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The interplay between incompressibility and stratification can lead to non-conservation of
horizontal momentum in the dynamics of a stably stratified Euler fluid filling an infinite
horizontal channel between rigid upper and lower plates. Lack of conservation occurs
even though gravity is the only (vertical) force acting on the system, and no lateral
boundaries are present. This apparent paradox was seemingly first noticed by Benjamin
(1986) in his classification of the invariants by symmetry groups with the Hamiltonian
structure of the Euler equations in two dimensional settings, but it appears to have
been largely ignored since. By working directly with the motion equations, the paradox
is shown here to be a consequence of the rigid lid constraint coupling through incom-
pressibility with the infinite inertia of the far ends of the channel, assumed to be at
rest in hydrostatic equilibrium. Accordingly, when inertia is removed by eliminating the
stratification, or, remarkably, by using the Boussinesq approximation of uniform den-
sity for the inertia terms, horizontal momentum conservation is recovered. This interplay
between constraints, incompressibility-induced action-at-a-distance and inertia is illus-
trated by layer averaged exact results, two-layer long-wave models, and direct numerical
simulations of stratified Euler equations with smooth stratification.

1. Introduction

Among the many areas of classical mechanics, fluid dynamics arguably holds a special
distinction for being a rich source of the sort of paradoxes that often arise from sim-
plifying limit assumptions. Thus, for instance, the limit of zero viscosity gives rise to
D’Alembert’s paradox on the drag experienced by rigid bodies moving in ideal fluids,
while the opposite limit of dominating viscous stresses leads to the Stokes or Whitehead
paradoxes of unphysical divergences for the same problem.
This work focuses on an effect that could also be viewed as paradoxical: horizontal

momentum conservation is violated in the dynamics of a stratified ideal fluid filling
an infinite horizontal channel between rigid bottom and lid boundaries, starting from
localized initial conditions, even though the only acting body-force field is the vertical
gravity and the fluid is free to move laterally. Of course, even for an inviscid fluid,
lateral boundaries could lead to horizontal forces by action-reaction mechanisms due to
the constrained motion, and so horizontal momentum conservation cannot in general
be expected to hold for a stratified Euler fluid filling a finite domain enclosed by a rigid
boundary. However, we shall see below that for a domain extending horizontally to infinity
the infinite inertia possessed by the far fluid at rest acts as an effective lateral boundary,
giving rise to violation of horizontal momentum conservation. While stratification is
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necessary for injecting inertia in the lateral fluid at rest, a subtlety of this effect is
that incompressibility is also required to transmit forces arising from finite-range motion
instantaneously all the way to infinity. Accordingly, the “light-cone” provided by the
maximum speed of propagation of internal baroclinic modes gives a rough estimate of
the boundary of the exterior region that can be considered as contributing to an effective
lateral wall confinement.
To the the best of our knowledge, this limiting behaviour in the dynamics of a strati-

fied fluid has not been given much attention in the literature. Benjamin (1986) appears
to be the first to point out this curious property, in the course of his thorough inves-
tigation of the symmetries and Hamiltonian structure of the stratified, incompressible
two–dimensional Euler equations. In particular, Benjamin shows that the fluid’s momen-
tum is not generally the invariant associated with translational symmetry.
While the Hamiltonian approach is compact and elegant, the physical mechanisms

responsible for the dynamics seems to be more transparent by a direct approach with
the simplest configuration of a two-layer fluid. This configuration has the added ad-
vantage of leading naturally into reliable models when long-wave asymptotics applies.
A further advantage of the direct approach is that it can be immediately extended to
three-dimensional settings for fluid domains between horizontal rigid planes. Admittedly,
the effect considered here can be viewed as small, because the violation of momentum
conservation scales with the size ∆ρ of the density range (which in practical cases such
as water stratified with heat or salt, is typically ∆ρ/ρ ≃ 10−2). Of course, the effect also
relies on the abstract setup of infinite rigid bounding surfaces. Nonetheless, we think that
this limiting case is of conceptual importance for a proper understanding of the dynamics
of the incompressible limit for density-stratified fluids.
The paper is organized as follows. In §2 we first derive balance laws that imply the

paradox for incompressible stratified Euler equations in an infinite channel, without ap-
proximations. Next we show that the paradox remains in a two-layer fluid in the hydro-
static (dispersionless) non-Boussinesq approximation. In this simpler setting an explicit
formula for the interface pressure can be derived. In §3, we show how the paradox can
arise via direct numerical simulations of stratified incompressible Euler equations.

2. Layer averaged Euler equations

While the inertia effects we focus upon here arise with general smooth stratifications,
we work first with two-layer fluids. This setup is the most convenient for developing
long wave models, which can further illustrate the inertia effect by allowing explicit
formulae to be derived. Similarly, the restriction to a single horizontal dimension is not
essential, and our conclusions (and formalism) work for the full three-dimensional case
of a horizontal fluid between infinite top and bottom rigid bounding plates. We choose
to work with layer-averaged equations, which of course can be formulated independently
of the assumption of stacked homogeneous layer stratification.
The dynamics of an inviscid and incompressible fluid stratified in layers of uniform

density ρj is governed by the Euler equations for the velocity components (uj, wj) and
the pressure pj , in two dimensional Cartesian coordinates (x, z),

ujx + wjz = 0, (2.1)

ujt + ujujx + wjujz = −pjx/ρj, (2.2)

wjt + ujwjx + wjwjz = −pjz/ρj − g, (2.3)

where g is the gravitational acceleration and subscripts with respect to space and time
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Figure 1: (a) Two-layer fluid set up and relevant notation. (b) The domains for compu-
tation of momentum balance

represent partial differentiation. In a two-fluid system, j = 1 (j = 2) stands for the upper
(lower) fluid, and ρ1 ≤ ρ2 must be assumed for stable stratification.
For a channel with upper and lower rigid surfaces (see figure 1a for the setup and

relevant notation) the kinematic boundary conditions are

w1(x, h1, t) = 0 , w2(x,−h2, t) = 0 , (2.4)

where h1 (h2) is the undisturbed thickness of the upper (lower) fluid layer, respectively.
The boundary conditions at the interface z = ζ(x, t) are the continuity of normal velocity
and pressure

ζt + u1ζx = w1, ζt + u2ζx = w2, p1 = p2 ≡ P at z = ζ(x, t), (2.5)

where ζ(x, t) is the displacement of the interface from the equilibrium configuration
surface z = 0 and P (x, t) denotes the interfacial pressure. As to the lateral boundary
conditions, a set of particular interest physically is the one that corresponds to localized
initial data, i.e., the fluid is quiescent at infinity. This would require

ζ(x, ·) → 0 , uj(x, ·, ·) → 0 , j = 1, 2 , as |x| → ∞ , (2.6)

sufficiently fast, which in turn implies that at infinity hydrostatic equilibrium applies,

pjz + ρjg = 0, j = 1, 2 , ⇒ pj = −gρj(z − ζ) + P , as |x| → ∞ . (2.7)

In what follows we rewrite the Euler system (2.3) in terms of layer-averages (see,
e.g., Camassa & Levermore, 1997). (For a smoothly stratified fluid, this is equivalent
to singling out an intermediate level set of constant density z = ζ(x, t) and carrying
similar manipulations since such a set will always be a material surface.) We define the
layer-mean quantities f̄ as

f̄(x, t) ≡
1

ηj

∫

[ηj ]

f(x, z, t)dz , (2.8)

where ηj are the layer-thicknesses ηi ≡ hj +(−1)jζ, and, abusing notation a little by not
differentiating overbars with respect to lover or upper layer, the intervals of integration
[ηj ] are z ∈ (ζ, h1) for the upper- and z ∈ (−h2, ζ) for the lower-layer, respectively.
Vertically integrating (2.1)–(2.2) across the layers and imposing the boundary conditions
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(2.4)–(2.5) yields the layer-mean equations for the upper (lower) fluid (Wu, 1981)

ηjt +
(

ηjuj

)

x
= 0, (2.9)

ρj(ηjuj)t + ρj
(

ηjujuj

)

x
= −(ηjpj)x + (−1)jζxP , j = 1, 2 . (2.10)

(We use the notation ujuj here and in similar formulae below instead of the equivalent

uj
2 because the latter applies only to the two dimensional case, whereas the former can

be used for three dimensions as well, upon interpreting the horizontal velocity product as
a two-tensor and replacing the x-derivative by a divergence over the horizontal variables.)
For incompressible, inviscid fluids under a body-force density f(x, t) in a domain Ω,

the momentum balance in Eulerian form is expressed by

dΠ

dt
≡

d

dt

∫

Ω

ρu dV =

∫

Ω

∂

∂t
(ρu) dV +

∫

Ω

div(ρuu) dV = −

∫

∂Ω

pn dA +

∫

Ω

ρf dV ,

(2.11)
where n is the outward normal to the surface ∂Ω, and dV , dA denote the volume and
area elements, respectively. Layer averages are just a local version of the integral form of
the horizontal momentum balance for each layer (see figure 1b), which can be expressed
by integrating equations (2.10) over some x-interval L− ≤ x ≤ L+. We have

dΠ1j

dt
≡

d

dt

∫ L+

L
−

ρjηjuj dx+ ρjηjujuj|
L+

L
−

= − ηjpj |
L+

L
−

+ (−1)j
∫ L+

L
−

ζxP dx , (2.12)

for the upper (j = 1) and lower (j = 2) layer respectively, since the outward normals
along the interface are n ∝ (±ζx, 1), and neither the pressure at the rigid horizontal
surfaces or the external gravity field contribute horizontal components of forces.
In hydrostatic equilibrium, the layer-mean pressures are

pj = gρj
ηj
2

+ P , j = 1, 2 . (2.13)

Hence, by a suitable definition of the limit procedure L± → ±∞, the lateral equilibrium
boundary conditions imply that for each infinite upper and lower layer the horizontal
momenta are conserved if and only if

−h1 P |
+∞

−∞
−

∫ +∞

−∞

ζxP dx = 0 , −h2 P |
+∞

−∞
+

∫ +∞

−∞

ζxP dx = 0 , (2.14)

at all times, that is, if
∫ +∞

−∞

ζxP dx = 0 and P |+∞

−∞
= 0 . (2.15)

(These relations are precisely the ones encountered in the study of single layer fluids
when an external pressure distribution is applied to their free-surface.)
Summing up the two momentum equations (2.10) (for j = 1, 2) yields the mean layer

balance law for the total momentum of the fluid

∂t

(

ρ1(η1u1) + ρ2(η2u2)
)

= −∂x

(

ρ1
(

η1u1u1

)

+ ρ2
(

η2u2u2

)

+ η1p1 + η2p2

)

. (2.16)

By action-and-reaction the contribution from the pressure at the interface P (x, t) drops
from the balance (2.16) as well as from the integral version of the total horizontal momen-
tum. Thus, the condition for total momentum conservation is that P |

+∞

−∞
= 0, since (2.13)

with (2.12) in this limit yields

dΠ1

dt
=

dΠ11

dt
+

dΠ12

dt
= −(h1 + h2) P |

+∞

−∞
.
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At first sight, for localized displacements and velocities, it might not be clear how the
asymptotic values of the interfacial pressure could be different from plus to minus infinity,
as the hydrostatic equilibrium is identical at both ends and the interfacial pressure simply
keeps track of the overall constant of integration up to which pressure is defined. For a
free upper surface, this constant is usually set by the atmospheric pressure; if this is
assumed to be uniform, no pressure jump can occur. However, a system with a rigid lid
is constrained, and reaction forces can develop in response to the constraint. Thus, we
now focus on the consequences of the rigid lid constraint η1+η2 = h1+h2. The continuity
equations (2.9) imply

(

η1u1 + η2u2

)

x
= 0 ⇒ η1u1 + η2u2 ≡ Q(t) , (2.17)

that is, the volume flux Q through the channel can only be a function of time. Dividing
the momentum equations (2.10) by the respective densities and summing the resulting
equations yields

∂x

(

η1u1u1 + η2u2u2 +
1

ρ1
η1p1 +

1

ρ2
η2p2

)

=
( 1

ρ2
−

1

ρ1

)

ζxP − Q̇ . (2.18)

With the far-field zero boundary conditions on the velocities, which impliesQ(t) = 0 at all
times, equation (2.18) can be interpreted as an expression that determines the (unknown)
interfacial pressure P (x, t) in terms of the divergence of the layer-mean quantities. By
integrating in x and taking into account the boundary conditions (2.6)-(2.7) we obtain

(h2

ρ2
+

h1

ρ1

)

P |+∞

−∞
=
( 1

ρ2
−

1

ρ1

)

∫ +∞

−∞

ζxP dx , (2.19)

which shows that unless the surface integral of the pressure along the interface vanish,
or the layers have the same density, the extremal values of the interfacial pressure will
in general be different. The equivalent expression

ρ2

(

h1 P |+∞

−∞
+

∫ +∞

−∞

ζxP dx
)

= −ρ1

(

h2 P |+∞

−∞
−

∫ +∞

−∞

ζxP dx
)

shows that if one of the two conditions in (2.14) is satisfied, i.e., horizontal momentum
of one of the layers is conserved, the other will be as well, as the surface pressure integral
is linked to the difference of asymptotic interfacial pressure by the rigid lid constraint.
Thus, conservation of the horizontal momentum of just one of the two layers implies
conservation of the total horizontal momentum of the fluid. On the other hand, with
nonzero surface pressure integral along the interface total horizontal momentum will
change with time, i.e., the bulk of the fluid will in general undergo accelerations. Notice
that total horizontal momentum is always conserved if the fluid is homogeneous, ρ1 = ρ2,
as (2.19) shows that in this case interfacial pressure forces cannot add up to provide a
total pressure gradient between the far ends of the channel. It remains to be seen if states
of the fluid leading to a nonzero interfacial integral at the right-hand of equation (2.19)
can develop during the evolution governed by the Euler equations (even for a general
smoothly stratified fluid). A convenient starting point is offered by a choice of initial
conditions corresponding to zero velocity and a local deformation of density level sets
away from the (flat) ones for hydrostatic equilibrium. This is the choice of initial data
used in the numerical simulations below, where in particular we take x-antisymmetric
initial deformations. As we will see, during the subsequent evolution, this choice leads to
an analog for a finite domain of time-variation of horizontal momentum for the infinite
channel. The numerical simulations will be performed with near two-layer configurations,
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and with initial data which are slowly varying in x. For such case explicit expressions for
the quantities in equation (2.19) can be derived using asymptotic approximations.

2.1. Long wave asymptotics

At leading order in a long-wave asymptotic expansion (see, e.g., Yih, 1980), the hydro-
static approximation for the pressures holds throughout the fluid domain, not just as far
field boundary conditions. This can be used to derive a closed form expression for the
interfacial pressure in equation (2.18). The result is expressed in terms of well known
two-layer (five-equation, dispersionless) shallow water model (see, e.g., Milewski et al.
(2004)). We have

∂x

(

η1u1u1 + η2u2u2 + gζh+ g
h2
2 − h2

1

2
+
(η1
ρ1

+
η2
ρ2

)

P
)

= ζx

( 1

ρ2
−

1

ρ1

)

P ,

so that, with the identities ζx = −η1x = η2x used in the RHS of this expression,

∂x
(

η1u1u1 + η2u2u2 + gζh
)

= −Px

(η1
ρ1

+
η2
ρ2

)

.

Upon splitting the average of products into the products of averages, this coincides with
the expression derived from the five-equation model, and yields

P |
+∞

−∞
= −ρ1ρ2

∫ ∞

−∞

(η1u1
2 + η2u2

2)x
ρ1η2 + ρ2η1

dx . (2.20)

Here a term with the factor ghζx has been dropped because the denominator is only a
(linear) function of ζ thus making the ratio a perfect x-derivative, vanishing when the
boundary conditions on ζ are applied. Thus, at leading order total horizontal momentum
conservation requires the extra constraint on the choice of initial data that make the
above integral vanish, which is manifestly not verified for general functions uj ’s and ηj ’s.
Note that if ρ1 = ρ2 the denominator in the integrand in (2.20) becomes a constant,
making the integral null on account of the velocity boundary conditions. Perhaps more
notable is the effect of the Boussinesq approximation of taking ρ1 = ρ2 in front of the
inertial terms. Just as in the case of homogeneous density fluid, build-up of pressure jump
P |+∞

−∞
from interfacial pressure cannot occur: taking the Boussinesq approximation in,

e.g., equation (2.16), and applying the constraint Q(t) = 0 sets the right-hand side of
that equation to zero, so that Π̇1 = 0, which in turn implies P |

+∞

−∞
= 0. Hence total as

well as individual layer momenta are always conserved in the Boussinesq approximation
for two-layer channel flows with far-field hydrostatic equilibrium boundary conditions.
Finally, we remark that equation (2.20) shows that the symmetries of the system with

respect to the horizontal variable allow to identify a large class of solutions compatible
with momentum conservation (in the hydrostatic approximation). Indeed, it is easy to
check that if initially η1, η2 are even functions and u1, u2 are odd functions with respect to
x, then these symmetries are preserved by the evolution of the system. For such solutions,
(2.20) shows that the (null) horizontal momentum is conserved. However, generic initial
conditions not in this class can be shown to evolve to non-zero P |

∞

−∞
, even starting

from null values of this pressure jump, or, remarkably, even when the velocities are
chosen to be initially zero. For this latter case, this can be seen by looking at the higher
order dispersive (non-hydrostatic) corrections to the shallow water model as reported in
Choi & Camassa (1999). At t = 0 with zero initial velocities these corrections modify
equation (2.20) as

P |+∞

−∞
=

1

3

∫ +∞

−∞

(

η31u1xt + η32u2xt

)

x

η1/ρ1 + η2/ρ2
dx , (2.21)
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Figure 2: Sketch of the fluid test domain and its symmetrical padding by wings of in-
creasing length, quadrupling and doubling the period as shown.

which, by bringing into the integrand the time-derivatives of the velocities shows that
the pressure jump can be non-zero even if the velocities are initially zero. In particular,
antisymmetric initial displacements of the interface can lead to non-zero P |+∞

−∞, whereas
this pressure jump always vanishes for symmetric initial data.

3. Numerical simulations

The above considerations have been provided with laterally unbounded domains in
mind. Of course, such an idealization cannot be used either in reality or in numerical
studies. Thus, we first present the (straightforward) modifications of some of the above
equations for finite domains, which we will then compare with direct numerical simula-
tions of smoothly stratified Euler flows close to the two-layer limit (that is, with relatively
thin pycnoclines). The analog of equation (2.19) for a periodic domain, which requires

P |
+L/2
−L/2 = 0, becomes an equation for the time derivative of the flux,

Q̇ = −
2

L

ρ2 − ρ1
ρ2 + ρ1

∫ +L/2

−L/2

ζxP dx . (3.1)

Thus, all of the above considerations on the pressure jump can be replaced by similar
ones on Q̇, which can then be thought of as a (scaled) proxy for the pressure difference
in the periodic setting.

The numerical simulations will concentrate next on this quantity as well as the hor-
izontal momentum. Specifically, we choose a fixed-size domain of the stratified fluid,
henceforth referred to as the “test section,” where we will apply localized initial con-
ditions so that the velocities and pycnocline displacements are zero at the edge of this
domain. We evolve the initial data numerically for some time under both periodic and
rigid vertical walls (no-flux) boundary conditions, and compute the flux Q and horizontal
momentum Π1 in this time interval. The results will then be compared with those from
simulations from the same initial conditions in progressively longer channels under pe-

riodic boundary conditions, see figure 2. Thus, while the total horizontal momentum for
these longer channels is conserved, that computed on the embedded test-section alone
will in general exhibit time-dependence. Owing to the added inertia of the “padding”
wings of the longer channels, we expect this time dependence to show some similarity
with that of the walled-in test-section. In other words, the added inertia should act as
virtual walls, which could approximate actual walls in the limit of infinite channel.

The details of our numerical simulations are as follows. The initial conditions in all our
simulations (all performed using dimensional quantities, and translating the coordinates’
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T = 0s 

T = 1.86s 

T = 2.89s 

T = 4.72s 

T = 6.65s 

Figure 3: Density field from the numerical simulation of the evolution out of the initial
data in the 1232 cm long tank with the center 308 cm test section marked by the small
box.

origin to the bottom) are chosen to be the antisymmetric interface displacement through

ζ0(x) = h2 +
x

2
exp

(

−
x2

σ2

)

together with zero initial velocities. This function displaces the smooth equilibrium den-
sity function ρe(z) to give the initial condition ρ0 (with obvious meaning of notation)

ρ0(x, z) = ρ1 +
ρ2 − ρ1

2
(1 + tanh [γ(ζ0(x) − z)]) , z ∈ [0 , H ] . (3.2)

Here, σ = 30 cm, ρ1 = 0.999 g/cm3, ρ2 = 1.022 g/cm3, H = 77 cm, h2 = 62 cm,
and the thickness of the pycnocline (defined as the distance between density isolines
corresponding to 10% and 90% of the total density jump) is set by the parameter γ = 0.5
to correspond to about 4.5 cm (all of these parameters are suggested by typical ones for
experiments with salt-stratified water). Notice that this choice of parameters gives an
error of order 10−10 for the departure from equilibrium at the boundary of the test-section
x = ±154 cm. The simulations are performed using the numerical software VARDEN
which solves the stratified incompressible Euler equations (for details see Almgren et al.
(1996).) We typically use a square grid with 512 points along the vertical, although we
have run tests with doubled and half this resolution to test for convergence.
Figure 4a shows the time series of the horizontal momentum of the test-section for

the walled-in configuration, and compares it to that computed from quadrupled and
octupled periodic extensions. As can be seen, there is indeed a tendency for the longer
channel to yield a momentum evolution closer to that of the walled section, for the initial
(short) time displayed. As expected, later time evolution shows larger discrepancies but
still with similar overall behavior and magnitudes. This is in rough agreement with the
estimate from baroclinic wave speeds, which for this parameter choice are of order 30
cm/s, and with the scales of the initial condition with respect to that of the test-section.
For reference, we remark that the code maintains the total horizontal momentum for the
periodic channels close to zero (the initial value) with an error of order 10−4. Figure 4b
presents the time series of the flux Q(t) with three different channel lengths and periodic
boundary conditions. The flux is computed at different x-locations, yielding the same
value within an error 10−4 (which when used as a test, confirms the convergence of the
code). As can be seen by the different curves, the flux appears to scale as the inverse
of the channel length L, which can be taken as further evidence of the inertia of the
padding wings acting to oppose the fluid flux (recall that in the limit of unbounded
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Figure 4: (a) Comparison of horizontal momentum time-evolutions for no-flux and virtual
walled test section. (b) Time series of fluxes Q(t) with respect to increasing period L with
fixed initial conditions. The flux decreases as 1/L in response to the larger inertia of the
padding channel wings. The thin vertical lines mark the snapshot times in figure 3.

domain Q ≡ 0 due to the equilibrium at infinity). The inverse scaling can be given further
analytic interpretation in the long-wave approximation. In fact, the analog of (2.20) for
the leading order hydrostatic (and hence dispersionless) long wave approximation is

Q̇

∫ +L/2

−L/2

1

η1/ρ1 + η2/ρ2
dx+

∫ +L/2

−L/2

(η1u1
2 + η2u2

2)x
η1/ρ1 + η2/ρ2

dx = 0 . (3.3)

For zero velocity initial conditions, this expression yields Q̇(0) = 0 in contrast to the
time series depicted in figure 4b. This discrepancy can remarkably be resolved by the
dispersive (non-hydrostatic) terms in the strongly-nonlinear two layer model neglected
in (3.3).
It is generally accepted that the dispersionless approximation works well at interme-

diate times, while at long times the system could display a gradient catastrophe, which
can be avoided by restoring dispersive effects (Esler and Pearce (2011)). Equation (3.3)
shows relevance of the dispersive effects for short times as well. From figure 4b, one can
see that for the initial data we have chosen slope for the flux is initially negative, while
equation (3.3) indicates that Q̇(t) = 0 if the initial velocities are zero. As remarked
above, the analog of equation (2.21) for the periodic case can improve on this model
discrepancy. Specifically, at t = 0 with zero initial velocities the dispersive corrections
turn equation (3.3) into

∫ +L/2

−L/2

−Q̇(0) + 1
3

(

η31u1xt + η32u2xt

)

x

η1/ρ1 + η2/ρ2
dx = P |

+L/2
−L/2 = 0. (3.4)

The two-layer system (2.9) in hydrostatic approximation gives Q-dependent evolution
equations for the mean layer velocities. These equations, used as a first approximation,
in turn yield the value of the initial slope of the flux

Q̇(0) =

(

∫ +L/2

−L/2

Bx

η1/ρ1 + η2/ρ2
dx

)(

∫ +L/2

−L/2

1−Ax

η1/ρ1 + η2/ρ2
dx

)−1

, (3.5)

where

A =
η31
3

( ρ2
η2ρ1 + η1ρ2

)

x
−

1

3
η2η2x , B =

g(ρ2 − ρ1)η
3
1

3

( η2η2x
η2ρ1 + η1ρ2

)

x
. (3.6)

Even within this rough approximation we obtain results which are in agreement (same
sign and order of magnitude) with the numerics. This can also be seen as an a posteriori
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check on the robustness of the two-layer model. For instance, the theoretical prediction
is Q̇(0) ≃ −1.0× 10−3 cm2/s2 for the case in figure 4b with L = 1232 cm, whereas the
numerical result is Q̇(0) ≃ −1.8× 10−3 cm2/s2.
The above inertia effects can be further magnified by taking a larger density varia-

tion. We have carried out tests with ρ2 = 2ρ1, which should be close to the maximizer
discrepancy for stratified inertia. With ρ2 = 1.022 g/cm3, the model prediction in this
case is Q̇(0) ≃ −1.3 cm2/s2 while the measured numerical value is Q̇(0) ≃ −1.9 cm2/s2.
It is likely that by taking into account the full dispersive equations (instead of just the
leading order for time derivatives) the agreement could be further improved. We finally
observe that the value of Q̇(0) obtained via (3.5) verifies the scaling Q ∼ L−1. Indeed,
the only contribution to the numerator is given by the (localized) support of the ηj ’s,
while the denominator in (3.5) possesses a term independent on the x-derivatives of the
ηj ’s and therefore scales as L.

R.C. and S.C. gratefully acknowledge support by NSF grants DMS-0509423, DMS-
1009750, RTG DMS-0943851 and CMG ARC-1025523. This work was partially sup-
ported by the MIUR Cofin2008 project Geometrical Methods in the Theory of Nonlinear

Waves and Applications. R.C., S.C. and M.P. would like to thank the Dipartimento di

Matematica e Applicazioni of the Milano-Bicocca University, where part of their work
was done, for hospitality. We thank Paul Milewsky for sending us, while this work was
being completed for submission, a preprint (Boonkasame & Milewski, 2011) on the non-
Boussinesq approximation in a two-layer shallow water model with comments on the
interplay between interfacial pressure and flux.

REFERENCES

Almgren A. S., Bell J. B., & Szymczak W.G. 1996 A numerical method for the incom-
pressible Navier-Stokes equation based on an approximate projection. J. Fluid Mech., 17,
358–369.

Benjamin T. B. 1966 Internal waves of finite amplitude and permanent form. J. Fluid Mech.,
25, 241–270.

Benjamin T. B. 1986 On the Boussinesq model for two-dimensional wave motions in heteroge-
neous fluids. J. Fluid Mech., 165, 445–474.

Boonkasame A. & Milewski P. 2011 The stability of large-amplitude shallow interfacial non-
Boussinesq flows. Stud. Appl. Math., DOI: 10.1111/j.1467-9590.2011.00528.x.

Camassa R. & Levermore C. D. 1997 Layer-Mean Quantities, Local Conservation Laws, and
Vorticity. Phys. Rev. Lett., 78, 650–653.

Choi W. & Camassa R. 1999 Fully nonlinear internal waves in a two-fluid system. J. Fluid
Mech., 396, 1–36.

Esler J. G. & Pearce J. D. 2011 Dispersive dam-break and lock-exchange flows in a two-layer
fluid. J. Fluid Mech., 667, 555–585.

Long R. R. 1965 On the Boussinesq approximation and its role in the theory of internal waves.
Tellus, 17, 46–53.

Milewski P., Tabak E., Turner C., Rosales R.R., & Mezanque F. 2004 Nonlinear stability
of two-layer flows. Comm. Math. Sci., 2, 427–442.

T. Y. Wu 1981 Long waves in ocean and coastal waters. J. of Eng. Mech., 107, 501–522.
Yih C. Stratified Flows, Academic Press, New York, 1980.


	DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE
	E METODI MATEMATICI°
	QUADERNI DEL DIPARTIMENTO
	COMITATO DI REDAZIONE§


