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Abstract

In Ponzini et al. (2006) a new approach has been proposed for estimating in a reliable way blood

flow rate from velocity Doppler measurements. In that paper, basic features of the approach

and some “in silico” test cases were furnished. Here, we give more insights of this approach by

performing a sensitivity analysis of the formulae relating blood flow rate to blood velocity. In

particular we analyze their sensitivity to the physiological parameters in comparison with the

standard formula proposed in Doucette et al. (1992). A first glance at “in vivo” validation of

the formulae is given too.

Key words: Flow rate estimation, Doppler measurements, Womersley number, Sensitivity

Analysis, Coronary flow reserve
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Introduction

The correct estimation of blood flow rate Q through a vascular surface is a major issue in

clinical practice, since it could give important informations about the cardiovascular state

of a patient. This can be pursued with a good precision by using invasive approaches,

such as the Electromagnetic flow meter (see, e.g., Kolin et al. 1968, Elfverson and Larsson

1983) or by considering a mean value across a heart cycle with the transit time coronary

thermodilution (see, e.g., De Bruyne et al. 2003). Even if these techniques allow to mea-

sure directly the flow rate, their difficulty and invasiveness discourage their clinical use.

For these reasons, the current elective approach for blood flow analysis is based on the

Doppler technique (Intravascular Doppler velocimetry analysis, see, e.g, Doucette et al.

1992). Available highly accurate velocity measures at different positions of a vessel make

this approach attractive for many clinical applications, such as during catheterisation, in

percutaneous transluminal coronary angioplasty (PTCA) and for the determination of

coronary flow rate (see, e.g., Kajiya et al. 1987, Johnson et al. 1989, Iliceto et al. 1991,

Marcus et al. 1982, Wilson et al. 1985, McGinn et al. 1990, Savader et al. 1997, Doucette

et al. 1992). However, Doppler velocimetry analysis cannot measure directly the flow rate.

The latter has to be indirectly estimated starting from other available measures.

As a matter of fact, if Γ denotes a section of a vascular district at hand, flow rate Q

through Γ is defined as

Q =
∫

Γ
ρu · ndγ, (1)

where ρ is the blood density (hereafter assumed to be constant), u the blood velocity

and n the normal unit vector. In principle, the whole velocity field u on Γ is needed for

estimating Q. However, equation (1) can be rewritten in terms of the mean velocity value

U as

Q = ρUA (2)

where A denotes the area of section Γ. Unfortunately, mean velocity U is not available

from measures. On the other hand, Doppler velocimetry analysis provides good measures

3



of the maximum velocity VM on Γ. Equation (2) requires therefore to be accompained

with an appropriate formula relating mean velocity U to the maximum one VM . In current

clinical practice, as proposed in Doucette et al. (1992), it is usually assumed

U =
VM

2
. (3)

This equation stems from the hypothesis of a parabolic spatial profile for the velocity. For

this reason, in the sequel equation (3) will be referred to as parabolic formula. Striclty

speaking this formula assumes that blood flow is quasi-static, laminar and Newtonian

in a rectilinear cylindrical vessel (see Nichols et al., 2005). These assumptions, where at

each instant a steady profile is associated with the instantaneous flow rate, is far to be

fullfilled in real situations (see e.g. Robertson et al. 2001, Perktold et al. 1998, Shehada

et al. 1993, Ferrari et al. 2006). In particular, it has been pointed out by different authors

the relevance of blood flow pulsatility on the velocity profiles (Womersley 1955, Hale et

al. 1955, Nichols et al. 2005). If we denote by D the vessel diameter, ν the blood viscosity

and f the frequency of blood impulse, the adimensional index

W =
D

2

√

2πf

ν

called Womersley number, is used for quantifying the pulsatility of the flow. The higher

the value of W the more the assumption of parabolic velocity profile is incorrect (see,

e.g., Porenta et al. 1999, Jenni et al. 2000, Jenni et al. 2004, Ferrari et al. 2006, Ponzini

et al. 2006). In Ponzini et al. (2006) improved blood flow rate estimates from maximum

velocity have been devised by exploiting Computational Fluid Dynamics (CFD) results.

The basic idea was to generalize equation (3), by introducing an explicit dependence on

the Womersley number of the mean velocity:

U = g(VM ,W ), (4)

where g is a suitable function. For this reason in the sequel formula (4) will be referred

to as Womersley-based formula. The quantitative determination of function g(VM ,W )

in Ponzini et al. (2006) has been carried out by performing about 200 numerical simula-
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tions in cylindrical geometries, for different values of the flow rate (prescibed as boundary

conditions) and of the Womersley number. Flow rate boundary conditions are prescribed

without any biased arbitrary assumption of the velocity profile, according to a mathemat-

ical approach recently proposed in Formaggia et al. (2002), Veneziani and Vergara (2005

and 2007). A non-linear least squares approach has been then used for fitting the results

(see also Pennati et al. 1996 and 1998). This allows to obtain the parameters for the

identification of formula g. Preliminary validation in Ponzini et al. (2006) has been based

on in silico test cases, i.e. on numerical simulations performed in cases different from the

ones used for fitting formula (4). These results show that the new formula improves blood

flow rate estimation with respect to (3). In some cases the improvements are remarkable.

In this paper we continue the investigation of this approach through a sensitivity analysis

of the formula with respect to the velocity and to the diameter. We show that formula

(4) has stability features comparable with (3), apart for values of the Womersley number

included in the range (2.7, 3.1). For this reason, we modify formula (4) in this range in

order to reduce its sensitivity and we check that this modification does not affect the

overall accuracy.

Parabolic and Womersley-based formulae are then applied to a clinical dataset retrieved

from the database of the CNR Clinical Physiology Institute of Pisa. These early results

show that the Womersley-based formula provide a better agreement with the clinical

expectations.
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Sensitivity Analysis

Material and Methods

For the sake of accuracy, in Ponzini et al. (2006) three ranges of the Womersley number

are considered and associated with three different formulae:






















































Q = ρπD2

4
g1(VM ,W ) = ρ1

2
πD2

4
VM(1 + a1W

b1) for 0 < W ≤ 2.7,

Q = ρπD2

4
g2(VM ,W ) = ρ1

2
πD2

4
VMb2 arctan(a2W ) for 3.1 ≤ W ≤ 15,

Q = ρπD2

4
wg1(VM ,W ) + ρπD2

4
(1 − w)g2(VM ,W ) for 2.7 < W ≤ 3.1.

(5)

Here, a1, a2, b1 and b2 are the parameters determined by the fitting procedure and w =

w(W ) is a weight function mixing the formulae for low and high values of W respectively.

More precisely, we set (see Ponzini et al. 2006)































a1 = 0.00417, b1 = 2.95272

a2 = 1.00241, b2 = 0.94973

,

and

w(W ) = e
(W−2.7)2

(W−2.7)2−0.42 . (6)

Since formulae (5) establish a dependence of the flow rate on the Womersley number W ,

they are able to describe in a more realistic way different blood flow regimes. We point

out that for W = 0, that is in steady conditions, we recover the parabolic formula (see

(5)1). However, for the same reason they are also more delicate in terms of sensitivity from

the data, being estimates possibly polluted by error on maximum velocity VM , diameter,

frequency and viscosity measures. On the contrary, parabolic formula (3) is independent

of frequency and viscosity. This means that error in measuring these parameters do not

affect the estimate. On the other hand, the same formula is unable to account for flow

rate modifications induced by a physical change of viscosity or pulsatility, as we have
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pointed out previously.

In order to evaluate sensitivity on measurements errors of formulae (5) in comparison

to (3) , we introduce in Appendix an index λ, called amplification factor. If y(x) is the

quantity to be estimated depending on the measurable quantity x, the amplification factor

reads

λ =
y′(x)

y(x)
x, (7)

where y′ denotes the first derivative of y(x) with respect to x. The amplification factor

quantifies the sensitivity of the quantity y on the measure x. Big values of λ means that

small perturbations on x (due for example to an error in the measurement) could lead

to big perturbations in the estimate y. We point out that the sensitivity of the estimate

has not to be confused with its accuracy, that is how this estimate y is “close” to the real

value yex.

Hereafter, we focus our attention on the dependence of our formulae on the measure of the

maximum velocity and of the diameter, which are those parameters in formula (5) likely

most operator-dependent (while the maximum velocity is the only parameter appearing

in formula (3)).

Sensitivity to VM . All the proposed formulae depend linearly on VM , i.e. are in the form

Q = c(W )VM

where c(W ) is a function of the Womersley number (and in particular a costant for the

parabolic formula (3)). By resorting to (7), we have for all the formulae considered here

λ =
c(W )

c(W )VM

VM = 1. (8)

Sensitivity of the formulae to maximum velocity measures is therefore the same. A possible

error δ on this measure in both cases affects flow rate estimates, with a perturbation of

the same order of δ.

Sensitivity to D. Sensitivity on D is even more critical with respect to the operator
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skillness and experience. Let us consider the different cases at hand separately.

(1) Parabolic formula: in this case we have from (3)

λparabolic =
ρDVM

4
ρ

2
D2

4
VM

D = 2. (9)

(2) Womersley-based formula for small Womersley numbers: by algebraic manipulation

we have

λg1 = 2 + b1
a1W

b1

1 + a1W b1
. (10)

(3) Womersley-based formula for large Womersley numbers:

λg2 = 2 +
a2W

(1 + a2
2W

2) arctan(a2W )
. (11)

(4) Womersley-based formula for intermediate Womersley numbers¡: in this case compu-

tations are made more difficult by the presence of the weight function w that depends

on D through the Womersley number. Let us introduce the following notation:

λ12 =
wg′

1

(1 − w)g2

D, λ21 =
(1 − w)g′

2

wg1

D, λw =
w′

w
D, λw12 =

(g1 − g2)w
′

g2

D.

Then, it is possible to verify that

λg3 = 2 +

(

1

λ−1
1 + λ−1

12

+
1

λ−1
2 + λ−1

21

+
1

λ−1
w + λ−1

w12

)

. (12)

Forward and backward analysis of perturbations

In this section, starting from theoretical considerations, we provide an application of

the results of the sensitivity analysis in order to improve the estimate of the flow rate.

In particular, we will show that a perturbation on the measurement of the maximum

velocity in a suitable range, leads to a better estimate of the flow rate.

The impact of errors on the computation of a quantity of interest y regarded as a function

of the data x can be represented as in Fig. 2. The solid line corresponds to the exact

calculation of yex in x. Approximation procedures affect the result, so that the real process
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(represented by the dashed line) leads to an approximated value yapp(x). Perturbations

on the data on the x-axis change the results, leading to ypert(x) = yapp(x + δ). We could

try to investigate if a perturbation on the data could induce an improvement on the final

result. In other words, we look for a perturbation δ that compensates the approximation

of the process. The interplay between approximation of results and data perturbations is

a classical topic of the so called backward analysis (see e.g. Higham 1996). The answer to

this question is strictly related to the definition of amplification factor. Actually, we look

for δ > 0 such that

|yex − yapp(x + δ)| < |yex − yapp(x)|.

By exploiting equation (.1) in the Appendix and assuming that x > 0, yapp > 0, y′

app > 0

(and then λ > 0) and that the approximation process is affected by a constant bias such

that yapp(x) < yex, the latter inequality becomes

yapp(x)−yex < yex−yapp(x+δ) ≃ yex−yapp(x)

(

1 + λ
δ

x

)

⇒ 2(yapp(x)−yex) < −
λ δyapp(x)

x
< 0.

Then, the previous inequality is solved by

δ <
2(yex − yapp)x

λ yapp(x)
. (13)

In conclusion, a perturbation on the data small enough in fact improves the final estimate.

Results and Discussion

Sensitivity to D. In Fig. 1 we illustrate the stability index λ of the parabolic and

Womersley-based formulae as a function of W . We observe that for W ≤ 2.7 and W ≥ 3.1,

Womersley-based formulae are slightly more sensitive, as was to be expected since these

formulae actually depends on the Womersley number, that in turn depends on the di-

ameter. In particular, for W < 2.7 the sensitivity increases with the Womersley number,

while for W > 3.1 it decreases with W . In this range, the increment of λ is in any case

less than 13% of the index of parabolic formula.
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On the contrary, for 2.7 < W < 3.1, we observe that the amplification factor increases

up to 68% with respect to the index of parabolic formula. This stems from the fact

that in this range of the Womersley number, our formula is given by a weighted linear

combination of g1 and g2. In the superimposition of the effects the amplification factor

is affected by the sum of the two contributions. In order to reduce the sensitivity of the

“weighted” Womersley-based formula, we modify the weight function w(W ) in (5). In

particular, we propose the linear function

w(W ) =
3.1 − W

0.4
. (14)

From the mathematical viewpoint, this choice introduces a less regular function. Indeed,

the Womersley-based formula over the entire range of physiological ranges of Womersley

numbers will be only continuous, with discontinuous derivate. However, it reduces the

sensitivity to D of the Womersley-based formula in the range W = (2.7, 3.1), as shown

in Fig. 1, since it features a slope smaller than with the weight (6). The amplification

factor reduces to 38% more than the one of parabolic formula.

It is important to outline that, while the stability of the Womersley-based formula with

weight (14) is greatly improved, the accuracy is mantained. This is confirmed by numerical

results referring to the same in silico validation test cases considered in Ponzini et al.

(2006). We apply the original and the modified Womersley-based formulae (given by

weights (6) and (14), respectively) to the brachial flow wave test case. The results in Tab.

2, show that the accuracy of the Womersley-based formula is not worsened.

To be more concrete, we detail some examples of clinical relevance (in all the examples

we set ν = 0.035Poise).

1) Coronary vessel: Let us consider the measure of flow rate in a coronary vessel. We

assume that the diameter of such a district is D = 2 mm. In basal conditions, frequency

f = 1 Hz, consequently W = 1.34. For example if the diameter error is 10%, the pertur-

bation induced by the parabolic formula amounts to 20%, while from (10) it follows that
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the perturbation of the Womersley-based formula amounts to 20.6%.

If we assume that adenosine is administered, we have f = 3 Hz corresponding to W =

2.32. In this case the perturbation of the Womersley-based formula amounts to 22.8%.

2) Brachial artery: Let us consider the brachial artery: in this case, a possible value of the

diameter is D = 4.2 mm and then the Womersley number in basal conditions (f = 1 Hz)

is W = 2.81. In this case we have refer to the weighted formula (5)3, with (14). With a

10% error in the diameter measure, the perturbation of the Womersley-based formula is

37.4% (20% for the parabolic formula).

3) Femoral artery: Here we can assume D = 10mm. In basal conditions we have W = 6.69

and the perturbation of the Womersley-based formula amounts to 21.0%, while under

adenosine we have W = 11.60 and the perturbation is 20.5%, versus the 20% of the

parabolic formula.

Overestimation of the measures. It is worth noting that clinical evidence (see, e.g., Ferrari

et al. 2006) suggests that parabolic formula underestimates the real flow rate, Qex >

Qparabolic. In other words, there is a systematic error with a constant bias (i.e. Qex −

Qparabolic > 0 constantly). Referring to the section Forward and backward analysis of

perturbations, in our application the datum x is the diameter or the maximum velocity,

whereas the calculation yapp is the estimate of the flow rate. Moreover, we remark that x >

0, yapp > 0 (if we focus on downstream fluxes) and y′

app > 0 for construction. This means

that we can apply (13). For example, using one of the in silico test case shown in Ponzini

et al. 2006, we have VM = 4421.0 mm/s, D = 1.2 mm, Qex = 10000mm3/s, Qparabolic =

9876mm3/s, W = 1.737. From (8), (9) and (13), it follows that a measure of the maximun

velocity satisfing δ < 111.02 mm/s and a measure of the diameter satisfing δ < 0.015mm,

leads to a better estimate of the flow rate. In this case, as remarked in the previous

subsection, perturbations on the measures could at some extent compensate the intrinsic

error of parabolic formula. More precisely, we have that small positive perturbations on

the measures of VM and D can improve the flow rate estimate based on (3). This has
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an immediate practical consequence: when different measures of VM or D are available it

is worth retaining the largest one, since small overestimations can partially balance the

errors intrinsic to the parabolic formula.

In the case of Womersley-based formulae, there is no available experimental evidence of

a constant bias in flow rate evaluation, so it is not possible at the moment to give any

practical suggestions. Numerical in silico results presented in Ponzini et al. (2006 and

2008) suggest however that also this formula features a constant underestimation (even

if sensibly reduced with respect to the Doucette’s results as will be illustrated in Sect.

3). If these results will be confirmed by in vivo validation, then the indication moving

towards an overestimated value of the maximum velocity and of the diameter will apply

to the Womersley-based formula as well.

Some steps to “in vivo” validation

Validation of (5) in Ponzini et al. (2006) was based on CFD results, by performing nu-

merical simulations in geometries and regimes different from the ones used for fitting

the formulae. In Ponzini et al. (2008) Womersley-based formulae have been applied to

Y-graft bypass. The advantage of in silico test cases is that prescription and comparison

of data is completely under control. Results obtained in this way show that Womersley-

based formulae can significantly improve flow rate estimates in comparison with parabolic

formula.

Next step is in vivo validation. In what follows we provide a first clinical application of the

Womersley-based formula. We point out that this application is just a first preliminary,

even if it is an important step in that direction.

Among all the clinical flow rate applications, we have focused on catheter-based Doppler

ultrasound velocimetry analysis for the measurement of the coronary flow reserve (CFR).

This application is one of the most relevant in clinical application (see Gould et al. 1974,
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McGinn et al. 1990, Doucette et al. 1992). In particular, the CFR has been intensively

used to assess coronary vasomotricity in patients with coronary artery disease (CAD)

(see Sambuceti et al. 1997). CFR is known to be defined as the ability of coronary vessels

to increase blood flow adjusting it for the myocardium demands for oxygen and energy.

CFR can be defined as the ratio between the flow rate QS measured in a coronary vessel

during maximal vasodilatation and the flow rate QR measured in resting conditions, that

is

CFR =
QS

QR

. (15)

Therefore, CFR could represent a clinical diagnostic and prognostic index concerning

the coronary vessel inhability to increase flow proportional to increases in myocardial

metabolic demand.

We have applied the Womersley-based formula in a blind fashion, to 13 patients (with

or without idiopathic dilated cardiomyopathy) of the database of CNR of Pisa, Italy

(see Neglia et al. 2007 for details). Patients with idiopathic dilated cardiomyopathy have

been chosen since they have shown impaired CFR at positron emission tomography mea-

surements (see Neglia et al. 2002). In particular, in order to compute the flow rate QS,

adenosine has been administered to these patients.

Using these data, CFR has been estimated using the parabolic and the Womersley-based

formula for the computation of the flow rates in (15).

We observe that no ad hoc data acquisition has been needed in order to evaluate the flow

rates (and then the CFR) using the Womersley-based formula. An important feature of

this formula is actually that it can be used from data commonly measured in the clinical

practice.

As shown in Table 1 and in Fig. 3, Womersley-based formula provides an higher value of

the estimate of the CFR, with the respect to the one performed by the parabolic formula,

in all the patients but one (patient n. 11). We observe that this patient is the only one

such that the Womersley number is smaller under adenosine rather then at rest. This is
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due to the fact that for this patient heart rate is slower under adenosine than in resting

conditions.

In particular, the mean value of the CFR obtained with the parabolic formulae is 2.56±

0.75, while the one obtained with the Womersley-based formula is 2.65 ± 0.85. This is a

good result, in view of the established tendency of parabolic formula to underestimation.

Moreover, in Table 1 the relative differences between the two CFR estimates (ε) are shown.

The mean value of ε related to the first 8 patients with idiopathic dilated cardiomyopathy

is 2.53% ± 2.42%, while the mean value in the healthy patients is 3.55% ± 4.98%. From

these results, Womersley-based formula seems to introduce a more significant correction

in healthy patients. Because of the small sample size, the two groups are still not well

separated.

Data collected so far are however not enough for the construction of a statistically signif-

icant data set. Starting from promising results obtained here, we plan to enlarge our data

base, in particular including cases with high Womersley number, namely those observed

in vessels with larger diameter than that of coronary arteries. In fact, in the present study,

formula (5) was applied to arterial vessels with small Womersley numbers. Formula (5)

will further improve accuracy of CFR calculation when applied to clinical conditions char-

acterized by elevated heart rates, such as pacing tachycardia, or by medium and large

vessels.
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Patient W CFR CFR ε

basal/adenosine based on (3) based on (5)

1 2.88/3.19 3.75 4.06 7.64%

2 3.00/3.15 2.25 2.32 3.02%

3 3.53/4.00 2.68 2.75 2.55%

4 2.05/2.44 1.53 1.57 2.55%

5 2.54/2.49 1.55 1.55 0.0%

6 3.24/3.58 3.61 3.68 1.90%

7 2.49/2.73 1.75 1.78 1.69%

8 2.13/2.34 2.28 2.30 0.87%

9 2.68/3.32 1.70 1.92 11.46%

10 2.33/2.54 2.04 2.07 1.45%

11 2.68/2.44 2.84 2.79 -1.79%

12 2.07/2.41 3.52 3.59 1.95%

13 3.00/3.41 3.88 4.07 4.67%

Table 1

CFR estmated with formula (3) and (5) from the data collected at the CNR Clinical Physiology

Instiute, Pisa, and relative difference ε =(CFR based on (5)-CFR based on (3))/ CFR based

on (5)
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Ed Ew Ewmod

W=2.868 18.42% 9.52% 8.03%

W=3.049 18.17% 2.77% 3.33%

Table 2

In silico validation: comparison between the relative errors obtained with formulae (3) (Ed), (4)

with weight (6) (Ew) and (4) with weight (14) (Ewmod)

16



Figure captions

Figure 1 Amplification factor λ for Parabolic and Womersley-based formulae as a func-

tion of the Womersley number W . Dashed line: index for the original formula featuring

the exponential weight function (6) for Womersley numbers in the range 2.7 < W < 3.1.

Solid line: index for the modified formula with the linear weight (14).

Figure 2 Abstract representation of forward and backward impact of data perturba-

tions. Improvement on the result obtained by an approximated process can be the

result of a perturbation on the data.

Figure 3 Estimation of the CFR obtained with the parabolic and with the Womersley-

based formula: the patients with idiopathic dilated cardiomyopathy (1-8) and the

healthy ones (9-13) are separated by the dashed line.
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Appendix

Let us consider a generic function y = y(x). Suppose that x could be subject to per-

turbations δ possibly induced by measurements errors. Our goal is to evaluate the ratio

between the relative errors, namely

λ =

y(x+δ)−y(x)
y(x)

δ
x

=
y(x + δ) − y(x)

y(x)

x

δ
.

Let us rearrange the latter equation in the following way

λ =
y(x + δ) − y(x)

δ

δ

y(x)

x

δ
=

y(x + δ) − y(x)

δ

x

y(x)
.

Now, if we denote by y′(x) the derivative of y with respect to x and let δ tends to 0, we

finally obtain

λ =
y′(x)

y(x)
x.

This amplification factor states the impact of a perturbation on x on the result y(x).

In the context of numerical analysis, this index is sometimes called condition number of

y(x). Observe that from the definition we have for δ small

y(x + δ) ≃ y(x)

(

1 + λ
δ

x

)

. (.1)
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