖ω‖−2H(ω)−2 ,

where H(ω) ∈ (0, 1) is an even function which depends on the direction ω
|ω| of

R
2. Popescu and Vehel (2002) introduced anisotropy by linear spatial transforms

of an isotropic fractional field. Related generalizations are Kamont (1996), Wu

and Xiao (2005), Peltier and Lévy-Véhel (1996), and Benassi et al.(1997).

2.2 Wavelets

Wavelets are the building blocks of wavelet transforms the same way that the

functions einx are the building blocks of the ordinary Fourier transform. But in

contrast to sines and cosines, wavelets can be supported on an arbitrarily small

closed interval. Wavelet domains provide adaptive locality which is manifested

as a trade off between the scale and time localizations subject to Heisenberg’s

law constraints. Basics on wavelets can be found in many texts, monographs, and

papers at many different levels of exposition. The interested reader should consult

monographs by Daubechies (1992), Vidakovic (1999), among others.
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In two or higher dimensions wavelets provide an appropriate tool for analyz-

ing self-similar objects and in particular, fractional Gaussian fields. The energy

preservation in orthogonal wavelet analysis allows for defining wavelet spectra

in a manner similar to that in the Fourier domains. Operationally, the traditional,

tensor-product, 2-D wavelet transforms are constructed through the translations

and the dyadic scaling of a product of univariate wavelets and scaling functions,

φ(ux, uy) = φ (ux) · φ (uy)

ψh(ux, uy) = φ (ux) · ψ (uy)

ψv(ux, uy) = ψ (ux) · φ (uy) (8)

ψd(ux, uy) = ψ (ux) · ψ (uy) ,

which are known as separable 2-D wavelets. The symbols h, v, d in (8) stand for

horizontal, vertical and diagonal directions, respectively, and relate to the ability

of atoms in (8) to describe features along these three directions. Any function

f ∈ L2(R
2) can be represented as

f(u) =
∑

k

cj0,kφj0,k(u) +
∑

j≥j0

∑

k

∑

i

di
j,kψ

i
j,k(u) (9)

where u = (ux, uy) ∈ R
2, i ∈ {h, v, d}, k = (k1, k2) ∈ Z2, and

φj,k(u) = 2jφ(2jux − k1, 2
juy − k2)

ψi
j,k(u) = 2jψi(2jux − k1, 2

juy − k2).

for i = h, v, d. The decomposition in (9) can be extended to an arbitrary function
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f ∈ L2(R
d),

f(u) =
∑

k

cj0,kφj0,k(u)

+
∑

j≥j0

∑

k

2d−1∑

i=1

di
j,kψ

i
j,k(u), (10)

where k = (k1, . . . , kd) ∈ Zd, u = (u1, . . . , ud) ∈ R
d, and

φj;k(u) = 2jd/2

d∏

i=1

φ(2jui − ki)

ψl
j;k(u) = 2jd/2

d∏

i=1

ξ(2jui − ki)

with ξ = φ or ψ, but not all ξ = φ.

The index l corresponds to one of 2d − 1 possible directions. The d-dimensional

wavelet spectra will be defined using the wavelet coefficients in (10), namely 2d−1

nested detail spaces with coefficients di
j,k, along the scale index j.

3 Wavelet Spectra of fBf

Time-frequency or time-scale transforms are indispensable tools in analysis of the

signals and images. The spectra defined by such representations describe distribu-

tion of energies in the signal/image along a range of frequencies or scales. Various

definitions of spectra exist, depending on the signal representation. Wavelets and

wavelet based spectra have been instrumental in analysis of self-similarity (Flan-

drin, 1989, 1992; Doukhan et al., 2003; Wornell, 1995). Orthogonal discrete
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wavelets are “energy preserving,” and as such, are natural for defining the power

spectrum.

Suppose that 1-D signal y of length n has wavelet decomposition d = Wy =

(cj0 , dj0 , dj0+1, . . . , dj), where j0 is a fixed level smaller than j = log2 n − 1,

cj0 are scaling coefficients, and dj’s are levels of detail coefficients. The wavelet

spectra is defined as

S(j) = log2

(
d2

j

)

where d2
j is an average of squared components in vector of detail coefficients at

level j.

In the 2-D case three different hierarchies constitute detail spaces and the natu-

ral definition of wavelet spectra involves power spectra corresponding to the three

hierarchies. Since the detail hierarchies are characterized by their direction (hori-

zontal, vertical and diagonal), this spectra will be sensitive in assessing the energy

content and dissipation along the angles of 0, π/2, and π/4.

Consider a fBf process BH(u), the standard model for self-similar isotropic

random fields. For this process the wavelet coefficients are given by

di
j,k = 2j

∫
B H(u)ψi(2ju − k)du, (11)

where the integral is taken over R
2 and i = h, v or d. The detail coefficients are

random variables with zero mean and variance

E
[∣∣di

j,k

∣∣2
]

= 22j

∫∫
ψi

(
2ju − k

)
ψi

(
2jv − k

)
E [BH(u)BH(v)] dudv, (12)
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(Heneghan et al., 1996). From the definition of ψh and ψv in (8), the integrand in

(12) is symmetric and the variances of the wavelet coefficients coincide for these

two directions, that is

E
[∣∣dh

j,k

∣∣2
]

= E
[∣∣dv

j,k

∣∣2
]
. (13)

These two variances differ from the variance of the wavelet coefficients from the

diagonal hierarchy. From (12) one can derive

E
[∣∣di

j,k

∣∣2
]

=
σ2

H

2
Vψi2−(2H+2)j, (14)

where

Vψi =

∫∫
ψi(p + q) · ψi(q) |p|2H dpdq (15)

depends only on wavelets ψi and exponent H , but not on the scale j. The deriva-

tion of this result is deferred to Appendix.

An application of the logarithm to both sides of Eq. (14) leads to the following

equation

log2 E
[∣∣di

j,k

∣∣2
]

= −(2H + 2)j + Ci, (16)

where

Ci = log2

σ2
H

2
Vψi(H). (17)

The Hurst coefficient of a fBf be estimated from the slope in the linear equa-

tions given in (16). The empirical counterpart of (16) is a regression defined on

pairs
(
j, log2

∣∣di
j,k

∣∣2
)

, i = h, v, d, (18)
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where
∣∣di

j,k

∣∣2 is an empirical counterpart of E
[∣∣di

j,k

∣∣2
]
. The sample mean in (17)

can be replaced by sample median or any other location estimation to produce

more robust estimators of the spectra. Also the regression should be weighted

since the variances in the detail levels are not equal. Veich and Abry (1999) dis-

cuss the bias of estimators in (18) and the method to correct it. When the field is

isortopic, the Hurst exponent H can be estimated as an average of corresponding

directional estimates.

An anisotropic generalization is straightforward; the parameter H in the above

equations (11-18) can depend on the direction i and may be replaced by Hi. Given

the wavelet ψ, the intercept Ci in (16) is uniquely determined by H , and initial

energy, σ2
H . Thus, if H and Ci vary independently, a novel, wavelet-specific class

of anisotropic self-similar random fields can be defined. A few examples are

provided for the isotropic and anisotropic cases.

Example 1. Figure 1(a) depicts a simulated isotropic fractional Brownian field

with H = 0.3. Its 2-D wavelet spectra based on the Symmlet 4 filter, shown

in Figure 1(b), demonstrates the estimation process is consistent. The resulting

estimates are Ĥh = 0.295, Ĥv = 0.298, and Ĥd = 0.299 for the horizontal,

vertical and diagonal directions, respectively, which are close to the original sim-

ulated value of H = 0.3. In order to select the best basis and test performance of

the wavelet-based estimator, we simulated 1000 fractional Brownian fields with

various H and for each field estimated the Hurst parameter in each of the three

directions. The averaged wavelet-based estimator was compared with Quadratic
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Variations (QV) estimator introduced by Istas and Lang (1997). As is typical for

many wavelet based procedures, the choice of basis is important but not decisive

for the results and performance of the estimation algorithm. We comprehensively

explored Daubechies, Symmlet and Coiflet families for a range of parameter val-

ues (vanishing moments) and the differences found were not significant (the Haar

basis being an exception). We adopted short filters with different smoothness and

symmetry properties such as the Daubechies 4, Symmlet 4 and Coiflet 1 (in the

notation of Donoho’s Wavelab). For comparative purposes we used Symmlet 4

since this filter provides a good compromise of smoothness, locality and near-

symmetry. In Table 1 we provide the summary of this experiment. We found

that the averaged wavelet-based estimates are close to those obtained by the QV

method for isotropic fields simulated with H = 0.4 and with H = 0.6. These

two exponents are selected to represent antipersistency and long memory. More-

over, the wavelet based estimator is more robust when the data are contaminated

by noise, even at a low level. For the estimation procedure of the wavelet spec-

tra, we used the Ordinary Least Square (OLS) estimator. We also implemented

weighted least squares (WLS) in the spirit of Veitch and Abry (1999). For calcu-

lating regression weights we resampled detail spaces to obtain a surrogate sample

of logarithms of average level energies. These are further utilized to obtain proper

weights via bootstrap variances. The difference between the weighted and the or-

dinary least squares regression was found to be minimal which was a consequence

of typically large sample sizes in image processing. The WLS also substantially
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H = 0.4 H = 0.6

snr= ∞ snr= 20 snr= ∞ snr= 20

D4 0.3920 (0.042) 0.3828 (0.325) 0.6027 ( 0.035) 0.5775 (0.340)

S4 0.3968 (0.042) 0.3838 (0.326) 0.6005 ( 0.033) 0.5766 (0.359)

C1 0.3865 (0.042) 0.3766 (0.041) 0.5917 (0.037) 0.5715 (0.045)

Haar 0.3508 (0.041) 0.3427 (0.040) 0.5554 (0.035) 0.5327 (0.045)

QV 0.3886 (0.016) 0.3365 (0.027) 0.5886 (0.015) 0.2663 (0.086)

Table 1: Means and standard deviations (in brackets) of the estimated Hurst expo-

nents, by the wavelet-based estimators (D4, S4, C1 and Haar) and the QV estima-

tor, evaluated on 1000 simulated random fields with H = 0.4 and H = 0.6 and

length n = 256 × 256, with and without noise in each case.

increased computational complexity. For example, in the case of n = 10 simu-

lated images 512 × 512 with H = 0.6 the OLS gave Ĥ = 0.6238 with a standard

deviation of 0.04 while the WLS gave Ĥ = 0.6232 with similar standard devia-

tion.

Example 2. In the second example we simulated an anisotropic Gaussian random

field using Daubechies 4 wavelet by controlling the scaling of variances in detail

spaces. An example of a simulated field is given in Figure 2(a). In particular, we

considered scaling equivalent to Hurst parameters equal to Hh = 0.3, Hv = 0.8,

and Hd = 0.5, for the horizontal, vertical, and diagonal direction, respectively.

The 2-D wavelet-spectra assessed by a wavelet different than generating (Daub 8)
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Figure 1: (a) Isotropic fractional Brownian field with H = 0.3; (b) The wavelet

spectra of the field in (a) estimated by Symmlet 4.

gave the following estimates: Ĥh = 0.297, Ĥv = 0.820, and Ĥd = 0.511 (Figure

2(b)) which are very close to those utilized in the simulation of the field. The goal

of this exercise was to produce a specific directional anisotropy and to check that

2-D spectra consistently estimated the scaling when basis was changed.

In order to demonstrate the behavior of the intercepts Ci for each direction,

we have simulated N = 200 isotropic fractional Brownian fields on a regular grid

(512× 512) with parameters H ranging from H = 0.1 to H = 0.9. Figure 3 plots

the average difference of the intercepts for the horizontal and diagonal directions,

Ch − Cd. It is evident that the intercept is affected by the value of H: for higher

H the estimated difference Ch − Cd is larger. The message of this analysis is

the following: even for isotropic random fields the amount of energy attributed to

different directions differs. Note that Ci = log2(σ
2
HVψi), where σ2

H is the variance
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Figure 2: (a) Gaussian random field with Hh = 0.3, Hv = 0.8, and Hd = 0.5 sim-

ulated by Daubechies 4; (b) The 2-D wavelet spectra of the field in (a) estimated

by Symmlet 4.
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Figure 3: Average differences of the intercepts for horizontal and diagonal direc-

tions, Ch − Cd, for different values of parameter H .
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of fBf and Vψi is given in (15), and numerical evaluation of an intercept Ci is

possible but involved due to non-existence of finite form for ψi. Evaluation of Ci’s

is critical for the simulation of random fields using 2-D wavelets, since the Ci’s

specify how the total energy should be distributed to the directional subspaces.

4 Applications

In this section we provide two applications in which 2-D wavelet spectra is instru-

mental. The first application concerns a denoising task in which the signal image

exhibits scaling and the noise is white. The separation of the signal image and

noise is done by Bayesian wavelet filtering calibrated by the properties of the 2-D

spectra of the signal-part. The second application involves the statistical task of

image classification with 2-D spectra parameters as discriminatory descriptors. In

the spirit of reproducible research all MATLAB c© codes utilized in these applica-

tions are available from the authors on request.

4.1 Bayesian filtering guided by spectral information

In this application we demonstrate how 2-D wavelet spectra can be utilized in

filtering noisy images in which the “signal” part scales.

Suppose the observed image y is a convolution of an unknown “true” image

s, exhibiting scaling, and a random noise e,

y = s + e. (19)
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It is assumed that the random noise is a matrix of i.i.d. zero mean Gaussians with

standard deviation σe and that the “true” image is well modeled by an isotropic

fractional Brownian field, with its parameter H not known in advance. In the

wavelet domain, expression (19) becomes di
jk = θi

jk + εi
jk, where di

jk, θ
i
jk, and

εi
jk are the (j,k) coordinates in the traditional scale/shift wavelet-enumeration of

transformed images y, s and e, respectively. This model preservation is a con-

sequence of the linearity and orthogonality of wavelet transforms. In the expo-

sition that follows, we omit the double index j,k and the direction i, and work

with a “typical” wavelet coefficient, d. The conditional distribution of d given θ

and σ2, [d|θ, σ2], is N (θ, σ2). We utilize Bayesian Adaptive Multiscale Shrinkage

(BAMS), a technique proposed in Vidakovic and Ruggeri (2001) to statistically

estimate wavelet coefficients, corresponding to fBf, using a shrinkage rule in a

Bayesian framework.

In BAMS, σ2 and θ are assumed to be independent random variables. The

variance σ2 is given exponential E(µ) prior, while θ is given a mixture prior, as

standardly done. The mixture prior consists of a point mass at zero (represent-

ing the “parsimony” part) and a double exponential distribution (representing the

“spread” part) mixed in proportion (1 − ε) : ε,

(1 − ε)δ0 + εDE(0, τ).

The resulting Bayes rule is given by:

δ∗(d) =
(1 − ǫ) m(d) δ(d)

(1 − ǫ) m(d) + ǫ DE
(
0, 1√

2µ

) , (20)
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and this is the shrinkage rule to be utilized. In (20),

m(d) =
τe−|d|/τ − 1√

2µ
e−

√
2µ|d|

2τ 2 − 1/µ

is the prior-predictive distribution of d, and

δ(d) =
τ(τ 2 − 1/(2µ))de−|d|/τ + τ 2(e−|d|√2µ − e−|d|/τ )/µ

(τ 2 − 1/(2µ))(τe−|d|/τ − (1/
√

2µ)e−|d|√2µ)

is the Bayes rule only for the spread part of prior, DE(0, τ).

The Bayes rule (20) depends on the hyper-parameters ε, τ , and µ. The elic-

itation of the hyper-parameters is critical for good performance of Bayesian fil-

tering. Default choices for the hyperparameters are not suitable in function esti-

mation, since observations vary tremendously and to accommodate for possibility

of widely different images and signal-to-noise ratios, a degree of informativeness

and/or data dependence needs to be exploited. The hyper-parameters have been

set using Empirical Bayes (EB) arguments, as in Vidakovic and Ruggeri (2001)

or Katul et al. (2006). The rule in (20) is close to a thresholding rule: it heavily

shrinks small-magnitude arguments while the large arguments are only slightly

shrunk.

After the rule in (20) is calibrated, the separation of s and e is performed as

follows: each wavelet coefficient d is split as

d = δ∗(d) + (d − δ∗(d)) = θ̂ + ε̂,

with δ∗(d) and (d− δ∗(d)) estimating signal and noise contributions, respectively.

All θ̂ = δ∗(d) form a matrix θ̂j,k which back-transformed to the original domain

gives the estimator of denoised image.
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This process of filtering is illustrated in Figures 4 and 5, where we consider a

fBf with Hurst exponent H = 1/3 with an additive Gaussian noise with signal-

to-noise ratio equal to snr = 2. Fig. 4 (a) shows a simulated fBf. In order to

emphasize the effect of the noise on the image, we show in panel (b) of Figure 4

the 100th row of the simulated image with and without noise.
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Figure 4: a) Simulated fBf with H = 1/3; (b) Signal of 100−th and signal with

noise.

Figure 5(a) shows the wavelet power spectra for the noisy and denoised im-

ages based on the Symmlet 4 wavelet filter. The estimates for H , in each direc-

tion, inferred from the slopes in Eq. (16), are Ĥh = 0.3204, Ĥv = 0.3161, and

Ĥd = 0.2739. Note the flattening of directional spectra (solid lines) of the noisy

image. That means that noise which is affecting all scales and all coefficients, has

sufficient energy to leave its signature only on the finest few levels of detail (high

dyadic resolution) where its relative energy compared to that of the signal image
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Figure 5: (a) 2-D wavelet-based spectra. Black solid lines depict the directional

spectra of the noisy images while the gray lines are “straightened” and correspond

to denoised image; (b) Signal of 100th row and denoised image; (c) Histogram of

all residuals; and (d) Autocorrelation function of 100th row in the residual matrix.
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is high.

The described filtering procedure based on Bayesian rule was able to recover

the simulated image since the estimator of H is close to the original and, at the

same time, the estimator of the noise is close to a matrix of i.i.d. Gaussians.

This is evident from Figure 5. Figure 5 (b) shows the performance of the de-

noising procedure by comparing the 100th row of the original image to the 100th

row reconstructed image after applying the Bayes rule. The marginal distribution

of magnitudes of all residuals, depicted in panel (c), suggests that the compo-

nents have zero-mean and bell-shaped distribution consistent with the originally

simulated noise. In order to show that the residuals are not “colored”, we again

selected 100th row (out of 512) from the estimated noise matrix. In addition to

their marginal Gaussianity, the autocorrelation of components in the selected vec-

tor is consistent with their “whitenes”, i.e., no autocorrelations at nonzero lags are

significant. The autocorrelations for the first 100 lags are shown in panel (d).

4.2 Classification of Cloud/Temperature Maps

In this application we illustrate how the wavelet-based estimators of directional

Hurst exponents can be utilized in classification of satellite images. The emphasis

here is on discrimination abilities of the Hurst summaries, and not on a solution of

a realistic environmental problem. It is straightforward to implement the described

analysis in various scientific areas in which 2-D data are instrumental: medical

imaging, geoscience, industrial applications, etc.
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The source of the data is EUMETSAT (http://www.eumetsat.int).

EUMETSAT is an intergovernmental organization created through an interna-

tional convention signed by 17 European Member States. EUMETSAT’s Me-

teosat system is intended primarily to support the National Meteorological Ser-

vices (NMS) of Member States. The NMS in turn distributes the image data to

other end-users, notably through the provision of forecasts on television several

times a day. In addition to the provision of images of the Earth and its atmosphere

every half an hour in three spectral channels (Visible, Infrared and Water Vapour),

a range of processed meteorological parameters is produced.

The satellite receives that part of the sun radiation which is reflected by the

earth surface or by cloudiness. It is a so-called window channel which means that

radiation is not significantly absorbed by the gases in the troposphere. The satellite

receives radiation which is emitted by the earth and the clouds because of their

temperature. Infra Red (IR) images via window channel (Wavelength 3.9-13.4

microns (µ)) are useful for day and night cloud-mapping and determination of

surface temperature. A range of grey shades in the IR channel represent different

temperatures of the radiating surface which can either be the earth surface or the

cloud tops.

Our data set contains 160 IR satellite images of the Gulf of Guinea (West cost

of Africa and South Atlantic Ocean). The images are taken at 3.9 µ IR band for

40 consecutive days (11/1/2006 - 12/10/2006), and subsequently divided into 4

groups according to the hour of their acquisition: (i) night (0:12am), (ii) morning
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(6:12am), (iii) noon (12:12pm), and (iv) evening (6:12pm). A typical observation

(6:12am, 11/1/06, IR 3.9 µ) is shown in Figure 6.
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Figure 6: Satelite IR image with wavelength 3.9 µ, taken on November 11, 2006

at 06:12am (morning group).

There are factors, different than geography (terrain), possibly influencing the

scaling in the satellite image. These “background conditions” such as clouds,

wind, temperature level, humidity, etc., are influenced by the time of day and

exhibit no regular behavior. We base discrimination on global scaling properties of

the observed images since the scaling is influenced by the background conditions.

In order to assess the efficacy of Hurst exponents in separation of images to

groups with different scaling characteristics, the following experiment was per-

formed. We randomly selected a portion of the data to fit the classification model
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Testing Lin. Quad. Lin. Quad. Poly. RBF

Proportion SVM SVM SVM SVM

50% 0.072 0.081 0.085 0.088 0.084 0.086

30% 0.069 0.077 0.086 0.086 0.079 0.084

Table 2: Misclassification errors for selected classical classifiers Linear, Quadratic

and SVM methods (Lin. SVM, Quad. SVM, Poly. SVM, and RBF SVM) for 50%

and 30% of data used for testing.

and used the remainder of the data to assess the model. Two scenarios are consid-

ered: the first utilizes 50% of the data and the second 70% of the data as training

sets. The random selection of training data was repeated 10000 times, so the

reported prediction errors are averaged over 10000 runs.

Since several exogenous variables (such as temperature, wind, humidity, pres-

sure) at noon differ from the same variables at the other times of the day, we

considered only two groups for the classification purpose: the “noon” group and

“others” group. For classifying the images we considered several classification

procedures: linear, quadratic and SVM (Support Vector Machines) (see Hastie et

al., 2001). Table 2 provides the results obtained with linear and quadratic classi-

fiers and with SVM with linear, quadratic, polynomial (with degree d = 3), and

radial basis (with scaling parameter c = 2) kernel functions. Figure 7 depicts clas-

sification of “noon” and “others” images by the radial basis SVM (with c = 2).

As evidenced from Table 2 the standard linear classifier outperforms all others.

This is a consequence of almost perfect linear separation between the “noon”
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Figure 7: Training set (80 images) and non linear boundaries obtained by radial

bases SVM (c = 2). The circles are the support vectors.

vs “others”. We also performed classification experiments in which harder-to-

separate cases are considered. In these cases, the SVMs were distinctly superior

to the linear and quadratic classifiers. For example, in the “evening” vs “others”

case the error rate was about 15% and in the “morning” vs “others” case about

25%. This latter rate was affected by scaling similarities between “morning” and

“midnight” images belonging to different classes.

Figure 8 shows a linear classifier based on 50% of the data and the testing

set consisting of the remaining 50%. Only a few observations are misclassified.

On a horizontal-vertical Hurst plane, the asterisks correspond to the “noon” group

while the pluses correspond to “others.” The misclassified cases are circled. This

example demonstrates that the 2-D spectra can capture information well on di-
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Figure 8: Testing set (based on 50% of data) and linear classifier. The circled

observations are misclassified.

rectional anisotropies and produce discriminatory summaries. In particular, the

horizontal and vertical directions captured most of the significant differences be-

tween the two groups of satellite images.

5 Conclusions

We have shown that 2-D wavelet-based spectra, evaluated through the sample

moments of wavelet coefficients, can be used for estimating the Hurst parameter

vector in a variety of self-similar random fields. Examples of standard isotropic

fractional Brownian fields as well as anisotropic non-stationary Gaussian fields
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are provided in the context of estimation of their directional Hurst parameters.

The methodology involving statistical models in the wavelet spectral domain

has been developed and applied in denoising of composite images in which the

“signal part” is self-similar. This is done by considering 2-D spectra and empiri-

cally calibrating a Bayesian shrinkage rule which preserves regular scaling in the

estimator of the signal image and assures marginal normality and independence

of the residuals. It is interesting that the signal image is a random field itself and

this application is in fact a challenging deconvolution of two random fields.

We also utilized the 2-D wavelet spectra to classify geophysical images. In

particular, we classified clouds/temperature map images to their corresponding

groups by a linear discriminator fed by the vector of directional Hurst exponents.

The Hurst descriptors have shown to be discriminatory, leading to a classifier with

an excellent percentage of correct predictions (up to 93.1%). Further extension of

this methodology to other classes of anisotropic processes is under investigation.
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Appendix

The tensor product wavelet transform are standard way of generating d−dimensional

multiresolution analysis. The atomic function in (8) is such that {ψi
j,k1,k2

=

2
j

2 ψi (2jux − k1, 2
juy − k2)} for each direction i. For a fBm process, B H(ux, uy),

the wavelet coefficients are

di
j,k1,k2

= 2j

∫∫
B H(ux, uy)ψ

h(2jux − k1, 2
juy − k2)duxduy (21)

By setting k = (k1, k2) and u = (ux, uy), Eq. (21) can be written as

di
j,k = 2j

∫∫
B H(u)ψi(2ju − k)du. (22)

The variance of the detail coefficients di
j,k is obtained in a similar way to the

continuous wavelet approach described in (Heneghan et al., 1996), is

E
[∣∣di

j,k

∣∣2
]

= 22j

∫∫
ψi

(
2ju − k

)
ψi

(
2jv − k

)
E [BH(u)BH(v)] du dv (23)

Taking into the account the definition of the covariance function for a fBm in

2-D, we have

E
[∣∣di

j,k

∣∣2
]

=
σ2

H

2
22j

∫∫
ψi

(
2ju − k

)
ψi

(
2jv − k

)
|u|2H dudv

+

∫∫
ψi

(
2ju − k

)
ψi

(
2jv − k

)
|v|2H dudv (24)

+

∫
ψi

(
2ju − k

)
ψi

(
2jv − k

)
|u − v|2H dudv.
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Since,
∫

ψi
(
2ju − k

)
du =

∫ (
2jv − k

)
dv = 0, (25)

the variance in (24) can be simplified as

E
[∣∣di

j,k

∣∣2
]

=
σ2

2
22j

∫∫
ψi

(
2ju − k

)
ψi

(
2jv − k

)
|u − v|2H dudv (26)

By substituting p = 2j(u − v) and q =2jv − k, we obtain:

E
[∣∣di

j,k

∣∣2
]

=
σ2

H

2
22j

∫∫
ψi (p + q) ψi (q) 2−2jH |p|2H 2−4jdpdq

=
σ2

H

2
2−j(2H+2)

∫∫
ψi (p + q) ψi (q) |p|2H dpdq

=
σ2

H

2
Vψi2−j(2H−2), (27)

where Vψi denotes

∫∫
ψi(p + q) · ψi(q) |p|2H dpdq, (28)

an integral depending on wavelet ψi and H , but free of the scale j, and σ2
H was

given in (4). By applying logarithm to both ends in

E
[∣∣di

j,k

∣∣2
]

=
σ2

H

2
Vψi2−(2H+2)j, (29)

the equation

log2 E
[∣∣di

j,k

∣∣2
]

= −(2H + 2)j + Ci,

discussed previously in Section 3 is obtained.
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