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Abstract

Different change-point type models encountered in statistical in-
ference for stochastic processes give rise to different limiting likelihood
ratio processes. In a previous paper of one of the authors it was es-
tablished that one of these likelihood ratios, which is an exponential
functional of a two-sided Poisson process driven by some parameter,
can be approximated (for sufficiently small values of the parameter)
by another one, which is an exponential functional of a two-sided
Brownian motion. In this paper we consider yet another likelihood
ratio, which is the exponent of a two-sided compound Poisson process
driven by some parameter. We establish, that similarly to the Poisson
type one, the compound Poisson type likelihood ratio can be approx-
imated by the Brownian type one for sufficiently small values of the
parameter. We equally discuss the asymptotics for large values of the
parameter.
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1 Introduction

Different change-point type models encountered in statistical inference for
stochastic processes give rise to different limiting likelihood ratio processes.
In [3] a relation between two of these likelihood ratios was established by one
of the authors. More precisely, it was shown that the first one, which is an
exponential functional of a two-sided Poisson process driven by some param-
eter, can be approximated (for sufficiently small values of the parameter) by
the second one, defined by

Z0(x) = exp

{

W (x) −
1

2
|x|

}

, x ∈ R, (1)

where W is a standard two-sided Brownian motion. In this paper we consider
another limiting likelihood ratio process arising in some change-point type
models.

We introduce the random process Zγ on R as the exponent of a two-sided
compound Poisson process given by

ln Zγ(x) =















γ
∑Π+(x)

k=1 ε+
k − γ2

2
Π+(x), if x > 0,

γ
∑Π

−
(−x)

k=1 ε−k − γ2

2
Π−(−x), if x 6 0,

(2)

where γ > 0, Π+ and Π− are two independent Poisson processes of intensity 1
on R+, ε±k are independent standard Gaussian random variables which are
also independent of Π±, and we use the convention

∑0
k=1 ε±k = 0. We equally

introduce the random variables

ζγ =

∫

R
x Zγ(x) dx

∫

R
Zγ(x) dx

,

ξ−γ = inf
{

z : Zγ(z) = sup
x∈R

Zγ(x)
}

,

ξ+
γ = sup

{

z : Zγ(z) = sup
x∈R

Zγ(x)
}

,

ξα
γ = α ξ−γ + (1 − α) ξ+

γ , α ∈ [0, 1],

(3)

related to this process, as well as their second moments Bγ = Eζ2
γ and

Mα
γ = E(ξα

γ )2.

The process Zγ, up to a linear time change, arises
(

see, for example,
Chan and Kutoyants [2]

)

in some non-regular, namely change-point type,
statistical models as the limiting likelihood ratio process, and the variables

2



ζγ and ξα
γ as the limiting distributions of the Bayesian estimators and of the

appropriately chosen maximum likelihood estimator respectively. Here the
maximum likelihood estimator is not unique, and the appropriate choice is
a linear combination with weights α and 1 − α of its minimal and maxi-
mal values. In particular, Bγ and Mα

γ are the limiting variances of these
estimators, and the Bayesian estimators being asymptotically efficient, the
ratio Eα

γ = Bγ/M
α
γ is the asymptotic efficiency of this maximum likelihood

estimator.

On the other hand, many change-point type statistical models encoun-
tered in various fields of statistical inference for stochastic processes rather
have as limiting likelihood ratio process, up to a linear time change, the pro-
cess Z0. In this case, the limiting distributions of the Bayesian estimators
and of the maximum likelihood estimator are given by

ζ0 =

∫

R
x Z0(x) dx

∫

R
Z0(x) dx

and ξ0 = argsup
x∈R

Z0(x) (4)

respectively, and the limiting variances of these estimators are B0 = Eζ2
0

and M0 = Eξ2
0 .

A well-known example is the model of a discontinuous signal in a white
Gaussian noise exhaustively studied by Ibragimov and Khasminskii in [10,
Chapter 7.2]

(

see also their previous work [9]
)

, but one can also cite change-
point type models of dynamical systems with small noise

(

see Kutoyants [12]
and [13, Chapter 5]

)

, those of ergodic diffusion processes
(

see Kutoyants [14,
Chapter 3]

)

, a change-point type model of delay equations
(

see Küchler and
Kutoyants [11]

)

, an i.i.d. change-point type model
(

see Deshayes and Pi-
card [4]

)

, a model of a discontinuous periodic signal in a time inhomogeneous
diffusion

(

see Höpfner and Kutoyants [8]
)

, and so on.

Let us also note that Terent’yev in [16] determined explicitly the distri-
bution of ξ0 and calculated the constant M0 = 26. These results were taken
up by Ibragimov and Khasminskii in [10, Chapter 7.3], where by means
of numerical simulation they equally showed that B0 = 19.5 ± 0.5, and so
E0 = 0.73 ± 0.03. Later in [7], Golubev expressed B0 in terms of the sec-
ond derivative (with respect to a parameter) of an improper integral of a
composite function of modified Hankel and Bessel functions. Finally in [15],
Rubin and Song obtained the exact values B0 = 16 ζ(3) and E0 = 8 ζ(3)/13,
where ζ is Riemann’s zeta function defined by ζ(s) =

∑∞
n=1 1/ns.

In this paper we establish that the limiting likelihood ratio processes Zγ

and Z0 are related. More precisely, we show that as γ → 0, the process
Zγ(y/γ2), y ∈ R, converges weakly in the space D0(−∞, +∞) (the Skorohod
space of functions on R without discontinuities of the second kind and van-

3



ishing at infinity) to the process Z0. So, the random variables γ2ζγ and γ2ξα
γ

converge weakly to the random variables ζ0 and ξ0 respectively. We show
equally that the convergence of moments of these random variables holds,
that is, γ4Bγ → 16 ζ(3), γ4Mα

γ → 26 and Eα
γ → 8 ζ(3)/13.

These are the main results of the present paper, and they are presented
in Section 2, where we also briefly discuss the second possible asymptotics
γ → +∞. The necessary lemmas are proved in Section 3 and, finally, in
Section 4 we discuss some directions for future development.

2 Asymptotics of the limiting likelihood ra-

tio

Consider the process Xγ(y) = Zγ(y/γ2), y ∈ R, where γ > 0 and Zγ is
defined by (2). Note that

∫

R
y Xγ(y) dy

∫

R
Xγ(y) dy

= γ2ζγ,

inf
{

z : Xγ(z) = sup
y∈R

Xγ(y)
}

= γ2ξ−γ

and

sup
{

z : Xγ(z) = sup
y∈R

Xγ(y)
}

= γ2ξ+
γ ,

where the random variables ζγ and ξ±γ are defined by (3). Remind also the
process Z0 on R defined by (1) and the random variables ζ0 and ξ0 defined
by (4). Recall finally the quantities Bγ = Eζ2

γ , Mα
γ = E(ξα

γ )2, Eα
γ = Bγ/M

α
γ ,

B0 = Eζ2
0 = 16 ζ(3), M0 = Eξ2

0 = 26 and E0 = B0/M0 = 8 ζ(3)/13. Now we
can state the main result of the present paper.

Theorem 1 The process Xγ converges weakly in the space D0(−∞, +∞) to

the process Z0 as γ → 0. In particular, the random variable γ2ζγ converge

weakly to the random variable ζ0 and, for any α ∈ [0, 1], the random variable

γ2ξα
γ converge weakly to the random variable ξ0. Moreover, for any k > 0 we

have

γ2k Eζk
γ → Eζk

0 and γ2k E(ξα
γ )k → Eξk

0 ,

and in particular γ4Bγ → 16 ζ(3), γ4Mα
γ → 26 and Eα

γ → 8 ζ(3)/13.
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The results concerning the random variable ζγ are direct consequence
of Ibragimov and Khasminskii [10, Theorem 1.10.2] and the following three
lemmas.

Lemma 2 The finite-dimensional distributions of the process Xγ converge

to those of Z0 as γ → 0.

Lemma 3 For all γ > 0 and all y1, y2 ∈ R we have

E
∣

∣X1/2
γ (y1) − X1/2

γ (y2)
∣

∣

2
6

1

4
|y1 − y2| .

Lemma 4 For any c ∈ ] 0 , 1/8 [ we have

EX1/2
γ (y) 6 exp

(

−c |y|
)

for all sufficiently small γ and all y ∈ R.

Note that these lemmas are not sufficient to establish the weak conver-
gence of the process Xγ in the space D0(−∞, +∞) and the results concerning
the random variable ξα

γ . However, the increments of the process ln Xγ being
independent, the convergence of its restrictions (and hence of those of Xγ)
on finite intervals [A, B] ⊂ R

(

that is, convergence in the Skorohod space
D[A, B] of functions on [A, B] without discontinuities of the second kind

)

follows from Gihman and Skorohod [6, Theorem 6.5.5], Lemma 2 and the
following lemma.

Lemma 5 For any ε > 0 we have

lim
h→0

lim
γ→0

sup
|y1−y2|<h

P
{

∣

∣ln Xγ(y1) − ln Xγ(y2)
∣

∣ > ε
}

= 0.

Now, Theorem 1 follows from the following estimate on the tails of the
process Xγ by standard argument

(

see, for example, Ibragimov and Khas-
minskii [10]

)

.

Lemma 6 For any b ∈ ] 0 , 1/12 [ we have

P

{

sup
|y|>A

Xγ(y) > e−bA

}

6 4 e−bA

for all sufficiently small γ and all A > 0.
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All the above lemmas will be proved in the next section, but before let
us discuss the second possible asymptotics γ → +∞. One can show that
in this case, the process Zγ converges weakly in the space D0(−∞, +∞) to
the process Z∞(x) = 1{−η<x<τ}, x ∈ R, where η and τ are two independent
exponential random variables with parameter 1. So, the random variables
ζγ, ξ−γ , ξ+

γ and ξα
γ converge weakly to the random variables

ζ∞ =

∫

R
x Z∞(x) dx

∫

R
Z∞(x) dx

=
τ − η

2
,

ξ−∞ = inf
{

z : Z∞(z) = sup
x∈R

Z∞(x)
}

= −η,

ξ+
∞ = sup

{

z : Z∞(z) = sup
x∈R

Z∞(x)
}

= τ

and

ξα
∞ = α ξ−∞ + (1 − α) ξ+

∞ = (1 − α) τ − α η

respectively. One can equally show that, moreover, for any k > 0 we have

Eζk
γ → Eζk

∞ and E(ξα
γ )k → E(ξα

∞)k,

and in particular, denoting B∞ = Eζ2
∞, Mα

∞ = E(ξα
∞)2 and Eα

∞ = B∞/Mα
∞,

we finally have

Bγ → B∞= E
(τ − η

2

)2

=
1

2
,

Mα
γ → Mα

∞= E
(

(1 − α) τ − α η
)2

= 6

(

α −
1

2

)2

+
1

2
(5)

and

Eγ → Eα
∞=

1

12
(

α − 1
2

)2
+ 1

. (6)

Let us note that these convergences are natural, since the process Z∞ can
be considered as a particular case of the process Zγ with γ = +∞ if one
admits the convention +∞ · 0 = 0.

Note also, that the process Z∞ is the limiting likelihood ratio process
in the problem of estimating the parameter θ by i.i.d. uniform observations
on [θ, θ + 1]. So, in this problem, the variables ζ∞ and ξα

∞ are the limit-
ing distributions of the Bayesian estimators and of the maximum likelihood

6



estimator respectively, B∞ and Mα
∞ are the limiting variances of these es-

timators and, the Bayesian estimators being asymptotically efficient, Eα
∞ is

the asymptotic efficiency of the maximum likelihood estimator.

Finally observe, that the formulae (5) and (6) clearly imply that in the
latter problem (as well as in any problem having Z∞ as limiting likelihood
ratio) the best choice of the maximum likelihood estimator is α = 1/2, and
that the so chosen maximum likelihood estimator is asymptotically efficient.
This choice was also suggested in Kutoyants [2] for problems having Zγ as
limiting likelihood ratio. For large values of γ this suggestion is confirmed
by our asymptotic results. However, we see that for small values of γ the
choice of α will not be so important, since all the limits in Theorem 1 do not
depend on α.

3 Proofs of the lemmas

First we prove Lemma 2. Note that the restrictions of the process lnXγ (as
well as those of the process ln Z0) on R+ and on R− are mutually independent
processes with stationary and independent increments. So, to obtain the
convergence of all the finite-dimensional distributions, it is sufficient to show
the convergence of one-dimensional distributions only, that is,

ln Xγ(y) ⇒ ln Z0(y) = W (y) −
|y|

2
= N

(

−
|y|

2
, |y|

)

for all y ∈ R. Moreover, these processes being symmetric, it is sufficient
to consider y ∈ R+ only. Here and in the sequel “⇒” denotes the weak
convergence of the random variables, and N (m, V ) denotes a “generic” ran-
dom variable distributed according to the normal law with mean m and
variance V .

The characteristic function ϕγ(t) of ln Xγ(y) is

ϕγ(t) = E eit ln Xγ(y) = E eitγ
PΠ+(y/γ2)

k=1
ε+

k −it γ2

2
Π+(y/γ2)

= EE
(

eitγ
PΠ+(y/γ2)

k=1
ε+

k −it γ2

2
Π+(y/γ2)

∣

∣

∣
FΠ+

)

= E

(

e−it γ2

2
Π+(y/γ2)

Π+(y/γ2)
∏

k=1

E eitγε+

k

)

= E e−it γ2

2
Π+(y/γ2)− t2γ2

2
Π+(y/γ2) = E e−

γ2

2
(it+t2)Π+(y/γ2)

where we have denoted FΠ+
the σ-algebra related to the Poisson process Π+,

used the independence of ε+
k and Π+ and recalled that E eitε+

k = e−t2/2.

7



Then, noting that Π+(y/γ2) is a Poisson random variable of parameter
y/γ2 with moment generating function E etΠ+(y/γ2) = exp

(

y
γ2 (e

t − 1)
)

, we
get

ln ϕγ(t) =
y

γ2

(

e−
γ2

2
(it+t2) − 1

)

=
y

γ2

(

−
γ2

2
(it + t2) + o(γ2)

)

= −
y

2
(it + t2) + o(1) → −

y

2
(it + t2) = lnE eitN (−y/2, y)

as γ → 0, and so Lemma 2 is proved.

Now we turn to the proof of Lemma 4 (we will prove Lemma 3 just after).
For y > 0 we have

EX1/2
γ (y) = EE

(

e
γ
2

PΠ+(y/γ2)
k=1

ε+

k − γ2

4
Π+(y/γ2)

∣

∣

∣
FΠ+

)

= E e−
γ2

4
Π+(y/γ2)+ γ2

8
Π+(y/γ2) = E e−

γ2

8
Π+(y/γ2)

= exp

(

y

γ2

(

e−
γ2

8 − 1
)

)

.

The process Xγ being symmetric, we have

EX1/2
γ (y) = exp

(

|y|

γ2

(

e−
γ2

8 − 1
)

)

(7)

for all y ∈ R and, since

1

γ2

(

e−
γ2

8 − 1
)

=
1

γ2

(

−
γ2

8
+ o(γ2)

)

→ −
1

8

as γ → 0, for any c ∈ ] 0 , 1/8 [ we have EX
1/2
γ (y) 6 exp

(

−c |y|
)

for all
sufficiently small γ and all y ∈ R. Lemma 4 is proved.

Further we verify Lemma 3. We first consider the case y1, y2 ∈ R+ (say
y1 > y2). Using (7) and taking into account the stationarity and the inde-
pendence of the increments of the process ln Xγ on R+, we can write

E
∣

∣X1/2
γ (y1) − X1/2

γ (y2)
∣

∣

2
= EXγ(y1) + EXγ(y2) − 2EX1/2

γ (y1)X
1/2
γ (y2)

= 2 − 2EXγ(y2)E
X

1/2
γ (y1)

X
1/2
γ (y2)

= 2 − 2EX1/2
γ

(

|y1 − y2|
)

= 2 − 2 exp

(

|y1 − y2|

γ2

(

e−
γ2

8 − 1
)

)

6 −2
|y1 − y2|

γ2

(

e−
γ2

8 − 1
)

6
1

4
|y1 − y2| .
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The process Xγ being symmetric, we have the same result for the case
y1, y2 ∈ R−.

Finally, if y1y2 6 0 (say y2 6 0 6 y1), we have

E
∣

∣X1/2
γ (y1) − X1/2

γ (y2)
∣

∣

2
= 2 − 2EX1/2

γ (y1)EX1/2
γ (y2)

= 2 − 2 exp

(

|y1|

γ2

(

e−
γ2

8 − 1
)

+
|y2|

γ2

(

e−
γ2

8 − 1
)

)

= 2 − 2 exp

(

|y1 − y2|

γ2

(

e−
γ2

8 − 1
)

)

6
1

4
|y1 − y2| ,

and so, Lemma 3 is proved.

Now let us check Lemma 5. First let y1, y2 ∈ R+ (say y1 > y2) such that
∆ = |y1 − y2| < h. Then, noting that conditionally to FΠ+

the random
variable

ln Xγ(∆) = γ

Π+(∆/γ2)
∑

k=1

ε+
k −

γ2

2
Π+(∆/γ2)

is Gaussian with mean −γ2

2
Π+(∆/γ2) and variance γ2Π+(∆/γ2), we get

P
{

∣

∣ln Xγ(y1) − ln Xγ(y2)
∣

∣ > ε
}

6
1

ε2
E
∣

∣ln Xγ(y1) − ln Xγ(y2)
∣

∣

2

=
1

ε2
E
∣

∣ln Xγ(∆)
∣

∣

2

=
1

ε2
EE

(

(

ln Xγ(∆)
)2
∣

∣

∣
FΠ+

)

=
1

ε2
E

(

γ2Π+(∆/γ2) +
γ4

4

(

Π+(∆/γ2)
)2
)

=
1

ε2

(

∆ +
γ4

4

(

∆

γ2
+

∆2

γ4

)

)

=
1

ε2

(

(1 + γ2/4)∆ + ∆2/4
)

<
1

ε2

(

β(γ) h + h2/4
)

where β(γ) = 1 + γ2/4 → 1 as γ → 0. So, we have

lim
γ→0

sup
|y1−y2|<h

P
{

∣

∣ln Xγ(y1) − ln Xγ(y2)
∣

∣ > ε
}

6 lim
γ→0

1

ε2

(

β(γ) h + h2/4
)

=
1

ε2

(

h +
h2

4

)

,

9



and hence

lim
h→0

lim
γ→0

sup
|y1−y2|<h

P
{

∣

∣ln Xγ(y1) − ln Xγ(y2)
∣

∣ > ε
}

= 0,

where the supremum is taken only over y1, y2 ∈ R+.

The process Xγ being symmetric, we have the same conclusion with the
supremum taken over y1, y2 ∈ R−.

Finally, for y1y2 6 0 (say y2 6 0 6 y1) such that |y1 − y2| < h, using the
elementary inequality (a − b)2 6 2(a2 + b2) we get

P
{

∣

∣ln Xγ(y1) − ln Xγ(y2)
∣

∣ > ε
}

6
1

ε2
E
∣

∣ln Xγ(y1) − ln Xγ(y2)
∣

∣

2

6
2

ε2

(

E
∣

∣ln Xγ(y1)
∣

∣

2
+ E

∣

∣

∣ln Xγ

(

|y2|
)

∣

∣

∣

2
)

=
2

ε2

(

β(γ)y1 + y2
1/4 + β(γ) |y2| + |y2|

2 /4
)

<
2

ε2

(

β(γ)h + h2/4
)

,

which again yields the desired conclusion. Lemma 5 is proved.

It remains to verify Lemma 6. Taking into account the symmetry of
the process ln Xγ, as well as the stationarity and the independence of its
increments on R+, we obtain

P

{

sup
|y|>A

Xγ(y) > e−bA

}

6 2P

{

sup
y>A

Xγ(y) > e−bA

}

6 2 e bA/2 E sup
y>A

X1/2
γ (y)

= 2 e bA/2 EX1/2
γ (A) E sup

y>A

X
1/2
γ (y)

X
1/2
γ (A)

= 2 e bA/2 EX1/2
γ (A) E sup

z>0
X1/2

γ (z).

(8)

In order to estimate the last factor we write

E sup
z>0

X1/2
γ (z) = E exp





1

2
sup
z>0

(

γ

Π+(z/γ2)
∑

k=1

ε+
k −

γ2

2
Π+(z/γ2)

)





= E exp

(

1

2
sup
n>0

(

γ

n
∑

k=1

ε+
k −

nγ2

2

)

)

.
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Now, let us observe that the random process Sn =
∑n

k=1 ε+
k , n ∈ N, has the

same law as the restriction on N of a standard Brownian motion W . So,

E sup
z>0

X1/2
γ (z) = E exp

(

1

2
sup
n>0

(

γW (n) − nγ2/2
)

)

= E exp

(

1

2
sup
n>0

(

W (nγ2) − nγ2/2
)

)

6 E exp

(

1

2
sup
t>0

(

W (t) − t/2
)

)

= E exp

(

1

2
S0

)

with an evident notation. It is known that the random variable S0 is ex-
ponential of parameter 1

(

see, for example, Borodin and Salminen [1]
)

and
hence, using its moment generating function E etS0 = (1 − t)−1, we get

E sup
z>0

X1/2
γ (z) 6 2. (9)

Finally, taking b ∈ ] 0 , 1/12 [ we have 3b/2 ∈ ] 0 , 1/8 [ and, combining (8),
(9) and using Lemma 4, we finally obtain

P

{

sup
|y|>A

Xγ(y) > e−bA

}

6 4 e bA/2 exp
(

−
3b

2
A
)

= 4 e−bA

for all sufficiently small γ and all A > 0, which concludes the proof.

4 Final remarks

In conclusion let us mention, that a more general compound Poisson type
limiting likelihood ratio process Zγ,f appears in many change-point type sta-
tistical models

(

see, for example, Fujii [5]
)

. It is still the exponent of a
two-sided compound Poisson process, but the jumps of the latter are not
necessarily Gaussian. More precisely, it is given by

ln Zγ,f (x) =















∑Π+(x)
k=1 ln

f(ε+

k +γ)

f(ε+

k )
, if x > 0,

∑Π
−

(−x)
k=1 ln

f(ε−k −γ)

f(ε−k )
, if x 6 0,

where γ > 0, Π+ and Π− are two independent Poisson processes of intensity 1
on R+, and ε±k are independent random variables with density f , mean 0 and
variance 1 which are also independent of Π±. Our guess is that the results
of the present paper hold in this general situation under some regularity
conditions on f . All the proofs, except the one of Lemma 6, can be easily
adapted and we are currently working on the proof of that lemma.
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