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On the Relationship between Cross-Sectional and Time Series
Measures of Uncertainty

Abstract. In this paper, we provide a coherent theoretical investigation
of the relationship between cross-section and time series measures of uncer-

tainty, which are often employed as perfect substitutes in empirical applica-

tions. The main �nding of our analysis is that there exists an ambiguous sign

in the discrepancy between the two measures of uncertainty arising from the

presence of cross-sectional dependence amongst individuals. Thus our study

underpins the importance of accounting for cross-sectional dependence, in

line with recent inferential theory of panel data models.

J.E.L. Classi�cation Numbers: C21, C22.
Keywords: Cross-section and Time series, Expectations, Uncertainty, GARCH
Models.

2



1 Introduction

There are at least two sets of literature on the economics of uncertainty. The

�rst is concerned with the e¤ect of uncertainty on economic activity, primar-

ily investment. The empirical component of this enquiry now dominates over

theoretical work and is now large enough to have spawned at least two meta

studies (Carruth et al 2000, Koetse et al 2006). Parallel with this is a smaller

literature which focuses on the de�nition, measurement and interpretation

of uncertainty and which addresses both theoretically and empirically the

relationship between distinct measures of uncertainty (Giordani and Soder-

lind 2003). While the second theoretical literature ought to guide the more

empirically oriented applications of the �rst set, that is often not the case in

recent published work. Indeed it is common for authors to choose measures

of uncertainty without much reference to their construction or interpretation.

Particularly, two main measures of uncertainty are customarily employed in

the literature (see e.g. Engle, 1983). A �rst class of measures assesses the de-

gree of uncertainty in a series by using the time series properties of the series

itself (e.g. volatility). The second class considers the extent of disagreement

among di¤erent predictions for a series as a measure of the uncertainty of

the series.

The lack of correlation between di¤erent measures of uncertainty has been

noted in several studies (Batchelor and Dua, 1993; Lahiri and Liu, 2006). To

underscore the importance of distinguishing between time-series estimates of

uncertainty and cross-section estimates we report simple comparison of the

two measures using data for the UK retail price index (RPI), 4th quarter. Our

cross-section measure is the standard deviation of forecast for the 4th quarter

RPI 1986-97 across the six main private non-�nancial sector forecasting teams

in the UK, where the forecasts are made in the 4th quarter itself. The

time-series measure is the conditional standard deviation constructed from

a GARCH analysis on the RPI1. Using these data one obtains the scatter

1We use GARCH (1,1) models for the actual RPI series from Datastream (code
UKOCP074F). The data for the cross-section analysis is taken from HM Treasury Eco-
nomic Prospects Team publications: �HM Treasury forecasts for the UK economy: a
comparison of independent forecasts�, various issues. The organisations involved are: The
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Time-Series Vs Cross-Section Uncertainty for 4th Quarter RPI
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shown in Figure 1 where the simple correlation measure is 0.31 as compared

to a one-tailed 5% signi�cance critical value of 0.50 for 12 data points.

A variant of this analysis is shown in Figure 2 where the forecasts of 4th

quarter RPI are made in the 3rd quarter of the year for the sample 1987-1998.

Again the correlation is insigni�cant, though this time somewhat higher at

0.467.

This limited analysis proves that the two classes of measures of uncer-

tainty do not have the same information content; therefore, caution should

be used when employing either measure of uncertainty.

From an econometrician�s perspective, the uncertainty measures that are

commonly employed result from the cross-sectional aggregation of a panel of

individual forecasters. The cross sectional properties of a panel data are well

known to be heavily dependent on the assumption one makes on the presence

of contemporaneous correlation among the individuals. The early literature

(Engle, 1983) has based its analysis on the crucial assumption of absence of

any form of correlation among the individual forecasters, thereby deriving

National Institute of Economic and Social Research, The London Business School, The
Henley Centre, Liverpool University, The Confederation of British Industry, and Oxford
University (OEF). Two of these organisations ceased to forecast at the end of the period,
while the data commences in the last quarter of 1986 which is why the data series in Figure
1a and Figure 1b are con�ned to the periods shown.
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measures of uncertainty that did not take account of possible interactions or

common features/knowledge. It is well known that such assumption has a

heavy in�uence on the results of cross-sectional aggregation, and attention

should be paid as to the consequences of neglecting non negligible contem-

poraneous correlation. In our contribution, we address the issue of the rela-

tionship between di¤erent measures of uncertainty relaxing this assumption

of no cross-sectional correlation. We prove that the impact of the presence

of interactions among individuals is non trivial and potentially reverses some

existing results.

This paper examines the theoretical relationship between time series and

cross-section measures of uncertainty which is one of the basic distinctions

in the metrics commonly employed. We use conditional variance to express

time series uncertainty and we use dispersion across agents to re�ect cross-

section uncertainty. In Section 2 we show that is possible to express a formal

relationship between our two chosen measures and we detail on how the

relationship depends on di¤erent assumptions.

Our framework follows that of Engle (1983), where an outcome variable

yt is assumed to have a DGP determined by presently available information

and error terms, some of which may re�ect privately held information. We

de�ne time series uncertainty as the expectation of yt conditional on the com-
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mon information set. Without private information, this uncertainty may be

constant for a stationary process but time variation is created when private

information also has a time dimension. We de�ne cross section uncertainty as

the dispersion of (rational) forecasts of yt about the mean for any given time

period. With a large number of forecasting agents (n) the time series un-

certainty is approximately equal to the sum of cross section uncertainty and

a term that re�ects the volatility of the outcome around the time-averaged

mean (Cukierman and Wachtel, 1979)2

Thus, a possible representation for yt - as in Engle (1983) - is

yt = �yt�1 + �t +
nX
i=1

�it"it; (1)

where the random noise �t satis�es the usual assumptions, the random terms

"it are assumed to be iid across i and t with variance �2it. Therefore the above

model assumes no cross sectional dependence across individual agents.

The most important contribution of this paper (reported in Section 2) is to

show that the relaxation of this assumption of independence undermines the

well known result in the literature that the variance of the time series forecast

error must exceed the variance of cross-section forecasts. In section 3 we

discuss the consequences of cross-sectional dependence on serial correlation

in the time series that represent uncertainty over time. Section 4 concludes.

2 Cross-section and time series measures of

uncertainty

Private information creates dispersion across agents; hence, the conditional

variance can be viewed as the sum of dispersion and volatility about the

time-averaged mean (Engle, 1983).

2Strictly speaking this is true only for in�nite n. For �nite n this relationship is modi�ed
by the fact that the private information a¤ects both the time series and cross-section
slightly di¤erently. It remains the case however that the time-series measure exceeds the
cross-section one since it contains information about common time vaiation.

6



Consider the variable yt whose data generating process (DGP) is:

yt = � (It�1) + vt; (2)

where � (It�1) is a transformation of the information set available at time t

and vt an error term. Let us assume that vt can be decomposed into two

non separable components �t and �
0
t"t(=

Pn
i=1 �it"it), with �t representing

the standard error term and "t � ["1t; :::; "nt]0 an additional random compo-

nent capturing private information across the n units with the corresponding

vector of weights �t � [�1t; :::; �nt]0, i.e.

yt = � (It�1) + �t + �
0
t"t (3)

The following assumptions hold on the error term �t + �
0
t"t:

Assumption 1: (time dependence) �t and "t are two mutually indepen-
dent, zero mean, covariance stationary processes with V ar (�t) = �2� and

V ar ("it) = 1 for all i.

Assumption 2: the �its are nonstochastic quantities that satisfy the square
summability condition �0t�t =

Pn
i=1 �

2
it = O (1) as n!1 for all t.

Assumption 3: (cross sectional dependence) E ("t"0t) = 
.

Assumptions 1-3 are an extension of Engle�s (1983) model. The condition

V ar ("it) = 1, as in Engle (1983), is simply a normalization rule. Assumption

2 allows the ��s to be time dependent. The square summability condition

prevents the variance of the error term in regression (3) from exploding as the

number of individuals grows; a similar assumption is contained in Pesaran

and Weale (2005). Assumption 3 considers the presence of contemporaneous

correlation, and therefore it takes account of the possibility of interactions

among agents, unlike Engle (1983) where cross sectional dependence among

individuals was ruled out. The special case when E ("t"0t) = In is restrictive

and is explored separately.

In what follows, we refer to the element in position (i; j) in matrix 
 as

!ij; moreover, we employ the following decomposition of 
, 
 = In + 

�,

where 
� contains the o¤-diagonal terms of matrix 
.
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2.1 Time series and cross-section measures of uncer-

tainty

The terms in equation (3) contain two alternative measures of uncertainty.

The �rst class is a time series measure, where uncertainty is de�ned as the

squared di¤erence/GARCH variance between the actual value of the aggre-

gate yt and its expected value conditional on past information. The second

is a cross-sectional measure, where uncertainty is based on the dispersion of

individual expectation or forecasts in surveys.

Consider the time series measure. From (3), the variance of yt conditional

on past information It�1 is V ar [ytjIt�1] = �2� + �
0
t
�t. Each individual

forecaster with inside information has conditional expectation yit and forecast

error "it given respectively by

E [ytjyt�1; "it] � yit = � (It�1) + �it"it

"it = yt � yit; (4)

and the mean square error (MSE) for any forecaster i is given by

E
�
"it
�2
= �2� +

X
k 6=i

X
j 6=i

�kt�jt!ij:

Following Engle (1983), the average MSE is equal to:

1

n

nX
i=1

E
�
"it
�2
= �2� +

n� 1
n

�0t�t +
n� 2
n

�0t

��t: (5)

Equation (5) is an assessment of the average accuracy of the individuals�

forecast, and not a cross-sectional measure of dispersion/disagreement among

individuals (see also Pesaran and Weale, 2005). Equation (5) approaches

V ar (ytjIt�1) either when n!1, or when the amount of private information
�i is small for all individuals.

A useful decomposition for the MSE follows:

Proposition 1 Letting �yt = 1
n

Pn
i=1 y

i
t, the average MSE can also be de-
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composed as:

1

n

nX
i=1

E
�
"it
�2
=
1

n

nX
i=1

E
h�
yit � �yt

�2i
+ E

�
(yt � �yt)2

�
: (6)

Proof. See Appendix.
Equation (6) shows that the average MSE can be decomposed into two

(positive) quantities: E
�
(yt � �yt)2

�
, which takes account of the expected,

average forecast error, and the term
Pn

i=1E
h
(yit � �yt)

2
i
, which measures the

extent of disagreement among individuals. Therefore, the average MSE and

cross sectional dispersion are ordered, with the former always greater than

the latter.

In the Appendix, we also derive the two ancillary results, that will be

used below:
nX
i=1

E
h�
yit � �yt

�2i
=
n� 1
n

�0t�t �
1

n
�0t


��t; (7)

E
�
(yt � �yt)2

�
= �2� +

�
n� 1
n

�2
�0t
�t: (8)

Equation (7) indicates that when the amount of private information �t grows

large, the degree of dispersion
Pn

i=1E (y
i
t � �yt)

2 increases as well. Notice

that �2� does not have an impact on the dispersion across individuals, due to

common uncertainty about the future.

V ar (ytjIt�1) represents the time series measure of uncertainty (TSt hence-
forth).

Pn
i=1E (y

i
t � �yt)

2 is a measure of the dispersion of forecasts across

individuals, and therefore it can be viewed as a cross-sectional measure of

uncertainty (CSt henceforth)3.

2.2 Cross-sectional dependence

In this section we study the relationship between these two measures when

we assume the presence of cross sectional dependence. The following theorem

characterizes the relationship between the two quantities:

3Note that this cross sectional measure of uncertainty is the same as proposed in Pe-
saran and Weale (2005), apart from the term 1=n.
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Theorem 1 The relationship between TSt and CSt is given, for each t, by

TSt =
n

n� 1CSt + �
2
� +

n

n� 1�
0
t


��t: (9)

Proof. See Appendix.

Equation (9) states that there is a static, deterministic relationship that

links the level of time series uncertainty and the degree of dispersion among

individuals uniformly across time.

The discrepancy between TSt and CSt has ambiguous magnitude and

sign. In particular, the di¤erence between the two measures can be written

as

�mt � TSt � CSt =
1

n� 1CSt + �
2
� +

n

n� 1�
0
t


��t =

= �2� + �
0
t

�
1

n

 + 
�

�
�t:

This is a very useful result in understanding the discrepancy between the

measures of uncertainty. �mt depends on four terms: the variance of the

unobservable component �t (�
2
�), the number of individuals n, the amount of

private information �t (
) and the degree of interaction among agents (
�).

The presence of �2� leaves no ambiguity but that �mt increases with �2� since

TSt explicitly takes account of the �common�uncertainty �2�, whereas CSt
is only sensitive to individual speci�c components and therefore fails to take

account of �2�. On the other hand, the impact of the other three components

is less clear, mainly because the matrix n�1
 + 
� (and therefore of the

quadratic form �0t [n
�1
 + 
�]�t) is non (positive/negative) de�nite. To see

this, let us assume that matrix 
 has at least two distinct eigenvalues (�i)4,

it can be showed that the i-th eigenvalue of n�1
 + 
� is

'i =
n+ 1

n
�i � 1:

4This condition is a very general one, in that the only case when a correlation matrix
has non distinct eigenvalues (all equal to 1) is when the o¤ diagonal terms are all equal to
zero, which corresponds to the case of independent agents.
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Since the largest eigenvalue of 
, say �max, is �max > 1, we have that 'max >

0. As far as other eigenvalues are concerned, it is possible that 'i < 0 for some

i. This always happens if n!1. In this case the trace of matrix n�1
+
�

is equal to 1 and on average the eigenvalues are equal to zero. Therefore,

given that 'max > 0, there must be at least one negative eigenvalue In the

light of these considerations, �0t [n
�1
 + 
�]�t can have positive or negative

sign, and in the latter case it can o¤set the term �2�. Thus �mt can be

positive or negative sign.

Note that our �ndings in respect to the discrepancy between TSt and CSt
does not hold if we assume that there is no interaction among agents, as in

Engle (1983). In such case, equation (9) reduces to

TSt =
n

n� 1CSt + �
2
�;

and therefore we would have TSt > CSt.5 6

It could be argued that forecasts tend to be more similar when the ob-

jective uncertainty (say, measured by the common �2�) is high. This would

entail a herding behaviour since agents would tend to rely less and less upon

their private information when the amount of uncertainty is very high. A

5In this case, the discrepancy between the two measures is

�mt � TSt � CSt =
1

n� 1CSt + �
2
� =

1

n

nX
i=1

�2it + �
2
�:

�mt depends now on three terms: �2�, n and the �its. �mt increases as �2� and the
amount of private information increase (ceteris paribus), whilst the number of individuals
di¤ers substantially depending on whether n is �nite or in�nite. As n ! 1, from the
square summability condition for the �it, it follows that �mt = �

2
�.

6Ambiguity arises for �nite n. Suppose n increases to n+1, with the new contribution
of an agent whose amount of private information is �n+1;t. Then the di¤erence between
the level of discrepancy with n + 1 individuals, referred to as �m(n+1)

t , and that with n
agents, �m(n)

t , is equal to

�m
(n+1)
t ��m(n)

t =
1

n+ 1

 
nX
i=1

�2it + �
2
n+1;t

!
+ �2� �

1

n

nX
i=1

�2it + �
2
� =

=
1

n+ 1

"
�2n+1;t �

1

n

nX
i=1

�2it

#
;
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possible (simple) way of modelling herding is making the alphas dependent

on �2� as �i = 1=�
2
�. This would result in

CSt =
n� 1
�2�

� 1

n

i0
�i

�2�
:

Thus, as �2� !1 we have CSt = 0 - which is the main consequence of herd-

ing, namely there not being any discrepancy among individuals. However,

as �2� !1
�mt � �2�;

which is not zero, but in�nity. Thus, high uncertainty that results in herd-

ing does not reduce the discrepancy between TSt and CSt, but contrary to

intuition it enhances it

The discrepancy between cross sectional and time series measures of un-

certainty is even more relevant when we consider the presence of another

common term (xt). In this case the speci�cation for the DGP of yt is

yt = � (It�1) + xt +
nX
i=1

�it"it + �t; (10)

where with respect to (2) we add xt as a random variable with variance

�2x, representing common information available to all agents (but not to the

econometrician). The conditional variance of yt is now given by V ar [ytjIt�1] =
�2x + �

2
� + �

0
t
�t. Also, each individual i forecasts the level of yt employing

both common information yt�1 and xt and private information "it, obtaining

E [ytjyt�1; xt; "it] � yit = � (It�1) + xt + �it"it

with forecast error "it given as in (4). Similar calculations as before show that

E
�
"it
�2
= �2� + �

2
x +

X
k 6=i

X
j 6=i

�kt�jt!ij;
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1

n

nX
i=1

E
�
"it
�2
= �2� + �

2
x +

n� 1
n

�0t�t +
n� 2
n

�0t

��t:

The following Proposition characterizes the discrepancy between TSt and

CSt in this case:

Proposition 2 Let yt be generated by model (10). Then the relationship
between TSt and CSt is given, for each t, by

TSt =
n

n� 1CSt + �
2
� + �

2
x +

n

n� 1�
0
t


��t: (11)

Proof. See Appendix.
Equation (11) leads to the same conclusions as Theorem 1. The discrep-

ancy between TSt and CSt is a¤ected by the same terms as before, plus the

extra term �2x which only increases further the di¤erence between the two

measures of uncertainty. The term �2x is common to all individuals and thus

enters the conditional variance V ar [ytjIt�1] but it does not enter into the
de�nition for CSt. It is interesting to note that in this case the discrepancy

between the two measures TSt and CSt increases because of the increase of

the terms that are common among individuals, irrespective of whether they

refer to common ignorance (�t) or common knowledge (xt).

3 Serial and contemporaneous dependence in

TSt and CSt

In Section 2 we derived a static relationship between time series uncertainty

and cross-section uncertainty and we showed that the magnitude of the dis-

crepancy cannot be ordered unless we assume cross-sectional independence.

In this section, we expand our framework to the case of the presence of serial

dependence in TSt and, as a consequence, in CSt. We prove that the pres-

ence of serial correlation is a consequence of the presence of cross-sectional

dependence in the data.

The existence of autocorrelation in the time evolution of TSt and CSt
is likely to play a pivotal role whenever designing any empirical application.

13



This is because normally one would have time series data for TSt and CSt,

and any analysis to �nd a relationship between the two measures would

involve �nding a correctly speci�ed model.

Here, we propose a uni�ed framework that provides a theoretical justi�-

cation for both dependence across individuals and serial correlation, based

on the consideration that individuals may have an adaptive rule to update

their predictions on the variable yt, whether this be in a weighted average

with rational forecasts or not. This is on a di¤erent note with respect to

Section 2, where forecasts where assumed to be rational, but it allows for a

simple and concise discussion. Consider a set of n individuals with adaptive

forecasts for the process fytg1t=0. For the purpose of a concise discussion, as-
sume that yt is an iid process with E (yt) = 0 and E (y2t ) = �

2. With respect

to equation (1), this entails that � = 0. In an adaptive forecast framework,

the i-th individual�s prediction ŷit is given by

ŷit = yt�1 + 
i
�
ŷit�1 � yt�1

�
;

where 
i is the single individual�s weighting of the previous prediction error.

Note that 
i
�
ŷit�1 � yt�1

�
represents the ith individual�s private information,

since it depends on ŷit�1 (the individual�s own prediction) weighted according

to the individual�s perception. The forecast error here is

"̂it = yt � ŷit;

and it holds that

"̂it = yt � yt�1 � 
i
�
ŷit�1 � yt�1

�
: (12)

Thus, the prediction errors "̂it are correlated with each other due to the pres-

ence of the "common factors" yt and yt�1. From equation (12), it can be

shown that the presence of an adaptive forecasting rule can induce simulta-

neously:

� cross-correlation, i.e. E
�
"̂it"̂

j
t

�
6= 0 for two di¤erent individuals i and j;

� autocorrelation, i.e. E
�
"̂it"̂

i
t�h
�
6= 0 for any lag h.

14



To show this, note �rst that after some algebra

"̂it = (1 + 
i)

1X
k=1

(�1)k 
k�1i yt�k � yt;

where, since the yts are iid zero mean it also holds that

V ar
�
"̂it
�
= E

h�
"̂it
�2i

= (1 + 
i)
2
1X
k=1



2(k�1)
i �2 + �2

= �2
(1 + 
i)

2

1� 
2i
+ �2

=
2�2

1� 
i
:

Note that, as far as cross-dependence is concerned, we have:

Cov
�
"̂it; "̂

j
t

�
= E

�
"̂it"̂

j
t

�
= �2 + �2 (1 + 
i)

�
1 + 
j

� 1X
k=1


k�1i 
k�1j

= �2
�
1 + 
i + 
j + 
j
i

�

j
i + 1� 
i
j

1� 
i
j
6= 0:

Also, as far as autocorrelation is concerned:

Cov
�
"̂it; "̂

i
t�h
�
= E

�
"̂it"̂

i
t�h
�

= �2 (1 + 
i)
2
1X
k=1

(�1)2k+h 
k�1+k+h�1i � �2 (�1)h (1 + 
i) 
h�1i

= �2
h�1i (1 + 
i) (�1)
h 2
i � 1
1� 
i

;

which is di¤erent from zero as long as 
i 6= 0.
Note that this explanation as to the possible source of autocorrelation is

not exhaustive. Another well documented source of persistent time depen-

dence in time series is the presence of structural change.
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4 Concluding remarks

The main aim of the paper was to provide a coherent theoretical investi-

gation of the relationship between cross-section and time series measures of

uncertainty, which are often employed as perfect substitutes in empirical ap-

plications. Most of the results in the earlier literature assume independent

individuals, thereby neglecting the possible presence of common information

among forecasters. We derive a deterministic relationship that links the time

series and the cross sectional measures of uncertainty. Our analysis assumes

the presence of an unobservable component as well as private information in

the process that generates the economic variable to be forecast. We show

the existence of a gap between the two measures. We prove that the discrep-

ancy between the two measures depends on the unconditional dispersion,

the dispersion of the component of information available to all agents (but

unavailable to or ignored by econometricians) and a measure of the extent

of private information, available only to individual agents. The interesting

and important result in the paper is the ambiguous sign in the discrepancy

between time series and cross section measures of uncertainty, that we show

arises from the presence of cross-sectional dependence. Thus, our paper pro-

vides further theoretical support for recent inferential theory of panel data

models.

Our �ndings play a crucial role in empirical investigations (e.g. using CBI

data or HM Treasury Economic Prospects Team data). This goes beyond

the scope of this paper but of course we leave this for future work.
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Appendix

Proof of Proposition 1. In light of the de�nition of "it, it can be written:

1

n

nX
i=1

E
�
"it
�2

= E
�
(yt � �yt)2

�
+
1

n

nX
i=1

E
h�
yit � �yt

�2i
(A.1)

� 2
n

nX
i=1

E
�
(yt � �yt)

�
yit � �yt

��
= I + II + III:

Proposition 1 states that term III is equal to zero. Consider the following

passages

E
�
(yt � �yt)

�
yit � �yt

��
= E

��
�t +

n� 1
n

�0t"t

��
1

n
�0t"t � �it"it

��
= E

��
n� 1
n

�0t"t

��
1

n
�0t"t � �it"it

��
;

since �t is independent of "t; therefore

E

��
n� 1
n

�0t"t

��
1

n
�0t"t � �it"it

��
=

n� 1
n2

E
h
(�0t"t)

2
i
� n� 1

n
E (�0t"t�it"it) ;

so that

III = � 2
n

nX
i=1

�
n� 1
n2

E
h
(�0t"t)

2
i
� n� 1

n
E (�0t"t�it"it)

�

= �2 (n� 1)
n2

E
h
(�0t"t)

2
i
+
2 (n� 1)
n2

E

 
�0t"t

nX
i=1

�it"it

!

= �2 (n� 1)
n2

E
h
(�0t"t)

2
i
+
2 (n� 1)
n2

E
h
(�0t"t)

2
i
= 0:
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This proves the proposition. As far as I and II in equation (A.1) are con-

cerned, for the sake of completeness we have

yt � �yt = yt �
1

n

nX
i=1

yit = yt � � (It�1)�
1

n
�0t"t =

= �t + �
0
t"t �

1

n
�0t"t = �t +

n� 1
n

�0t"t;

such that

I = E
�
(yt � �yt)2

�
= �2� +

�
n� 1
n

�2
�0t
�t:

Also, since

�yt � yit = yit �
1

n

nX
i=1

yit = � (It�1) + �
0
t"t � � (It�1)� �it"it =

=
1

n
�0t"t � �it"it;

it holds that

nX
i=1

E
h�
yit � �yt

�2i
=

1

n
E
h
(�0t"t)

2
i
+

nX
i=1

E
�
�2it"

2
it

�
� 2

n
E

 
�0t"t

nX
i=1

�it"it

!
=

=
1

n
�0t
�t + �

0
t�t �

2

n
�0t
�t

=
n� 1
n

�0t�t �
1

n
�0t


��t;

which proves equation (7).

Proof of Theorem 1. From equation (7), it is known that the cross

sectional measure of dispersion, CSt, can be expressed as

CSt =

nX
i=1

E
h�
yit � �yt

�2i
= �0t�t �

1

n
�0t
�t:

From the de�nition of TSt we have TSt = �2� + �
0
t
�t. Given that �

0
t
�t =
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n�0t�t � nCSt and

�0t�t =
n

n� 1CSt +
1

n� 1�
0
t


��t;

we have

TSt = �2� + �
0
t
�t

= �2� + n�
0
t�t � nCSt

= �2� +
n2

n� 1CSt +
n

n� 1�
0
t


��t � nCSt

=
n

n� 1CSt + �
2
� +

n

n� 1�
0
t


��t:

Proof of Proposition 2. Since

1

n

nX
i=1

E
�
"it
�2
= �2� + �

2
x +

n� 1
n

�0t�t +
n� 2
n

�0t

��t;

all the considerations and derivations previously made still hold. Therefore

even in this case we have

CSt = �
0
t�t �

1

n
�0t
�t:

Given that

TSt � V ar (ytjIt�1) = �2� + �2x + �0t�t;

we also have

TSt = �
2
� + �

2
x +

n

n� 1CSt +
n

n� 1�
0
t


��t:
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