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Abstract

Different change-point type models encountered in statistical in-
ference for stochastic processes give rise to different limiting likelihood
ratio processes. In a previous paper of one of the authors it was es-
tablished that one of these likelihood ratios, which is an exponential
functional of a two-sided Poisson process driven by some parameter,
can be approximated (for sufficiently small values of the parameter)
by another one, which is an exponential functional of a two-sided
Brownian motion. In this paper we consider yet another likelihood
ratio, which is the exponent of a two-sided compound Poisson process
driven by some parameter. We establish, that similarly to the Poisson
type one, the compound Poisson type likelihood ratio can be approx-
imated by the Brownian type one for sufficiently small values of the
parameter. We equally discuss the asymptotics for large values of the
parameter.
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1 Introduction

Different change-point type models encountered in statistical inference for
stochastic processes give rise to different limiting likelihood ratio processes.
In [3] a relation between two of these likelihood ratios was established by one
of the authors. More precisely, it was shown that the first one, which is an
exponential functional of a two-sided Poisson process driven by some param-
eter, can be approximated (for sufficiently small values of the parameter) by
the second one, defined by

Zo(x) = exp {W(m) - % |x|} . zcR, (1)

where W is a standard two-sided Brownian motion. In this paper we consider
another limiting likelihood ratio process arising in some change-point type
models.

We introduce the random process Z, on R as the exponent of a two-sided
compound Poisson process given by

Y e 2 (2),  ife >0,

In Z,(z) = L (2)
'yzkz‘l( 2) e, — LI _(—x), ifz<0,

where v > 0, I, and II_ are two independent Poisson processes of intensity 1
on Ry, 5,:5 are independent standard Gaussian random variables which are
also independent of 11, and we use the convention 22:1 slf = 0. We equally
introduce the random variables

¢ = Jp Zy () dx
T Zy(x) da

£ = inf{z : Zy(z) = sup Z»Y(QZ)},

zeR
&= sup{z : Zy(z) = sup Zy(x)},
z€eR
53:055;—’_(1_04) 'j> 046[0,1],
related to this process, as well as their second moments B, = E(g and

_ 2
Mg = E(£5)*
The process Z,, up to a linear time change, arises (see, for example,

Chan and Kutoyants [2]) in some non-regular, namely change-point type,
statistical models as the limiting likelihood ratio process, and the variables



¢y and £ as the limiting distributions of the Bayesian estimators and of the
appropriately chosen maximum likelihood estimator respectively. Here the
maximum likelihood estimator is not unique, and the appropriate choice is
a linear combination with weights a and 1 — « of its minimal and maxi-
mal values. In particular, B, and M} are the limiting variances of these
estimators, and the Bayesian estimators being asymptotically efficient, the
ratio B = B, /MY is the asymptotic efficiency of this maximum likelihood
estimator.

On the other hand, many change-point type statistical models encoun-
tered in various fields of statistical inference for stochastic processes rather
have as limiting likelihood ratio process, up to a linear time change, the pro-
cess Zy. In this case, the limiting distributions of the Bayesian estimators
and of the maximum likelihood estimator are given by

_ erlo@ §o = argsup Zo() (4)

Co = Ji Zo(z) da 2eR

respectively, and the limiting variances of these estimators are By = E(?
and My = E&.

A well-known example is the model of a discontinuous signal in a white
Gaussian noise exhaustively studied by Ibragimov and Khasminskii in [10,
Chapter 7.2] (See also their previous work [9]), but one can also cite change-
point type models of dynamical systems with small noise (see Kutoyants [12]
and [13, Chapter 5]), those of ergodic diffusion processes (see Kutoyants [14,
Chapter 3]), a change-point type model of delay equations (see Kiichler and
Kutoyants [11]), an i.i.d. change-point type model (see Deshayes and Pi-
card [4]), a model of a discontinuous periodic signal in a time inhomogeneous
diffusion (see Hopfner and Kutoyants [8]), and so on.

Let us also note that Terent’yev in [16] determined explicitly the distri-
bution of &, and calculated the constant My = 26. These results were taken
up by Ibragimov and Khasminskii in [10, Chapter 7.3], where by means
of numerical simulation they equally showed that By = 19.5 + 0.5, and so
Ey = 0.73 £ 0.03. Later in [7], Golubev expressed By in terms of the sec-
ond derivative (with respect to a parameter) of an improper integral of a
composite function of modified Hankel and Bessel functions. Finally in [15],
Rubin and Song obtained the exact values By = 16 ((3) and Ey = 8((3)/13,
where ¢ is Riemann’s zeta function defined by ((s) =" >°, 1/n".

In this paper we establish that the limiting likelihood ratio processes Z,
and Z, are related. More precisely, we show that as v — 0, the process
Z(y/¥%), y € R, converges weakly in the space Dy(—o0, +00) (the Skorohod
space of functions on R without discontinuities of the second kind and van-



ishing at infinity) to the process Zy. So, the random variables 4*(, and 7*£7
converge weakly to the random variables (y and &, respectively. We show
equally that the convergence of moments of these random variables holds,
that is, B, — 16¢(3), v* M — 26 and ES — 8((3)/13.

These are the main results of the present paper, and they are presented
in Section 2, where we also briefly discuss the second possible asymptotics
v — +400. The necessary lemmas are proved in Section 3 and, finally, in
Section 4 we discuss some directions for future development.

2 Asymptotics of the limiting likelihood ra-
tio

Consider the process X, (y) = Z,(y/+*), y € R, where v > 0 and Z, is
defined by (2). Note that

X, (y) d
_f;y D

inf{z c X, (2 )—supX (y )}
and

sup{z : X, (z) =sup Xv(y)} = 725;“,

yER

where the random variables ¢, and fﬁf are defined by (3). Remind also the
process Zp on R defined by (1) and the random variables (; and &, defined
by (4). Recall finally the quantities B, = E¢2, MY = E(§9)%, ES = B, /MY,

=E¢ =16((3), My = E& = 26 and Eq = By/My = 8¢(3)/13. Now we

can state the main result of the present paper.

Theorem 1 The process X, converges weakly in the space Dy(—o00,+00) to
the process Zy as v — 0. In particular, the random variable v, converge
weakly to the random variable (o and, for any « € [0, 1], the random variable
7253‘ converge weakly to the random variable & . Moreover, for any k > 0 we
have

FECE — B¢ and 4 EB(E)" — B,

and in particular v*B,, — 16{(3), v*M$ — 26 and ES — 8¢(3)/13.



The results concerning the random variable ¢, are direct consequence
of Ibragimov and Khasminskii [10, Theorem 1.10.2] and the following three
lemmas.

Lemma 2 The finite-dimensional distributions of the process X, converge
to those of Zy as v — 0.

Lemma 3 For all v > 0 and all y1,y2 € R we have

E \Xi/z(yl) - Xym(yz)

> <ty —pl.
4

Lemma 4 For any ¢ €]0, 1/8[ we have
EX]/(y) < exp(—cyl)

for all sufficiently small v and all y € R.

Note that these lemmas are not sufficient to establish the weak conver-
gence of the process X, in the space Dy(—00, +00) and the results concerning
the random variable £$. However, the increments of the process In X, being
independent, the convergence of its restrictions (and hence of those of X,)
on finite intervals [A, B] C R (that is, convergence in the Skorohod space
D[A, B] of functions on [A, B] without discontinuities of the second kind)
follows from Gihman and Skorohod [6, Theorem 6.5.5], Lemma 2 and the
following lemma.

Lemma 5 For any € > 0 we have

lim lim  sup P{HnX,Y(yl) —In X, ()] > g} — 0.

h=0 =01y —yo|<h

Now, Theorem 1 follows from the following estimate on the tails of the
process X, by standard argument (see, for example, Ibragimov and Khas-
minskii [10]).

Lemma 6 For any b €]0,1/12] we have

P{ sup X, (y) > e_bA} <de
ly|>A

for all sufficiently small v and all A > 0.



All the above lemmas will be proved in the next section, but before let
us discuss the second possible asymptotics v — +00. One can show that
in this case, the process Z, converges weakly in the space Dy(—o0, +00) to
the process Zo () = 1{_y<z<r}, © € R, where n and 7 are two independent
exponential random variables with parameter 1. So, the random variables
Gy & fj and & converge weakly to the random variables

¢ :f[R:EZOO(x)dx T—n

Jg Zoo(x)dz 2
€L = inf{z . Zoo(z) = sup Zoo(x)} =—n,

zeR

&= sup{z . Zoo(2) = sup Zoo(w)} _

z€R
and
e=abet(l-a){l=>1-a)T—an
respectively. One can equally show that, moreover, for any k£ > 0 we have
ECY — EQ, and B(&)" — B(EL)",

and in particular, denoting By, = EC2, M2 = E(£2)? and E2 = B,,/M2,
we finally have

—m2 1
B’Y_>BOO:E<T 77) )
2 2
2 1\* 1
MS — M =E((1—a)T —an) :6<a—§> +3 (5)
and
B, — E° ! (6)
— = .
T 12(a=1)2+1

Let us note that these convergences are natural, since the process Z,, can
be considered as a particular case of the process Z, with v = 400 if one
admits the convention +o0o0 -0 = 0.

Note also, that the process Z,, is the limiting likelihood ratio process
in the problem of estimating the parameter 6 by i.i.d. uniform observations
on [0,0 + 1]. So, in this problem, the variables (., and 2 are the limit-
ing distributions of the Bayesian estimators and of the maximum likelihood
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estimator respectively, B,, and M are the limiting variances of these es-
timators and, the Bayesian estimators being asymptotically efficient, £ is
the asymptotic efficiency of the maximum likelihood estimator.

Finally observe, that the formulae (5) and (6) clearly imply that in the
latter problem (as well as in any problem having Z,, as limiting likelihood
ratio) the best choice of the maximum likelihood estimator is v = 1/2, and
that the so chosen maximum likelihood estimator is asymptotically efficient.
This choice was also suggested in Kutoyants [2] for problems having Z., as
limiting likelihood ratio. For large values of v this suggestion is confirmed
by our asymptotic results. However, we see that for small values of + the
choice of a will not be so important, since all the limits in Theorem 1 do not
depend on a.

3 Proofs of the lemmas

First we prove Lemma 2. Note that the restrictions of the process In X, (as
well as those of the process In Zy) on R, and on R_ are mutually independent
processes with stationary and independent increments. So, to obtain the
convergence of all the finite-dimensional distributions, it is sufficient to show
the convergence of one-dimensional distributions only, that is,

In X, (y) = InZy(y) = W(y) — % = N(—%, |y|>

for all y € R. Moreover, these processes being symmetric, it is sufficient
to consider y € R, only. Here and in the sequel “=" denotes the weak
convergence of the random variables, and A (m, V') denotes a “generic” ran-
dom variable distributed according to the normal law with mean m and
variance V.

The characteristic function ¢, (t) of In X, (y) is

o, (t) = B0 — B ity S ) e 2, (02

_EE (em SO0 et R L (/) ’ gn+>

4 (y/7?)
_ E( H+ (y/7%) H E ezt'yek>

—it LT (/%) - L2 T (y/4?) — 2 ()T (y/4?)
:EQZQ +y/ 2 +\y/y :Ee 5 (2 +(y/~v

where we have denoted Zy1, the o-algebra related to the Poisson process 11,
used the independence of ¢ and I1; and recalled that E eitel = /2,
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Then, noting that T, (y/v?) is a Poisson random variable of parameter
y/~4? with moment generating function E eM+®/7*) — exp( (e = 1)), w
get

2

_ Y *L(Wrﬁ) _ Y[ 0 2 2

1n<p,y(t)—72<e 3 1) m < 2(zt+t)+0(7 ))
_Q(
2

as v — 0, and so Lemma 2 is proved.

it +12) + o(1) — —Z(it +t?) = InE V(2

Now we turn to the proof of Lemma 4 (we will prove Lemma 3 just after).
For y > 0 we have

i 2 2
+ 07 2211, (g2

EX!2(y) = EE (e% s

_ E€*§H+(y/72)+§n+(y/72) _ E67§H+(y/72)

(37 -9)

The process X, being symmetric, we have

EX/2(y) = ex p(g’( % —1)> (7)

for all y € R and, since
1/ .2 1 72 9 1
(1) = (g elh) = =

as v — 0, for any ¢ € |0, 1/8] we have EXi/z(y) < exp(—cly]) for all
sufficiently small v and all y € R. Lemma 4 is proved.

Further we verify Lemma 3. We first consider the case y;,y2 € Ry (say
y1 = y2). Using (7) and taking into account the stationarity and the inde-
pendence of the increments of the process In X, on R, we can write

E|X2(y1) — X}2(3)|” = EX, (1) + EX, (32) — 2EX2(51) X2 (3)

= 2= 2BX,(3) B 35 ”1/2(1/ )
3 (e)
)

=2 2EX1/2(\y1 - y2|

2
= 2—2€XP(M<6_78 — 1))
v

2

1 — el f 2 1
<—QT(€ 8 —1> gz‘?/l—yﬂ-



The process X, being symmetric, we have the same result for the case
Y1, Y2 eR_.
Finally, if y1y2 < 0 (say y2 < 0 < 1), we have

2
E [X)2(n) = X)(e)]” = 2 = 2BX)(31) EX (1)
2 2
=2 26Xp<@(678 — 1) + ’y—z|(evs — 1)>
v Y
=2 - 2exp<—|y1 —2y2| (eﬂ? — 1))
Y

<l -l
X 4 U1 Y2\,
and so, Lemma 3 is proved.
Now let us check Lemma 5. First let y1, 0 € Ry (say y; = yo) such that

A = |y —y2| < h. Then, noting that conditionally to #y, the random
variable

I (A/y?) 72
mX,(A)=v > g - ?m(A/ﬂ
k=1

is Gaussian with mean —§H+(A/7g) and variance 211, (A/4?), we get
1
P{|In X, (31) — In X, (32)] > £ f < 5 B[l X, () — n X, (32)

1
= 5B, 8)f

= é EE ((InX,(4))

2

%ﬁ
_ éE (72H+(A/fy2) + VZZL(FM(A/’P))Q)

1 YA A2

— ALl (22
€2< T <72+ 74>>

1

b (1 +~%/4)A + A?/4)
1
< g(ﬁ(v)h—i—fﬂ/él)

where 3(7) =1+ 7%/4 — 1 as v — 0. So, we have

1
lim  sup P{’ln Xy (1) — In X, (y2)| > 6} < }Y% = (B(v) h+ h?/4)

=0 ly1—y2|<h
1 h?
= — | h+ —
g2 ( + 4 ) ’



and hence

lim lim  sup P{|lnX7(y1) —In X, (y)| > 5} =0,
=0 720y —ya|<h

where the supremum is taken only over y;, vy € R,.

The process X, being symmetric, we have the same conclusion with the
supremum taken over yi,ys € R_.

Finally, for 1190 < 0 (say yo < 0 < y1) such that |y; — y2| < h, using the
elementary inequality (a — b)? < 2(a” + b?) we get

P{|lnXV(y1) —In X, (y2)| > g} < &%EHnXW(yl) — 1HX7(Z/2)‘2

2 2
< E(E‘lan(yl)f + E’lan(|y2D‘ )

- %(Wv)yl + i /A4 B(Y) lyel + [yol® /4)

2
< ;(ﬁ(v)h + h2/4)7
which again yields the desired conclusion. Lemma 5 is proved.

It remains to verify Lemma 6. Taking into account the symmetry of
the process In X, as well as the stationarity and the independence of its
increments on R, , we obtain

P{ sup X,(y) > e_bA} < 2P{supX7(y) > e_bA}
ly[>A y>A
<2472 EsupX,iﬂ(y)
y>A

(8)
X1/2
= 20472 EXi/z(A) E sup —3/2 W)

y>A X537 (A)
=2e"? EX]/(A) Esup X)/%(2).

2>0

In order to estimate the last factor we write

1 I (2/+%) 2
Esuprl/Q(,z) =E exp 5 Sup (fy Z ef — ?HJr(z/,yQ))

z>0 z>0



Now, let us observe that the random process S, = >_;_ &/, n € N, has the
same law as the restriction on N of a standard Brownian motion W. So,

E sup le/z(z) =E exp (1 sup (YW (n) — n72/2))

z>0 2 n>0
1
=E exp (— sup (W (nvy?) — n'yQ/Q))
2 n>0
1 1
< E exp (— sup (W (t) — t/Z)) = E exp (— SO>
2 >0 2
with an evident notation. It is known that the random variable Sy is ex-
ponential of parameter 1 (See, for example, Borodin and Salminen [1]) and
hence, using its moment generating function E e = (1 — )71 we get
Esuval/z(z) < 2. 9)
z>0
Finally, taking b € |0, 1/12 [ we have 3b/2 € ] 0, 1/8 [ and, combining (8),
(9) and using Lemma 4, we finally obtain

3b
P{ sup X, (y) > e_bA} < 4eb4/? exp(—gA) =404

ly[>A

for all sufficiently small v and all A > 0, which concludes the proof.

4 Final remarks

In conclusion let us mention, that a more general compound Poisson type
limiting likelihood ratio process Z, ; appears in many change-point type sta-
tistical models (see, for example, Fujii [5]) It is still the exponent of a
two-sided compound Poisson process, but the jumps of the latter are not
necessarily Gaussian. More precisely, it is given by

x f( ) 1
1 ( ) k-&-l()ln;(ka)’ 1fx207
nZz xTr) = - 0

k=1 fleg) 7

where v > 0, I, and II_ are two independent Poisson processes of intensity 1
on R, and gf are independent random variables with density f, mean 0 and
variance 1 which are also independent of II.. Our guess is that the results
of the present paper hold in this general situation under some regularity
conditions on f. All the proofs, except the one of Lemma 6, can be easily
adapted and we are currently working on the proof of that lemma.
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