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Preface 

This book collects the proceedings of the International Conference “Spatial Data 
Methods for Environmental and Ecological Processes - 2nd Edition”, the 2011 European 
Regional Conference of The International Environmetrics Society, satellite of the 58  
World Statistics Congress

th

 of the International Statistical Institute (ISI).  

The main scope of the conference is exchanging past results and new ideas among 
researchers with different scientific backgrounds, all working on spatial and spatio-
temporal environmental problems.  

The conference is structured into five plenary sessions, twelve specialized sessions and 
a poster session, as follows: 

Plenary sessions: 

 Climatology and Meteorology 
 Ecology and Water Analysis 
 Ensemble Forecasts 
 Sampling and Accurate Predictions for Environmental Management 
 Spatial Functional Data 

Specialized sessions: 

 Air Quality  
 Animal and Plant Ecology 
 Climatology and Meteorology 
 Disease mapping and Environmental Exposure 
 Environmental Data Analysis 
 GIS and Soil Sciences 
 Landscape Ecology and Natural Resource Management 
 Methods and Environmental Modelling  
 Proximal and Remote Sensing in Precision Agriculture 
 Sampling Designs for Natural Studies 
 Space-time Surveillance for Public Health 
 Space-time Surveillance of Natural Assets 

Main themes of the poster session 

 Agriculture, Biodiversity, Groundwater Pollution and Hydrogeology  
 Air Quality and Disease Mapping  
 Climatology and Meteorology and Sampling design  
 Ecology, Conservation and Natural Resources Management 
 Environmental Risk Assessment  

The poster discussion was held during a “Spatial Café” 

http://www.environmetrics.org/
http://www.isi2011.ie/content/
http://www.isi2011.ie/content/
http://www.isi2011.ie/content/
http://www.isi2011.ie/content/
http://isi-web.org/


The Spatial Café was organized in five discussion tables. For each table two facilitators 
were chosen to stimulate and organize the posters discussion. 

The Conference's Scientific Committee tailored the program to provide fruitful 
interactions among various research fields, under the common heading of “spatial 
analysis”. This was very clear during the course of the conference, as communication 
among participants both from Italy and abroad, from universities and research centers, 
and most importantly, among statisticians and researchers from other subject areas, was 
facilitated by a charming, very friendly atmosphere.  

This Volume of Proceedings contains 110 short papers and abstracts that were presented 
during the conference and is articulated in three parts, each corresponding to a session 
held in the conference. All published papers were submitted to a refereeing process. The 
refereeing process has been attended by the Scientific and Organizing Committees.  

The Scientific and Organizing Committees are very grateful to the University of Foggia, 
the University of Bari, the Fondazione Cassa di Risparmio di Puglia, The International 
Environmetrics Society, the International Statistical Institute, the Società Italiana di 
Statistica, the CRA-CSA of Bari, the Agenzia Regionale per la Prevenzione e la 
Protezione dell’Ambiente - Puglia - and the GRASPA research group for supporting  
the organization of the conference and allowing us to publish this volume. 

In quality of Scientific Committee and Organizing Committee Presidents, we would like 
to thank the members of the Scientific  Committee (Liliane Bel, Annamaria 
Castrignanò, Corrado Crocetta, Alessandro Fassò, Giovanna Jona Lasinio, Alessio 
Pollice and Marian Scott) and of the Organizing Committee (Barbara Angelillis, 
Francesca Bruno, Rosalba Ignaccolo, Giovanna Jona Lasinio, Alessio Pollice and 
Alessia Spada) for their outstanding work and all the participants to the conference for 
their contributions.  
 

Daniela Cocchi, President of the Scientific Committee 
Barbara Cafarelli, President of the Organizing Committee 

 



Global temperature analysis with
non-stationary random field models

Finn Lindgren, H̊avard Rue
Norwegian University of Science and Technology, finn.lindgren@math.ntnu.no

Peter Guttorp
University of Washington and Norwegian Computing Center

Abstract: Analysis of regional and global mean temperatures based on instru-
mental observations has typically been based on aggregating temperature measure-
ments to grid cells. Due to the uneven data coverage, this makes analysis of the
associated uncertainties difficult. We here present an alternative model based ap-
proach, where the climate and weather are modelled as random fields generated by
a stochastic partial differential equation. Using the efficient Markov representations
developed by Lindgren et al. (2011), direct numerical optimisation and integration
with the R-INLA software provides Bayesian temperature reconstructions and asso-
ciated uncertainties.

Keywords: Global temperature analysis, Stochastic partial differential equa-
tion, Gaussian Markov random field

1 Introduction

When analysing past observed weather and climate, the Global Historical Climato-
logy Network (GHCN) data set (Peterson and Vose, 1997) is commonly used. The
data spans the period 1702 through 2010, though counting, for each year, only sta-
tions with no missing values, yearly averages can be calculated only as far back as
1835. The GHCN data is used to analyse regional and global temperatures in the
GISS (Hansen et al., 1999) and HadCRUT3 (Brohan et al., 2006) global temperature
series, together with additional data such as ocean based sea surface temperature
measurements. Differing in detail, the analyses aggregate the data into grid boxes,
which are combined into global averages. To reduce the influence of station spe-
cific effects, the methods are based on the temperature anomalies, defined as the
difference in weather to the local climate, the latter defined as the average weather
over a 30 year reference period. Due to the difficulty of assessing the statistical
uncertainty of the resulting estimates, we instead choose to construct a stochastic
model for the climate and anomalies, based on a non-stationary stochastic partial
differential equation.
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2 Model

I order to avoiding the computational difficulties associated with calculations based
on covariance matrices, we use the link between the stochastic partial differen-
tial equation (SPDE) formulation of Matérn fields and Gaussian Markov random
fields (GMRFs), as developed by Lindgren et al. (2011). Together with the INLA
method (Rue et al., 2009) this allows us to perform a fully Bayesian analysis in a
fraction of the time required by a traditional MCMC approach.

The climate (or expected weather) is µ, the yearly anomalies are xt, and the
observations are yt. The anomalies are taken as solutions to the SPDE

(

κ2(u)−∆
)

(τ(u)xt(u)) = W(u), u ∈ S
2, (1)

where W is a white noise process, ∆ is the Laplacian, and κ and τ are spatially
varying parameters. The prior distribution for the climate field is chosen as approx-
imate solutions to the SPDE ∆µ(u) = σµW(u), which are intrinsic random fields.
The model is governed by a parameter vector θ = {θκ,θτ ,θs, θǫ}, where θκ and θτ

controls the non-stationary dependence structure of the anomalies.
Introducing observation matrices At, that extract the nodes from xt for each

observation, the full model is given by

(µ|θ) ∼ N(0,Q−1

µ
), (2)

(xt|θ) ∼ N(0,Q−1

x
), (3)

(yt|µ,xt,θ) ∼ N(At(µ+ xt) + Stθs,Q
−1

y|µ,x
), (4)

where Stθs are station specific effects (elevation), and the Q· matrices are the pre-
cision matrices corresponding to each conditional distribution, obtained with the
finite element method (Lindgren et al., 2011).

3 Results

We implemented the model using R-INLA. The Bayesian analysis draws all its con-
clusions from the properties of the posterior distributions of (θ|y), (µ|y), and (x|y),
so that all uncertainty about the weather anomaly xt is included in the distribution
for the model parameters θ, et cetera. Since (x|y,θ) is Gaussian, the Bayesian
integration results are only approximate with regards to the numerical integration
of the covariance parameters (θκ,θτ ,θǫ). Due to the large size of the data set, the
initial analysis is based on data only from the period 1970 through 1989, and the
analysis took approximately one hour on a 12 core Linux system.

The spatial covariance parameters are harder to interpret individually, but we
instead show the resulting spatially varying field standard deviations and correlation
ranges in Figure 1, including pointwise 95% credible intervals. Both curves show a
clear dependence on latitude, with both larger variance and correlation range near
the poles, compared with the equator.
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Figure 1: Three transformed B-spline basis functions of order 2 (a), and approximate
95% credible intervals for (b) standard deviation and (c) correlation range of the
yearly weather, as functions of latitude.
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Figure 2: Posterior means for the empirical 1970–1989 climate (a) and for the em-
pirical mean anomaly 1980 (b), together with the corresponding posterior standard
deviations in (c) and (d). The climate includes the estimated effect of elevation. An
area-preserving cylindrical projection is used.
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In Figure 2(a) and (b), the posterior expectation of the empirical climate, E(µ|y),
is shown (with the estimated effect of elevation added), together with the posterior
expectation of the temperature anomaly for 1980, E(x1980|y). The spatial depend-
ence model was based on the GHCN data, but these Kriging estimates also include
ocean-based data. A preliminary analysis indicates that the dependence structure
is different for land and ocean, which can be handled by adding appropriate basis
functions to the κ and τ models. The pre-gridded ocean data is also a good example
of how the observation matrix At can solve the problem of “misaligned” data, since
it decouples the spatial model from the data locations, allowing arbitrary linear
measurement equations from one spatial model.
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Abstract: Detection and attribution (D&A) have played a central role within
the assessment of the human influence on climate and within IPCC’s reports. De-
tection involves the statistical demonstration that a change has happened within
climatic observations. Attribution consists in assessing the respective contributions
of one or several causes to some observed change. Both require the use of climate
model simulations, and are based on spatial or spatio temporal patterns of change.
This paper provides a very short presentation of the classical ”optimal fingerprint”
method for D&A. Some recent developments, regarding the use of ”error in variable”
are introduced. Some of the challenging aspects of the method will be discussed too,
in particular regarding the very large dimension of the typical datasets used.

Keywords: Climate change, detection, attribution, linear model, high dimen-
sion.

1 Introduction

Detection and attribution (D&A) have played a central role within the assessment of
the human influence on climate and within IPCC’s reports. Detection involves the
statistical demonstration that a change has happened within climatic observations.
Attribution consists in assessing the respective contributions of one or several causes
to some observed change. Both are based on the characterisation of the spatial or
spatio-temporal pattern of change corresponding to each physically plausible cause.
However, specific tools from spatial statistics have been poorly used on that theme.

This paper aims primarily at giving a state of the art picture of some of the
concepts, statistical tools, and current challenges in D&A analysis. The secondary
attempt is to shortly discuss both difficulties and potential benefits of using spatial
statistics tools.

Introduction of D&A first requires to introduce some concepts used in climate
sciences. Climatologists use to first define their subject of study: the climate system.
It includes the atmosphere, the ocean, and several other components (see IPCC,
2007). This system is influenced by several boundary conditions (e.g. the solar
activity, the chemical composition of the atmosphere), usually referred to as external

forcings, that may impact its state or dynamics. However, the variables used for
describing the state of the system show some variability, even under fixed boundary
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conditions. This variability is called internal variability, and corresponds to the kind
of variability expected while the climate is not changing.

Statistical D&A requires to have some knowledge on two parameters: first, the
statistical properties or the distribution of the internal variability, and second, the
expected response of the climate system to a given external forcing. Physically-
based climate models are usually used for evaluating both objects instead of e.g.
parametric models. Indeed, internal variability involves very specific spatial patterns
and a large set of spatial scales that may hardly be accounted for in a parametric
model. Instead, the use of climate model allows the evaluation from our physical
understanding. D&A then requires careful comparison between observed changes
and outputs from climate models.

2 Optimal fingerprint method

The more classical approach for climate change D&A is usually referred to as the
optimal fingerprint method. This method has been gradually introduced at the end
of the 90’s (Hasselmann, 97, Hegerl et al., 97, Allen & Tett, 99). The latter presents
this method as a linear regression of the observed climate time-series on the expected
responses to the external forcings :

Y =
I

∑

i=1

βigi + ε, (1)

where Y are the observations, βi are unknown scaling factors, gi is the expected
response of the system to the i-th external forcing (as simulated by one or several
climate model), and ε denotes the internal variability. In Eq. (1), Y is usually
a spatio-temporal vector, Yi typically consisting of the average of the temperature
over a region, and a decade. gi and ε have the same dimension and structure as Y .

Model (1) basically assumes that climate models have some accuracy at simu-
lating the spatio-temporal pattern of the response to each external forcing, whereas
they may fail at simulated the proper amplitude of that response. Within model
(1), detection of a change associated to the forcing i corresponds to the rejection of
the null hypothesis “βi = 0”. Attribution, in addition to the detection, requires to
show that the observed response is consistent with the expected one, or equivalently,
that the null hypothesis “βi = 1” cannot be rejected.

Assuming that C = Cov(ε) is known, for example from climate models simula-
tions, the computation of maximum likelihood estimate (MLE) for β is easy:

̂β = (G′C−1G)−1G′C−1Y, (2)

where G = [g1, . . . , gI ]. Under the same assumption, the distribution of the MLE is
known, so as hypothesis testing on β is easy to perform.

Some refinement of the method has been introduced by Allen and Stott (2003)
and Huntingford (2006), in order to take into account the uncertainty at simulating
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the spatio temporal patterns gi. In that case, the uncertainty may come from internal
variability (within the climate model simulation), or multi-model uncertainty. The
main statistical model is then slightly changed to

Y =

I
∑

i=1

βi(gi + νi) + ε, (3)

where νi represents the uncertainty on gi. Assuming, similarly to ε, that Σ = Cov(ν)
is known, the optimal estimate of β may be derived by using a Total Least Square

(TLS) procedure instead of the Ordinary Least Square technique involved in the
MLE mentioned before.

Such methods have led to one of the important figures of the last IPCC report
that deals with the quantification of the contribution of several external forcing to
the observed warming (Figure 9.6, IPCC, 2007).

3 Estimation of C and high-dimension

The method presented before assumes that C (and Σ) is known, while, in a real-
life problem, it is not. Several difficulties arise from the estimation of C, that is
usually done from a control runs (i.e. climate simulations without any change in the
external forcings). We here will focus in the problem related to the high-dimension
of the typical global temperature datasets.

Current datasets are providing homogenised temperatures on a 5˚x 5˚grid, that
results in 2592 grid-points in space. D&A study typically consider a 50-yr period in
time, decomposed in 5 decades. The dimension of Y is then close to 13000. Note
that missing values will likely decrease this number, but won’t change the typical
size of, say 104. Consequently, C is a 104 x 104 matrix, that has to be estimated
from available control runs, that are typically covering 104 years (when considering
together control runs from various models). Classical covariance matrix estimates
being very poor in such cases, the dimensionality needs to be reduced.

Two approaches have been mainly used in order to reduce this dimension while
focusing on the large spatial scales. First, global temperatures have been projected
onto some first spherical harmonics (e.g. Stott, 2006). Second, particularly at the
regional scale (where the dimension of the dataset is smaller but remains too high),
data have been projected onto the first principal components (e.g. Zwiers, 2003).
In both cases, projection may reduce the accuracy of the β estimates (there are
no results of optimality), and requires to choose the reduced dimension (i.e. the
number of spherical harmonics or principal components), what may be sensitive.

One possible alternative consists in using a regularised estimate of the covariance
matrix C, that is a linear combination of the empirical covariance matrix estimate
̂C and the identity (Ribes et al., 2009) :

˜C = γ ̂C + ρI. (4)
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Such an estimate has been shown to be more accurate than ̂C in high-dimension
(Ledoit and Wolf, 2004). To plug (4) into (2) also leads to an improved estimate of
β in the context of high dimension data.

This approach may help the estimation of β, but no result of optimality has been
proved. As a consequence, the problem of efficiently estimating β in the context of
high dimension dataset is still open. One potentially attractive way may be to use
the spatio-temporal structure of Y in order to improve the estimation of C.

4 Concluding remarks

D&A deal with one key-question regarding climate change, that is the quantification
of the human contribution to the current warming. While initially based on a simple
linear model, D&A involve some recent statistical tools and also provide some chal-
lenging questions, in particular related to the high dimension of the corresponding
datasets.
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Abstract: Regulatory bodies, such as the Environment Agency of England &
Wales, regularly monitor river surface water to assess quality. Maintaining and
improving quality is important for society but is also a necessary requirement to
comply with European directives. Spatiotemporal additive models for nutrients in
hydrological areas in England & Wales are presented to assess and describe spatial
and temporal trends over the past 20 to 40 years.
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1 Introduction

Previous modelling of nutrients within English & Welsh rivers has been carried out
at individual monitoring locations in order to investigate trends over time and the
effect of the contributing area at individual locations. However, for future nutrient
policy decisions, there is a need to understand how historical patterns of water
quality are described by catchment-scale influences rather than at individual sites.
Spatiotemporal additive models have been developed for Large Hydrological Areas
(LHAs) to investigate and describe nutrient trends on a catchment-wide basis.

2 Materials and Methods

2.1 The Data

There are 59 LHAs in England & Wales that contain independent river networks
and their associated catchments. Monitoring locations within each LHA are associ-
ated with Water Framework Directive (WFD) waterbodies and each LHA consists
of a number of such areal units. Orthophosphate (OP) and Total Oxidised Nitrogen
(TON), mg/l, have been monitored on approximately a monthly basis by the Envi-
ronment Agency of England & Wales over a period of 20 to 40 years at monitoring
locations within each of the LHAs.
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For this paper, the OP data in the Severn LHA, see Figure 1 (top left), will be
investigated. These data span the time period 1971-2009 and have been aggregated
within waterbodies. The OP data have been transformed using natural logs, to
stabilise the variability throughout time, and measurements that were flagged as
being below the limit of detection have been treated as censored observations and
imputed (Helsel, D.R., 2005).

In order to investigate the effect of catchment covariates on nutrient levels, mon-
itoring locations were selected which have no monitoring locations in further up-
stream waterbodies. This enables information from all local land area draining to
the waterbody (contributing land) to be incorporated in the covariate value for an
individual waterbody ensuring that contributed areas do not overlap and that there
is little spatial correlation between measurements for a particular covariate.

The possible catchment covariates of interest are long-term (1961-1990) aver-
age base flow index (BFI) and discharge, total annual population, monthly total
rainfall, fertiliser yearly application rates, land cover variables, livestock variables,
crops, Agricultural Land Classification (ALC), slope of the land and soil type. All
covariates have been aggregated within the 173 waterbodies of interest. Many of
the continuous covariates have been log transformed to make their distributions
more symmetric. Categorical variables were used for: slope (gentle to very steep),
ALC (high quality agricultural to low quality grazing and non-agricultural land)
and soil type (light to heavy), and for land cover, land use and population the
hectares/counts have been standardised by the size of the contributing area.

2.2 Statistical Modelling

Model (1) was fitted to describe the relationships between the response of loge(OP)
and all possible covariates: spatial and temporal trend and seasonality and the
catchment covariates. A model which excludes the first three smooth terms of Model
(1) was also fitted to investigate the relationships, and the percentage of variability
explained, using only the catchment covariates, Model (2).

y = α+ s(Easting,Northing) + s(Year.month) + s(month) + s(discharge) + s(BFI)

+s(land use) + s(land cover) + βALCj
+ γslopek + δsoill + s(rainfall)

+s(population) + s(fertiliser) + ϵ (1)

where y is loge(OP), s() is a smooth function, Year.month is decimal year and the
errors (ϵ) are assumed to be N(0, σ2) and independent. For land use and land
cover a series of different covariates are included individually such as potatoes, field
vegetables, cows, etc. and the levels of the categorical variables are j = 2, . . . , 6,
k = 2, . . . , 4, and l = 2, . . . , 8. The degree of smoothing has been constrained to
allow a maximum of 6 degrees of freedom for each univariate component to aid
interpretation.
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Functions from the sm library, see Bowman & Azzalini (1997) for details, and the
gam function in the mgcv library, see Wood (2006) for full details, of R were used to
fit these models. For the models that incorporate many covariates there is unlikely
to be much spatiotemporal correlation remaining in the residuals and hence the
assumption of independence appears appropriate. However, Moran’s I Test in the
spdep package of R and temporal variograms were used to check this assumption.
If necessary, the methods of analysis can be modified to incorporate spatiotemporal
correlation.
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Figure 1: Map of Large Hydrological Areas in England & Wales with the Severn
area highlighted (top left). For the Severn area: spatial trend (top right), temporal
trend (bottom left), seasonal pattern (bottom right). The dashed lines indicate ±
2 standard errors.

3 Results

Figure 1 (top right and bottom panels) displays the spatial pattern, temporal trend
and seasonality, respectively, for the Severn LHA. It highlights that the largest
change for this area is spatial, followed by a smaller change over time and a small
seasonal signal. Model (1) explains 70% of the variation in loge(OP), see Table 1,
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with 66% of the variability explained using only the catchment covariates, Model
(2). Therefore, the catchment covariates are usefully explaining the trends and
seasonality in the area. Applying Moran’s I and temporal variograms to the residuals
from Model (1) suggests that there is very little evidence of spatial or temporal
correlation remaining after incorporating all covariates.

In general, covariates are statistically significant as a result of the large amount
of data. Many of the variables individually only explain a small proportion of the
variability and hence it is difficult to reduce the number of covariates in the model.
However, there are various possible combinations of a smaller subset of covariates
that explain a reasonable amount of the variability. For example, reducing the
number of catchment covariates from 23 to 8: ALC, soil, discharge, cattle, pigs,
poultry, “other animals” and cumulative rainfall, still explains 46% of the variability.
For this set of variables, relationships with discharge and rainfall appear to be curved
with a decreasing relationship evident at higher values indicating a dilution effect.
Relationships with the animal covariates are generally positive, especially for larger
counts, indicating increases in measured OP with increasing animal waste. Higher
grade agricultural land appears to contribute more to OP levels than lower quality
grazing land with medium/heavy soils contributing more than chalk or light soils.

Model Adjusted R2 Number of covariates
1 70.1% 26
2 65.7% 23

Table 1: Adjusted R2 values for the Severn LHA

4 Concluding Remarks

Trends and seasonality have been explored in all LHAs in England & Wales for
OP, TON and Total Nitrogen with covariate information incorporated for a subset
of these LHAs and a space-time interaction incorporated using p-splines for one
example area. Future work will include exploring alternative approaches to dealing
with large data dimensions and the hierarchical nature of the data.
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Abstract: Defining 'reference conditions' (sensu Water Framework Directive) in 
Mediterranean lagoons is a challenging issue since the Mediterranean societies have 
used lagoons for centuries, lagoons are naturally enriched ecosystems, physically 
stressed and characterised by strong and unstable internal gradients and lagoons show 
an high taxonomic redundancy and a low taxonomic similarity.  Here, accounting for 
these peculiarities, we have compared a priori and a posteriori approaches to identify 
the main sources of uncertainty in the ecological status of Mediterranean lagoons. 
Mixed model analysis showed that the a posteriori approach emphasises metric-specific 
ecosystem types and reduces the uncertainty of the ecological status classification when 
compared with the a priori approach based on fixed ecosystem Typology.  
 
Keywords: macroinvertebrate, lagoon, reference conditions, typology, ecological 
status, mixed models, uncertainty.  
 
 
1. Introduction 
 
The Water Framework Directive (hereafter WFD) requires EU Member States to 
classify the ecological status of every water body in Europe larger than some minimum 
threshold defined in the Directive (WFD, 2000). Ecological status is an ecosystem 
property, which is a measure of ecosystem functioning and is assumed to be high in 
aquatic ecosystems totally or nearly totally undisturbed by human activities. Therefore, 
ecological status of ecosystems is conceptually independent of the natural variability of 
its structural components, which can be very large conditions on spatial and temporal 
scales both among and within aquatic ecosystems. Since ecological status of ecosystems 
is commonly assessed from the characteristics of their biotic components, the natural 
variability of plant and animal guild attributes, depending on the abiotic context (i.e., 

                                                 
1 WISER (Water bodies in Europe: Integrative 530 Systems to assess Ecological status 
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the niche of the environment, Emlen, 1973; Zobel, 1997), represents a major source of 
uncertainty in the process of ecological status assessment. 
The WFD addresses the uncertainty derived from natural variability with the 
classification of ecosystems into ‘types’, defined according to the main drivers of 
variation of the biotic components using a discrete scale. For example, Typology of 
lagoon ecosystems in the Mediterranean ecoregion was proposed to be based on a 
hierarchical organization of three drivers, tidal range, lagoon surface area and water 
salinity, producing globally 20 types (2 classes of tidal range x 2 classes of surface area 
x 5 classes of water salinity; Basset et al., 2006; Lucena-Moya et al., 2009). Recently, 
the degree of confinement was also proposed as a major driver of biotic component 
variation in Mediterranean lagoons. A classification of ecosystems into types, if the 
proper drivers are selected, actually reduces the natural variability within every type, 
but being generally based on the assumption of linear responses along the driver 
gradients it can incorporate both redundancy between types and uncertainty within a 
few types. Recently, the application of a mixed model approach was found very 
effective in optimizing the definition of ‘ecosystem types’ and assessment of ecological 
status in Mediterranean lagoons (Barbone et al., 2011), but this a posteriori approach 
may be biased by the data source used and less general than the a priori approach.  
Here, we have compared the a priori and the a posteriori approach using a data-set on 
benthic macroinvertebrate guilds of Mediterranean and Black Sea lagoons and the a 
priori  typological classification of Mediterranean and Black Sea lagoons available in 
the literature or on official documents of the Committee in charge of implementing the 
methodological procedures of aquatic ecosystem assessment in Europe according to the 
WFD.  
 
 
2. Materials and Methods 
 
Data analysis was performed of biotic and abiotic data available at the Transitional 
Water Platform (www.circlemednet.unisalento.it). Data were originally collected on 
fourteen Mediterranean and Black Sea lagoon ecosystems in the framework of the 
European project TWReferenceNet. The studied ecosystems or ecosystem areas were 
selected because of their high degree of naturality, when compared with the average 
conditions in the EcoRegional area; all studied ecosystem areas were exposed to low 
anthropogenic pressures (Table 1) and utilised as potential reference conditions in order 
to explore the influence of spatial and temporal sources of natural variability. The data 
used for this study are based on a nested sampling with habitat types (2/3), sites (2) and 
replicates (5) nested within lagoons (14) and times (2). Abiotic data include measures of 
pressures, ecosystem physiography and hydrology, at the ecosystem level, and measures 
of chemical-physical water parameters, at the level of sampling sites/times. Biotic data 
refer to the macroinvertebrate guilds of the studied lagoons/lagoon areas and include 
measurements of species composition, numerical abundance and individual traits at the 
replicate level; data were then aggregated for the analysis at the site level. As individual 
trait, individual body size was quantified on all sampled individuals as body length and 
ash free body mass; body mass was not determined in less than 5% for technical 
problems.  
Simple metrics and multi-metric indices were computed from the original data; the 
former includes measures of species composition and richness, numerical abundance, 
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diversity, average individual mass and size spectra components, the latter include four 
main multi-metric indices, namely BAT (Benthic Assessment Tool), BITS (Benthic 
Index based on Taxonomic Sufficiency), ISS (Index of Size Spectra), M-AMBI 
(multivariate AMBI). 
The amount of variation of both simple and multi-metric indices explained by standard 
lagoon typologies, based on water salinity, lagoon surface area, tidal range and 
confinement, or by a posteriori assessed typology with the use of mixed model 
approaches have been quantified and compared. The uncertainty of ecological status 
assessments at the level of sampling sites, or lagoons following the two different 
approaches and the different indices was also addressed.  
 
Table 1. Pressure evaluation on the list of the transitional water ecosystems considered: A = organic load; 
B = nutrient load; C = hazard substances; Da = fishing; E = alien species; F = navigation; G= physical 
modification; H= average pressure; Ia = net pressure The intensity of every pressure type was evaluated 
using a scale of value ranging from 0 (absent) to 4 (4=high).  
 

Transitional waters 
Pressures 

A B C D* E F G H I* 

Agiasma 2 2 1 3 - - 2 2.0 1.7 

Logarou 1 2 1 4 - - 3 2.2 1.7 

Alimini 1 1 - 3 1 - 1 1.4 1.0 

Grado Maranob 2 2 3 - 2 3 2 2.3 2.3 

Grado Valle Cavanata 1 1 1 - 1 - 1 1.0 1.0 

Grado Valli da Pescab 1 1 - 4 4 - 2 2.4 2.0 

Le Cesine - 1 - - - - 2 1.5 1.5 

Margherita di Savoiab 2 2 - 1 - - 4 2.2 2.6 

Torre Guaceto - 1 1 - - - 1 1.0 1.0 

Karavasta 1 1 - 4 1 1 3 1.8 1.4 

Nartab 2 2 - 3 - - 4 2.7 2.6 

Patok - - - 2 1 - 1 1.3 1.0 

Lehaova 1 1 - 1 1 - 1 1.0 1.0 

Sinoe 1 1 - 3  - 3 2.0 1.6 
    

 a Fishing pressures are not considered so effective on benthic  
macro-invertebrates. Net Pressures exclude fishing bPressures at 
less perturbed sites can be estimated 0.33 of Net pressures. 
 

 
3. Results 
 
The main results achieved from with the data analysis are listed below: 

1. Simple metrics are sensitive to internal lagoon patchiness while multi-metric 
indices are not; 

2. All multi-metric indices showed a significant variability among lagoon 
ecosystems; 

3. Considering only the multi-metric indices, BITS has an higher intrinsic 
variability than the other three metrics; 



 

 

4. Water salinity is the typological category 
AMBI, BAT and ISS, while confinement was an important source of BITS 
variability; 

5. The a posteriori mixed model analysis showed clear metric
specific reference conditions;

6. Accounting for these reference 
ISS in the classification of ecological status of the studied lagoons
improved (Figure 1);

7. A priori, categorical, lagoon classification also explained part of the multi
metric variation, improving the 
lagoons. 

 

 
Figure 1: Ecological quality classification of the study sites among type specific 

categories
 
4. Concluding remarks
 
The comparative analysis of the performance of a
the definition of a typological classification of aquatic ecosystem has 
implication in the optimization
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Abstract: One of the main challenges for Numerical Weather Prediction is the
Quantitative Precipitation Forecasting (QPF). The accurate forecast of high-impact
weather still remains difficult beyond day 2 and many limited-area ensemble predic-
tion systems have been recently developed so as to provide more reliable forecasts
than achievable with a single deterministic forecast. As a consequence the cali-
bration of ensemble precipitation forecasts has become a very demanding task, for
improving the QPF, especially as an input to hydrological models. Different cali-
bration techniques are compared: cumulative distribution function, linear regression
and analogues method.

Keywords: Ensemble Prediction Systems, Quantitative Precipitation Forecasts,
Calibration techniques.

1 Introduction

The first approach to the probabilistic predictions in meteorology occurred in the
early seventies, the emphasis being on the study of stochastic–dynamics equations.
Recently, other approaches have been developed, one of these is based on the descrip-
tion of the temporal evolution in the phase space of the probabilistic distribution
function (PDF) of the model state vector by the Liouville equation (LE), or the
Fokker–Plank equation (FPE), if model errors are taken into account through spe-
cific random forcing terms in the governing model equations (Ehrendorfer, 1994).

Actually, an approach based on LE and FPE is considered impractical in the
context of forecasting forecast skill, because the high dimensionality of the state
vector of realistic meteorological models and of the associated phase space (Ehren-
dorfer, 1994) and a finite ensemble of numerical predictions appears to be the only
feasible way to predict the evolution of the atmospheric PDF beyond the range in
which error growth can be prescribed by linearized dynamics. Two requirements
arise: statistics of this finite ensemble should sample correctly the PDF of analysis
errors and model trajectories in the phase space should be good approximations of
the corresponding trajectories of the atmosphere (Molteni et al., 1996).

The idea of probabilistic weather predictions is widely accepted now: since 1992,
both the National Center for Environmental Prediction (NCEP) and the Euro-
pean Center for Medium–Range Weather Forecast (ECMWF) have been providing
weather ensemble predictions (Tracton and Kalnay, 1993 and Palmer et al., 1993).
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Specifically, the ECWMF Ensemble Prediction System (EPS) has been tuned for
predictions ranging from day 2 to day 15, and is based on a configuration with 50
perturbed and 1 unperturbed (i.e. starting from the ECMWF analysis, say control)
members. Perturbed analyses are obtained by adding and subtracting to the oper-
ational analysis 25 orthogonal perturbations (representing the observation errors),
obtained using a combination of singular vectors, computed to optimize total energy
growth over a 48 hours time interval (Molteni et al., 1996). Model uncertainties are
simulated by adding stochastic perturbations to the tendencies due to parameterized
physical processes (Buizza et al., 1999).

2 The COSMO–LEPS Ensemble Prediction Sys-

tem

One of the main challenges for numerical weather prediction (NWP) is still rec-
ognized as quantitative precipitation forecasting. Computer power resources have
greatly increased in the last years, thus allowing the generation of more and more
sophisticated NWP models with accurate parametrization of physical processes sup-
ported by high horizontal and vertical resolution. Nevertheless, the accurate forecast
of high-impact weather still remains difficult beyond day 2 and sometimes, also for
shorter ranges (Tibaldi et al., 2006).

Many limited-area ensemble prediction systems have been recently developed,
either in research or in operational mode, so as to address the need of detailing
high-impact weather forecasts at higher and higher resolution and to provide more
reliable forecasts than achievable with a single deterministic forecast. The method-
ology aims at combining the advantages of the probabilistic approach by global en-
semble systems with the high-resolution details gained in the mesoscale integrations
(Montani et al., 2011).

As far as operational implementations are concerned, the COnsortium for Small-
Scale MOdelling Limited-area Ensemble Prediction System (COSMO-LEPS) is based
on 16 integrations of the non–hydrostatic mesoscale model COSMO (Montani et al.,
2011). In the construction of COSMO–LEPS, an algorithm selects a number of
members from the ECMWF ensemble system (Marsigli et al., 2001; Molteni et al.,
2001), which are used to provide both initial and boundary conditions to the inte-
grations with the COSMO model.

3 Calibration of the Quantitative Precipitation

Forecast

The calibration of precipitation forecast at high resolution is a challenging and quite
new scientific issue (Hamill et al. 2008).
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Fundel et al. (2009) experienced with reforecast of COSMO-LEPS (30 years) the
calibration of the COSMO–LEPS precipitation over Switzerland. They carried out
some sensitivity studies in order to determine the impact of the length of the refore-
cast period. Diomede et al. (2010), focusing the calibration work on the statistical
adjustment of 24–h Quantitative Precipitation Forecasts provided by COSMO-LEPS
over the Emilia–Romagna region (Northern Italy), have been used the reforecasts
run by MeteoSwiss for comparing three calibration techniques: cumulative distribu-
tion function, linear regression and analogues method, based on the similarity of the
forecasted precipitation fields. Two different implementations of these techniques
with respect to the method used for spatial aggregation of the model grid points
have been tested: calibrating functions defined either for each model grid point or
for eight areas partitioning the Emilia–Romagna region. The calibration process
provided a slight improvement for the reliability and skill of the COSMO-LEPS
QPFs, except for the autumn season. Generally, the raw and calibrated forecasts
were overconfident. Forecasts of lower precipitation events were more skilful than
forecasts of higher precipitation events. The calibration functions defined for each
model grid point showed higher performance. The lack of improvement related to
the CDF and LR–based methods can be ascribed to the lack of a strong relationship
between forecast and observed data. Results suggested that weather–regime specific
correction functions should be required for improving the COSMO-LEPS QPFs.

4 Concluding remarks

It is expected the calibration of QPF could improve the skill of COSMO-LEPS
forecasts, making the system more reliable and the calibrated QPF introduced as an
input to hydrological models. In the future, an increase of the horizontal resolution
of COSMO-LEPS will be tested. The higher resolution will likely provide more
detailed forecasts for the interaction of the flow with orography and will describe
with a higher degree of accuracy mesoscale–related processes and local effects. This
would have a positive impact on the prediction of a number of those surface fields still
nowadays strongly influenced by local effects and not always properly represented
in terms of their uncertainty by mesoscale ensemble systems.
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Abstract: The past fifteen years have witnessed a radical change in the practice
of weather forecasting, in that ensemble prediction systems have been implemented
operationally. An ensemble forecast comprises multiple runs of numerical weather
prediction models, which differ in initial and lateral boundary conditions, and/or
the parameterized representation of physical processes. However, ensemble fore-
casts are subject to biases and dispersion errors, and thus statistical postprocessing
is required, with Bayesian model averaging and ensemble model output statistics
being state of the art approaches. Future work is called for to ensure that the
postprocessed forecast fields show physically realistic and coherent joint dependence
structures across meteorological variables, geographic space and look-ahead times.

Keywords: Bayesian model averaging; ensemble model output statistics; nu-
merical weather prediction; statistical postprocessing

1 Introduction

A major human desire is to make forecasts for an uncertain future. Consequently,
forecasts ought to be probabilistic in nature, taking the form of probability distri-
butions over future quantities or events (Dawid 1984; Gneiting 2008). That said,
weather forecasting has traditionally been viewed as a deterministic exercise, draw-
ing on highly sophisticated numerical models of the atmosphere. The advent of
ensemble prediction systems in the 1990s marks a radical change (Palmer 2002;
Gneiting and Raftery 2005). An ensemble forecast comprises multiple runs of nu-
merical weather prediction models, which differ in initial conditions, lateral bound-
ary conditions, and/or the parameterized representation of the atmosphere being
used. An example from the University of Washington Mesoscale Ensemble (Grimit
and Mass 2002) over Western North America and the Northeast Pacific Ocean is
shown in Figure 1.

2 Statistical postprocessing of ensemble weather

forecasts

Realizing the full potential of an ensemble forecast requires statistical postprocessing
of the model output, to address model biases and dispersion errors.
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Figure 1: 36-hour ahead ensemble forecast valid October 30, 2000 over Western
North America and the Northeast Pacific Ocean, with color representing precipita-
tion amounts. Three members of the University of Washington Mesoscale Ensemble
(Grimit and Mass 2002) are shown.

Popular approaches for doing this include the Bayesian model averaging (BMA)
method developed by Raftery et al. (2005) and the ensemble model output statis-
tics (EMOS), or heterogeneous regression, technique introduced by Gneiting et
al. (2005). The BMA approach employs a mixture distribution, where each mix-
ture component is a parametric probability density associated with an individual
ensemble member, with the mixture weight reflecting the member’s relative contri-
butions to predictive skill over a training period. In contrast, the EMOS predictive
distribution is a single parametric distribution.

To fix the idea, consider an ensemble of NWP forecasts, f1, . . . , fk, for temper-
ature, x, at a given time and location. Let φ(x; µ, σ2) denote the normal density
with mean µ ∈ R and variance σ2 > 0 evaluated at x ∈ R. The BMA approach of
Raftery et al. (2005) employs Gaussian components with a linearly bias-corrected
mean. The BMA predictive density for temperature then becomes

p(x | f1, . . . , fk) =

k
∑

i=1

wi φ(x; ai + bifi, σ2),

with BMA weights, w1, . . . , wk, that are nonnegative and sum to 1, bias parameters
a1, . . . , ak and b1, . . . , bk, and a common variance parameter, σ2, all of which being
estimated from training data over a rolling training period that consists of the recent
past. The EMOS approach of Gneiting et al. (2005) employs a single Gaussian
predictive density, in that

p(x | f1, . . . , fk) = φ(x; a + b1f1 + · · ·+ bkfk, c + ds2),

with regression parameters a and b1, . . . , bk, and spread parameters c and d, where
s2 is the variance of the ensemble values. The EMOS technique thus is more parsi-
monious, and the BMA method is more flexible.
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While the original methodological development of Raftery et al. (2005) and
Gneiting et al. (2005) was addressed at temperature and surface pressure, more
recent work aims at the statistical postprocessing of ensemble forecasts for quan-
titative precipitation (Sloughter et al. 2007), wind speed (Sloughter et al. 2010;
Thorarinsdottir and Gneiting 2010) and wind direction (Bao et al. 2010). For a
fully Bayesian alternative to the BMA approach of Raftery et al. (2005), see Di
Narzio and Cocchi (2010).

3 Challenges for future work

Even though Bayesian model averaging and ensemble model output statistics are
state of the art methods, they treat distinct weather variables at distinct geographic
locations and distinct look-ahead times independently of each other. This conflicts
with key applications such as air traffic control, flood management or winter road
maintenance, where it is critically important that the postprocessed forecast fields
show physically realistic and coherent joint dependence structures across meteoro-
logical variables, geographic space and look-ahead times.

Perhaps the most advanced technique in these directions is the Spatial BMA
approach of Berrocal, Raftery and Gneiting (2007), who merged the traditional
BMA approach of Raftery et al. (2005) with the geostatistical output perturbation
(GOP) technique of Gel, Raftery and Gneiting (2004) to obtain probabilistic tem-
perature field forecasts that honor the spatial structure of observations. Similarly,
the Bernoulli-Gamma BMA approach of Sloughter et al. (2007) could be merged
with the two-stage spatial method of Berrocal, Raftery and Gneiting (2008), which
uses Gaussian copulas, to yield spatially and/or temporally coherent postprocessed
forecast fields for quantitative precipitation. Variants of the Schaake shuffle (Clark
et al. 2004) provide nonparametric alternatives. Work along these lines is a critical
research need in the statistical postprocessing of ensemble weather forecasts, and
there is ample scope for continued methodological development, using nonparametric
tools, methods of spatial and spatio-temporal statistics, and/or copula techniques.
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Abstract: We consider the problem of spatial interpolation and outline the the-
ory behind kriging and more specifically intrinsic random function kriging. We also
mention thin-plate spline theory and show its link with kriging in order to overcome
problems in which the available data are not sufficient to estimate the spatial co-
variance structure of the process. A generalization of the theory to include kriging
with directional derivatives is also considered.

Keywords: Kriging, Spatial processes; Thin-plate splines, Derivative process.

1 Introduction

In this paper we are interested in predicting or interpolating values of a spatial
process X. Many models for spatial and spatio-temporal data use Gaussian Random
Fields (GRFs), and the geostatistical approach of specifying the covariance function,
and hence determining the variance matrix Σ. In this paper, the approach is to
assume that a specified covariance function is of interest and that interpolation of
the process is required. However, we consider the case in which there is only a
little prior knowledge of the field so that an estimation of the covariance structure is
difficult or unfeasible. In this framework, we exploit the one-to-one-correspondence
between Reproducing Kernel Hilbert Spaces (RKHSs) and positive semi-definite
(p.s.d) functions and show that thin-plate splines, considered as a special case of
RKHSs, provides a useful solution of the interpolation problem.

2 Materials and Methods

2.1 Kriging

In this section we provide a brief introduction of the kriging predictor for both
stationary and intrinsic random fields. For convenience, for known results we mainly
refer here to Cressie (1993) and Mardia et al. (1996).
Suppose that a spatial process, {X(t), t ∈ Rd}, is observed at sites t1, t2, . . . , tn

with ti = (ti[1], . . . , ti[d])T . An important problem in spatial analysis is to predict
X(t0) at some new site t0 ∈ Rd. The problem reduces to find a predictor of the
form
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X̂(t0) = λTx (1)

where x = [x(t1), x(t2), . . . , x(tn)]T and λ is a (n, 1) coefficient vector chosen to

minimise the prediction variance, E
{

[X(t0)− X̂(t0)]
2
}

, subject to the unbiasedness

constraint, E
[
X(t0)− X̂(t0)

]
= 0. To provide a solution at this problem, suppose

the random field has some polynomial drift of order r. Also let Gr be the space of

these polynomial terms, whose dimension is given by M =

(
d + r

d

)
. Denote with

U = {uim}; uim = tm
i , i = 1, 2, . . . , n, |m| ≤ r, the (n,M) drift (design) matrix and

with u0 the vector of drift terms at t0, with elements tm
0 , |m| ≤ r. Assume also that

Σ = {σij} is a non-singular covariance matrix with entries obtained by defining a
”potential” function, σ(|h|) = σ(|ti − tj|), i, j = 1, . . . , n. Finally, let σ2 = σ(0)
and σ0 a covariance vector with elements σ(|t0 − ti|), i = 1, . . . , n. Following this
notation, it can be shown that λ is given by

λ = Au0 + Bσ0 (2)

where A and B are (n,M) and (n, n) matrices respectively, whose form depends
on the underlying assumptions about the random process, and in particular on the
properties of the covariance matrix Σ. Also, note that for the case when X(t) is an
intrinsic random field, we have the additional constraint that the coefficients of the
prediction error,

[∑
i λix(ti) − X(t0)

]
, are generalised increments of order r. This

constraint can be written in the form UT λ = u0, which is the only constraint we
need in the kriging problem (Cressie, 1993).
In the stationary random field case, it is known that Σ is positive definite. In the
case of an intrinsic random field, the assumption that Σ is positive definite is no
longer valid. Hence we must find an alternative form for the kriging predictor which
only requires Σ to be conditionally positive definite. It can be shown that λ still
takes the form of equation (2), but A and B must be represented in a way which
does not require Σ to be positive definite. Provided Σ is non-singular, one method
for determining A and B is to define the matrices (Mardia et al., 1996)

K =

[
Σ U
UT 0

]
and K−1 =

[
K11 K12

K21 K22

]

such that

A = K12 and B = K11.

Then, by setting a = ATx and b = BTx, we may write
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X̂(t0) = aTu0 + bT σ0

=
M∑

j=1

ajuj0 +
n∑

i=1

bjσ(t0, ti). (3)

One possible common choice for σ(·) is any valid covariance function for a stationary
stochastic process in space, for which any null space of functions Gr will suffice.
However, in all cases in which the number of spatial sites is small and the estimation
of the covariance structure appears difficult, the following class of functions is useful:

σα(h) =

{
|h|2α log |h|, for α an integer

|h|2α, for α not an integer

where α is a smoothness parameter which can be specified ahead of time. Note
that this class of functions represents the covariance functions for intrinsic random
functions of order k = [α], with [α] the integer part of α. Also, these functions are
self-similar and so σα(h) and σα(ch) yield the same predictions.

2.2 Kriging with derivative information

There are some cases of interest in which the information about objects (e.g. plants
and weeds in crop images) comes from the boundary, which is a continuous curve.
In this framework, the kriging predictor can be used in order to modelling the
continuous outline of the object. A key aspect to our particular problem is thus the
introduction of some extra information, such as derivatives, in order to get a better
performance of the modelling procedure.
Suppose that all the known values and derivatives of a specific spatial pattern are
collected into a vector y. Let κ be a vector of corresponding indices to show the
order of the derivative; for example, assuming d = 1, κi = 0 if yi is a data value,
κi = 1 if yi is a first derivative. For each site tj there may be several choices of κi

if the value of the function and of some of its derivatives are all known at that site.
The problem is, as before, to find a coefficient vector λ such that X̂(t0) = λTy is
the best unbiased linear estimator of X(t0).
Let κi =

(
κi[1], . . . , κi[d]

)
be a d−dimensional multi-index of non-negative integers

with |κi| = κi[1]+. . .+κi[d]. If we have derivative information of order p = |κi|, then
α must satisfies the inequality α > p. In the following we also take the smallest drift
allowable, that is r = [α]. In order to define the d−dimensional kriging predictor for
derivatives of order up to and including p and with polynomial drift of order r, the
covariance matrix, Σ, consists of entries which have the form

σij = (−1)|κj |σ(κi+κj)
α (ti − tj), 1 ≤ i, j ≤ n
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where σ
(κi)
α denotes the partial derivative of σα(h) of order κi. The drift matrix U

instead consists of elements

uim =
∂|κi|

∂tκi
i

(tm
i ), 1 ≤ i ≤ n, |m| ≤ r.

3 Applications

In the following we provide a list of applications in which the kriging framework, as
outlined in sections 2.1 and 2.2, plays an important role.
Spatial and spatio-temporal data occur widely. There is often interest in predicting
or interpolating values. Some data sets may have missing values at some sites, or at
some times. These missing values may be separated or clumped. Separated missing
values may, for example, occur because of random instrument malfunctions. An
example of clumped missing values occurs with passive satellite images when there
is cloud cover.
A different application when prediction or interpolation is required is checking ob-
servations which may appear to be aberrant or influential. Typical influence and
outlier statistics are based on estimating the values using all other values.
A wide range of methods used for constructing optimal spatial sampling designs are
also based on sampling schemes with minimal prediction variance. However, a basic
problem of this approach is that before the actual sampling takes place there is only
a little prior knowledge of the field. To overcome this problem, we may set α = 1
and chose σ(h) = |h|2 log |h|, which is conditionally positive definite whenever the
null space contains the linear trend, i.e. Gr = span (1, t[1], t[2]) , t ∈ R2. In this
case, it turns out that the kriging function (1) is an interpolating thin-plate spline.
Finally, we note that the appearance of agricultural products can be evaluated by
considering their size, shape, form and the absence of visual defects. Among these
features the shape, also measured through the outline of the object, plays a crucial
role. Description of agricultural product shape is often necessary in research fields
for a range of different purposes, including the investigation of shape for cultivar
descriptions, plant variety or cultivar patents and evaluation of consumer decision
performance.
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Abstract:  Detailed information on soil to manage polluted or agricultural sites is often 
prohibitively expensive to obtain. To sample adequately, the approximate scale of 
spatial variation needs to be known. If soil data are available, variograms can be 
computed and used to determine the kriging errors for several grid intervals and an 
interval selected to meet a specific tolerable error. In the absence of prior knowledge, if 
soil properties appear related to ancillary data such as aerial photographs, elevation or 
apparent electrical conductivity (ECa), individual or multivariate variograms of such 
data may indicate the scale of variation in the soil. If the scale of variation indicates too 
few data to compute a reliable variogram conventionally, it can be estimated by residual 
maximum likelihood or a standardized variogram from ancillary data can be used.  
 
Keywords: variogram, residual maximum likelihood (REML), standardized variogram   
 
1. Introduction 
 
Soil properties can vary at markedly different spatial scales within sites of interest, such 
as fields. The variation comprises that over short distances of a few metres and over 
longer distances of tens or hundreds of metres. For most environmental and agricultural 
management, it is variation over tens or hundreds of metres that managers want to 
resolve and we can regard the short-range variation as ‘noise’ or a sampling effect. 
Many soil attributes have to be determined from samples taken in the field, therefore 
there is a need to predict accurately at places where there are no data. Kriging provides 
a sound basis for prediction leading to accurate digital mapping for managing soil 
attributes (Oliver, 2010). The accuracy of kriged and other interpolated predictions, 
however, depends on the quality of sample information to compute accurate variograms 
and availability of spatially dependent data from which to predict (Webster and Oliver, 
2007). This means that sampling should be at an interval that is well within the 
correlation range of spatial variation. Therefore, it is essential that the spatial scales of 
variation in the properties of most importance for environmental and agricultural 
management are used to guide sampling.  

Sampling on a grid is often used because it provides an even cover of values and 
minimizes the maximum estimation variance (or error) for a given grid interval and it is 
efficient for sample collection in the field. If variograms of soil properties from 
previous surveys exist for an area with a similar soil parent material, they can be used 
with the kriging equations to determine an optimal grid interval. If the scale of variation 
is large, the sampling intervals recommended by this method will also be large and there 
may be too few data from which to compute a reliable variogram by the usual method 
of moments estimator. Webster and Oliver (1992) showed that at least 100 data are 
required to compute a reliable variogram in this way from isotropic data. However, 
Kerry and Oliver (2007) have shown that a variogram estimated by residual maximum 
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likelihood (REML) can provide more accurate predictions with fewer data than one 
estimated conventionally. For some soil properties, the variation might be evident in 
remote and proximally sensed imagery. Variograms computed from such ancillary data 
can be used to determine the approximate scale of spatial variation. A standardized 
variogram based on ancillary data or existing variograms of soil properties can also be 
used to krige spatially dependent (Kerry and Oliver, 2008). We illustrate these methods 
with a case study in England.  

2. Materials and Methods 
 
Matheron’s method of moments (MoM) estimator to compute the variogram is given by 
 
 
 
where z(xi) and z(xi+h) are the actual values of Z at places xi and xi+h, and m(h) is the 
number of paired comparisons at lag h. The parameters of the model fitted to the 
experimental variogram can be used with the data for prediction at points or over 
blocks.  Kriged predictions are a weighted average of the data, z(x1), z(x2), …, z(xn), at 
the unknown point or block, B, 
  
   

 

 where n usually represents the data points within the local neighbourhood and λi are the 
weights. To ensure that the estimate is unbiased the weights are made to sum to one. 
The estimation variance of          is 

where             is the average semivariance between data point xi and the target block B, 
and γ ( , )B B is the average semivariance within B, the within block variance. The kriging 
error is the square root of this.  

McBratney et al. (1981) showed how the variogram and kriging equations could 
be used to determine an optimal sampling interval for prediction by kriging before 
obtaining new data from a survey. The kriging weights, and also the kriging variances 
or errors, depend on the configuration of the sampling points in relation to the target 
point or block and on the variogram and not depend on the observed values at these 
points. Therefore if we have a variogram function from a previous survey we can 
determine the kriging errors for any grid size before sampling.  

The experimental multivariate variogram (Bourgault and Marcotte, 1991) was 
computed from aerial photograph data by the standard formula adapted for the 
multivariate case: 

 

 

where z(xi) and z(xi + h) are the vectors of observations at xi and xi + h, T is the 
transpose and M is a p × p positive-definite symmetric matrix defining the relations 
between the variables.  
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Pardo-Igúzquiza (1998) suggested that a reliable variogram could be computed 
from a ‘few dozen’ data by maximum likelihood or residual maximum likelihood 
(REML). Kerry and Oliver (2007) examined this idea further and suggested that 50 to 
60 data might suffice (this paper also provides the detail on the theory of the method). 

 
3. Results 
 
The model parameters of a variogram computed from loss on ignition (LOI) data of a 
field in Wallingford, Oxfordshire, England were used to determine the kriging errors 
over blocks of various sizes and for a range of grid intervals. The kriging errors are 
plotted against grid spacing Fig. 1a and a suitable sampling interval would be 120 m for 
a tolerable error of 0.5%.  

 
 

 

 

 

 

 

 

 

Figure 1: (a) Graph of kriging error against grid spacing for loss on ignition and (b) 
multivariate variogram of aerial photograph data at Wallingford, Oxfordshire, England. 

 
The multivariate variogram computed from the red, green and blue wavebands 

of an aerial photograph of bare soil at Wallingford was fitted by a stable exponential 
function with an approximate range of 205 m (Fig. 1b). Based on less than half the 
variogram range, this suggested a sampling interval of about 90 m. Figure 2a–c shows  
kriged maps based on the conventional variograms with the original data on a 30-m 
grid, the suggested interval of 90 m and for 50 sites based on a 120-m grid with 
additional samples at 60 m, respectively for LOI at Wallingford. Figure 2d,e  shows the 
kriged maps of LOI based on the 90-m grid with a variogram estimated by REML, and 
based on a 120-m grid with 15 additional targeted samples estimated by the variogram 
in Fig. 1b standardized to a sill of unity. Figure 1c–e  shows that additional samples at a 
shorter interval, a variogram estimated by REML or a standardized variogram improve 
estimates from sparse data.  
 
4. Concluding remarks 
 
The results show the importance of knowing the scale of spatial variation, of having 
data at distances shorter than half the range of correlation and of alternative methods of 
estimating the variogram.  
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Figure 2: Kriged maps of LOI for Wallingford: with variograms estimated by MoM (a) 
30-m grid (296 data), (b) 90-m grid (36 data), (c) 120-m grid + samples at 60-m (50 
data); (e) 90-m grid with variogram estimated by REML and (d) 120-m grid + 15 
targeted samples with standardized variogram.  
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Abstract: Often environmental scientists face the problem of clustering dif-
ferent sites, areas or stations in a monitoring network in order to identify some
common features among data collected at different locations. In a functional data
analysis approach, each location can be seen as a specific individual, on which noisy
observations from a continuous random function are collected at discrete times. The
definition of suitable models for samples of such functional observations, can provide
useful insights about the dynamics of the variables of interest. In such a context, a
cluster can be defined as a group of individuals (i.e. locations, stations, areas etc.)
where the observed trajectories share common salient features. We present some
classification results in a water quality network and focus on some open issues.

Keywords: Cluster analysis, Functional data, Water quality.

1 Introduction

Often environmental scientists face the problem of clustering different sites, areas
or stations in a monitoring network in order to identify some common features
among data collected at different locations. It is a common practice to use standard
classification methods such as k-means or hierarchical classifiers, by considering
temporal (e.g. annual) averages of one or more variables measured at each site.
This is clearly a limitation, since the whole information about the dynamics of
the observed variables is lost. Moreover, such methods do not take into account the
uncertainty that should characterise any partition based on sample information. The
combination of functional data analysis (Ramsey and Silverman, 2005; Ferraty and
Vieu, 2006) and probabilistic cluster analysis methods (Banfield and Raftery, 1993),
which allow one to estimate the probability that a given object belongs to a given
group, represents, in our opinion, an important step towards a better understanding
of environmental data.

Here, we shall provide a classification of the sites of a water quality monitoring
network located in Venice Lagoon, by using a trophic index (TRIX, Vollenweider
et al. 1998). We apply a classification method based on functional data analysis,
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introduced by James and Sugar (2003), which allows to take into account sample
information about the temporal dynamics of the variable of interest, as well as
quantify the uncertainty in the partition.

2 Classification of functional data

Grossly speaking, functional data analysis methods look at time series of data col-
lected on each individual, in our case on each site, as measurements of a continuous
function taken at a finite number of instants and corrupted by noise. Any observed
trajectory can be seen as the noisy measurement of an unobservable curve, which is
the object of interest. Following the classification method proposed by James and
Sugar (2003), data are modelled as a mixture of Gaussian spline regressions, where
each mixture represents a model for a specific cluster. Spline coefficients are the
sum of a deterministic term, which represents the cluster effect on the mean of the
variable, and a stochastic component, which represents an individual (site-specific)
random effect. Parameters can be estimated via maximum likelihood. Mixture
weights can be seen as prior membership probabilities of any site. The applica-
tion of Bayes theorem, after plugging maximum likelihood estimates into the model,
leads to posterior membership probabilities for each site in the network (Banfield
and Raftery, 1993). A generic monitoring station is then allocated to the group
which encompasses it with highest posterior probability. The number of groups,
i.e. the number of mixture components, is selected by using BIC criterion.

3 Site classification in terms of water quality

The data. Venice Lagoon, with an extension of about 500 km2 is one of the largest
wet areas in Europe. It is a shallow water system with average depth of one meter
crossed by a network of canals which determine a rather complex hydrodynamic
circulation. As other European estuaries and lagoons, it is classified as a transition
water body. Overall, the tributary discharge is about 30 m3/sec. Rivers bring in
freshwater, nutrients and pollutants, whereas tides bring in marine water. Internal
hydrodynamics disperse the pollutants and, eventually, dissolved compounds are
exported to the sea.

Data were collected at 30 monitoring sites which are shown on the map in figure
1. The first chacter of site labels identifies a particular category: letter B means
that the site is located in a shallow area, letter C indicates that the site is located on
a canal and letter M identifies sites located in the coastal area, next to the Lagoon.
The same figure shows (in blue) the network of canals which are very influential in
the Lagoon hydrodynamics and must be taken into account when interpreting clas-
sification results. Measurements were repeated in time at 38 subsequent instants
(in the period ranging from January 16th, 2001 to December 17th, 2003) corre-
sponding to neap tides. We considered a subset of the variables which have been
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monitored, namely: chlorophyll-a (CHL-a), dissolved oxygen (DOX), total nitrate
(NIT) and reactive phosphorus (PPO4). CHL-a and DOX can be taken as proxies
for actual primary production. Even though in shallow lagoons and coastal areas,
including the lagoon of Venice, macroalgae and seagrasses usually account for the
major fraction of the production, phytoplanctonic production is extremely impor-
tant, since the planktonic compartment represents a source of food for fish juvenils
and shellfish. The concentrations of dissolved oxygen, total nitrate and reactive
phosphorus provide information about the trophic potential of a water body. In
fact, an excess of these chemicals could enhance the primary production of phyto-
plankton and macroalgae and cause the symptoms of eutrophication, as happened
in Venice Lagoon in the 1970ies an 1980ies.

TRIX. TRIX is a widely used trophic index for marine coastal waters proposed
by Vollenweider et al. (1998). It considers both factors that are direct expressions of
productivity (chlorophill-a and dissolved oxigen) and nutritional factors (nitrogen
and phosphorous). Some alternative formulations have been proposed. Here we
consider the following one:

TRIX =
log10(CHL-a×DOX× NIT× PPO4) + 1.5

1.2
, TRIX ∈ [1, 10]

where DOX is the absolute deviation of oxygen from saturation and the other sym-
bols indicate the concentrations, in mg/m3, of the compounds mentioned above.
The values of TRIX range from 1 to 10: low values indicate oligotrophy (scarcity of
nutrients); high values indicate hypertrophy (exeedence of nutrients). A water body
in a good trophic state should not exceed the value 5.

4 Results

In our application we identified two groups: the first one characterised by good val-
ues of TRIX and the second one exhibiting high TRIX values for the most part of
the sample period. Figure 1 shows the raw data, the group specific mean trajectories
and individual mean trajectories. The same figure shows a map where two spatial
clusters are clearly identified. It is worth to note, however, that the posterior mem-
bership probabilities of sites B11, C06, C01, and C05 range between 0.54 and 0.87,
indicating a rather strong uncertainty in their allocation to one of the two groups
(for the remaining sites, the allocation probability was always higher than or equal
to 0.99).

An explicit treatment of spatial dependence has not yet been developed for the
class of models we have considered here. Important advances in this direction have
been made in the Bayesian nonparametrics literature and research in this field is
under way.
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Figure 1: Plots of raw data, group specific mean trajectories, individual mean tra-
jectories and map of monitoring sites (red=“high TRIX”; blue=“low TRIX”).
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Spatially correlated functional data1
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Abstract: Observing complete functions as a result of random experiments is
nowadays possible by the development of real-time measurement instruments and
data storage resources. Functional data analysis deals with the statistical descrip-
tion and modeling of samples of random functions. Functional versions for a wide
range of statistical tools have been recently developed. Here we are interested in the
case of functional data presenting spatial dependence, and the problem is handled
from the geostatistical and point process contexts. Functional kriging prediction
and clustering are developed. Additionally, we propose functional global and local
marked second-order characteristics.

Keywords: Basis functions, Functional clustering, Functional kriging, LISA
functions, Trace-variogram

1 Introduction

In many fields of environmental sciences the observations consist of samples of ran-
dom functions. Since the early nineties, Functional Data Analysis (FDA) has been
used to model this type of data (Ramsay and Dalzell, 1991). From the FDA point
of view, each curve corresponds to one observation, that is, the basic unit of infor-
mation is the entire observed function rather than a string of numbers. Functional
versions for many branches of statistics have been given (Ramsay and Silverman,
2005).

The standard statistical techniques for modeling functional data are focused
on independent functions. However, in several disciplines of applied sciences there
exists an increasing interest in modeling correlated functional data: this is the case
when samples of functions are observed over a discrete set of time points (temporally
correlated functional data) or when these functions are observed in different sites of a
region (spatially correlated functional data). In these cases some statistical methods
for modeling correlated variables have been adapted to the functional context.

We can define a spatial functional process as
{
χs, s ∈ D ⊂ Rd

}
where s is a

generic data location in the d-dimensional Euclidean space, the set D ⊂ Rd can be
fixed or random, and χs are functional random variables, defined as random elements
taking values in an infinite dimensional space (or functional space). Typically χs

1Research partially supported by the Spanish Ministry of Education and Science through grant
MTM2010-14961, and Bancaja grant P1-1B2008-27.
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is a real function from [a, b] ⊂ R to R. The nature of the set D allows to classify
spatial functional data. Geostatistical functional data appear when D is a fixed
subset of Rd with positive volume and n points s1, . . . , sn in D are chosen to observe
the random functions χsi

, i = 1, . . . , n. We say that we have a functional marked
point pattern, when a complete function is observed at each point generated by a
standard point process.

We focus here in the methodological issues opened around the geostatistical
problems of spatial prediction and classification of functional data following Delicado
et al. (2010) and Giraldo et al. (2010, 2011). In addition, and following Comas et al.
(2011) and Mateu et al. (2008), we also present some issues concerning second-order
characteristics in functional marked point patterns.

2 Materials and Methods

2.1 Geostatistical functional context

Let
{
χs(t), t ∈ T, s ∈ D ⊂ Rd

}
be a random function defined on some compact set

T of R. Assume that we observe a sample of curves χsi
(t), for t ∈ T and si ∈ D, i =

1, · · · , n. It is usually assumed that these curves belong to a separable Hilbert space
H of square integrable functions defined on T . We assume for each t ∈ T that we
have a second-order stationary and isotropic random process, that is, the mean and
variance functions are constant and the covariance depends only on the distance
among sampling sites. Formally, we assume that:

• E(χs(t)) = m(t), for all t ∈ T, s ∈ D.

• Cov(χsi
(t),χsj

(u)) = C(h; t, u), si, sj ∈ D, t, u ∈ T , h = ‖si − sj‖, the Eu-
clidean distance. If t = u, Cov(χsi

(t),χsj
(t)) = C(h; t).

• 1
2
V(χsi

(t) − χsj
(u)) = γ(h; t, u), si, sj ∈ D, t, u ∈ T , h = ‖si − sj‖. If t = u,

1
2
V(χsi

(t)− χsj
(t)) = γ(h; t).

The function γ(h; t), as a function of h, is called the variogram of χ(t).
We can use a family of point-wise linear predictors for χs0(t), t ∈ T , given by

χ̂s0(t) =
n∑

i=1

λi(t)χsi
(t), λ1(t), . . . , λn(t) : T → R, (1)

For each t ∈ T , the predictor (1) has the same expression as an ordinary kriging
predictor. This predictor is called the point-wise linear predictor for functional data.
This modeling approach is consistent with the functional linear concurrent model
(FLCM) as mentioned in Ramsay and Silverman (2005) in which the influence of
each covariate on the response is simultaneous or point-wise. In our context, the
covariates are the observed curves at n sites of a region and the functional response
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is an unobserved function on an unsampled location. Consequently, the objective
function is

E‖χ̂s0(t)− χs0(t)‖
2 =

∫
T

E
(
χ̂s0(t)− χs0(t)

)2
dt.

The predictor (1) is unbiased if E(χ̂s0(t)) = m(t), for all t ∈ T , that is, if
∑n

i=1 λi(t) =

1 for all t ∈ T . In this case E
(
χ̂s0(t)− χs0(t)

)2
= V

(
χ̂s0(t)− χs0(t)

)
.

We then present an approach for spatial prediction based on the functional lin-
ear point-wise model adapted to the case of spatially correlated curves. First, a
smoothing process is applied to the curves by expanding the curves and the func-
tional parameters in terms of a set of basis functions. The number of basis functions
is chosen by cross-validation. Then, the spatial prediction of a curve is obtained as
a point-wise linear combination of the smoothed data. The prediction problem is
solved by estimating a linear model of coregionalization to set the spatial dependence
among the fitted coefficients. We extend an optimization criterion used in multivari-
able geostatistics to the functional context. We also extend cokriging analysis and
multivariable spatial prediction to the case where the observations at each sampling
location consist of samples of random functions, that is, we extend two classical mul-
tivariable geostatistical methods to the functional context. Our cokriging method
predicts one variable at a time as in a classical multivariable sense, but considering
as auxiliary information curves instead of vectors. We also propose an extension of
multivariable kriging to the functional context by defining a predictor of a whole
curve based on samples of curves located at a neighborhood of the prediction site.
In both cases a non-parametric approach based on basis function expansion is used
to estimate the parameters, and we prove that both proposals coincide when using
such an approach.

Finally, noting that classification problems of functional data arise naturally in
many applications, we present methods to detect groups when the functional data
are spatially correlated. Our methodology allows to find spatially homogeneous
groups of sites when the observations at each sampling location consist of samples of
random functions. In univariable and multivariable geostatistics various methods of
incorporating spatial information into the clustering analysis have been considered.
Here we extend these methods to the functional context in order to fulfill the task of
clustering spatially correlated curves. In our approach we initially use basis functions
to smooth the observed data, and then we weight the dissimilarity matrix among
curves by either the trace-variogram or the multivariable variogram calculated with
the coefficients of the basis functions.

2.2 Point pattern functional context

Despite of the relatively long history of point process theory few approaches have
been performed to analyse spatial point patterns where the features of interest are
functions (i.e. curves) instead of qualitative or quantitative variables. Examples
of point patterns with associated functional data include forest patterns where for
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each tree we have a growth function, curves representing the incidence of an epi-
demic over a period of time, and the evolution of distinct economic parameters such
as unemployment and price rates all for distinct spatial locations. The study of
such configurations permits to analyse the effects of the spatial structure on indi-
vidual functions. For instance, the analysis of point patterns where the associated
curves depend on time may permit the study of space-time interdependencies of such
dynamic processes. However, note that time has not necessarily to be the depen-
dent argument. Here point patterns with associated curves will be called functional
marked point patterns.

Following Comas et al. (2011), we formulate and illustrate a new second order
characteristic to analyse functional marked point patterns, the functional mark cor-
relation function. This new statistic is a counterpart version of the mark correlation
function where instead of a test function relating a quantitative mark we consider
a test function involving two whole functions. This permits to analyse the spatial
dependence in the functional marks. An additional mark configuration is considered
by defining local characteristics in terms of LISA functions (Mateu et al., 2008), and
we exploit these functions to obtain functional information of the point pattern.
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Abstract: Outdoor fires, including wildfires, prescribed burns, slash burns, and 
agricultural field burning can emit significant amounts of particulate matter and gaseous 
pollutants into the atmosphere, which can have severe effect on local and regional air 
quality. The aim of this study was to evaluate the impact on air quality of a waste 
storage fire, using a dispersion modeling system developed by Arianet©. The system 
includes a micrometeorological processor to reproduce the meteorology and the 
atmospheric turbulence and a lagrangian dispersion model to simulate the dispersion of 
inert pollutants on the local scale. A crucial issue was the accuracy in characterizing the 
emission source. Model results were compared with measured concentrations at air 
quality monitoring stations. 
 
Keywords: fires, air quality, modeling system  
 
 
1. Introduction 
 
Modelling is extensively used in air quality forecasts with the aim of providing next day 
and near real time information to the public and for the implementation of short term 
action plans; it represents a useful operative support in accidental events such as 
wildfires, slash burns and agricultural field burning, supplying a fast view of impacts 
over the territory. Pollutant concentrations at ground level can be directly influenced by 
these events, going to affect local air quality (Yinga Q., 2009) .  
The fire event analysed in this study broke out over an area near Brindisi, shown in 
Figure 1, in the south-eastern part of Apulia region, lapped to the east by the Adriatic 
sea. It started on July 9th at 14:30 pm and burned out until July 10th at 6:00 am.  This 
period was characterized by high pressure and stable conditions, with a complete 
rotation of winds from northern quadrant, due to breeze circulation, during the first day. 
The fire developed in a waste storage, on an area of 4000 m2 which contained mainly 
undefined plastic material for a total amount of about 2000 ton. The emission was 
considered as a point source of particulate matter (PM10), uniformly emitting during the 
whole period of 16 hours. Hourly meteorological data were provided by three stations 
(M1, M2 and M4 in Figure 1), while sounding meteorological data were provided every 
12 hours by the Air Force by a station a few kilometers from Brindisi (station M3). The 
meteorological parameters measured by these stations are indicated in the table at the 
side of Figure 1. 
In the area of study, PM10 is measured continuously with different sampling times, at 4 
air quality monitoring sites, handled by Regional Environmental Protection Agency 
(ARPA). The position of each station is shown in Figure 1. 
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Figure 1: Domain (left); study area (right) where triangles indicate meteorological 

stations (M1, M2, M3), black points indicate air quality stations (AQ1/AQ4), and the 
cross represents fire location. 

 
 
2. Materials and Methods 
 
The fire from waste disposal was simulated as a ground level point source emitting fine 
particulate matter (PM10). Plume rise was calculated by modified Briggs’ equation, 
which takes into account for effective diameter of the pool fire (Fisher B., 2001). 
Emission was estimated considering waste disposal as a municipal refuse with a PM10 
emission factor of 8 kg/tonn (EPA user guide). Disposal was considered mainly 
composed of plastic material with a calorific power of 31425 KJ/kg.   
The impact on air quality of the fire was simulated using a dispersion modeling system 
developed by Arianet©. The system includes a micrometeorological processor 
SURFPRO (Arianet, 2007) to reproduce the atmospheric turbulence and the lagrangian 
dispersion model SPRAY (Arianet©, 2007) to simulate the dispersion of primary 
pollutants on a local scale. Modeling system can run in two modalities: the forecast run 
uses forecast at +24 and +48 hours, elaborated by the coupled meteorological models 
NCEP-RAMS (Pielke et al., 1992), the analysis run builds meteorological fields by 
available meteorological measures using the diagnostic wind field model MINERVE 
(Geai, 1987). 
In order to evaluate the performance of modeling system to reproduce the evolution of 
pollutant over the area, the system was run in the two modalities, for 24 hours (from 
July 9th at 13:00 pm to 10th at 13:00 pm). In Table 1 we summarized the main features 
of the modeling system. 
 
 

 NCEP-RAMS Minerve SurfPro SPRAY 

Grid  
92 x 66 x 15 
∆x=∆y=1 km 

Top domain = 6000m 

92 x 66 x 15 
∆x=∆y=1 km 

Top domain = 6000m 

92 x 66 x 3 
∆x=∆y=1 km 

Top domain = 5000m 

case 1 
Analysis run  

 
Reconstruction of gridded 

meteorological fields by the 
stations M1, M2 and M3 

2D gridded turbulence 
fields 

Transport and dispersion 
of pollutant 

case 2 
Forecast run  

3D Gridded 
meteorological 

fields 

Interpolation of prognostic 
wind fields  

2D gridded turbulence 
fields 

Transport and dispersion 
of pollutant 

 
Table 1: Model configuration 

 

 

Stations Measured variables 
M1 – Torchiarolo (ground 
level station, ARPA) 

 wv (m/s), wd (deg), T 
(°C),  

M2 – Enel (at 10m and 50m) wv (m/s), wd (deg), T 
(°C), 

M3 – Brindisi (radiosonde, up 
to 2000m) 

wv (m/s), wd (deg), T 
(°C), 

M4 – S.M. Cerrate ( ground 
level station, ARPA) 

wv (m/s), wd (deg), T 
(°C), 

AQ1 – via Taranto (BR) CO, C6H6, PM10 (daily), 
NO2, O3, SO2 

AQ2 – via dei Mille (BR) PM10, NO2, SO2 

AQ3 – Sisri (BR) CO, C6H6, PM10, NO2, 
SO2 

AQ4 - Mesagne PM10 (daily), NO2, SO2 
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3. Results 
 
To verify the capability of the models to reproduce meteorological features of the area, 
a comparison between meteorological model results and measurements was performed. 
Figure 2 shows the evolution of modelled (forecast and analysis) and observed hourly 
average wind speed and direction at M1, M2 and M4 stations, for the 24 hours 
simulation.  

 
Figure 2: Evolution of modelled (forecast an analysis) and observed hourly average 

wind speed (top) and direction (down) at the three stations M1, M2 and M4, for the 24 
hours of simulation 

 
M1 and M2 stations were only compared with forecast simulation (case 2), while M4, 
being independent by the analysis run (case 1), both with forecast and analysis run. The 
model seemed to overestimate wind speed measured at all the stations in case 2, while a 
good accordance with analysis model could be appreciated at station A4. Simulated 
wind direction in case 2 delayed at 19:00 the rotation of the wind, while measured data 
at 14:00 already detected the onset of a breeze circulation. The analysis modality (case 
1) reproduced quite good this rotation at station M4. In Figure 3, comparison between 
measured and modelled PM10 concentrations for both case 1 and 2 at AQ1, AQ2, AQ3 
and AQ4 air quality stations is shown, together with - on the right of the same figure -
maps of modelled average and maximum PM10 concentrations. Measurements at AQ1, 
AQ2 and AQ3 stations, near the city centre and the burned area, did not appear to be 
affected by the fire event; only AQ4 daily measurements (red line in Fig. 3) showed an 
increase on July 9th. 
It can be observed that, in general, modelled contribution of the fire event to total PM10 
concentration was quite low. Case 1 reproduces maximum concentrations on July 10th 
around 6:00 a.m., but it shows a peak at AQ4 station on 9th at 17:00 p.m. Case 2 shows 
maximum values for all the stations on 9th , between 18:00 and 20:00 p.m. A shift in 
time is evident between simulated PM10 in analysis (case 1) and forecast modalities 
(case 2), due to the reproduction of local circulation. As a consequence, modelled 
impact area in case 1 is substantially different from case 2. In case 1, model indicates 
that most significant effects were not observed near Brindisi urban area, but in S-SO 
direction from the ignition point, while in case 2 PM10 remain localized around the 
burned area.  
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Figure 3: (left) bihourly (AQ2 and AQ3) and daily (AQ1 and AQ4) PM10 measures 
(µg/m3)  versus modelled (case 1 and case 2) hourly concentration; (right) average 

simulated ground level concentration fields of PM10 (µg/m3) for the two case studies 
 
 

4. Concluding remarks 
 
Air quality system developed by Arianet© was used to simulate the transport and 
dispersion of particulate matter produced by a fire event inside a waste storage. 
Modelled results were compared with measured data. 
Results pointed out that: i) analysis modality seems to be more reliable in reproducing 
the evolution of pollutants over the domain, ii) the evaluation in forecast mode is rather 
affected by the quality of meteorological forecasting in the short term; iii) the fallout of 
PM10 due to the fire is low with respect to measured concentrations. 
We have to stress the importance of having correct emission data, the knowledge of the 
type of the burned material from which to calculate the calorific power, and a good 
representation of meteorology able to reproduce and describe the characteristics of 
circulation on a local scale. 
 
References 
 
Arianet, 2007: SPRAY 3.1 General Description and User’s Guide, R2007.08 
Arianet, 2007: SURFPRO (SURrface-atmosphere interFace PROcessor) User's guide, 

Version 2.2.10. 
EPA User Guide, AP-42 Solid Waste Disposal. 
Fisher B., (2001), Modelling plume rise and dispersion from pool fires, Atmospheric 

Environment, Volume 35, 2101 – 2110. 
Geai P. (1987), Methode d'interpolation and reconstitution tridimensionelle d'un champ 

de vent: le code d'analyse objective MINERVE, EDF/DER report HE-34/87.03. 
Pielke R.A., Cotton W.R., Walko R.L., Tremback C.J., Lyons W.A., Grasso L.D., 

Nicholls M.E., Moran M.D., Wesley D.A., Lee T.J. and Copeland J.H. (1992), A 
comprehensive meteorological modelling system – RAMS. Meteorol. Atmos. Phys. 
49, 69-91. 

Yinga Q., Kleeman M. (2009) Regional contributions to airborne particulate matter in 
central California during a severe pollution episode, Atmospheric Environment, 
Volume 43, Issue 6, 1218-1228. 



1 
 

Estimation of the areas of air quality limit value 
exceedances on national and local scales. A 

geostatistical approach.1 
 

Laure Malherbe1, Maxime Beauchamp1, Laurent Létinois1, Anthony Ung1 
1 : Institut National de l’Environnement Industriel et des Risques (INERIS), Direction 

des Risques Chroniques, Parc Technologique ALATA, 60550 Verneuil-en-Halatte, 
France, laure.malherbe@ineris.fr 

 
Chantal de Fouquet2 

2: Mines ParisTech, Centre de Géosciences, Equipe géostatistique, 35 rue Saint-
Honoré, 77305 Fontainebleau, France 

 
 
 

Abstract:  
Each year Member States have to report to the European Commission on the 
exceedances of air quality limit values which occurred on their territory. Quantitative 
information is required about the areas and population exposed to such exceedances. 
A probabilistic methodology for defining exceedance zones has been developed, based 
on preliminary air quality mapping. Atmospheric concentration fields estimated by 
kriging and the corresponding kriging variance are used to identify areas where the 
exceedance or non-exceedance can be considered as certain and areas where the 
situation with respect to the limit value is indeterminate. The methodology is applied on 
national and urban scales focusing on exceedances of PM10 daily limit value and NO2 
annual limit value. Results are discussed from operational perspectives.  
 
Keywords: threshold exceedance, geostatistics, kriging, NO2, PM10 
 
 
1. Introduction 
 
In addition to reporting air quality measurement data above limit values, Member States 
have to provide estimates of the surface and population exposed to the observed 
exceedances. This study aims at developing a methodology that can be easily 
implemented both at national level for an overall evaluation of exceedance areas, and at 
local level for a more detailed assessment. 
 
A two-stage methodology is proposed. It first involves estimating concentrations over 
the domain of interest and computing the estimation variance. A kriging based mapping 
approach can be used at that stage. Non-exceedance and exceedance zones are then 
determined from kriging results, considering the risk of misclassifying a point.  
 

                                                           
1 This work was funded by the French Ministry in charge of the Ecology and Sustainable Development.  
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The calculation steps are described in section 2. Section 3 provides application 
examples on national (PM10) and urban (NO2) scales. Improvement issues are discussed 
in the concluding part.  
 
 
2. Materials and Methods 
 
Let LV designate the considered limit value. LV = 40 µg/m3 for NO2 or PM10 annual 
mean concentrations; LV = 50 µg/m3, not to be exceeded more than 35 times per year, 
for PM10 daily mean concentrations (Directive 2008/50/EC).  
 
Let Z(x) denote the concentration at location x that has to be compared to LV, Z*(x) its 
estimate from kriging and σK(x) the kriging standard deviation. Let us take the 
estimation error ε(x) into account, conventionally assumed to be a Gaussian process 
with zero mean and a standard deviation equal to σK(x): 
  

 with  (1) 
 
Evaluating whether Z(x) exceeds the limit value can be written as follows: 
 

 (2) 
 

In the proposed method, non-exceedance and exceedance areas are delimited from 
inequality (2), considering a non-detection probability threshold α, which is the risk of x 
belonging to a non-exceedance zone whereas Z(x) is above the limit value, and a false 
detection probability threshold β, which is the risk of x belonging to an exceedance zone 
whereas Z(x) is below the limit value.  
If the priority is to keep the number of exceedance points wrongly included in the non-
exceedance area as small as possible, then α should be set to a low value whereas a 
higher value may be allowed for β. Cori (2005) suggests that α be given the classical 
value of 5% while β could empirically be set to 1/3 to have a moderate risk of false 
detection. This leads to the following definitions:  

- non-exceedance zone: {x} such as P[Z(x) > LV] < α 

    

   for α=5%     (3) 
- exceedance zone: {x} such as P[Z(x) ≤ LV] < β  

    

       for β=34%    (4) 
 q1-α and qβ are the (1-α) and β-quantiles from the standard normal distribution. 
 
The locations satisfying none of those conditions make the “uncertainty zone”. In 
section 3 this formal approach is compared to a more empirical methodology previously 
developed for identifying exceedances of PM10 daily limit value and rapidly answering 
to urgent regulatory requests (Malherbe and Cárdenas, 2009; GT Zones sensible, 2010).  
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3. Results 
 
National level. On French scale, daily PM10 and annual NO2 concentrations are 
estimated on a 1 km x 1km grid by combining surface observations from background 
monitoring stations with outputs from the chemistry-transport model CHIMERE 
(resolution : about 10 km). For NO2, which is mainly related to local emission sources, 
additional high resolution variables, precisely NOx emission density and population 
density within a 2-km radius, are introduced in the kriging as external drift. 
 
Figure 1 shows the example of one polluted day during a PM10 event (April 2009). 
Results are provided both for the methodology described in section 2 and the more 
empirical methodology in which only two states are defined (hypothesis (1) being 
unchanged): 

- exceedance: { x} such as P[Z(x) ≤ LV] < �  with �: false detection probability threshold  

        (5)  

q� is empirically adjusted by comparing the annual numbers of exceedances estimated 
by cross-validation at the monitoring sites with the actual observed numbers. In this 
application q� has been set to approximately 0.52, which amounts to defining a false-
detection probability threshold of 70% and taking a cut-off value lower than LV.   
 

- non-exceedance: {x} making the complementary set, i.e. :   

{ x} such as         (6) 

   
Figure 1: PM10. Exceedance of the daily threshold (50 µg/m3) on a highly polluted day. 

Left: newly formalized methodology. Right: empirical methodology.  
 
Local level 
Exceedance areas defined for NO2 on national scale are very small since NO2 
exceedances mostly occur at traffic-related sites. On local scale, detailed concentration 
maps accounting for both background and roadside pollution can be established from 
passive sampling surveys, using high resolution auxiliary variables and additional 
information about traffic emissions and distance to the roads (Malherbe et al., 2008).   
Results obtained for the French city of Montpellier are displayed in Figure 2. During 
year 2007 an extensive sampling campaign was carried out in this city by the local 
agency Air Languedoc-Roussillon. The sampling dataset includes eight 14-day periods 
of measurement at background and traffic sites.    

Black triangles: 
background monitoring 
stations with daily mean 

concentration higher 
than 50 µg/m3. 
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Figure 2: NO2. Left: sampling points in Montpellier - year 2007 (source of the data: Air 

Languedoc Roussillon). Right: exceedance of the annual limit value (40 µg/m3).  
 
 
4. Concluding remarks 
 
Annual reporting to the European Commission but also the working out of local air 
quality plans require the delimitation of areas where atmospheric concentrations do not 
comply with environmental objectives. A first approach was developed with a view to 
rapidly producing realistic exceedance maps for PM10. The identified areas are 
consistent with observed exceedances but might somewhat be overestimated, especially 
where or when kriging variance is high. The notion of exceedance and non-exceedance 
was then formalized making some conventional assumptions due to operational 
constraints. The advantage of this second approach is that it distinguishes the non-
detection and false detection probability thresholds which can be adjusted according to 
the objectives of the study.  However, a remaining issue is the way of addressing the 
uncertainty area. In the end authorities and decision makers will rather have a single 
figure (spatial extent of the exceedance) than an interval of values. Among envisaged 
solutions are the refining of the uncertainty area and its inclusion in the exceedance 
area. 
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Abstract: Many studies link exposure to various air pollutants to respiratory
illness, making it important to identify regions where such exposure risks are high.
One way of addressing this problem is by modeling probabilities of exceeding specific
pollution thresholds. In this paper, we consider particulate matter with diameter
less than 10 microns (PM10) in the North-Italian region Piemonte. The problem of
interest is to predict the daily exceedance of 50 micrograms per cubic meter of PM10

based on air pollution data, geographic information, as well as exogenous variables.
We use a two-step procedure involving nonparametric modeling in the time domain,
followed by spatial interpolation. Resampling schemes are employed to evaluate the
uncertainty in these predictions.

Keywords: exceedance probability map, air pollution, space-time modeling

1 Motivation, background, data

It is well known that high levels of pollutants in the ambient air have adverse effects
on human and environmental health. Environmental directives have been issued
in order to account for such potential dangers, setting limit values for various air
pollutants. By estimating the probability to exceed a fixed value of a given pollu-
tant, we can identify areas where the risk to exceed such limit values is high. Past
environmental studies focused on mean behavior revealed that inclusion of exoge-
nous variables may lead to better estimators and predictors of pollutant concentra-
tions. It seems therefore natural to expect that including additional information,
such as meteorological and orographical variables might improve daily predictions
of exceedance probabilities. In this study we extend the methodology introduced

1Ignaccolo’s work was partially supported by Regione Piemonte, while Sylvan’s research was
funded in part by the PSC-CUNY Research Award 63147-00-41.
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in Draghicescu and Ignaccolo (2009) by including exogenous variables. Our case
study considers daily PM10 concentrations (in µg/m3) measured from October 2005
to March 2006 by the monitoring network of Piemonte region (Italy) containing 24
sites. As covariates we use daily maximum mixing height (HMIX, in m), daily mean
wind speed (WS, in m/s), daily emission rates of primary aerosols (EMI, in g/s),
altitude (A, in m) and coordinates (UTMX and UTMY, in km). Note that the time-
varying variables are obtained from a nested system of deterministic computer-based
models implemented by the environmental agency ARPA Piemonte. For a complete
description and preliminary analysis of the data we refer to Cameletti et al. (2010).

2 Theoretical Framework

Let D ⊂ R2, and assume that at each location s ∈ D we observe a temporal
process Xs(t) = Gs(t, Zs(t)), where Gs is an unknown transformation, Zs is a stan-
dardized stationary Gaussian process with γs(l) := cov(Zs(t), Zs(t + l)), such that�∞

l=−∞ |γs(l)| <∞. For fixed x0 ∈ R, define the exceedance probability

Px0(t, s) = P (Xs(t) ≥ x0). (1)

Clearly Px0(t, s) takes values in [0, 1] and is non-increasing in x0. The problem of
interest is to predict Px0(t, s

∗) at location s∗ ∈ D where there are no observations
and at any time t, based on observations of the process Xs(t) at n time points and
m spatial locations.

In the first step we use the methodology proposed in Draghicescu and Ignaccolo
(2009). For each site s, we model the temporal risks non-parametrically, by using
the Nadaraya-Watson kernel estimator

P̂x0(t, s) =

�n
i=1 K

�
ti−t
bt

�
1{Xs(ti)≥x0}�n

i=1 K
�

ti−t
bt

� , (2)

where K is a kernel function. The temporal bandwidth bt should not depend on
the threshold x0, in order for the resulting estimator to be non-increasing. In what
follows, the threshold x0 is considered fixed and, to keep notation simple, we write
b instead of bt. In the second step, we use universal kriging with exogenous variables
to predict the exceedance probability field at a location s∗ ∈ D where there are
no observations. Since linear interpolation does not guarantee that the resulting
exceedance probability estimator takes values in the interval [0, 1], we first apply
a 1 : 1 transformation and consider Q̂x0(t, s) = Φ−1(P̂x0(t, s)) which is defined on
R, where Φ(·) is the standard Normal cumulative distribution function. After per-
forming kriging on the transformed field Q̂x0(t, s), we obtain the desired exceedance
probability maps by inversion: P̂x0(t, s) = Φ(Q̂x0(t, s)). For fixed time point t and
location si, we consider the model

Q̂x0(t, si) = βE(t, si) + w(t, si), (3)
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where E(t, si) is a vector of exogenous variables at time t and location si, β is the
vector of “slopes”, and w(t, s) is a zero-mean second-order stationary spatial process
for any s ∈ D ⊂ R2. Time point t is fixed, and the spatial covariance is denoted
by C(t, ||si− sj||) := Cov

�
w(t, si), w(t, sj)

�
. We then use the Matèrn class to model

this covariance function: C(t, ||si − sj||) = σt
2νt−1Γ(νt)

�
2
√

νt||si−sj ||
ρt

�νt

Kνt

�
2
√

νt||si−sj ||
ρt

�
.

The parameter νt > 0 characterizes the smoothness of the process, σt denotes the
variance, and ρt measures how quickly the correlation decays with distance. For each
t, the parameters of the Matèrn covariance are estimated by weighted least squares.
The best linear unbiased predictor of the transformed field at location s0 ∈ D is
obtained via universal kriging (Gaetan and Guyon 2010, p. 44) as

Q̂∗
x0

(t, s0) = β̂E(t, s0) + w∗(t, s0). (4)

Here β̂ is the generalized least squares estimate of the trend coefficients and w∗(t, s0) =�m
i=1 λiŵ(t, si) is the simple kriging predictor, with ŵ(t, si) = Q̂x0(t, si)− β̂E(t, si).

The weights λi, 1 ≤ i ≤ m are completely determined by the covariance function
parameters νt, ρt, and σt. The standard error of Q̂∗

x0
(t, s0) can be also expressed in

terms of the interpolation parameters λi. However, this standard error may not be
completely accurate since the Matèrn parameters are estimated from the same data
thus adding uncertainty, and the error induced by the first step of our procedure
is not considered. For these reasons, we use block bootstrap (Buhlmann, 2002) to
take into account all the uncertainty sources.

3 Results

In this case study on the North Italian region Piemonte we used data at m = 24 sites
and n = 182 days. The PM10 threshold was set to x0 = 50 µg/m3. The computations
were done in R, using the gstat package (Pebesma, 2004). Regarding the bootstrap,
we sampled with replacement k = 13 blocks of length l = 14 from the (n − l + 1)
possible overlapping blocks. We chose l = 14 empirically. A temporal window of two
weeks captures the meteorological and air pollution patterns well. Also, by trying
other values we did not get significantly different results. In future research we plan
to generalize the methodology of Li et al. (2007) to more complex dependencies.
The block sampling was then repeated B times, yielding the B bootstrap samples.
Bootstrap replicated exceedance probability maps were obtained by performing the
first and second steps on each bootstrap sample. In the spatial interpolation step
we used a 56× 72 regular grid covering Piemonte. Based on the distribution of the
B bootstrap replications, we obtained the quantile maps together with the standard
errors of the exceedance probability predictions. In our computations we used B =
500 bootstrap replications. Maps of the 10th, 50th and 90th percentiles of the
exceedance probability bootstrap distribution for March 5, 2006 are showed in Figure
1, identifying increased risks around the metropolitan area of Torino.
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Figure 1: Maps of the bootstrap predicted 50 µg/m3 PM10 exceedance probabilities
on March 5th, 2006: 10th (left), 50th (center) and 90th percentile (right).

4 Discussion

This work is a continuation of Draghicescu and Ignaccolo (2009), where preliminary
exceedance probability maps were obtained based on a two-step procedure. Seasonal
(winter and summer) maps were quite good, however, the daily exceedance proba-
bility maps did not seem to reflect the true air pollution spatial patterns well. By
introducing exogenous variables we were now able to obtain more reasonable spatial
patterns for air pollution risks in Piemonte. In addition, we obtained confidence
regions by estimating uncertainty in our predictions through bootstrap. It seems
though that the standard errors might be too large, possibly because the shuffling in
the block bootstrap did not respect the temporal evolution of the process. Our ongo-
ing research is focused on improving these confidence bands by considering seasonal
time series bootstrap.
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Abstract: In this work we consider a geostatistical spatio-temporal model for
PM10 concentration (particulate matter with an aerodynamic diameter of less than
10 µm) in the North-Italian region Piemonte. The model involves a Gaussian Field
(GF) affected by a measurement error and a state process with a first order autore-
gressive dynamics and spatially correlated innovations. The main goal of this work
is to propose an estimating and mapping strategy for such a model. This proposal
is based on the work of Lindgren et al. (2011) that provides an explicit link between
GFs and Gaussian Markov random fields (GMRF) through the Stochastic Partial
Differential Equations (SPDE) approach. Thanks to the R library named INLA, the
SPDE approach can be easily implemented providing results in reasonable comput-
ing time (with respect to other MCMC algorithms). For these reasons, the SPDE
approach is proved to be a powerful strategy for modeling and mapping complex
spatio-temporal phenomena.

Keywords: spatio-temporal model, Integrated Nested Laplace Approximation,
big n problem.

1 Introduction

In the geostatistical approach, data coming from monitoring networks are assumed
to be realizations of a continuously indexed spatial process changing in time Y(s, t) =
{y(s, t) : (s, t) ∈ D ⊆ R2 × R}, also named random field. These realizations are
used to make inference about the process and to predict it at desired locations (i.e.
kriging). Generally, we deal with a Gaussian field (GF) that is completely spec-
ified by its mean and spatio-temporal covariance function Cov (y(s, t), y(s′, t′)) =
σ2C((s, t), (s′, t′)), defined for each (s, t) and (s′, t′) ∈ R2 × R. Even if the geosta-
tistical approach is very intuitive, it suffers from the so-called “big n problem” that
arises especially in case of large datasets in space and time. In particular, this com-
putational challenge arises in the Bayesian framework where matrix operations are

1Cameletti’s research was funded in part by Lombardy Region under “Frame Agreement 2009”
(Project EN17, “Methods for the integration of different renewable energy sources and impact
monitoring with satellite data”).
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computed iteratively for MCMC algorithms. A possible solution for facing this issue
consists in representing a Matérn random field - a continuously indexed GF with a
Matérn covariance function - as a discretely indexed random process, i.e. a Gaussian
Markov Random Field (GMRF, Rue et al. (2005)). This proposal is based on the
work of Lindgren et al. (2011), where an explicit link between GFs and GMRFs is
provided through the Stochastic Partial Differential Equations (SPDE) approach.
The key point is that the spatio-temporal covariance function and the dense covari-
ance matrix of a GF are substituted, respectively, by a neighbourhood structure
and by a sparse precision matrix, that together define a GMRF. The advantage of
moving from a GF to a GMRF stems from the good computational properties that
the latter enjoys. In fact, GMRFs are defined by a precision matrix with a sparse
structure that makes it possible to use computationally effective numerically meth-
ods, especially for fast matrix factorization. Moreover, when dealing with Bayesian
inference for GMRFs, it is possible to make use of the Integrated Nested Laplace
Approximation (INLA) algorithm proposed by Rue et al. (2009) as an alternative
to MCMC methods. The most outstanding advantage of INLA is computational
because it produces almost immediately accurate approximations to posterior dis-
tributions, also in case of complex models. Thus, the joint use of the SPDE approach
together with the INLA algorithm can be a powerful solution for overcoming the
computational problems of spatio-temporal GFs.

2 The spatio-temporal model and the SPDE ap-

proach

Let y(si, t) denote the PM10 concentration measured at station i = 1, . . . , d and day
t = 1, . . . , T . We assume the following measurement equation

y(si, t) = z(si, t)β + x(si, t) + ε(si, t) (1)

where z(si, t) = (z1(si, t), . . . , zp(si, t)) denotes the vector of p covariates for site si at
time t, and β = (β1, . . . , βp)

′ is the coefficient vector. Moreover, ε (si, t) ∼ N (0, σ2
ε)

is the measurement error defined by a Gaussian white-noise process, serially and
spatially uncorrelated. Finally, x(si, t) is the so-called state process, i.e. the true
unobserved level of pollution. It is supposed to be a spatio-temporal GF that changes
in time with a first order autoregressive dynamics with coefficient a and coloured
innovations, given by

x(si, t) = ax(si, t− 1) + ω(si, t) (2)

where x(si, 0) ∼ N(0, σ2
0) and |a| < 1. In particular, the zero-mean Gaussian process

ω(si, t) is supposed to be i.i.d. over time and is characterized by the following
spatio-temporal covariance function Cov (ω (si, t) , ω (sj, t

′)) = σ2
ωC(h) for t = t′

and i 6= j. The purely spatial correlation function C(h) depends on the location
si and sj only through the Euclidean spatial distance h = ||si − sj|| ∈ R; thus,
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the process is supposed to be second-order stationary and isotropic. The spatial
correlation function C(h) is defined in the Matérn class and is given by C(h) =

1
Γ(ν)2ν−1 (κh)ν Kν (κh), with Kν denoting the modified Bessel function of second kind
and order ν > 0. The parameter ν measures the degree of smoothness of the
process. Instead, κ > 0 is a scale parameter whose inverse 1/κ can be interpreted
as the range, i.e. the distance at which the spatial correlation becomes almost
null. Collecting all the observations measured at time t in a vector denoted by
yt = (y(s1, t), . . . , y(sd, t))

′, it follows that (1) and (2) can be written as

yt = ztβ + xt + εt, εt ∼ N(0, σ2
εId) (3)

xt = axt−1 + ωt, ωt ∼ N(0,Σ = σ2
ωΣ̃) (4)

where zt = (z(s1, t)
′, . . . ,z(sd, t)

′)′ and xt = (x(s1, t), . . . , x(sd, t))
′ with x0 ∼

N(0, σ2
0Id). Moreover, the d-dimensional correlation matrix Σ̃ is defined as Σ̃ =

C (‖si − sj‖)i,j=1,...,d, and the correlation function C (.) is parameterized by κ and ν.
The aim of the SPDE approach is to find a GMRF, with local neighbourhood

and sparse precision matrix Q, that best represents the Matérn field ω(s, t). As
described in Lindgren et al. (2011), this results in expressing the Matérn field as
a linear combination of basis functions defined on a triangulation of the domain
D using n vertices. It follows that, for each time point t the term ωt introduced
in Eq.(4) is represented through the GMRF ω̃t ∼ N(0,Q−1

S ), whose n-dimensional
precision matrix QS comes from the SPDE representation and is computed using
Eq.(10) of Lindgren et al. (2011). In particular, this defines an explicit mapping
from the parameters of the GF covariance function (κ and ν) to the elements of the
precision matrix QS of the GMRF.

Parameter estimation and mapping are carried out in a full Bayesian framework
using the INLA algorithm which is an alternative to MCMC for getting the approxi-
mated posterior marginals for the latent variables (all over the triangulated domain)
as well as for the hyperparameters (see Rue et al., 2009).

3 Data and results

In the case study on the North-Italian region Piemonte, we analyze log-transformed
daily PM10 concentration (in µg/m3) measured from October 2005 to March 2006
(for a total of T = 182 days) by d = 24 monitoring stations. In addition, we consider
the following covariates proved to have a significative effect on pollutant dispersion:
daily maximum mixing height (HMIX, in m), daily mean wind speed (WS, m/s),
daily emission rates of primary aerosols (EMI, in g/s), daily mean temperature
(TEMP, in K), altitude (A, in m) and coordinates (UTMX and UTMY, in km).
For a complete description and preliminary analysis of the data we refer to Cameletti
et al. (2010). We perform the analysis using the R library named INLA (www.r-inla.
org) considering n = 600 triangle vertices and ν = 1. Figure 1 displays the posterior
mean of PM10 (on the logarithmic scale) for January 29th, 2006 together with an
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uncertainty measure (standard deviation). As expected, higher levels of particulate
matter pollution are detected in the metropolitan areas of the region located near
the main cities (Torino, Vercelli and Novara) and moving eastwards toward Milan.

Figure 1: Map of the PM10 posterior mean on the logarithmic scale (left) and
standard deviation (right) for January 29th, 2006.

4 Concluding remarks

In this work we present a modeling strategy - based on the SPDE approach - for
a geostatistical spatio-temporal model, and show the results for a case study on
air quality in Piemonte. Our ongoing research is focused on the change of support
problem in order to include covariates with different spatial support in our modeling
framework.
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Abstract: Most of the analysis and modeling approaches on gypsy moth population 
dynamics have been applied to a continuous spatial dimension, and therefore they do 
not account for the possible role of highly fragmented forest stands on pest dynamics. 
Spatially explicit metapopulation models show some advantages in representing the 
spatio-temporal metapopulation dynamics in fragmented habitats. In this work, the most 
popular of these models has been extended to take into account periodicity in the pest 
dynamics. Data on the gypsy moth Lymantria dispar (L.) (Lepidoptera Lymantriidae), 
one of the main oak forest defoliators in the Holarctic Region, referring to the period 
1980-2010 in Sardinia (Italy) are analyzed. 
 
Keywords: Spatially explicit metapopulation models, Incidence Function Model, 
Lymantria dispar (L.) (Lepidoptera Lymantriidae) 
 
 
1. Introduction 
 
The gypsy moth Lymantria dispar (L.) (Lepidoptera Lymantriidae) population 
dynamics modeling has a long history. Models developed range in complexity and 
approaches that have been used, from statistical models (Zhou & Liebhold, 1995; Cocco 
et al., 2010) to simulation models based on complex assumptions on ecological 
processes (Sharov & Colbert, 1996). In many situations, especially in the oak forests of 
the Mediterranean basin, the host plants for the gypsy moth are not continuous. 
However, the role of habitat fragmentation in determining the pattern of gypsy moth 
population dynamics has not been carefully addressed. Analyses of spatial heterogeneity 
are either based on correlations that take into account details of landscapes and their 
effect on population processes (Hunter, 2002) or on metapopulation models that deal 
with the occurrence of individual populations in an ensemble of habitat fragments 
(Tscharntke & Brandl, 2004). Spatially explicit metapopulation models could be of 
great importance to pest managers for their contribution to a better understanding of 
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how the spatial arrangements of fields or forest stands can influence the population 
dynamics. Despite these promises and the fact that metapopulation models have been 
originally proposed for pests, they remain a widely used tool in conservation biology 
but receive little attention in pest control (Hunter, 2002). 
In this paper, we propose a modelling approach to L. dispar metapopulation dynamics 
and apply it to a dataset of gypsy moth abundance recorded in Sardinia (Italy). Model 
simulations are performed and the obtained dynamics are evaluated in their capability to 
capture the most significant properties of spatio-temporal population dynamics patterns. 
The proposed model significantly improves the results obtained by Gilioli et al. 
(2011a).  
 
 
2. Materials and Methods 
 
Data. Gypsy moth population dynamics were recorded in the period 1980-2010 in the 
main cork, holm and pubescent oak areas of Sardinia based on 282 monitoring sites 
(Luciano, 1989; Cocco et al., 2010). Each monitoring site has been considered as the 
centroid of a patch, the basic environmental unit in which the local dynamics of 
colonization and extinction occur. Patches connected by fluxes of migrant larvae are 
considered belonging to the same macroarea (MA). MAs are separated by physical or 
ecological barriers, and fluxes among MAs can be considered negligible. Five MAs 
were identified: the results on MA 2 are presented here.  
Model description. The Incidence Function Model (IFM; Hanski 1994) is based on 
presence/absence data of a species in a highly fragmented landscape. The process of 
occupancy of patch i is described by a first-order Markov chain with two states, {0, 1} 
(empty and occupied, respectively). Following Hanski, the colonization probability of 
patch i at time t, Ci(t), is defined to be a sigmoidal function increasing with connectivity 
 

               Ci(t) = ∆i
2(t) / (∆i

2(t) + y2)     (1) 
 
where ∆i(t) = Σ {o j (t) exp (- α × rij  × dij )Aj :  j ≠ i} is the connectivity of patch i at time 
t, Aj is the area of patch j; dij is the centroid-to-centroid (Euclidean) distance between 
patches i and j; rij corrects the Euclidean distance by taking into account possible 
disturbances (presence of a different host species, grazing, etc.); y describes the 
colonization ability of the species, α is a positive constant setting the survival rate of 
migrants over the distance.  
In this paper, the extinction probability of a population in patch i at time t  is assumed to 
be a sigmoidal function increasing with the recent history of the patch 

 
        Ei (t ; K) = hi

2(t ; K) / (hi
2(t; K) + x(t)2)                                       (2) 

 
where hi(t ; K) = Σ{o i(k) : k = t, t-1, … , t-K}, oi(k) = 1 if at time t patch i is occupied and 
oi(k) = 0 otherwise; x(t) = γ  + β Sin2 (θt + π s/θ) is a sinusoidal function accounting for 
periodicity in local dynamics, which is common to all the patches in the same MA. 
Parameters α, γ, β, θ, s and y are estimated by maximization of the pseudo-likelihood 
corresponding to the initial distribution given by the first observed metapopulation state 
(Moilanen, 1999).  
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3. Results 
 
Figure 1 clearly shows the periodic behavior of the observed proportion of occupied 
patches (green line). Data of the period 1980-1983 have been discarded due to the high 
number of missing data. The first population peak is reported in 1990, the other 
population outbreak occurs in 1997. After 2000, the pattern of fluctuations displays less 
regularity, which can be partially explained by pest control treatments carried out to 
reduce the impact of gypsy moth infestation in the sites where outbreaks started (foci).  
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Figure 1: Observed and mean estimated proportion of occupied patches. Data of the 
period 1984-2002 have been used for estimation. After 2002, groups of patches received 
pest control treatments.   
 
 
The estimated period is 7.1 years (θ = 0.44), K=5, α=0.01767, β=10.405,  γ=3.031, 
s=0.98 and y=86.1. To compare model outputs and observed incidences, 10,000 
simulations have been carried out, starting from the first year of data (1984).  
Figure 1 compares the observed fraction of occupied sites and the mean estimated 
fraction, obtained from simulations. Confidence intervals have been obtained by 
computing the symmetric percentiles (0.025, 0.975) of the simulated values, for each 
time t. Before 2002, the observed data seem to be well represented by the model. The 
model behaviour after 2002 differs from observations as the populations dynamics are 
influenced by the pest control treatments. According to a few preliminary results, the 
estimated model seems to be able to adapt to the implementation of pest management 
strategies. 
 
 
4. Concluding remarks 
 
The major advantage offered by the metapopulation model developed here is the 
possibility of describing temporal trends of population dynamics in phase with 
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observations. In particular, the increase in the incidence at MA-level for population 
following a latency period, is well described by the model. This has important 
implications for sampling strategies as well, leading to the possibility of using a 
binomial sample design for management purposes, by defining the state of 
presence/absence of gypsy moth population abundance instead of counting egg masses. 
The description of variation in population incidence could allow to obtain a descriptor 
of the increase in the risk of population outbreaks. Different management strategies 
could be evaluated according to the approach proposed by Gilioli et al. (2008) and 
Gilioli et al. (2011b) and based on the IFM and the Kullback-Leibler divergence 
(Kullback and Leibler, 1951). 
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Abstract: Identifying spatial patterns in species diversity represents an essential task to 
be accounted for when establishing conservation strategies or monitoring programs. 
Predicting patterns of species richness by a model-based approach has recently been 
recognised as a significant component of conservation planning. Here, a spatially-
explicit data-set on birds presence and distribution across the whole Tuscany region was 
analysed using geostatistical models. Species richness was calculated within 1x1 km 
grid cells and 10 environmental predictors were included in the analysis. A statistical 
model integrating spatial components of variation with predictive ecological factors of 
bird species richness was developed and used to obtain predictive regional maps of bird 
diversity hotspots. 
Keywords: Bird richness, Conservation, Distribution maps, Natura 2000 Network, 
Predictive model, Semivariance, Spatial autocorrelation, Tuscany. 
 
1. Introduction 
The identification of spatial patterns in species diversity represents an essential task for 
biodiversity conservation strategies or monitoring programs. Recently, species 
distribution modeling emerged as a new approach to generate species distribution maps, 
on the basis of the relationship between species presence (or abundance) records and 
environmental variables. Typically, modeling methods attempt to predict the probability 
of occurrence of species as a function of a set of environmental variables. In particular, 
geostatistical modeling techniques, which have been developed mainly in the field of 
geography, are designed to model spatially dependent observations (Goovaerts 1997), 
but in recent years, such methodologies have been applied even in the ecological 
literature (Bacaro an Ricotta 2007). Birds are among the best-studied organisms, 
especially in Europe. They are often considered as excellent indicators of environmental 
changes and as good ecological proxies to assess the biodiversity values of an area. In 
this work, a geostatistical modelling approach was applied on the data provided by the 
“Monitoring Program of Breeding Birds of Tuscany”, one of the most extensive 
regional bird monitoring programs in Italy. The aim of this paper is  i) to describe the 
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spatial patterns of bird species richness and ii ) to identify those environmental factors 
underlying these patterns. This latter point represents an important task in the ecological 
context since the environmental proxies driving bird richness could be used to decide 
conservation strategies. 
 
2. Materials and Methods 
Bird data: The bird species occurrence data were obtained from the Monitoring 
Program of Breeding Birds of Tuscany carried out by the Centro Ornitologico Toscano 
(www.centrornitologicotoscano.org) and based on Point Counts method (Bibby et al. 2000). 
Points were distributed according to a two stages sampling design: in randomly selected 
10*10 km UTM cells, a number of 12-15 point counts were selected according to a 
second random sampling procedure. The original data set of geo-referenced 
observations was assembled to produce a regional map of bird species richness for cells 
of 1*1 km. Such a grid covering the whole Tuscany region resulted in 22060 cells, 3584 
of which enclosed data on bird occurrences. 

Putative determinants of bird species richness: for each 1*1 km cell, three sets of 
predictor/explanatory variables were derived and grouped according to a similarity 
criterion. I) Geographical features (4 predictors): the coordinates for each grid cell 
(Latitude and Longitude), elevation and distance to the sea were included in this group. 
II) Landscape feature and complexity (4 variables): Data on land cover were derived 
from the third level of the CORINE Land Cover Map. For each grid cell, the number of 
patches and the area (mean and standard deviation) covered by each land cover class 
was calculated. Landscape shape complexity was calculated by using the AWMSI (Area 
Weighted Mean Shape Index). The third level data of the CORINE Land Cover were 
used for calculating the Shannon index. III) Primary Productivity (2 variables): NDVI 
(Normalized Difference Vegetation Index) and its standar deviation were used on to 
discriminate between the amount of biomass characterising different vegetation types.  

Geostatistical modelling: a combined multi-predictor model was developed in this 
study, and it was further used in conjunction with geostatistical techniques to predict 
birds diversity in 1 x 1 km grid cells across the whole Tuscany region. Statistical 
modelling process was organised into the following three parts: 1) Data transformation 
(normalization); 2) Building the generalized linear spatial model: once the response 
variable (number of bird species) at each grid cell within the Tuscany region was 
denoted as: 

�xi ,yi�: i= 1,.. .. ,n   (1) 
where xi identifies the spatial location (in two-dimensional space - longitude and 
latitude expressed in kilometres) and yi is the bird richness value associated with the 
location xi, a geostatistical (isotropic) model can be defined as: 

Yi =S�xi�+Z i : i= 1,.. . .. ,n   (2) 
where 

{S�x�: x��2}   (3) 
is a Gaussian process with a spatially varying mean µ(x) defined by a classical linear 
regression model. The described Gaussian process is also characterized by a variance 
given by:  

σ
2=Var {S�x�}   (4) 

and by a positive-defined correlation function:  
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ρ�u�=Corr {S�x�,S�x'�}  (5) 
defining the way correlation function decays to zero for increasing distances occurring 
between observations at locations x and x’. Explanatory variables for modelling the 
large-scale variation in bird diversity were chosen via a model selection technique 
(AIC). Secondly, the residuals from the model were examined for spatial correlation and 
a suitable family of correlations was chosen. The estimates of the parameters in the 
trend surface (model spatial component) were updated using the quasi-Newton  
optimisation function (Byrd et al. 1995) followed by maximum likelihood estimation of 
the parameters of the covariance function using the residuals. 3) Universal kriging was 
used to predict expected bird richness (and its variation) in each 1x1 km grid cell across 
the whole Tuscany Region. 
 

3. Results 
The number of bird species per cell grid was normalized using a Box-Cox power of 
0.184. Only 4 predictors were included in the predictive model (Table 1). The intercept 
of the estimated spatial varying mean resulted highly significant and was, consequently, 
included in the model. 
 
Table 1: Description of explanatory variables (and their associated coefficients) included after stepwise 

selection in the spatial varying mean component (*** p<0.001). 
Trend parameters (spatial varying mean) Estimated Value 
Intercept 3.066***  

NDVI St.Dev. 0.811***  

H’  index 0.104***  

Mean elevation -0.001***  

Distance sea >0.001***  

Spatial Parameters  
Nugget (τ2) 0.147 
Partial sill (σ2) 0.270 
Range (φ) 0.054 
Practical Range  0.162 

Normalisation parameter (Box-Cox power)  
lambda (λ) 0.184 

Covariance Function Parameters (Matèrn)  
Order (k) 0.5 (exponential model) 

 
The modeled spatial parameters highlighted that autocorrelation in bird richness value 
existed and strongly influenced the number of observed species. In particular, the 
practical range was reached after 16 km, indicating the absence of further correlative 
structure in data after this threshold (see Figure 1). Relatively to the covariance function 
used to model the empirical variogram, the k=0.5 parameter was selected 
(corresponding to fit an exponential theoretical variogram with respect to the observed 
data). Predicted values were significantly related with observed bird richness (R2 = 
0.448, p < 0.001). For comparison, a simple multiple regression model without the 
inclusion of the spatial component in the analysis, showed a lower R2 value (R2=0.15, 
p<0.001). Predicted bird richness (and its associated variance) across all the Tuscan 
region is shown in Figure 2. 



 

4 
 

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

Distance classes (km ^-2)

S
em

iv
ar

ia
nc

e

 
Figure 1: Plot of the empirical (circles) and fitted (solid line) semivariograms versus distance (km) 

obtained using the residuals after the spatial varying mean was subtracted by raw (normalized) data. 
 

  
Figure 2: Regional pattern of bird species richness as expected under the described geostatistical model. 

a) Expected birds species richness and b) its expected variance.  
 
4. Conclusions 
By applying geostatistical models, a well-performing predictive model was obtained for 
the distribution of bird species richness in Tuscany by considering relatively few 
variables. Ancillary variables based on remotely sensed information (e.g., NDVI or 
Shannon H’ derived from a classified image) can be used as powerful tools to model the 
spatial variation of bird species richness and locate biodiversity hotspots. Moreover, 
geostatistical models own the advantage to incorporate information of environmental 
co-variation and neighborhood effects, improving the quality of predictions. 
 
References 
Bacaro G, Ricotta C (2007) A spatially explicit measure of beta diversity. Community 

Ecol 8: 41-46. 
Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound 

constrained optimization.SIAM J. Scientific Computing16: 1190–1208. 
Bibby CJ, Burgess ND, Hill DA, Mustoe SH (2000) Bird census techniques, 2nd edn. 

Academic Press, London. 
Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University 

Press, New York. 



Spatial Bayesian Modeling of
Presence-only Data

Fabio Divino
S.T.A.T., University of Molise, fabio.divino@unimol.it

Natalia Golini, Giovanna Jona Lasinio
Department of Statistical Sciences, “Sapienza” University of Rome

Antti Penttinen
Department of Statistics, University of Jyväskylä

Abstract: When the only available information is the true presence of a species
at few locations of a study area we refer to the data as presence-only data. Presence-
only data problem can be seen as a missing data problem with asymmetric and
partial information on a presence-absence process. This problem often characterizes
ecological studies requiring the prediction of potential spatial extent of a species
in suitable areas. Here we propose a Bayesian logistic spatial model adapted to
presence-only data with environmental covariates available over the entire area.
The spatial dependence among the observations is modelled indirectly as a latent
Gaussian Markov field over the landscape, through a data augmentation MCMC
algorithm we are able to estimate regression parameters jointly with the prevalence.

Keywords: Bayesian model, Data augmentation, MCMC, Presence-only data,
Spatial distribution.

1 Introduction
In the environmental sciences, the evaluation of spatial distribution of species and
its interaction with ecological variables is of primary interest i.e. to better plan and
manage strategies in habitat conservation. When presence/absence information on
a species is available in a given area together with environmental covariates, the
logistic regression model represents the natural approach to estimate the prevalence
of such species. Unfortunately, in many ecological studies, the collection of definitive
absences can be expensive or difficult. In those cases the information available is not
complete, we can observe only presences (Pierce and Boyce 2006) of the species at
few locations jointly with the environmental covariates referred to the whole study
area. In this work we propose a hierarchical Bayesian model to handle presence-only
data, based on an adjusted logistic regression model (Ward et al. 2009). Following
Divino et al. (2011) we introduce a random approximation of the correction factor
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in the model that allows us to overcome the need to know a priori the prevalence of
the species. We can estimate regression parameters jointly with prevalence through
a data augmentation MCMC algorithm (Divino et al. 2011). We account for spatial
variation adding a spatial random effect in the regression function.

2 Materials and Methods
With respect to a population P of spatially referenced sites i, let Y be a binary
presence/absence process, X a set of covariates and Pp the subset of P where the
species is present (Y = 1). When only presences are observed, samples (Sp) from
the process Y can be drawn only from the population Pp and the usual case-control
approach in logistic regression cannot be adopted as absences (Y = 0) are not
directly observed. Lancaster and Imbens (1996) and Ward et al. (2009) proposed
to overcome this problem by considering a completed sample composed by Sp and
a second sample Su, independent of Sp, ideally taken from the whole population P .
In this way the complete data sample S is composed by np presences (observed in
Sp) and nu unobserved values (Su). Let Z be a stratum variable such that Zi = 0
if i ∈ Su and Zi = 1 if i ∈ Sp. Notice that Zi = 1 implies Yi = 1 while Zi = 0
implies that Yi can assume value in {0, 1}. Hence we can identify the following
quantities: (Z = 0, Y = 0) n0u is the unknown number of absences in the subsample
Su, (Z = 0, Y = 1) n1u is the unknown number of presences in the subsample Su,
(Z = 1, Y = 1) n1p is the number of observed presences in the subsample Sp, n0
is the unknown total number of absences in S, n1 is the unknown total number of
presences in S and n = n1 + n0 is the complete sample size. All the unknowns
are random quantities induced by a censoring effect acting on the complete sample
S. In particular we can write n1u as ñ1u = ∑i∈Su Yi, where the ∼ represents the
random nature of the quantity. Now let π = P (Y = 1) be the prevalence of the
species in the area, under the assumption that Su is a random sample from the
population P we have that E[ñ1u] = πnu. If we assume that the covariates X,
concerning the environmental information on the process Y , are available for all
sites in the population, we can use the approach introduced by Ward et al. (2009)
and developed in a Bayesian framework by Divino et al. (2011). For a generic site
in the sample with covariates x, starting from the usual case-control logistic model
the conditional probability that a species of interest is present is given by

P (Y = 1|s = 1, η;x) =
exp{η(x) + log(γ1

γ0
)}

1 + exp{η(x) + log(γ1
γ0

)} (1)

where s = 1 denotes that the site is included in S, η(x) is the regression function,
γ0 = P (s = 1|Y = 0) and γ1 = P (s = 1|Y = 1) are the unknown probabilities of
sampling from the absences and from the presences respectively. The ratio γ1

γ0
adjusts

the logistic model under the case-control design. Following Ward et al. (2009), we
can manage the presence-only data problem by considering the joint probability
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distribution of Y and Z and write the full likelihood model (see Ward et al. 2009
for details). We can also consider the observed likelihood, built only with respect
to the stratum variable Z that results in an average over the process Y . In both
likelihood models, the unknown ratio γ1

γ0
can be approximated as follow:

γ̃1

γ̃0
≈ ñ1u + np

ñ1u
(2)

the above expression can be handled by a data augmentation step in the estimation
procedure. The regression function adopted in this work is linear with a spatially
structured random effect u accounting for latent factors introducing geographical
dependence into species distribution. We can now write the hierarchical Bayesian
model. Let δ be the vector of hyperparameters with hyperprior p(δ). Conditioned on
δ, the regression parameters, β, are Gaussian random variables and the random effect
u is a Gaussian Markov random field. Given β, u and the covariate x, the process
Y is set of Bernoulli random variable with probability of occurence πs(x) = P (Y =
1|s = 1, η;x). At the lowest level of the hierarchy, the conditional distribution of
Z given Y can be easily derived from the above described relations between the
two processes. Then, the hierarchical Bayesian model is given by: (i) δ ∼ p(δ);
(ii) β|δ ∼ MN(δ) and u|δ ∼ GMRF (δ); (iii) Yi|si = 1, β, ui, xi ∼ Be[πs(xi)]; (iv)
Zi|Yi, si ∼ P (Zi|Yi, si = 1). Notice that the spatial structure of the random effect u
is given by the geographical neighborhood system among all sites in the population
P . In the following scheme we describe the MCMC algorithm implementing the
estimation of our model:

Step 0: initialize δ, β, u and Y over P ;
Step 1: set n1u = ∑i∈Su Yi;
Step 2: sample δ ∼ P (δ|Y, Z, β, u);
Step 3: sample β ∼ P (β|Y, Z, δ);
Step 4: sample u ∼ P (u|Y, Z, δ) over P ;
Step 5: sample Yi ∼ P (Yi|Z, β, ui, xi) over P .

Remark that we need to perform data augmentation (Step 4 and Step 5) over the
entire population P for both u and Y processes in order to consider the spatial
structure of the sites enclosed in both samples Su and Sp. The only requirement to
perform the augmentation is that the covariates X are available for all sites in P . A
nice feature of this estimation procedure is that we can easily obtain the prevalence
estimate π̂u = n̄1u

nu
, where n̄1u is the MCMC average of samples drawn in Step 1.

3 Results
In this section we report preliminary results from a small simulation study aiming at
investigating the behaviour of our proposal in a very simple situation. We generate a
population of 100 observations on a regular 10×10 lattice from the above described
model. In this example Y is obtained from the logistic model η(X) = βx+u, where
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β = −2, the covariate X is generated from a mixture distribution with two Gaussian
components with standard deviation σ1 = σ2 = 0.5 and mean µ1 = −2 and µ2 = 2,
u is a zero mean intrinsic first order Gaussian Markov random field with precision
k = 1.5 and prevalence π = 0.1. From this population we obtain 100 samples by
randomly thinning 30% of the available presences. We compare the performance of
our model (M1), with unknown prevalence, with the same model but with known
prevalence in the logistic correction (M2) and with the non spatial model prosed in
Divino et al. (2011) (M3). The three models are fitted with the same prior settings:
β ∼ N(0, 100) and k fixed (for M1 and M2). We run 20000 iterations of the MCMC
procedure with a burn-in of 10000. To evaluate models performances we compute
95% credibility intervals (CI) for β in each simulation using the 10000 samples from
the posterior distribution, the same intervals for the prevalence are computed from
the 100 simulations and the misclassification error is computed for each model by
setting to 1 grid cells with occurrence probability larger then 0.5 and compare results
with the “true” population. Results are as expected: the “best” model in terms of
point estimates accuracy is M2 with smaller CI for β̂ and π̂, followed by M1; all
models have a tendency to overfit with empirical coverage around 99%. In terms of
predictive capacity the average misclassification error is around 3% for all models,
as expected M1 and M2 better perform as far as the localization of presences is
concerned.

4 Concluding remarks
The above preliminary results are encouraging, especially in terms of predictive
capacity of the proposed model. Several issues will be object of further work, such
as identifiability problems related to a not zero intercept. Extensive simulation
studies will be carried on too.
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Abstract: In the ecological field, the sampling of abundance data is often characterized 
by the zero inflation of population distributions. Constrained zero-inflated GAM’s 
(COZIGAM) are obtained assuming that the probability of non-zero inflation and the 
mean non-zero-inflated population abundance are linearly related. Models of this class 
have been applied to a spatio-temporal case study concerning the deep-water rose 
shrimp, Parapenaeus longirostris (Lucas, 1846). Abundance data were collected during 
16 experimental trawl surveys conducted from 1995 to 2010 in the Ionian Sea. The 
sampling design adopted was random-stratified by depth, with proportional allocation of 
hauls to the area of each depth range and geographical sector. Density index (N/km2) 
and length (mm) were considered for each haul identified by time, depth, geographic 
coordinates and geographical sector. 
 
Keywords: Zero-inflated data, COZIGAM, GAM, density, size, Parapenaeus 
longirostris. 
 
 
1. Introduction 
 
In the ecological field, the sampling of abundance data is often characterized by the zero 
inflation of population distributions. Many Mediterranean species show such a 
distribution due to their adaptation to the variable environmental conditions. One of 
these is the deep-water rose shrimp, Parapenaeus longirostris (Lucas, 1846), 
widespread throughout the whole Mediterranean Sea at depths between 20 and 700 m. 
The Ionian Sea is a basin where this shrimp represents the bulk of the catch due to the 
trawl fishing carried out on between shelf edge and upper slope. Aspects of the 
distribution and population biology of this shrimp are reported in D’Onghia et al. (1998) 
and Abelló et al. (2002). Its spatio-temporal distribution in the Ionian Sea for the period 
1995-2010 has been studied and the relevant results have been reported in this paper. 
 
 
 
 



 

2 
 

 Density Length 
parameters estimate p-value estimate p-value 

intercept   14.248 <0.000 
depthf (0,200] 5.240 <0.000   

depthf (200,500] 5.348 <0.000   
depthf (>500) 3.5254 <0.000   

depth   0.029 <0.000 
alpha - 1.030 <0.000   
delta1 1.004 <0.000   
delta2 0.666 <0.000   

smooth terms df p-value df p-value 
s(lon, lat) 28.855 <0.000 18.111 0.005 

s(year) 8.507 <0.000 7.091 <0.000 
 
Table 1: COZIGAM’s estimates for the density index, GAM’s estimates for the length. 
 
 
2. Materials and Methods 
 
Abundance data were collected during 16 experimental trawl surveys conducted from 
1995 to 2010 in the Ionian Sea as part of the international MEDITS project funded by 
EC (Bertrand et al., 2000). The samples analyzed come from a total of 1052 hauls 
carried out during day-light hours between 10 and 800 m in the spring season (May-
June). The sampling design adopted was random-stratified by depth, with proportional 
allocation of hauls to the area of each depth range and geographical sector. Density 
index (N/km2) and carapace length (mm) were considered for each haul identified by 
time, depth, geographic coordinates and geographical sector. 
A general approach to zero-inflated data modeling consists in assuming the response 
distribution as a probabilistic mixture of a zero and a non-zero generating process. Zero-
inflated general linear models (ZIGLM) can be readily extended to include smooth 
effects of covariates giving rise to ZIGAMs. A constrained zero-inflated GAM 
(COZIGAM) is obtained assuming that the probability of non-zero inflation and the 
mean non-zero-inflated population abundance are linearly related. In this paper an 
analysis of the density index based on COZIGAM’s is proposed. As P. longirostris 
carapace length is not affected by zero-inflation, given that no measurements are 
available when the density index is null, this variable is analyzed in the GAM’s 
framework. The R libraries COZIGAM (Liu and Chan, 2010) and mgcv (Wood, 2006) 
were used for the data analysis. 
 
3. Results 
 
Preliminary exploratory data analysis (not reported) showed a discontinuous higher 
presence of zeroes and small density values at lower (shallower than 200 m) and higher 
(deeper than 500 m) depths. This lead to considering the factorization of the depth 
variable accordingly in the model for the density index. We propose the following 
specification for the mean of the log-Gaussian non-zero generating process: 

µ = s(lon,lat) + s(year) + depthf 



 

3 
 

1995 2000 2005 2010

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

y ear

16.5 17.0 17.5 18.0 18.5

38
.0

38
.5

39
.0

39
.5

40
.0

lon

la
t

 -3
0 

 -10 
 -5

 

 0 

 0 

 0 

 0 

 0 

 
 
Figure 1: COZIGAM estimated effects of space and time for the P. longirostris density. 

 
and assume that the smooth spatial effect and the temporal one have a different 
importance on the non-zero inflation probability, according to the following 
proportionality constraint: 

logit(p) = α + δ1 s(lon,lat) + δ2 s(year) + depthf 
In Tab. 1 we report the estimates of the COZIGAM model effects for the density index. 
The estimated effects of the three depth levels agree with the observed data. The 
estimates of δ1 and δ2 have significantly positive values, showing that the zero inflation 
probability decreases with the density value. 
In Fig. 1, Left we report the estimate of the smooth temporal effect showing a severe 
drop of the density index in 2000. This was also expected according to the results of the 
preliminary exploratory data analysis which described a decreasing in the density index 
in the 1999-2001 years. The map of the spatial effect (Fig. 1, Right) reveals a wide 
distribution of the species along the Ionian arc with three main areas with a greater 
density. 
A Gaussian GAM for the Parapenaeus carapace length is specified as follows: 

µ = intercept + s(lon,lat) + s(year) + depth 
In this case the exploratory data analysis shows a continuous linear relation with the 
depth, leading to consider the unfactorized variable within a linear term; carapace 
lengths increase with deeper sea beds (Tab. 1). The smooth estimated temporal effect 
(Fig. 2, Left) has an opposite behavior with respect to the density index, showing a peak 
in 2000. Also a second peak in 2005 and a drop in 2008 are noticeable. The former 
could be due to a lower density of greater specimens, the latter could be in relation to an 
increase of juveniles in the sampled population. The map of the spatial effect shows 
greater sizes in the Gallipoli (Apulia) and Roccella Ionica (southern Calabria) fishery 
districts (Fig. 2, Right). 
 
4. Concluding remarks 
 
These results confirm the knowledge on density and size distribution of P. longirostris 
in the Ionian Sea (D’Onghia et al., 1998; Abello et al. 2002) revealing geographic and 
temporal effect both on density and size. The increasing density together with the 
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Figure 2: GAM estimated effects of space and time for P. longirostris carapace length. 
 
decreasing size observed in some years could be related to the increase in the 
recruitment detected for the deep-water rose shrimp. This will require further 
investigation in order to identify the environmental variables affecting the changes 
observed in the species distribution. 
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1
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Abstract:
Climate change could have an important impact on the distribution of future

extreme events. To assess such changes, it is essential to develop statistical tools
based on Extreme Value Theory. In this talk, we make and study some connections
between the notion of entropy (divergence) and Extreme Value Theory. We apply
these links to detect changes in extremes.

Keywords: Extreme Value Theory, entropy, climate

Materials and Methods

The Kullback-Leibler information (Kullback, 1968) is defined as

I(f ; g) = Ef

{
log

(
f(Z)

g(Z)

)}
, (1)

and it measures the entropy distance (Robert, 2001) between the probability densi-
ties f and g for a random variable Z. Kullback (1968) also refers to this quantity
as the directed divergence to distinguish it from the divergence given by

J(f ; g) = I(f ; g) + I(g; f), (2)

1Part of this work has been supported by the EU-FP7 ACQWA Project (www.acqwa.ch) under
Contract Nr 212250, by the PEPER-GIS project, by the ANR-MOPERA project, by the ANR-
McSim project and by the MIRACCLE-GICC project.
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which is a symmetrical measure relative to f and g. This notion has been exhaus-
tively used and studied in many research fields. Here we explore this concept within
the framework of climatology and Extreme Value Theory (EVT). While the diver-
gence (2) is expressed in function of densities, it is more convenient to work the tail
distribution when analyzing large excesses. In this talk, we propose an approxima-
tion to bypass the need of computing densities. This allows us to derive and study
new estimators of the entropy. We apply this approach to the important problem
of detecting changes in our warming climate.

References

[Kullback, 1968] Kullbcak, S. (1968). Information Theory and Statistics, 2nd ed.
New York: Dover.

[Resnick, 2007] Resnick, S. (2007). Heavy-Tail Phenomena: Probabilistic and Sta-
tistical Modeling. Operations Research and Financial Engineering, Springer, New
York.

[Robert, 2001] Robert, C. P. (2001). The Bayesian Choice. New York: Springer-
Verlag.

2



Geoadditive modeling for extreme
rainfall data

Chiara Bocci, Alessandra Petrucci
Department of Statistics ”Giuseppe Parenti”, University of Firenze,

bocci@ds.unifi.it, alessandra.petrucci@unifi.it

Enrica Caporali
Department of Civil and Environmental Engineering, University of Firenze,

enrica.caporali@unifi.it

Abstract: Extreme value models and techniques are widely applied in environ-
mental studies to define protection systems against the effects of extreme levels of
environmental processes. Regarding the matter related to the climate change sci-
ence, a certain importance is cover by the implication of changes in the hydrological
cycle. Among all hydrologic processes, rainfall is a very important variable as it is a
fundamental component of flood risk mitigation and drought assessment, as well as
water resources availability and management. We implement a geoadditive mixed
model for extremes with a temporal random effect assuming that the observations
follow generalized extreme value distribution with spatially dependent location. The
analyzed territory is the catchment area of Arno River in Tuscany in Central Italy.

Keywords: GEV distribution, geoadditive mixed model, hydrologic processes

1 Introduction

Environmental extreme events such as floods, earthquakes, hurricanes, may have a
massive impact on everyday life for the consequences and damage that they cause.
For this reason there is considerable attention in studying, understanding and pre-
dicting the nature of such phenomena and the problems caused by them, not least
because of the possible link between extreme climate events and climate change.
A number of theoretical modeling and empirical analyses have also suggested that
notable changes in the frequency and intensity of extreme events, including intense
rainfall and floods, may occur even when there are only small changes in climate
(Katz and Brown, 1992).

In this framework, in the past two decades there has been an increasing interest
for statistical methods that model rare events (Coles, 2001). The Generalized Ex-
treme Value distribution (GEV) is widely adopted model for extreme events in the
univariate context. For modeling extremes of non-stationary sequences it is common-
place to use the GEV as a basic model, and to handle the issue of non-stationarity
by regression modeling of the GEV parameters.
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Here we implement a geoadditive mixed model for extremes with a temporal
random effect. We assume that the observations follow a generalized extreme value
distribution whose locations are spatially dependent where the dependence is cap-
tured using the geoadditive model. The analyzed territory is the catchment area of
Arno River in Tuscany in Central Italy.

2 Materials and Methods

The investigation is developed on the catchment area of Arno River almost entirely
situated within Tuscany, Central Italy. The time series of annual maxima of daily
rainfall recorded in 415 rain gauges are analyzed. In order to have enough rain
gauges observations to estimate both the spatial component and the year specific
effect, we reduce the time series length to the post Second World War period and we
consider only stations with at least 30 hydrologic years of data, even not consecutive.
The final dataset is composed by the data recorded from 1951 to 2000 at 118 rain
gauges for a total of 4903 observations.

Recently to handle the issue of non-stationarity of the GEV parameters, Padoan
and Wand (2008) discuss how generalized additive models (GAM) with penalized
splines can be carried out in a mixed model framework for the GEV family.

Geoadditive models, introduced by Kammand and Wand (2003), are a particular
specification of GAM that models the spatial distribution of y with a bivariate
penalized spline on the spatial coordinates. Suppose to observe n sample maxima
yij at spatial location sij, s ∈ R2, j = 1, . . . , p and at time i = 1, . . . , t. In order to
model both the spatial and the temporal influence on the annual rainfall maxima,
we consider a geoadditive mixed model for extremes with a temporal random effect:

yij|sij ∼ GEV(µ (sij) , ψ, ξ)

µ (sij) = β0 + sTijβs +
K∑
k=1

ukbtps(sij,κk) + γi,
(1)

where µ, ψ and ξ are respectively location, scale and shape parameters of the GEV
distribution, btps are the low-rank thin plate spline basis functions with K knots
and γi is the time specific random effect. The model (1) can be written as a mixed
model

y| (u,γ) ∼ GEV(Xβ + Zu+Dγ, ψ, ξ). (2)

with

E

[
u
γ

]
=

[
0
0

]
, Cov

[
u
γ

]
=

[
σ2
uIK 0
0 σ2

γIt

]
.

where

β =
[
β0,β

T
s

]
u = [u1, ..., uK ] γ = [γ1, ..., γt]

X =
[
1, sTij

]
1≤ij≤n D = [dij]1≤ij≤n

2



with dij an indicator taking value 1 if we observe a rainfall maxima at rain gauge
j in year i and 0 otherwise, and Z the matrix containing the spline basis functions,
that is

Z = [btps(sij,κk)]1≤ij≤n,1≤k≤K = [C (sij − κk)]1≤ij≤n,1≤k≤K · [C (κh − κk)]−1/2
1≤h,k≤K ,

where C(v) = ‖v‖2 log ‖v‖ and κ1, ...,κK are the spline knots locations.

3 Results

The geoadditive mixed model for extremes (2) can be naturally formulated as a
hierarchical Bayesian model and estimated under the Bayesian paradigm. Following
the specifications of Padoan (2008), our complete hierarchical Bayesian formulation
is

1st level yi| (u,γ)
ind∼ GEV( [Xβ + Zu+Dγ]i , ψ, ξ)

2st level u|σ2
u ∼ N(0, σ2

γIK) γ|σ2
γ ∼ N(0, σ2

γIt) β ∼ N(0, 104I)
ξ ∼ Unif(−5, 5) ψ ∼ InvGamma(10−4, 10−4)

3st level σ2
u ∼ InvGamma(10−4, 10−4) σ2

γ ∼ InvGamma(10−4, 10−4).

where the parameters setting of the priors distributions for ξ, ψ, β, σ2
u, σ

2
γ, corre-

sponds to non-informative priors.
Given the complexity of the proposed hierarchical models, we employ OpenBUGS

Bayesian MCMC inference package to do the model fitting. We access OpenBUGS us-
ing the package BRugs in the R computing environment. We implement the MCMC
analysis with a burn-in period of 40000 iterations and then we retain 10000 itera-
tions, that are thinned by a factor of 5, resulting in a sample of size 2000 collected
for inference. Finally, the last setting concern the thin plate spline knots that are
selected setting K = 30 and using the clara space filling algorithm of Kaufman and
Rousseeuw (1990), available in the R package cluster.

The resulting spatial smoothing component and time specific component of
µ (sij) are presented in Figures 1(a) and 1(b). Observing the map, it is evident
the presence of a spatial trend in the rainfall extreme dynamic, even after control-
ling for the year effect. The spline seems to capture well the spatial dependence as it
produce the same same patter of the Average Total Annual Precipitation. The time
influence is pointed out by the estimated year specific random effects, that present
a strong variability through years.

4 Conclusions

We have implemented a geoadditive modeling approach for explaining a collection
of spatially referenced time series of extreme values. We assume that the obser-

3
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Figure 1: Estimated spatial component (a) and year specific random effects (b) of
µ (sij). Black dots indicate the observed values.

vations follow generalized extreme value distributions whose locations are spatially
dependent.

The results show that this model allows us to capture both the spatial and the
temporal dynamics of the rainfall extreme dynamic.

Under this approach we expect to reach a better understand of the occurrence of
extreme events which are of practical interest in climate change studies particularly
when related to intense rainfalls and floods, and hydraulic risk management.
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Abstract: Over the past several decades, there have been significant reductions
in rainfall across southwest Western Australia. In the present work, the spatial and
temporal structure of these reductions are investigated using generalized additive
models. This involves smoothing over both space and time, to allow spatio-temporal
interactions, as well as allowing for spatial correlation to ensure that standard errors
are constructed appropriately for inference. The proposed method is computation-
ally convenient as models are fitted as though different spatial locations are indepen-
dent, and inference is subsequently adjusted for inter-site dependence. The results
quantify precisely the spatially-varying nature of the decreasing rainfall trends.

Keywords: Spatio-temporal modelling, generalized additive models, tensor
product smooth.

1 Introduction

Several decades of below average rainfall combined with a noticeable shift toward
drier winter conditions, has focused attention on water resource availability and
agricultural management in southwest Western Australia (SWWA) (Bates et al.,
2008). The aim of this analysis is to characterize spatio-temporal trends in rain-
fall intensity and occurrence across SWWA. This is achieved by fitting generalized
additive models (GAM) to data from selected locations in the study area. A key
issue here is to take due account of potential spatial and temporal correlations in
the data. Our approach to this is to treat the data as independent during fitting
and subsequently to adjust standard errors for the dependence. This provides a
computationally convenient means of addressing the problem.
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Figure 1: Map of SWWA indicating the stations used in the analysis

2 Materials and Methods

Daily rainfall readings in millimetres, from 60 weather stations (see Figure 1) for the
period 1940-2010 have been used, although not all sites were operational throughout
this period and some had missing observations. We consider the data for the winter
months only, from May to July, which accounts for most of the region’s annual
rainfall. The daily rainfall data is aggregated in two ways, the proportion of wet
days and total rainfall on wet days, for each site and year.

Prior to fitting the model, the daily rainfall data were subject to data quality
checks. Issues such as inconsistencies in the data related to observer practice across
the different sites, differences in the resolution of the observation recordings, and
thresholding the data prior to analysis to ensure consistency have all been considered.
These problems are typical in the rainfall modelling literature, the interested reader
is referred to the results discussed in Yang et al. (2006) and Chandler et al. (2011).
We shall not go into these details here.

Rainfall, particularly at the daily time scale, typically displays some form of
temporal dependence, however at annual timescales they are relatively independent.
Here, the winter rainfall is aggregated at an annual level, it seems reasonable to
proceed in the first instance as though observations are independent between years.
Since interest lies in characterizing temporal trends which may have a complex
structure and may be spatially-varying, we adopt a nonparametric approach and
represent the spatio-temporal trend surface as a smooth three-dimensional function
of space and time:

E[yit] = f(longitudei, latitudei, timet),

2



where yit is the aggregated annual winter rainfall at location i = 1, . . . , 60 and year
t = 1, . . . , 71 and is assumed to be normally distributed. To account for different
number of observations per year at each station, when fitting our model each ob-
servation is weighted by the number of contributing daily values. Our method uses
the spline framework for nonparametric function estimation. To model smooths of
several variables, when the variables are on different scales (the units of time (years)
and space (km) are different), tensor product scale invariant smooths are required.
Separate smoothing penalties are calculated for the three covariates so that the de-
gree of smoothness is not necessarily the same for each covariate. All statistical
analyses were done using the mgcv package (Wood, 2006) in the R software (R
Development Core Team, 2010).

A key issue with this study is the spatially correlated nature of the data. Suppos-
ing that some assumption of spatial stationarity holds, the residuals from the fitted
model were used to estimate the spatial correlation parameters obtained from the
chosen variogram or correlation model, for the construction of the spatial correla-
tion matrix. Specification of a covariance structure based on the spatial correlation
of residuals ensures that the results are adjusted for spatial correlation. Because
the focus of our approach is on estimating the mean function, not the correlation
function, a very precise estimate of the latter is not required, and simple variogram
models like the exponential will often suffice. The fitted function can be written as a
linear smoother, ŷ = Sy where S is the smoothing matrix. For spatially correlated
observations, the true variance matrix is not diagonal. The model based variance
matrix, V (y), is replaced by the robust variance matrix, Var(y) = A1/2RA1/2 where
A is a diagonal matrix, with the variance function V (µ), along diagonal elements
and R is the spatial correlation matrix. Once the variance-covariance matrix is cal-
culated, standard errors are then constructed in the usual way, as the square-roots
of the elements on the main diagonal.

3 Results

After addressing spatial correlations, new 95% uncertainty bands were obtained
which are now slightly wider than the unadjusted ones (see Figure 2). Interestingly,
the width of the bands for the selected four sites differ significantly. This could
be due the sparseness of data points at particular locations within SWWA which
makes it difficult to characterize precipitation trends reliably. These declines were
most pronounced in north and east of the study region, less so along the south coast.

4 Concluding remarks

To sum up, the used GAM framework enables us to appropriately incorporate all
relevant covariates of space and time. In addition, accounting for the spatial depen-
dence structure by assuming no correlation when fitting models and then adjusting

3
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Figure 2: Fitted smooth curves (solid line) with unadjusted (dotted line) and ad-
justed (dashed line) 95% uncertainty bands for four selected sites in the SWWA
region

the standard errors of estimates enable valid inferences that is robust. The results
quantify precisely the spatially-varying nature of the decreasing rainfall trends.
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1 Introduction
Statistical downscaling models (SDMs) seek to bridge the gap between large-scale vari-
ables simulated from General Circulation Models (GCMs) and small scale variables with
high spatial variability such as precipitation. In this paper, we propose to model the
distribution of precipitation conditional on large-scale atmospheric information with con-
ditional mixture models (CMMs). CMMs are mixture models whose parameters are com-
puted by a neural network based on large-scale atmospheric predictors. We consider three
types of CMMs which differ in the type of continuous densities (Gaussian, Log-Normal
or hybrid Pareto) they use as mixture components. We evaluate the three CMMs against
the two-component mixture from Williams [3] at downscaling precipitation at three rain
gauge stations in the French mediterranean area.

2 Materials and Methods
CMMs combine a discrete component for the ”no rain” events and a continuous component
for rainfall intensity and can be written as :

φ(y;ψ) = (1 − α)δ(y)︸ ︷︷ ︸
no rain

+αφ0(y;ψ0)︸ ︷︷ ︸
rain>0

, (1)

where α is the rain probability, δ(·) is the Dirac function, φ0(·;ψ0) is the density for
rainfall intensity with parameter ψ0 and ψ = (α, ψ0). In [3], φ0(·;ψ0) is the Gamma
density. We propose to use mixtures instead. We can take into account the dependence
of the distribution of precipitation on large-scale atmospheric variables by considering
the parameters of the mixture as functions of these variables. A convenient way to im-
plement these functions is by means of a neural network (NN) [1]. The NN parameters
are calibrated by minimizing the negative log-likelihood of the conditional mixture over
the training set. We selected the hyper-parameters (the number of hidden units and
the number of components) via the cross-validation method, see [1]. We evaluate three
CMMs which differ in the type of mixture components and compare them with the two-
component mixture from Williams [3]. We took Gaussian, Log-Normal or hybrid Pareto
([2]) as mixture components.

The local-scale data are precipitation from three rain gauge stations, Orange, Sète and
Le Massegros which are located in the Cévennes-Vivarais, in the French Mediterranean
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area. Because of the Mediterranean influence and of the mountainous back country,
the Cévennes-Vivarais region is well known for intense rain events, especially in the fall.
We have daily rainfall measurements over 46 years (01/01/1959 -12/31/2004) from the
European Climate Assessment & Dataset (ECA&D). The set of predictors includes the
NCEP/NCAR (National Centers for Environmental Prediction/National Center for At-
mospheric Research) reanalysis sea level pressure (SLP) fields on a 6 by 6 grid cell regions
surrounding the stations. We also include as predictors three date variables representing
the year, the month and the week of an observation. Principal component analysis is
applied to reduce the dimensionality and remove the redundancy among the predictors.
We extract the four principal components in order to keep 90% of the variance of the
data.

The 46-year data set is split into a training set of 25 years (01/01/59 - 12/31/83) and
a test set of 21 years (01/01/84 - 12/31/04). The training set is first used to select the
hyper-parameters with the 5-fold cross-validation method. Then, each model is trained
anew on the whole training set with the selected hyper-parameters. The test set serves
exclusively for comparison and evaluation of the SDMs.

3 Results
The hybrid Pareto CMM being the most complex model, we first compare the other three
SDMs in terms of relative log-likelihood with the hybrid Pareto CMM on the test set.
Table 1 shows the relative log-likelihood on the test set along with standard errors for the
three competing SDMs on the three rain gauge stations. In bold font are the cases where
the hybrid Pareto CMM performed significantly better. We see that the hybrid Pareto
CMM outperforms the Gaussian CMM and the Gamma benchmark on all three stations.
However, we cannot really distinguish the hybrid Pareto CMM from the Log-Normal
CMM based on this criterion.

Gaussian Log-Normal Williams
Orange 0.02146 (0.003139) 0.0022512 (0.001910) 0.02275 (0.002866)

Sète 0.01595 (0.003034) -0.003530 (0.001647) 0.01847 (0.002690)
Le Massegros 0.01948 (0.006671) -0.004606 (0.002121) 0.02068 (0.003005)

Table 1: Relative log-likelihood (std. err.) on the test set between the hybrid Pareto CMM
and the other SDMs (Gaussian and Log-Normal CMMs and Williams’ model). Positive
numbers indicate that the hybrid Pareto CMM performed better. Significant differences are
in bold font.

We randomly generated data for each SDM corresponding to the predictor values
on the test set. This was repeated a thousand times. Fig. 1 illustrates the QQ-plots for
Orange, on logarithmic scale, between the observations and the simulations for the hybrid
Pareto CMM, left panel, and for Williams’ model (right panel). Models which are in
accordance with the data should be close to the diagonal line. We see that Williams’ model
is less apt at modelling both the central part (over-estimation) and the upper part (under-
estimation) of the distribution. In Fig. 2, we first analyze the seasonal cycles of the rain
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probability (left panel) and of the 99% quantile (right panel) of the hybrid Pareto CMM
on the Orange test set. We can identify from Fig. 2 two seasonal modes, around March
(03) and October (10), which translates into higher probabilities and amounts of rain
around these two months, while summer (i.e., around July) presents lower probabilities
and amounts of rain. This is globally in agreement with the observations over the test
set, showing the same features. In Fig. 3, we finally look at the conditional densities
of the hybrid Pareto CMM associated with different atmospheric conditions, that is for
different predictors, for the rain event at the Orange station with the highest volume of
rain (322 mm in 09/08/2002-09/09/2002) in the test set. The left panel of Fig. 3 shows
the central part of the conditional densities while the right panel represents the upper
tails in logarithmic scale. Each curve corresponds to a different day which is connected
in the legend with the amount of rain observed on that day in chronological order (from
top to bottom). From Fig. 3, we see that the conditional density is very responsive to
changes in atmospheric conditions and that globally, days with heavy rains correspond to
heavy tailed densities and days with no rain to almost flat densities.
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Figure 1: QQ-plots on logarithmic scale of the simulated precipitation versus observations
> 1mm on the Orange test set for the hybrid Pareto CMM (left panel), and Williams
model (right panel). The horizontal lines are the empirical unconditional quantiles from
observations of the test set.

4 Concluding remarks
To our knowledge, CMMs are used for the first time in a downscaling context and open
interesting ways to study the interactions between large- and small-scale climate variables.
CMMs extend the two-component mixture proposed initially by Williams [3] which has a
discrete component like CMMs to model rainfall occurrence but relies on a single density,
the Gamma, for rainfall intensity.

We draw the following conclusions from our analyses on the three stations in the French
mediterranean area: 1) CMMs have clear advantages over Williams model in terms of flex-
ibility to represent both the central and the extremal part of rainfall intensity distribution
and 2) the choice of component in CMMs depends on the data. In our case, Gaussian
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Figure 2: Daily seasonal cycles of the rain occurrence probability (left panel) and of the
99% quantile (right panel) from the observations (black line) together with an empirical
90% confidence interval (grey band) and median (white line) from the hybrid Pareto CMM
for the Orange station test data.
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Figure 3: Conditional densities for the hybrid Pareto CMM day by day for a period with
the highest volume of rain in the test Orange data. Each daily density is represented with a
different color which is represented in the legend in chronological order, from top to bottom,
with the amount of rainfall observed.

components are not well suited. Log-Normal CMMs offer a good performance and are
more straightforward to implement than hybrid Pareto CMMs. However, the assumption
of heavy tails of the hybrid Pareto CMM seems more realistic for the precipitation data
considered in this work.
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Abstract: The high resolution Air Dispersion Modelling System (ADSM)-Urban 
represents an advanced model to simulate the local traffic and non traffic related 
contribution of PM10. The aim of our study is to provide a Bayesian framework to 
improve exposure estimates of PM10 combining observed data from monitoring sites 
with ADMS-Urban numerical model output. To illustrate our approach we use PM10 
daily averaged values for 46 monitoring sites in London, over the period 2002-2003 and 
output from ADMS-Urban. Different spatio-temporal structures are investigated and 
compared in performance. We demonstrate that adding covariates on environmental 
characteristics of sites and meteorological changes over time improve the precision and 
accuracy of the concentration estimates. 
 
Keywords: Bayesian inference, Particulate matter pollution, Space-Time model, 
Kriging, Random Walk.  
 
 
1. Introduction 
 
In the last decade urban air pollution has become a relevant topic of epidemiological 
and environmental research. The concern over its adverse health effects has led to 
considerable efforts on the development of numerical model to estimate exposures for 
these complex mixtures. The high resolution Air Dispersion Modelling System 
(ADSM)-Urban represents an advanced semi-Gaussian model, widely used to assess 
and simulate the dispersion into the atmosphere of some important pollutants, such as 
particulate matter ≤ 10 µm in aerodynamic diameter (PM10), released from industrial, 
domestic and road traffic sources (Carruthers et al. 2000). 
The aim of our study is to provide a Bayesian spatio-temporal framework to improve 
exposure estimates of PM10 combining particulate matter data from monitoring sites 
with ADMS-Urban model output. Several modelling strategies have been suggested in 
the Bayesian literature to combine observed data and model output (e.g. Fuentes and 
Raftery 2005; Sahu et al. 2009; Mc Millan et al. 2010; Berrocal et al. 2010). Our models 
are framed in a downscaler perspective (Berrocal et al. 2010), assuming that PM10 is 
characterised by a spatial and temporal component; we extend this approach 
incorporating additional relevant spatial or temporal covariates: long-range transport of 
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PM10, site type, day of the week and temperature. The performance of our modelling 
approach is assessed using: 1) indexes of model fit and 2) a cross-validation 
perspective. 
 
 
2. Materials and Methods 
 
Data description and study area  
The dataset consists of PM10 daily averaged concentrations (µg/m3) that were observed 
at 46 monitoring sites in London, over the period 2002-2003. The monitoring stations 
present different environmental conditions, some are in suburban or urban locations (no. 
22), and others are located near road (no. 20) or highly busy kerb site (no. 4). The mean 
distance between the sites is 17813.3 meters (range: 358.4-45297.3 meters). The 
proportion of missing data is 8.8%, varying across the monitoring sites from 0.7% to 
28.4%. The missing values are assumed to be missing at random and being in a 
Bayesian perspective, they are imputed through the posterior predictive distribution. 
The second main source of information is the modelled output for local traffic and non 
traffic from ADMS-Urban, based on grid cells. It has a limit of 1500 on the number of 
source road links that can be modelled; monitoring sites were therefore buffered to a 
distance of 300 metres, and all road sources within that range selected for modelling. 
Emissions from other sources for each 1 km grid cell were also modelled. 
To take into account the contribute of a long-range component of PM10, we included the 
monitoring station at the rural site of Harwell (~60 Km west of London). Harwell 
represents a good indicator for long-range transport of air masses: it is surrounded by 
predominantly agricultural land, and the nearest road is located at 140 metres from the 
station. In addition, we included in the analysis: the type of site (sub-urban or urban, 
road and kerb sites), the day of the week (Monday-Friday, Saturday and Sunday or 
Holiday) and the temperature at the Heathrow meteorological station, measured at 1.25 
m above ground level (with linear and quadratic effect).  
We performed a preliminary exploratory analysis which showed spatio-temporal 
variation in the concentration levels of PM10. Figure 1 shows the mean concentration 
levels: a) by site (quartiles of PM10 values distribution) and b) by day for each month 
(year 2002). The analysis of autocorrelation correlogram of time series (not shown) 
suggests serial dependencies. 
 
a b 

 

 

 
 

Figure 1: PM10 concentrations: a) Plot of mean values by site (U=Urban/Suburban; 
R=Road; K=Kerb); b) Box plot of daily mean values by month (year 2002) 
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Bayesian Hierarchical Models 
Let       denote the response variable (log-transformed PM10 data) at location     and time   
The response is modelled as a space-time process defined by                        
We consider the following possible models for      
Model 1 -  
Basic model. Approximately half of the PM10 can be considered secondary or natural, 
being made up of PM formed from gaseous precursors or sea salt, thus this analysis 
includes only the long-range component (PM10 observed at rural site of Harwell) that is 
assumed to follow a second-order random walk non-stationary in time model. 
Model 2 -  
Multivariate model that includes, as well as the background component, the output from 
numerical ADMS-Urban model and its coefficients are assumed to vary spatially 
through a Bayesian Kriging. We specified a Uniform prior distribution for the 
correlation decay parameter with range chosen based on prior beliefs about the 
maximum and minimum correlation at the largest and smallest distances of the PM10 
values. Prior range for correlation at minimum distance was between 0.10 and 0.99; 
prior range for correlation at maximum distance was between 0 and 0.30. 
Model 3 -  
Multivariate model that incorporates spatial and temporal dimension of the data, as well 
as the spatio-temporal covariates (site type, day of the week, temperature).   
We assumed a separate variance for each site     with a moderately informative inverted 
gamma prior. We adopted vague normal priors for the intercept coefficient α and the 
regression coefficients  
To validate our models, we randomly partitioned the monitoring network in four 
subsets. For each subset, a single subsample is retained as the validation data for testing 
the model, and the remaining subsamples are used as training data.  
The deviance information criterion (DIC; Spiegelhalter et al. 2002), is used to analyse 
the model fit. In order to compare the performance of the models, we adopted the 
empirical coverage of 95% credible intervals (95%CI), the average length of 95%CI, 
the mean square error (MSE), the adjusted R2 and the mean fractional bias (MFB).  
We present the results obtained from one subset; they are consistent for the other 
subsets. 

 
 

3. Results 
 
The model comparisons via DIC show large differences among the models: the third 
one, which considers the spatio-temporal structure as well as the additional covariates, 
had a smaller DIC (-3506.7) than the first two (DIC respectively equal to 19388.6 and 
15574.1). Cross-validation summary statistics are showed in Table 1. 
 

Model Coverage 
95%CI 

Average 
length 95%CI 

MSE Adjusted 
R2 

MFB 

1 95.42 43.15 116.89 0.47 0.10 
2 95.66 43.37 106.86 0.47 0.12 
3 96.67 32.09 53.81 0.73 0.05 

 
Table 1: Summary statistics for cross-validation prediction 
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Table 2 presents the posterior distribution of model parameters for Model 3. The effect 
of the monitoring site type shows that PM10 level is significantly higher for road and 
kerb sites than for suburban/urban sites. Level of PM10 are lower on Saturdays 
(significant) while Sunday or Holidays are not significantly different from weekdays. 
High temperatures are associated with high concentration of PM10. Finally, the 
relationship between observed values and modelled output from ADMS-Urban shows 
spatial variation (Figure 2).  
The posterior median of daily temporal effect (parameter β1t) associated with long-range 
component (not shown) presents a range of values from -1.36 to 1.39 (95%CI).  
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α  2.787  2.723  2.837  
β

3 
(Road site)  0.150  0.143  0.158  

β
3 

(Kerb site) 0.220  0.205  0.233  
β

4 
(Saturday)  -0.219  -0.271  -0.172  

β
4 

(Sunday or Holiday)  0.070  -0.006  0.147  
β

5 
(Temperature)  0.122  0.112  0.147  

β
6 

(Temperature
2
)  0.021  0.019  0.026  

Table 2: Posterior distribution of model 
parameters (on log-scale)  

Figure 2: Posterior distribution 
of β2 parameter (on log-scale) 

 
 
4. Concluding remarks 
 
Our Bayesian approach provides a natural way to combine data from different sources 
taking into account their uncertainties. We found that adding “spatial” covariates (e.g. 
site type) and “temporal” ones (day of the week, temperature) increases the precision 
and accuracy of the estimated values of PM10. 
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Abstract: In this work we consider a joint space-time model for cancer inci-
dence, using data on prostate cancer collected between 1988 and 2005 in a specific
area of France. Our aim is to take into account possible non linear effects of some
covariates and zero-inflation due to data aggregation for Poisson regression. We as-
sume that counts of cancer cases follow zero-inflated Poisson distribution, where the
probability of zero inflation is a monotonic function of the mean. The purpose of our
analysis is to check whether the French prostate screening programme, which begins
in 1994, results in a spatial or a spatial-temporal change of the pattern of the disease.

Keywords: Spatio-temporal model, cancer incidence data, zero inflation

1 Introduction

Cancer registries represent epidemiological instruments which are aimed at provid-
ing population based cancer incidence and mortality summaries. Usually the data
are stratified by age group, year and geographical unit of residence. As the counts
of cancer cases are distributed according to these variables, the dataset exhibits a
proportion of zeros higher than would be expected under the Poisson distribution.
The problem is also known as zero-inflation (Lachenbruch, 2002) and is common
in ecological studies. We make the assumption, justified by the nature of the data
analyzed, that the probability of zero inflation depends on the set of stratified vari-
ables. In this work we analyse data on prostate cancer incidence collected between
1988 and 2005 in the North-East of France. We present an approach to analyze
the space-time evolution of the disease taking into account also possible non linear
effects of other covariates (such as age) and the zero inflation due to extra Poisson
variation. Prostate is a type of cancer which usually does not have a spatial distribu-
tion. Here we are interested in the space-time evolution of the disease to investigate
if the prostate screening programme started progressively in the region since 1994
has a direct implication on the space or space-time evolution of the cancer.

1The second author was partially supported by Visiting Professor program of ”Regione Au-
tonoma della Sardegna”
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2 Materials and Methods

Our data consists of all cases of prostate cancer (C61.- in the ICD-10 classification)
diagnosed between the 1st January 1988 and 31st December 2005, in the region of
Haut-Rhin in France. The total number of cases is 6878. The distribution of the
number of cases aggregated over age groups (9 categories), across the 26 geographical
units, each year has mean of 14.2 cases while the median is 10. Due to covariates,
the data set counts were spread over 4374 cells with 1935 zeros (44% of the cells are
equal to zero). Our objective is to detect effects of time, space, age and age-time
interaction on the number of new prostate cancer cases, taking into account an high
proportion of zero counts. We thus build different zero-inflated models and compare
them using marginal likelihood.

Zero-inflated Poisson data are often analyzed via a mixture model specifying
that the response variable, Y , comes from a mixture of 0 with probability ω and a
regular Poisson component of mean λ with probability 1− ω (Lambert, 1992).

Covariates may then enter into the model through the mean λ and/or through the
probability ω. Here we consider a zero-inflated generalized additive model (Chiogna
and Gaetan, 2007), where the mean of the regular component and the probability
of zero-inflation are each modeled as a function of some nonparametric smooth
predictors. As usual we assume that the mean of the Poisson distribution λ is equal
to E(µ) where E indicates expected number of cases under direct standardization
and µ is the relative risk. For the log risk we consider the following linear predictor:

log(µatr) = ηatr = f1(agea) + f2(yeart) + f3(agea, yeart) + f4(eastr, northr) (1)

a ∈ {1, . . . , 9}, t ∈ {1, . . . , 18}, r ∈ {1, . . . , 26}, f1(·), f2(·) are smooth functions of
the covariates age and year modeled using cubic regression splines, f4(eastr, northr)
is a thin plate regression spline, while, for modelling the smoothed age-time in-
teraction, we use tensor products allowing smoothness parameter selection to be
independent of the different scale of the covariates (for more details see (Wood,
2006)). We make the assumption that the probability of zero inflation is a linear
function of the covariates. We are in the framework of constrained zero-inflated
generalized additive model (COZIGAM) ((Liu and Chan, 2010)). In particular we
consider the following two specifications:

1. Model 1: the dependence is constrained in such a way that the probability of
zero inflation is linearly related to linear predictor. We have:

logit(ωatr) = α+ δηatr;

2. Model 2: the proportional constraint can be generalized by assuming that the
proportionality constant is specific to each additive component, specifically:

logit(ωatr) = β+δ1f1(agea)+δ2f2(yeart)+δ3f3(agea, yeart)+δ4f4(eastr, northr).
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In both model the linear predictor is specified as in equation (1).
Because there is no closed form for the marginal likelihood, Laplace method is

used to approximately compute the likelihood (Liu and Chan, 2010). The analyses
have been performed using the R package COZIGAM (Liu and Chan, 2010), relying
on mgcv package (Wood, 2001).

3 Results

According to the marginal likelihood, the best model is Model 2. In Table 1 are
reported the values of the significant proportionality coefficients estimates for the
best model, which provides strong evidence of a significant relationship between
these smooth components in the mean of the non-zero-inflated distribution and in
the zero-inflation probability, on their link scales. These values emphasize the main
role that age plays on the zero-inflation, compared with the effect of time.

Figure 3 displays the smooth function estimates of Model 2. We can see that:

• The estimate of the time effect shows an increase of incidence up to 1995 then
a strong decrease up to 2001 then an increase.

• the combined effect of age and time is quite relevant, in particular a progressive
decrease in the age for the maximum incidence along time is evident.

• The estimated spatial effect is slightly significant. Except some boundary
effects, there is a little peak of incidence in the north of the region (where a
city of around 70,000 inhabitants is) and again a peak on the south-east part,
difficult to separate from the boundary effect. Adding the spatio-temporal
interaction in the model mod4 yields a non-significant effect.

Covariate estimate standard error pvalue
β 3.9939 0.85714 p < 0.00001
δ1 s(age) 0.8859 0.04692 p < 0.00001
δ2 s(year) 2.595 1.150 p = 0.024
δ3 s(age, year) 1.237 0.29 p < 0.00001

Table 1: Significant coefficient estimates of the constrained generalized additive
model

4 Concluding remarks

Zero-inflated generalized additive model provides a method for modeling incidence
data by taking simultaneously into account possible non linear effects of continuous
covariates and the spatio-temporal evolution of the disease. The number of extra
zeros seems in particular linked to the age group. The aim of such study is to check
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Figure 1: Effect of time, joint effect of age and time and spatial effect estimated for
Model 2

whether the spatial pattern of incidences changes over time. The main finding is
that there is a strong temporal effect, while the spatial effect is not very strong (not
quite significant) and the spatial effect does not change over time (the space-time
interaction was not significant). If we link the aspect of the main temporal effect
with the development of the screening, it seems that the effect on the prostate cancer
incidence is relevant since 1998 whereas the beginning of the organized screening
campaign is 1994. This difference is probably due to a certain time for the screening
programm to be fully efficient in the population.
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Abstract: We consolidate the zero-inflated Poisson model for count data with
excess zeros (Lambert, 1992) and the two-component model approach for serial cor-
relation among repeated observations (Dobbie and Welsh, 2001) for spatial count
data. This concurrently addresses the problem of overdispersion and distinguishes
zeros that arise due to random sampling from those that arise due to inherent char-
acteristics of the data. We give a general quasi-likelihood and derive corresponding
score equations for the zero-inflated Poisson generalized linear model. To introduce
dependence, a spatial-temporal correlation structure comprising forms for fixed time,
fixed location, and neighbor interactions is required; construction using techniques
from the theory of Markov point processes is investigated.

Keywords: Generalized estimating equation (GEE), spatial count data, zero-
inflated counts, zero-inflated Poisson model, nearest-neighbor marked Markov point
processes, Dirichlet tessellation.

1 Introduction

Let yit denote the number of occurrences of an event observed at t = 1, . . . , Ti

time points for each subject i = 1, . . . , n, and let xit ∈ Rq be a vector of measured
covariates. Such data is often modeled through a generalized linear model to provide
greater flexibility, specifying a form for the expectation, E[Yit] = λit = g−1

(
x′itβ

)
,

with β a q × 1 vector of unknown parameters, and the link function g(·) commonly
taken to be the log function. Under a Poisson distribution, the variance is equal to
the mean, Var(Yit) = λit = E[Yit], which in practice may be too restrictive; often
the data exhibit E[Yit] = Var(Yit), known as overdispersion.

Lambert (1992) has presented zero-inflated Poisson (ZIP) regression, giving rise
to a new class of regression models for count data with an abundance of zero ob-
servations. In a ZIP model, the non-negative integer response Y is assumed to be
distributed as a mixture of a Poisson distribution with parameter λit, and a distri-
bution with point mass of one at the value zero, with mixing probability αit; the
non-zeros and a portion of the zeros are modeled by the usual Poisson probability.

1Research supported in part by the Swiss National Science Foundation, Grant No. FN 200021-
116146
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Dobbie and Welsh (2001) adapt the generalized estimating equations approach of
Liang and Zeger (1986) to zero-inflated spatial count data, addressing dependence
by incorporating a correlation matrix. They model the abundance of zeros via a
two-component approach: the zeros are modeled separately from the non-zeros;
first, absence versus presence (zero versus non-zero) is described by a logistic model,
and then conditional on presence, the non-zero counts are described by a truncated
Poisson distribution.

We work in the context of a Poisson generalized linear model, consolidating
the two aforementioned approaches to construct generalized estimating equations
for the zero-inflated Poisson generalized linear model comprising spatial-temporal
dependence. Attributing some of the zeros to the Poisson distribution avoids con-
ditioning on the responses, and provides a more intuitive approach to occurrence of
zeros in the data. The data of interest are weekly counts of Noisy Friarbirds (Phile-
mon corniculatus) recorded by observers for the Canberra Garden Bird Survey:
attributing a probability weight of zero observations to a point mass distribution
and its complement to a Poisson distribution allows for the distinction between zero
counts arising due to an inherent characteristics that may induce zero observations
(e.g. inadequacy of the region where measurements were taken for the survival or
reproduction of Noisy Friarbirds), and zero counts arising at random. In consider-
ing dependence, the theory of nearest-neighbor Markov point processes proves to be
useful in constructing covariance forms for the zero-inflated spatial data.

In this paper, we detail the theoretical results behind the work to be presented at
the 2011 European Regional Conference of The International Environmetrics Society
(TIES), “Spatial Data Methods for Environmental and Ecological Processes – 2nd
Edition”.

2 Methodology

We implement the zero-inflated Poisson model of Lambert (1992) to address overdis-
persion, and obtain a likelihood and score equations, which, following Dobbie and
Welsh (2001), turn out to be generalized estimating equations in the style of Liang
and Zeger (1986); we incorporate dependence into the model following Diggle et
al. (2009). In constructing a space-time dependence structure, we focus on the
neighbor interaction component and outline the theory of Markov point processes
relevant to this aspect.
The Zero-Inflated Poisson Generalized Linear Model. A non-negative, integer-
valued random variable describing a discrete number of occurrences for a cross-
sectional unit i at time period t is said to follow a zero-inflated Poisson distribution
with parameter λit ∈ (0,∞) and mixing probability αit ∈ (0, 1) if

Yit ∼
{

0 with probability αit,
Poisson(λit) with probability (1− αit).

(1)
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The parameters λit, αit are allowed to depend on auxiliary covariate information,
for simplicity we assume the same auxiliary information. It follows that E[Yit] =
(1− αit)λit and Var(Yit) = (1− αit)λit(1 + αitλit) and indeed E[Yit] < Var(Yit).

Under this model, the observations are generated by

Prob(Yit = yit|xit) = αit1l(yit = 0) + (1− αit)
exp

{
yitx

′
itβ − ex

′
itβ
}

yit!
, (2)

where 1l(·) denotes the indicator function; the probability of observing a zero is
Prob(Yit = 0|xit) = αit + (1− αit) exp

{
− ex′

itβ
}
.

Likelihood and Score Equations. The log-likelihood for the zero-inflated Poisson

model is `(αit,β) =
∑

i,t:yit=0

log
(
αit+(1−αit)e

−ex
′
itβ
)

+
∑

i,t:yit>0

(
yitx

′
itβ−ex

′
itβ−log yit!

)
,

which gives the following score equation with regard to β:

∂

∂β
`(αit,β) =

∑
i,t:yit=0

(yit − λit)
Prob(Yit = 0)− αit

Prob(Yit = 0)
+

∑
i,t:yit>0

(yit − λit)xit = 0. (3)

Modeling the mixing probability αit as any differentiable function of another pa-
rameter γ, αit = αit(γ), the score equation for the ZIP model with regard to γ
is

∂

∂γ
`(αit,β) =

∑
i,t

Prob(Yit > 0)

Prob(Yit = 0)

∂αit

∂γ

1

1− αit

= 0. (4)

Note that ratio of probabilities in this latter equation provides an intuitive odds-
ratio interpretation of the weighting between the two probability components.
Introducing Dependence. Following Dobbie and Welsh (2001) and Diggle et
al. (2009) in the setting of marginal models, we introduce dependence by extending
the score equations (3) and (4) to comprise a 2Ti × 2Ti spatial variance-covariance
matrix. Diggle et al. (2009) show that for marginal models under appropriate param-
eterizations, the score equations assume a form of a generalized estimating equation
(Liang and Zeger, 1986), whose solution gives a consistent estimator:(

∂µ

∂β

)′
Var(Y )−1(Y − µ) = 0. (5)

In the spatial-temporal setting, the covariance requires structures for fixed time,
fixed location, and neighboring interactions. Models for the former cases are readily
available in time series analysis and spatial statistics literature. In our application
to Noisy Friarbird counts, the latter case is of particular interest, since, depending
on the region partition, observations in one region is likely to influence that in
nearby regions: vicinities of unsuitable habitat regions may also be less suitable,
thus influencing a low-valued observation. This motivates the use of techniques
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of nearest-neighbor Markov point processes and random tessellations to address
neighbor interaction as well as region partitioning.

Models for observations generated by marked Markov point processes can be
augmented to allow interactions to depend on the realization of the process by
generalizing the spatial Markov property, as shown by Baddeley and Møller (1989).
Moreover, the spatial interaction in a marked Markov point process can be analyzed
conditional on the positions of the points, since the conditional distribution of the
marks given the point configuration is a Gibbs process on the finite graph defined
by the points. Dirichlet tessellation is shown to satisfy nearest-neighbor conditions
in the construction of such processes where each point interacts with its neighbors,
notably that of the invariance of connectivity between any two points under the
addition of a new point, unless it is a neighbor of both points.

3 Concluding Remarks

The spatial-temporal zero-inflated Poisson generalized linear model addresses overdis-
persion present in space-time data comprising excess zeros, while providing greater
flexibility in the modeling and interpretation of zeros due to random sampling and
those due to characteristics of the data, and may be extended to incorporate spatial-
temporal dependence. The nature of such data motivates the consideration of neigh-
boring interactions when constructing forms for dependence, which then inspires the
use of techniques of nearest-neighbor Markov point processes, allowing for the gen-
eration of spatial points with interaction that is conditional on their positions. This
two-fold approach to the challenges of zero-inflated, correlated spatial-temporal data
will indeed prove to be applicable in various ecological and biological contexts, and
useful in general applications in diverse fields of science.
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Abstract: A new approach to ecological analysis on disease mapping is intro-
duced: a semi-parametric approach based on M-quantile models. We define a Pois-
son M-Quantile spatially structured model. The proposed approach is easily made
robust against outlying data values for covariates. Robust ecological disease map-
ping is desirable since covariates at area level usually present measure-type error. We
consider a spatial structure in the model in order to extend the M-quantile approach
to account for spatial correlation between areas using Geographically Weighted Re-
gression (GWR). Differences between M-quantile and usual random effects models
are discussed and the alternative approaches are compared using the Scottish Lip
cancer example.

Keywords: disease mapping, ecological analysis, M-quantile regression, Robust
models, spatial correlation, Poisson regression, geographically weighted regression

1 Introduction

Disease mapping involves the analysis of disease incidence or mortality data often
available as aggregate counts over a geographical region subdivided for administra-
tive purposes. Such aggregate data are often relatively easy to obtain from gov-
ernment sources. More difficult is to obtain the measures, at aggregated level, on
explanatory covariates that could be considered as known or putative risk factors.

Ecological regression on disease mapping mainly focuses on the estimation of risk
in administrative regions and the analysis of the association between risk factors and
disease. In ecological analysis related to disease mapping, data usually exhibit over-
dispersion. The latter is usually considered in the model by way of random effects
introduced on the model. Clayton and Kaldor (1987) proposed the use of a Poisson-
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gamma model for relative risks using an Empirical Bayesian approach (referred to as
EB below). This model was generalized by Besag et al. (1991) into a fully Bayesian
setting using a Hierarchical Bayesian model with a spatial structure (referred to as
BYM below). So, ecological disease mapping typically rely on regression models
that use both covariates and random effects to explain variation between areas.
These models depend on strong distributional assumptions and require a formal
specification of the random part of the model. Moreover, they do not easily allow
for outlier-robust inference due to covariates at areal level that could be measure-
type error prone.

In this paper, we describe a new approach to ecological disease mapping: Poisson
M-Quantile regression (referred to as PMQ below). Raughly speaking, the idea is
to model quantiles like parameters of the conditional distribution of the target vari-
able given the covariates. Unlike usual random effects models, M-quantile models
do not depend on strong distributional assumptions and are robust to the presence
of outliers due to measure-type error on covariates. We introduce easily a spatial
structure extending the M-quantile approach to account for such spatial correlation
between areas by way of appropriate weights at the estimation step (see Salvati et
al., 2011). The used approach to incorporate such spatial information is Geograph-
ically Weighted Regression: the relationship between the outcome variable and the
covariates is characterised by local rather than global parameters, where local is
defined spatially. Differences between Poisson M-quantile and traditional random
effects models are discussed and compared using the Scottish Lip cancer example.

2 Poisson M-Quantile regression

We define an extension of linear M-quantile regression to count data. M-quantile
regression (Breckling and Chambers, 1988) is a “quantile-like” generalization of
regression based on the influence function (M-regression). The M-quantile of order
q, q ∈ (0, 1), of a random variable Y with continuous distribution function F (·) is
the value Qq that satisfies

E

[
ψq

(
Y −Qq

σq

)]
= 0

where σq is a suitable measure of the scale of the random variable Y −Qq, ψq(ϵ) =
2ψ(ϵ) [qI(ϵ > 0) + (1− q)I(ϵ ≤ 0)] and ψ is an appropriately chosen influence func-
tion: the Huber “small c” second proposal specification with c = 1.345, ψ(ϵ) =
ϵI(−c ≤ ϵ < c) + c sgn(ϵ)I(|ϵ| > c).

Breckling and Chambers (1988) define a linear M-quantile regression model as
one where the M-quantile Qq(X; Ψ) of the conditional distribution of Y given the
matrix of p auxiliary variables X corresponding to an influence function ψ satisfies

Qq(X;ψ) = Xβqψ
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There is no agreed definition of an M-quantile regression function when Y is rates
parameterized Poisson. The most appealing, of course, is using a log-linear specifi-
cation

Qq(X;ψ) = t exp(γqψ)

where γqψ = Xβqψ is the linear predictor and t the offset term (expected cases of
death). Cantoni and Ronchetti (2001) obtained a robust version of the estimating
equations for generalized linear models. We consider the extensions of this to the M-
quantile geographically weighted regression case (referred to as PMQGWR below)
following Salvati et al. (2011).

3 Scottish Lip cancer Example

Clayton and Kaldor (1987) and many others (i.e. Wakefield, 2007) analyzed observed
and expected numbers of lip cancer cases in the 56 administrative areas of Scotland.
Data were available on the percentage of the work force in each county employed
in agriculture, fishing or forestry. This covariate have been chosen because all three
occupations involve outdoor work, exposure to sunlight, the principal known risk
factor for lip cancer. In the present paper, we analyse this data using EB, BYM using
a convolution prior (exchangeable and spatially structured random terms), PMQ and
PMQGWR models. Figure 1 shows estimates of relative risk for considered models.
Results are similar. Poisson M-quantile models, seems smoother less than random
effects models. For PMQGWR sensitivity analysis to bandwidth choice has to be
considered.
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Figure 1: Relative risks estimates using different models: EB, BYM gaussian con-
volution, PMQ and PMQGWR
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4 Conclusion

In this paper, M-quantile models for ecological analysis on disease mapping are in-
troduced and investigated. In particular, we specify an M-quantile GWR model
that is a local model for the M-quantiles of the conditional distribution of the out-
come variable given the covariates. This model is then used to define a bias-robust
predictor of the small area characteristic of interest that also accounts for spatial
association in the data. These models offer a natural way of modeling between area
association and variability without imposing prior assumptions about the source of
this variability. In particular, with M-quantile models there is no need to explic-
itly specify the random components of the model; rather, inter-area differences are
captured via area-specific M-quantile coefficients. As a consequence, the M-quantile
approach reduces the need for parametric assumptions. In addition, estimation and
outlier robust inference under these models is straightforward. The proposed ap-
proach appears to be suitable for estimating a wide range of parameters and our
simulation results show that it is a reasonable alternative to mixed effects models
for ecological analysis on disease mapping.
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Abstract: Using reliable stochastic or deterministic methods, it is possible to rearrange 
an existing network by eliminating, adding or moving monitoring locations producing 
the optimal arrangement among any possible. In this paper, some spatial optimization 
methods have been selected as more effective among those reported in literature and 
implemented into a software M-Sanos able to carry out a complete redesign of an 
existing monitoring network. Both stochastic and deterministic methods have been 
embedded in the software with the option of choosing, case by case, the most suitable 
with regard to the available information. Finally, an application to the existing regional 
groundwater level monitoring network of the aquifer of Tavoliere located in Apulia 
(south Italy) is presented. 

 
Keywords: Environmental monitoring, Spatial simulated annealing, Kriging. 
 
1. Introduction 
 
With the growth of public environmental awareness and the contemporary improvement 
in national and EU legislation regarding the environment, monitoring has assumed great 
importance in the frame of all those managerial activities related to environmental 
protection and safeguarding. The recent technical and scientific literature has produced 
a huge amount of papers related to the Optimal Monitoring Network Redesign (OMNR) 
(Barca et al., 2008; Wu, 2004). Typical OMNR problems consist in adding, removing or 
moving one or more measurement point in the monitoring network. Scientific literature 
often refers to these cases as upsizing, downsizing and relocation. In general, the 
OMNR is an optimization problem solvable through the quantitative formulation of one 
or more objective functions (OF), whose minimization can be achieved iteratively 
through various network configurations that meet specific conditions of theoretical and 
practical nature. The choice of the OF strongly depends on the goals and the 
information available. Among the iterative optimization methods, one of the most cited 
in the literature is the so-called Spatial Simulated Annealing (SSA) (Kirkpatrick et al., 
1983; Van Groenigen et al., 2000). Many of the methods developed for OMNR require 
a huge computational effort, consequently, some authors developed software able to 
perform this task which, however, generally deals only with one of the possible aspects 
of OMNR (Hu and Wang, 2010; Naoum and Tsanis, 2004; Jimênez et al., 2005; Van 
Groenigen and Stein, 1998; Passarella et al., 2003).  
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This paper presents a software developed in MATLAB  able to solve any OMNR 
problem. It allows one to use several approaches (deterministic, stochastic, mixed), 
techniques (SSA, Greedy deletion) and OF (kriging variance estimation, geometric 
parameters). A case study based on the downsizing of the groundwater level monitoring 
network of the Apulia Region located in the aquifer of Tavoliere (Southern Italy) is 
presented. Three piezometric stations have been removed from the existing monitoring 
network, made of 30 measurement stations. 
 
2. Materials and Methods 
 
The proposed software is fundamentally made by a Network Downsizing Module and a 
Network Upsizing Module, which allows one to solve 3 different OMNR related 
problems: (i) removing points from an existing monitoring network;  (ii) adding new 
points to the monitoring network; (iii) moving points from the existing location to 
another one as a combination of (i) and (ii). The proposed software provides suitable 
techniques able to produce reliable optimal solutions to different OMNR problems once 
the goals have been focused and the available information has been evaluated. The 
backbone of the software is the Spatial Simulated Annealing (SSA).  
Other three modules complete the software architecture: an Input Module, an Output 
Module and an optional Variography Module (Optional). The input module has been 
designed in order to support the user in this phase which is strongly dependent from the 
problem, the goals and the available data. An optional variography module has been 
added to the software capable of performing a best fit of a model to the experimental 
variogram. Once the input phase has been completed the software starts running,  
showing, real time, the evolution of the current transitory optimal configurations. The 
output of the software consists in a list of the coordinates of the redesigned monitoring 
network together with some statistics and plots representative of the convergence rate of 
the method. The software has been named M-SANOS (MATLAB  SANOS) in order to 
honour the well known software SANOS (Spatial ANnealing for Optimal Sampling)  
proposed by Van Groenigen and Stein (1998) which is the first approach to OMNR 
based on SSA. Starting from SANOS, new options have been implemented in M-
SANOS, as the downsizing module, new OFs and heuristics. Several study cases have 
been implemented in order to test the software reliability and efficiency. As an example, 
a case study referred to the downsizing of the groundwater levels monitoring network, 
consisting of 30 piezometers, and located in the aquifer of Tavoliere in the Apulia 
Region (Italy) is presented. The study area extends over 1275 km2 and it corresponds to 
the largest alluvial plain of southern Italy (fig.1). The simulation concerned the 
elimination of three wells from the original configuration. 
 
3. Results 
The Mean KEV (kriging estimation variance) has been used as OF for the case study 
simulation to reach the goal of increasing the accuracy for kriging estimations to be 
carried out at unsampled points over the monitored area. Figure 1 shows the study area 
and the starting monitoring network. A gaussian variogram model has been fitted to the 
experimental data. After about 1300 iterations, the method converged to the optimal 
configuration characterized by a correspondent value of the OF of 0.433. Figure 2 
shows the resulting configuration; the three empty dots are those removed by the 
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optimization method, while Figure 3 shows the behaviour of the correspondent value of 
the OF (fitness value) vs. the iterations and the final configuration. 
 

 
 

Figure 1: Study area. 
 

 
 

Figure 2: Results of the simulation: 
greyed background = simulation grid; 

empty dots = removed monitoring points. 
 

In order to evaluate the effectiveness of the method applied, the optimal network 
configurations has been verified through complete enumeration. In practice, all the 

possible 
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30
 = 4060 configurations have been generated and the minimum value of the 

OF has been evaluated. This value corresponds exactly to the fitness value of the 
optimal configuration resulting from the simulation. Figure 4 shows the values of the 
OF (mean KEV) for all the possible configurations of the monitoring network in 
descending order. It confirms that the minimum value, corresponding the global 
optimum, is just 0.433.  

 
4. Concluding remarks 
 
A software for optimal monitoring network redesign (OMNR) has been presented able 
to add and/or remove measurement points from an existing network. It allows one to use 
stochastic and deterministic approaches and to select among different objective 
functions (OF) covering the main desired goals of optimization. The software works in 
MATLAB   environment and it is provided of different computational modules 
embedded within a graphical user interface. A case study has been presented related to 
the downsizing of the groundwater level monitoring network of the aquifer of Tavoliere 
in Apulia (South Italy). Nevertheless, many other validation tests have been performed 
in order to assess the software reliability and efficiency. All these tests provided 
excellent results. Further developments of the software have already been scheduled in 
order both to add new objective functions and improve the user interface.  
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Figure 3: Behaviour of the current 
transitory optimal energy (fitness value). 

 

 
 

Figure 4: Values of the objective function 
(mean KEV) for all the 4060 possible 

configurations of the monitoring network. 
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Abstract: The aim of this paper is to group territorial units in areas of high intensity, 
using SaTScan and Seg-DBSCAN clustering methods to aggregate adjacent spatial units 
that are homogeneous with respect to the phenomenon being studied. SaTScan scans the 
region of interest with a moving window and compares a smoothing of the intensity 
inside and outside it so that units belonging to contiguous windows with similar 
intensity are aggregated into a cluster. On the other hand, Seg-DBSCAN, a new version 
of DBSCAN, limits the arbitrariness of the choice of input parameters and identifies 
clusters as dense regions in space. As an application we analyze geo-referenced data 
concerning housing problems in Bari and we propose a comparison between the two 
methods presented. 
 
Keywords: clustering, SaTScan, DBSCAN, Seg-DBSCAN, housing problems. 
 
1. Introduction 

Our work is prompted by the need to identify territorial areas and/or population 
subgroups characterized by situations of hardship or strong social exclusion through a 
fuzzy approach that allows the definition of a measure of the degree of belonging to the  
disadvantaged group. Grouping methods for territorial units are employed for areas with 
high (or low) intensity of the phenomenon by using clustering methods that permit the 
aggregation of  spatial units that are both contiguous and homogeneous with respect to 
the phenomenon under study. This work aims to compare two different clustering 
methods: the first based on the technique of SaTScan and the other based on the use of 
Seg-DBSCAN, a modified version of DBSCAN. 

2. SaTScan method 

SaTScan scans the region of interest with a moving window and compares a smoothing 
of the intensity inside and outside it: units belonging to contiguous windows with 
similar intensity are aggregated into a cluster [2]. 
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The identification of clusters means, therefore, to determine an area in which a set of 
points contributes to maximizing the incidence of the phenomenon within the area and 
to minimizing the incidence outside the area. In practice, the technique involves placing 
a monitoring window at random on the area of observation and then calculating the 
value of an estimator both inside and outside the area before proceeding to the testing of 
hypotheses. 

3. Seg-DBSCAN method 

DBSCAN (Density Based Spatial Clustering of Application with Noise) was the first 
density-based spatial clustering method proposed [1]. The key idea is that to define a 
new cluster or extend an existing cluster, a neighborhood around a point of a given 
radius ε must contain at least a minimum number of points MinPts, i.e. the density in the 
neighborhood is determined by the choice of a distance function for two points p and q, 
denoted by dist(p,q). The greatest advantages of DBSCAN are that it can follow the 
shape of the clusters and that it requires only one distance function and two input 
parameters [1]. Their choice is crucial because they determine whether a group is a 
cluster of points or a simple noise.  
In order to limit the arbitrariness of the choice of a value to assign to ε, usually detected 
by a heuristic procedure, in this work we develop a new algorithm: Segmented 
DBSCAN (Seg-DBSCAN), a modified version of DBSCAN, in which the clusters are 
aggregated considering multiple levels of value of ε.  
Therefore, to define levels of ε, a value of MinPts is fixed and we analyze the 
distribution of the maximum radius of the cores that are groups formed by MinPts 
points. Then, we build a histogram of this distribution and we choose ε where there are 
the histogram peaks that indicate a proximity of the cores of a cluster. As suggested in 
literature, we can fix the value of MinPts to 4, and a number of levels of ε equal to the 
number of the highest histogram peaks.  
The final phase of the algorithm is to merge the clusters obtained. The merging of two 
clusters C1 and C2 characterized by different levels of density ε1 and ε2 is obtained if 
  

( )1 2 1 2, max( ; ) (1).d C C ε ε<           
 

With this new algorithm, parameter ε is no longer established a priori. 

 3. Distance function for application  

The aim of our study is to identify the dense areas in terms of intensity compared to the 
considered index. For this purpose, instead of Euclidean distance a function was chosen 
that warps the geometric space so that points that are geographically close and have a 
high intensity become even closer, while points that are geographically close, but at 
least one of which has a low intensity, become more distant. 
The function that links in these terms two points A and B of coordinates A(xA, yA, wA) 
and A(xB, yB, wB)  respectively, with 0 <{wA, wB}<1 ,  is a weighted distance that is 
obtained by dividing the Euclidean distance by a mean of order integer t>0 : 
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Observe that in this distance the triangle inequality does not hold, so it is a semimetric, 
but this restriction does not affect the definitions of density-reachability and density-
connectivity necessary for DBSCAN algorithm [1].   
With this function the distance  increases in matching pairs of points with low intensity 
value, so that they are penalized in the formation of clusters. Empirically it was verified 
that the most appropriate value of t is 5. 

3. Application  

This work aims to identify the land areas characterized by situations of housing 
problems by defining typical indicators able to estimate the difficulty in small areas. 
The case study uses data from the last Population and Housing Census carried out by 
ISTAT in 2001. The indices were calculated for each section of the census of the city of 
Bari [3]: 

• incidence of the number of dwellings occupied by rent-payers with respect to the 
total number of dwellings occupied by residents; 

• index of overcrowding: the ratio between the total number of residents and size 
of dwellings occupied by residents; 

• availability of functional services: landline telephone, the presence of heating 
systems and the availability of a designated residential parking space.  

These indices  may be synthesized by a fuzzy index obtained by "Total Fuzzy and 
Relative" (TFR) method [3]; we denominate  this new index “disadvantaged housing 
index”. It is a measure of an individual’s degree of membership to a disadvantaged 
group and its range is between zero (if the individual does not definitely belong to this 
group) and one (if the individual definitely belongs to this group).  
Using the SatScan method, we identify different clusters each composed by a different 
number of  sections of the city of Bari.  
The city of Bari presents various critical areas: the old town of San Nicola, the areas 
surrounding the city center, Madonnella, Libertà and Carrassi (the former characterized 
by the presence of public housing complexes such as the Duca degli Abruzzi). Less 
critical, though more widespread, is the situation in some suburban areas such as 
Carbonara and Ceglie. 
The same data on housing  problems were analyzed with the Seg-DBSCAN method by 
associating geographic coordinates to the disadvantaged index to obtain eight clusters. 
The critical areas thus obtained do not exactly coincide with those identified by the 
SatScan method: both methods identified the old town of San Nicola and the areas 
surrounding the city center - Madonnella, Libertà and Carrassi – as well as Carbonara 
and Ceglie; but the Seg-DBSCAN method also identified the districts of San Cataldo 
and San Paolo 
We observe that SatScan identifies areas formed by contiguous spatial units in which a 
smoothing of the disadvantaged housing index is performed. This method is effective in 
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identifying areas of high or low intensity and therefore may be a useful indication of 
areas "at risk" to be monitored. 
Like the SatScan method, Seg-DBSCAN identifies areas in which the spatial units meet 
a criterion of adjacency, but Seg-DBSCAN differs in excluding those areas where the 
phenomenon is absent. Seg-DBSCAN can exactly identify sections of the city with 
housing problems. In the case of the San Nicola district, the old town of Bari, the 
SaTScan method identifies the whole district (Figure 1a) while the Seg-DBSCAN 
method identifies the same area of hardship but also analyzes the area in more detail 
(Figure 1b). The method identifies the particular points with a greater presence of the 
phenomenon and excludes the points where the phenomenon is not present because of 
the restoration of historic buildings. 
  

 
 

 
4. Conclusions and future advancements 

The proposed methodologies identify areas where there is a high disadvantaged index. 
As we have noted above, a comparison of the two methods shows that the Seg-
DBSCAN method is more accurate in identifying the spatial units in which there are 
housing problems. The future advancement of our work will be to seek a cluster validity 
index for spatial data, which takes into account the noise points, that is valid from a 
statistical point of view and that allows the accurate measurement of the Seg-DBSCAN 
method. 
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Figure 1a: SaTScan method Figure 1b: Seg-DBSCAN method 
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Abstract: Several natural hazards have been synthesized in one map to obtain an 
overall assessment of these phenomena. Space and time coherent data have been 
searched for: minimum disaggregation available was the province and matching year 
2007. Two indices of susceptibility have been calculated for fires and landslides; for 
seismic hazard the median value of provincial values of maximum ground acceleration 
has been used. For each index, provinces have been classified in four quantile levels. A 
weighted average of the three classified levels has been calculated with weights 
proportional to annual expenditure for every type of event. Results are meaningful at 
ordinal scale and cannot be interpreted as a measure of risk. Floods and volcanoes have 
been mapped, too, thus obtaining a global overview of the main natural hazards in Italy. 

Keywords: natural hazards, integrated data, composite indicator, overview map 

1. Introduction 
In a future scenario, territorial information systems could provide an interactive map 
which crosses vulnerability caused by several natural hazards and the value represented 
by the population and human artifacts, outlining the concept of “risk”. It is possible to 
figure out a complex integration of hazard maps, vulnerability maps and value maps to 
represent the spatial distribution of risk, enabling, for example, an individual citizen to 
evaluate the risk of being in different places. The foundations of this work lay in the 
answer to a few questions: to what extent can data on various natural hazards be 
integrated? Do current knowledge and tools enable to build an integrated view of such 
risks? How realistic and significant can a synthetic measure be? 
A first step towards a risk map is the integration of the various hazards. This work aims 
at providing an integrated framework of natural hazards, through authoritative sources, 
available at Italian national level in a consistent way, both in space and in time alike. It 
has been inspired by some previous research aiming at synthesizing different 
environmental hazards into one global measure (Arnold et al. 2007, European 
Commission 2007, ISPRA 2008). 

2. Materials and Methods 
Data are related to very different phenomena and parameters. The minimum territorial 
unit has been forcibly the province, because, for some phenomena, that was the highest 
level of detail available for the entire territory. Given the difficulty of correlating data so 
different in nature and spatial trend, a synthetic index of dangerousness for each type of 
event has been created. Data are described in detail here below. 
 Landslides: surface of landslide areas in 2007 are published by the National Institute 
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for Environmental Protection and Research1. The ratio between the landslide area and 
the surface of the mountain-hill area2 for each Province has been calculated: it 
represents the quote of landslides in the areas potentially affected by landslides. 
 Forest fires: data on forest areas and burnt forests in 2007, published by the Fire 
Service of the State Forestry Body, enabled the calculation of a similar index: the 
percentage ratio between the wooded area affected by fires and the total wooded area in 
each province. 
 Earthquakes: In 2006 the National Institute of Geophysics and Volcanology published 
data on seismic hazard in terms of maximum ground acceleration with 10% exceeding 
probability in 50 years, referred to bedrock, calculated on a grid of points, with a step of 
0.02 degrees They measure the acceleration at which the ground is expected to be 
exposed and are not a measure of seismic risk, which should include also the losses 
caused by earthquakes, in terms of direct casualties and damages. The 55,689 points on 
the mainland have been attributed to the corresponding province, except for Sardinia 
where data were not available. The median of the values of seismic hazard within a 
province has been used as a synthetic provincial measure. The choice has been made 
after a thorough exploratory data analysis with the aim of identifying a single summary 
measure enabling to sort the provinces on the basis of seismic hazard, similarly to what 
has been done for landslides and fires. However, the size and shape of the provincial 
administrative areas are such that many provinces have highly variable values (e.g. the 
province of Reggio Calabria has a bimodal distribution). In such situations, the 
characterization of the entire province by the median value can be misleading, since the 
intra-provincial variability is high and it is linked to geo-structural factors, such as 
capable faults and geodynamic activity. 
The indexes for landslides and forest fires are both composition ratios, perfectly 
comparable in general terms, except for the reference period: for landslides it has its 
upper limit in 2007, but it also includes landslides originated in previous years and still 
active, while for forest fires only areas burned in 2007 have been considered. The 
indicator of seismic hazard has a completely different nature: it represents the median 
value of ground acceleration within a province. 

 
Landslides Forest fires  Earthquakes 

Figure 1: Hazard indexes by province - Italy, 2007 
To bring the indicators back to a common scale, for each of the three hazard indices, 
provinces have been classified according to their position in the national ranking with 
regard to distribution quartiles: 25% of the provinces with low values, 25% medium-
low, 25% medium-high, 25% high values (fig. 1). This can be viewed as an extension of 
the normalization method for indicators above or below the mean. 
Finally, a synthetic measure of the joint dangerousness of the three events has been 
calculated in order to obtain a single integrated map of the various hazards: it has the 
                                                             
1 IFFI project - Inventory of landslides in Italy. 
2 The mountainous-hilly areas have been calculated by using National Institute of Statistics data on Italian municipalities at 2009. 
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advantage of offering a synthetic view of the hazards for all the natural disasters 
considered at provincial level. 
To take into consideration the different impact of events in terms of damage, estimated 
annual costs incurred in Italy because of these events have been used as weighs. In other 
words, to each of the three natural disaster index a weight has been assigned, 
proportionally to the severity of the outcomes, assessed in billions of euros of damage 
per year. For forest fires, an estimate of € 0.6 billion3 spent in 2007 has been used, for 
earthquakes a cost of € 3.4 billion4 and for landslides the value of € 1.5 billion5 per year 
have been estimated. Weights, interpretable as relative severity coefficients, have been 
calculated as the ratio between the annual cost per event (landslides or earthquakes) and 
annual expenditure for fire events, i.e. the less expensive event. These are the values: 
Fire-weight = 1, Landslide-weight = 2.5, Earthquake-weight = 5.7. In order to 
differentiate the values and widen the range of provincial indicators, the sum of 
weighted values of the three indices has been chosen. The formula is: 

[1] H = Fw * Fire-i + Lw * Landslide-i * + Ew * Earthquake-i 

The implication connected with linear aggregation, i.e. that there are no synergies or 
conflicts among the different aspects considered, seems acceptable. The composition 
method is elementary, one could say rough; this is because, at this preliminary stage of 
the research, the desired output didn’t want to be a ranking of provinces, but rather a 
classification of provinces into four ordinal classes to be mapped. 
To complete the picture, floods recorded in 2007 and areas potentially affected by 
volcanic eruptions have also been represented on the map. Volcanoes are concentrated 
in few areas of the country and it would have been pointless to calculate the danger in 
all the provinces. For floods, unfortunately, it was not possible to calculate an indicator 
similar to the others, since no areal pieces of information on affected and potentially 
affected zones were available for the entire country. 

3. Results 
This first synthetic map of natural hazards in Italy highlights the danger deriving from 
the relatively young geological age of our peninsula. High values of the synthetic index 
are observed along the Apennine ridge and in alpine areas still tectonically active, i.e. 
Friuli Venezia Giulia in the north-east. The map is strictly connected to the morphology 
and the active geodynamic processes and it identifies the southern provinces as 
characterized by high hazard levels, since they are subject to dangerous natural 
phenomena with high destructive potential (earthquakes, landslides, volcanoes). Such 
phenomena have different degrees of freedom, and often do not occur in a cyclical way, 
i.e. times of recurrence cannot be calculated or predicted. The synthetic index draws a 
geography of hazard that may be useful for planning actions or for directing resources 
aimed at mitigating the effects of such phenomena. Unfortunately, the level of data 
disaggregation (province) is not adequate to identify any smaller “black spot”. 

                                                             
3 A study conducted in Spain by WWF estimated a cost of 5,500€ per hectare of forest burnt. As in 2007 in Italy 116,602 hectares 
were burnt, the total annual expenditure incurred due to fires is estimated to be  €0.6 billion. 
4 According to the Italian Civil Protection “earthquakes which struck the peninsula [Italy] have caused substantial economic losses, 
assessed for the last forty years in approximately 135 billion euros”. 
5 According to data coming from the Census of landslides from 1918 to 1994 (32,000 landslides surveyed) conducted by the 
National Research Council (CNR) - Project GNDCI AVI - the damage caused each year amounted on average to 1 or 2 billion euro. 
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Figure 2: Synthetic natural hazard index by province - Italy, 2007 

4. Concluding remarks 
The calculation method and the system of weights are subjective and only enable to 
arrange provinces in a rank made of four values. The result does not allow a fine 
evaluation of the global hazard in quantitative terms, since it is significant only in 
ordinal scale, i.e. the numerical differences between the indices of two provinces are not 
significant, neither can this be interpreted as a measure of risk. Furthermore, the 
expected period of recurrence of the phenomena is not taken into account. Alternative 
normalization, weighting and composition methods could be used to evaluate the 
performance of different composition procedures (OECD, EC, JRC, 2008); Multi 
Criteria Evaluation (MCE-GIS) could be performed, too (Chen et al., 2001). Anyway, 
beyond technical statistical issues, the major point here seems to be the scarce 
availability of spatially detailed, comparable and timely information. Nevertheless, 
despite these limitations, the final map offers a synthetic view of the natural hazards at 
provincial level and has the advantage of a comprehensive look at all the natural 
disasters taken into consideration - fires, earthquakes, landslides, volcanoes, floods - 
based on standardized methods for the entire country. 
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Abstract: In this work some of the analysis and inference techniques developed 
recently for spatial point patterns are applied in order to analyze spatial patterns of 
wildfire ignitions recorded in Galicia (NW Spain) in the period 1999-2008.    
 
Keywords: Spatial point process, intensity, stationarity, K-function, wildfire ignition 
point. 
 
1. Introduction 
 
Spatial point patterns arise in a wide variety of scientific contexts, including 
seismology, forestry, geography and epidemiology, (Diggle, 2003). 
Wildfire is the most ubiquitous natural disturbance in the word and represents a problem 
of considerable social and environmental importance. In this work we analyze the 
spatio-temporal pattern of wildfire ignitions in Galicia (NW Spain), where arson fires 
are the main cause of forest destruction, in order to model and predict fire occurrence. 
Such information is of great value in elaborating fire prevention and fire fighting plans.  
    
 
 
2. Materials and Methods 
 
Data set: 
In this study, the spatio-temporal pattern of wildfires recorded in Galicia during the 
period 1999-2008 is analyzed. Galicia is located in the North-West of the Iberian 
peninsula and has a surface area of 29,574 km2 (11,419 sq mi), which 69% is covered 
by forests. The total number of fires recorded in the study area from 1999 to 2008 is 
85,134. In addition to the spatial location and the date of occurrence of the ignition 
points, we consider two marks: cause (arson (82.5%), natural, negligence, reproduction 
and unknown cause) and the size of the burned area.  
 
Statistical methods. 
A spatial point process X is a stochastic model governing the locations of events {xi; 
i=1,...,n} in a bounded region 2A R⊂ (Diggle 2003). If the point process contains 
                                                           
1 (MTM2008-03010)  
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associated measures or marks, it is referred as a marked point process.  A point process 
is characterized by the probability function ( )( )P N A N= , where ( ) ( )# iN A x A= ∈ , 
which is the probability of finding N events in the region A, and by its first and second 
order characteristics. The (first order) intensity, λ(x), is the point process analogue to the 
mean function for a real-valued stochastic process. Second order characteristics describe 
the spatial structure of point processes and are based on the analysis of pairs of points. 
Although several second order characteristics have been developed to describe point 
patterns (Diggle, 2003), this work focuses on the analysis of the reduced second order 
moment measure or Ripley´s K-function. (Ripley, 1977), which expresses the expected 
number of events within a ball b(x,r) centred in an arbitrary event x. The point process 
is stationary and isotropic if its statistical properties do not change under translation and 
rotation, respectively. Under these conditions the intensity function is a constant λ, 
equal to the expected number of events per unit area. In the non-stationary case, the 
intensity depends on the individual locations. 
The first step in the analysis of an observed spatial point pattern is to test the complete 
spatial randomness (CSR) hypothesis, under this assumption the data are a realization of 
a homogeneous Poisson process, which is characterized by two properties: (i) the 
expected number of events (fires) in a flat area (study area) 2A R⊂ of surface area |A| 
has Poisson distribution with mean λ|A|, and (ii) for n events {xi, i=1,…,n} in A, these 
are a random sample of the uniform distribution in A. The constant λ in (i) is the 
intensity of the process. According to (ii), there are no interactions between events 
(Poisson).  This property acts as a dividing hypothesis between regular and aggregated 
patterns.   
In this work, the stationarity assumption was tested by the measure of inhomogeneity 
proposed by Comas et at. (2009): 
 ( )ˆ ˆ ˆ

A
S x dxλ λ= −∫   (1) 

where ˆ N Aλ =  and ( )ˆ xλ  the non-parametric kernel estimator of the intensity (Diggle, 
1985).  
The second order structure of the observed patterns was characterized by the estimate of 
the inhomgeneous K-function proposed by Baddeley et al. 2000: 

 ( )
( )
( ) ( )( ) { }

hom
\

1ˆ
ˆ ˆ

i j i

i j
in

x X A x X A x i j ij

I x x r
K r

A x x wλ λ∈ ∈

− ≤
= ∑ ∑

∩ ∩

 (2)  

where wij is Ripley´s edge correction factor. Specifically, a Monte-Carlo test based on 
the inhomogeneous L-function ( ) ( )hom homin inL r K r π=  was applied to test the Poisson 
hypothesis, since it is easier to visualize dependence between points, as for a Poisson 
process Linhom(r)=r. 
The wildfires database is a spatial point process marked by cause and size of the burned 
area. Spatial interaction between events of two types occurs when different types of 
events are either closer or further apart than expected under independence. This 
hypothesis is tested applying a Monte Carlo test based on the inhomogeneous L-cross 
function. For ease of comparison the L-index (Genton et al. 2006), that enables 
presentation of the test for several pairs of patterns in a single plot, and its simulation 
envelopes were computed to analyze the spatial dependence between ignition points in 
pairs of sequential weeks. 
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3. Results 
 
As described in section 2, the dataset contains the ignition points of wildfires reported in 
Galicia during the period 1999-2008, marked by cause and size of burned area. In this 
section we present some results of the analysis of wildfires recorded in the whole period 
and, for ease of interpretation, wildfires recorded in 2006. 
In order to characterize the degree of inhomogeneity of the different patterns, the 
maximum value ( maxŜ ) of { }*ˆ , 1,...,bS b B= , for B=20 realizations of a homogeneous 

Poisson process involving the same number of fires as the observed pattern, was 
compared with the empirical Ŝ for the original pattern. When max

ˆ ˆS S> , we reject the 
stationarity assumption. This test shows that all the patterns analyzed should be 
considered non-stationary, see results for fires classified by cause in table 1. The kernel 
intensity estimates for these patterns (figure 1) confirms the importance of arson fires in 
Galicia and shows that the South and South-West of the region are the most conflictive 
areas, expect for natural fires, which present higher intensity in the East. 
 
 

 Fires ˆ
obsS  maxŜ  

Arson  70223 41939.7 1667.0
Natural 887 526.6 101.0
Negligence 4224 1707.6 255.2
Reproduction 2574 2224.4 242.6
Unknown 7226 4844.7 423.7
Total 85134 48161.2 1707.8

                                    
Table 1: Stationariy test for wildfires recorded in 1999-2008. 

 

 
 
Figure 1: Kernel intensity estimate for wildfires by cause in Galicia 1999-2008. Bottom 

right: comparison between arson fires and rest of causes. 
 
Independence L-tests applied to some spatial patterns of wildfires recorded in 2006 are 
shown in figure 2. Comparison of inhomogeneous L-tests (top left and middle) shows 
more evidence of aggregation for arson fires than for natural fires. The inhomogeneous 
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L-cross (top right) shows positive interaction between small and large fires up to 6 km. 
Finally, the L-index test shows positive spatial interaction between wildfires in 
consecutive weeks assuming both homogeneous and inhomogeneous patterns, although 
the evidence is higher for the homogeneous test. 
 
   
 

 
 

Figure 2: Second order analysis 2006. Top left: Inhomogeneous L-test arson fires; 
middle: inhomogeneous L-test natural fires; right: L-cross small-large fires. Bottom: L-

index for consecutive weeks. 
 
4. Concluding remarks 
 
In this work we have seen the utility of spatial point processes in the analysis of 
wildfires.   
Taking into account the results obtained, we propose to include meteorological and 
socioeconomic variables in order to fit an accurate spatial model. Finally, we propose to 
consider the spatio-temporal point pattern defined by spatial location and starting date 
of wildfires, test for separability and fit a spatio-temporal model.  
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Abstract 

In area frame surveys a mixed approach consisting in the observation of the 
surroundings of a not reachable point combined with orthophoto interpretation needs to 
be used in the locations that are particularly remote and difficult to reach. In this 
situation a simplified nomenclature has to be applied for some land cover categories due 
to the difficulties in properly distinguishing among specific classes. In the estimation 
phase the resulting observations can be considered affected by a sort of partial non 
response phenomenon. Classification of land cover indeed is available only at 
aggregated level. A donor based methodology is proposed to impute this missing 
detailed information. Assuming that neighbouring points are affected by spatial 
autocorrelation, potential sets of donors are identified among points within different 
distance thresholds. Capability of the method of correctly imputing the missing 
information is discussed and its robustness assessed in terms of two different cost-
functions both based on the maximum distance observed among potential donors and 
recipient points.   

 

Keywords: area frame survey, missing data, hot deck imputation, spatial data 
 
 

1. Introduction 
 

Area frame surveys usually foresee people going to the field and colleting in-situ 
information that are visible on the ground. This could be the case of crops, 
environmental parameters, forestry features and so on.  
Since the accessibility to the point can be difficult for many reasons (fences, military 
areas, wild animals, etc.) it could be the case that for some units it is impossible to 
assess the land coverage in-situ. In these situations the recourse to a mixed approach - 
consisting in the observation of the surroundings of the point combined with orthophoto 
interpretation - is frequently adopted. As a consequence a simplified nomenclature 
needs to be applied for some land cover categories due to the difficulties in properly 
distinguishing among specific classes (i.e. durum wheat from oats and barley). In the 
estimation phase the resulting observations can be considered affected by a sort of 
partial non response phenomenon (some detailed information on land cover is missing). 
Classification of land cover indeed is available only at aggregated level. 
Various methodologies are available to cope with partial missing data information 
(Little & Rubin, 1987). When data are affected by spatial correlation, the location of the 
sampling units can play an important role in the prediction of the missing information.   
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2. Imputation strategy for an area frame survey 
 
One of the methodologies most commonly used to cope with missing data issues is 

the hot deck imputation (King C. S. & Bogle R. D., 2003, Gabriella Schoier, 1999). It 
consists of filling in missing values on incomplete records using values from similar, 
but complete records of the same dataset or external dataset. The identification of the 
best donor for each incomplete record can be based on different criteria like distance 
function matching or nearest neighbour. When spatial data are considered and sampling 
units are portion of land, physical distance among points usually represents a good 
indicator of similarity. Nonetheless to guarantee robustness of the imputation procedure, 
techniques taking into consideration the distribution of the set of donors need to be 
considered. 

A methodology is proposed here taking into consideration both the need to look at 
the distribution of the land cover classes among the donor sets and the minimization of 
an overall indicator of distance between donor and recipient point. 

The main steps of the methodology for each point affected by partial missing 
information are the following:  

• Five distance thresholds are defined (10, 15, 20, 25 and 30 km); 
• five nested sets of donors are set up composed of all the points belonging to 

the same stratum and lying progressively further off the recipient point (in a 
circle of ray equal to the threshold distance); 

• a sort of ‘standardized modal value’ of the distribution of each set of donors 
is computed standardizing the relative frequency of each land cover class by 
the general share of the corresponding land cover in the country; 

• the best donor set/value among those previously set up is selected 
maximizing  a gain function; 

• the modal value of  the selected donor set is attributed to the recipient point.    
 

2.1 The standardized modal value 
 
The standardized frequency of each land cover in a donor set is computed dividing the 
relative frequency of each land cover in each donor set by the corresponding share in 
the population   

LsLsL rrr /,, =)
 

Where  

sLr ,

)
standardized relative frequency of the Land Cover L-th in the donor set s-th 

sLr ,  relative frequency of the Land Cover L-th in the donor set s-th 

Lr   relative frequency of the Land Cover L-th in the population 
 
The standardized modal value is the land cover class having the highest standardized 
relative frequency. 
This device was introduced to avoid that the donor value was biased in favour of land 
cover classes that have the largest share in the general population.  
 
2.2 The gain functions 
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Two gain functions are proposed both linked to the maximum distance of the 
points belonging to each set of donors (ray of the circle) and the modal frequency of the 
land cover observed on the points belonging to each donor set. The aim of these 
functions is to favour the choice of the donor value most frequently found in the closest 
surroundings (measured as absolute distance or area) of the recipient point.  

The first function is expressed as the ratio of the modal frequency and the area of 
the circle centred on the recipient point. It express how typical is the modal value in the 
area of circular shape surroundings the recipient point.   
 

( )( )π*/ 2

ss MMs MaxdrG
)=  

 
The second cost function is based on the linear distance. It provides a measure on 

how further it is needed to go to find donor-value representative of the area.  
 

ss MMs MaxdrH /
)=  

 
Where:  

k= 1,…,s ,…, sn        set of donors satisfying the conditions 

1) { }snsisi ......,,1: +∈∈     

2) { }ji ddsjsi <+∈∈∀ :1,  

sM  modal land cover class of the distribution of the s-th set of donors; 

sMr
)

standardized frequency of the standardized modal land cover class of the 

distribution of the s-th set of donors;  

sMd distance of the donors having the modal land cover class from the recipient;  

sMMaxd  maximum distance from the recipient point of the donors having  the 

modal value.       
 

3. A case-study: the European Land Use and Cover Area frame Survey 
(LUCAS) 

 
The capability of the method of correctly input missing data is tested on the 

European 2009 LUCAS survey. The LUCAS (Land Use/Cover Statistical Area Frame 
Survey) survey is a field survey based on an area-frame sampling scheme (Martino & 
Fritz, 2008). Data on land cover and land use are collected and landscape photographs 
are taken. Eurostat carried out the largest ever LUCAS campaign in 2009. It collected 
data on the ground on land cover, land use and landscape diversity on approximately 
234,000 points. Those points were selected from a standard 2 km grid with in total 1 
million points all over the EU. The land cover and the visible land use data were 
classified according to the harmonized LUCAS land cover and land use nomenclatures. 

The complete records of the LUCAS 2009 
(http://epp.eurostat.ec.europa.eu/portal/page/portal/lucas/data/database ) have been used 
to test the capability of the method of properly imputing the missing data through a 
simulation exercise. Starting from the complete set of points with arable and permanent 
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crops in Europe (46,296 out of 234,907) the true land cover value of a single point has 
been deleted, one by one, and all the other points in the same country/stratum (arable 
land or permanent crop) have been treated as potential donors. Then distances between 
the recipient point and the others have been computed and five nested sets of donors 
defined according to the thresholds of 10, 15, 20, 25 and 30 km respectively. The new 
land cover category is imputed on the basis of the proposed methodology. 
Some quality indicators have been computed to evaluate: 

1. The capability of the methodology of imputing the correct value (unbiasness) by 
land cover (with 28 and 7 classes) and by country. This indicator is expressed as the 
percentage rate of agreement between the imputed and the true value; 
2. The robustness of the obtained results with respects of the different distance 
thresholds and gain functions. This is expressed as the number of times the same land 
cover class is imputed out of the five potential sets of donors and with respect of the 
two different gain functions. 

All the countries surveyed in 2009 have been included in the simulation. Their diversity 
in terms of land cover landscape (expressed as Shannon Evenness Index) has been 
accessed and analyzed in combination with the quality of the results to better understand 
whether it could be an important factor to improve the quality of the simulation.  

The overall rate of agreement is not significantly different using the two gain 
functions ranging between 41% and 72% (depending on how detailed is the 
nomenclature adopted. See Table 1) for gain function 1 and between 42% and 73% for 
gain function 2. A large variability is observed at country level although. 

 
Table 1: Overall rate of accordance with true land cover  
 Gain function 1 Gain function 2 

 n. % n. % 

 Nomenclature 2 digit 

Disagreement  31960 59 31600 58 

 Agreement 22286 41 22646 42 

 Nomenclature 1 digit 

Disagreement  15138 28 14688 27 

 Agreement 39108 72 39558 73 

 
The set of donor with the smallest size (10 km distance) seems to be the preferred 

one when using the gain function 1, while the largest set (30 km distance) is the one 
providing donation most frequently when it goes to the second gain function.   
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Abstract: Recent developments in soil sensing technologies, initially oriented towards soil 

mapping at the field scale for precision agriculture, show high potential for digital soil mapping 

(DSM) of large areas. We present here a spatial statistical model that combines hyperspectral 

remote sensing, field measurements and, potentially soil types from existing pedological maps, to 

predict soil properties as clay or calcium carbonate contents at increasing resolutions from 5m to 

100m over large regions. Methodological difficulties arise from dimensional aspects. From a spatial 

point of view, the geostatistical model have to be inferred from rare field soil samples and remote 

sensing data that are patchy - only informative on bare soils - and very numerous - several thousand 

records at fine resolution. From a multivariate point of view, soil properties have to be predicted 

using PLS from high dimensional – 256 bands – hyperspectral data. To illustrate the proposed 

approach, a 25-square-km area located in the vineyard plain of Languedoc was surveyed with both 

airborne hyperspectral remote sensing data at a 5-m resolution and a survey of 200 points with soil 

measurements. Various maps of clay and calcium-carbonate content were produced by block co-

kriging and represent different compromises between prediction accuracy and spatial resolution. 
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Abstract: The aim of this work is to outline a methodological procedure to assess the 

most advantageous logistic use of agricultural residues (such as straws) in order to 

supply a biomass energy plant using the economic criterion of the maximization of the 

NPV (Net Present Value). A GIS (Geographic Information System) neighborhood 

statistics procedure was applied in order to locate the biomass plant. 

Results showed that the optimal radius of the supply basin was not related to (but 

independent of) both total amount and spatial distribution of biomass resources within 

the basin; differently, biomass availability strongly affected the size of the plant and the 

corresponding NPV. Therefore, the optimal plant location was at the center of the 

geographical area constantly characterized by the highest biomass density at different 

orders of scale. 

Keywords: straws, biomass plant, optimization, GIS, neighborhood statistics. 

 

1. Introduction 
 

“Capitanata” is a geographical area of the Apulia region with a very large availability of 

straws, agricultural residues obtained from winter cereal crops. The total area 

considered in this study takes into account a part of “Capitanata” called “Tavoliere” and 

comprises neighbouring districts that belong to three different southern regions of Italy: 

Puglia, Basilicata and Campania, respectively (Fig.1, A); within a total area extended 

665,000 hectares, 400,000 hectares are cultivated with winter cereals (average surface 

fraction F=0.6) from which 480,000 tons of straws are annually potentially produced. 

As the size of the power plant (P) increases also the total amount of electricity produced 

and sold increases; however, the greater amount of feedstock needed to satisfy plant 

demand requires greater transportation distances, thus increasing the total hauling costs 

(Leboreiro and Hilaly, 2011). As a result of these competing factors, an optimal radius 

of the supply basin and an optimal plant size which maximize the profitability of the 

investment should be detected. The optimum plant size is also significantly impacted by 

the economies of scale; for the sake of simplicity, we have not considered this aspect in 

the present short paper. The economic criterion applied to reach these “optimal” 

solutions is to maximize the NPV (Net Present Value) of the overall project investment. 

We were specifically interested in defining three main features: 1) the “optimal” radius 

of the biomass supply basin (R*); 2) the “optimal” geographic location of the plant 

within the same basin; 3) the “optimum” size (or capacity) of the plant (P*). 

Land planning in the bioenergy sector requires the processing of geo-referenced data, 

with particular emphasis on the spatial distribution of the available biomass resources 

(Rozakis et al., 2001a). On this respect, GIS software applications are an essential tool 

to work out spatial analysis from digital maps of land use and of the road network. 

mailto:m.monteleone@unifg.it


2. Materials and Methods 
 

2.1 Preliminary spatial procedures. The spatial analysis was performed using ESRI 

ArcGIS software package 9.1. The database employed is the CASI-INEA land use map 

(2001); the land class “non-irrigated arable land” is strictly related to the presence of 

winter cereal crops from which straws derive.  

Firstly, a regular grid (each cell being 2,000 x 2,000 meters corresponding to S=400 

hectares) was overlapped to the vector land cover map so that it was possible to estimate 

the wheat surface fraction (Fi) in each reference unit (cell). The available straw per unit 

of cultivated area (Y) was estimated equal to 1.2 t ha
-1 

y
-1

 of dry biomass. The “biomass 

map” was then obtained multiplying, in each cell, S by Y and by Fi (Fig.1, B). Secondly, 

taking into account the provincial and national road networks, downloaded from the 

National Cartographic Service, it was possible to compute the distance between 

whichever hypothetical plant location and the centroid of each cell belonging to the 

whole area under study (Alfonso et al., 2009) so that the transportation cost of the total 

biomass could be determined.  

 

2.2 Calculation 

of NPV. To 

calculate the 

NPV, the 

revenues (Rev) 

and total costs 

(Cst) regarding 

the annual plant 

operation were 

determined. The 

resulting 

difference (Rev-

Cst) is the “net 

benefit”, a 

constant annual 

cash flow that is financially brought back to the starting year of investment, applying a 

discount factor. Subtracting from this discounted capital the initial investment, the NPV 

is obtained; it represents the net profitability resulting from the overall activity 

undertaken. 

Considering a hypothetical cell of the grid and supposing to locate the plant inside it, 

the distances Di of each other cell from the chosen one can be determined. With respect 

to each cell, the corresponding Fi value can also be assigned. The cost estimation 

exactly followed the procedures reported by Caputo et al., 2005.  

To test the effect exerted on R, P and NPV by different patterns of biomass spatial 

distribution, Fi has been changed from the actual values to those reconstructed in order 

to simulate three different conditions: 1. the highest Fi values are assigned to clustered 

cells close to the plant (spatial decreasing biomass density); 2. the highest Fi values are 

still assigned to clustered cells but far away from the plant (spatial increasing biomass 

density); 3. constant Fi values (spatial uniform biomass density). These three different 

simulation scenarios were compared with each other. In a second set of simulations, the 

economic model was applied to the actual Fi but three different Y values (the reference 

Figure 1.  A: area under study (in dark gray); B: map of the potentially available 

biomass from straws. 



value, an increase and a decrease equal to 30%, respectively) were considered, the total 

available biomass being 

  iitot FYSQQ . 

 

2.3 Spatial analysis. The plant location was determined applying a spatial 

“neighborhood” statistic function to the raster “biomass map”. The statistic function is 

the “mean” and the neighborhood is a circular moving window. A “moving window” 

consists of a subset of the raster map; the result of the function is assigned to the central 

cell of the window, and the whole process is repeated for each cell in the map (Varela et 

al., 2009). In this study, the average biomass density of the grid parcels (t ha
-1

) was 

considered. According to this procedure, spatial variation at the local level can be 

quantified and more details are revealed with a general smoothing effect on the original 

dataset (Zhang et al., 2007). In particular, as the window size used for calculation of 

neighborhood statistics increases, the smoothing effect of this statistical procedure 

became stronger, resulting in clearer patterns which emphasize the persistence of a 

certain number of areas with very high density values which can be eligible to plant 

location. For this purpose, six density maps were produced performing a neighborhood 

statistics according to a circular moving window whose radius varied from 2 to 7 cells 

(corresponding to 4 and 14 km). 

 

3. Results 
 

The “optimal” radius of the biomass supply basin, the one corresponding to the 

maximum NPV, showed to be independent of the particular spatial distribution of the Fi 

value within the grid (Fig. 2.A); this was invariably observed with respect to any of the 

three different Fi vector (decreasing, increasing and constant Fi values, respectively). 

Since the average F value was fixed and equal to 0.6 for the three vectors, P* and Qtot 

are the same for the three simulations (Fig. 2.A). The “optimal” radius is also unaffected 

by the total available biomass Qtot 

(Fig.2.B); clearly, an increased 

amount in the available biomass 

leaded to an increase in the value of 

P* and, consequently, in the 

maximum NPV. We can conclude 

that, at a certain R*, the higher is the 

value of Qtot
 
and the higher is the 

biomass density close to the plant 

location, the higher is also the NPV. 

Fig. 3 shows the different spatial 

patterns which derive applying the 

neighbourhood statistics by 

increasing the radius of the moving 

window, from 2 to 7 cells. A 

progressive loss of details in spatial 

variation is associated to a simpler 

and clearer spatial biomass pattern. 

The smoothing effect tends to create 

larger homogeneous areas with lower 

 

Figure 2. Simulation results of the economic model. A: set of 

three different Fi vectors; B: set of three different Qtot values. 
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values of biomass density; 

nevertheless, the persistence 

of some cells with very high 

density values is still 

registered. The areas that are 

characterized by a persistently 

high biomass density, through 

different orders of scale, can 

be considered the most 

suitable for the location of the 

facility. 

 

4. Concluding remarks 
 

Results showed that the 

optimal radius of the supply 

basin was not related to (but 

independent of) both total 

amount and spatial 

distribution of biomass 

resources within the supply 

basin; differently, biomass 

availability strongly affected 

the size of the plant and the 

corresponding NPV. 

Therefore, the optimal plant 

location was at the center of 

the geographical area 

characterized by the highest 

biomass density. 
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Abstract: The use of simple indicators may address towards incorrect assumptions 

about regions. As for cities, for example, population density could lead to wrong 

conclusions in social, economic and environmental analyses. We will demonstrate that 

the density of Italian cities’ population makes Rome seem a rural city rather than a 

tertiary one, as it actually is. The aim of this paper is to show that some interpretations 

in socio-economic analysis are potentially wrong and to introduce some alternatives by 

using simple correctives like including environmental features. For instance, in the 

centre of Rome, where population is more concentrated, we have calculated a density of 

55577 inhabitants per sq km versus the current estimation of 1981 inhabitants per sq km 

for the entire administrative territory. 

 

Keywords: population density, spatial analysis, land cover. 

 

 

1 Difficulties in describing a region by its density indicators  
 

When data are related to different areas, a problem of comparability arises: it cannot be 

said that city A (1 million people) is bigger than B (5 thousand people) if area A is 

bigger than B. Statistics suggests to normalize the data by area for these cases. Urban 

geography has based a lot of its considerations on population density as an index for 

tertiary cities (Clark, 1951; Berry, Simmons and Tennant, 1963): the application of this 

indicator is supported by literature. Rome is the biggest Italian city, but is population 

density a real representation of the importance of a city, as suggested by literature? 

Rome is not in the top ten Italian cities by density. 

Indeed, there is no significant correlation between a city’s surface and its inhabitants. 

As a matter of fact, the R
2
 index, calculated on the 8,101 Italian municipalities, is equal 

to 0.1465. It is clear that, if we want population density to mirror the importance of a 

city, we need to consider the variability in city areas’ size. This is possible if one works 

with coarser resolution data, for example if one considers data aggregated by provinces. 

If we think about cities, we imagine them as series of contiguous blocks, but reality is 

not always like that; we must introduce some information about land cover when 

interpreting population density. An useful suggestion is to divide a city into different 

zones and work separately on them. To do this, we need a very fine data resolution, for 

example referring to the smallest zones used in census cells (enumeration areas). 

The EEA official CORINE Land Cover (CLC) dataset is suitable for our aims: it 

classifies the EU territory into land cover classes, with the aggregated class 1 meaning 

“Artificial surfaces” (including the sub-class 1.1.1 “continuous urban fabric”), class 2 

meaning “Agricultural areas”, 3 for “Forests and semi-natural areas”, 4 and 5 for 

“Wetlands” and “Water bodies”. By superimposing enumeration areas to a CLC dataset, 

by geographic coordinates of the perimeter of overlapping enumeration areas, we can 

obtain the predominant land cover class for each enumeration area and then aggregate 

mailto:abbate@istat.it
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areas to re-calculate the density indicator (Table 1), where we can appreciate that it is 

not exhaustive to say that Italian population density is about 200 inhabitants per sq km, 

because the 79% of the population lives in just the 5% of the territory: the actual density 

in this 5% is 3563 inhabitants per sq km. 

 

CLC level Name sq Km  Population Density % Area % Populat. 

1 Artificial fabric 12,262 43,694,310 3,563.4 5 79 

2 Agricultural areas 135,575 10,817,936 79.8 60 19 

3 

Forests and semi-

natural areas 77,715 1,090,776 14.0 34 2 

 Total 225,552 55,603,022 246.5 100 100 

 

Table 1 – Italian population distribution by CLC 2006 code and population density 

 

Population 

rank City  sq Km  Population 

Density 

(Population/sqkm) 

Density sq km for 

CLC class 1.1.1 . 

1 Roma  1,285   2,546,804  1,981   14,682  

2 Milano  182   1,256,211  6,899   16,152  

3 Napoli  117   1,004,500   8,565   16,409  

4 Torino  130   865,263   6,647   16,751  

5 Palermo  158   686,722  4,322   14,892  

 

Table 2 - Top five Italian cities by population, conventional density and density of 1.1.1 

CLC class (our elaboration on CORINE land cover and Istat 2001) 

 

Munic. Land cover 
 CLC 1 pop. Percent CLC 2 pop. Percent  CLC 3 pop. Percent CLC 4+5 pop. Percent 

Roma 2,390,042 93.8 155,904 6.1 786 0.03 72 0.00 

Milano 1,241,329 98.8 14,847 1.2 19 0.00 16 0.00 

Napoli 934,861 93.1 58,762 5.9 10,877 1.08 0 0.00 

Torino 846,791 97.9 13,317 1.5 4,621 0.53 534 0.06 

Palermo 669,076 97.4 12,762 1.9 4,884 0.71 0 0.00 
 

Table 3 – Top five Italian cities’ population distribution by city and land cover 

 

Table 2 and 3 show different concentration for people living in different cities. Indeed, 

there is a bigger difference between Rome and Naples than between Rome and Milan.  

Given all of this, we must consider that population does not live in industrial areas, so 

we should improve data resolution. These areas, like green areas, are not inhabited, and 

by including them we underestimate population density. In conclusion, only the 1.1 and 

1.2 CLC classes (respectively, urban and industrial fabric) should be considered.  

With 9409 people/sq km, the 1.1.1 class is the most densely inhabited type of land in 

Italy, while the 1.1.2 class (discontinuous urban fabric) is the most populated one only 

because it is the widest (7718 sq km versus the 1312 sq km of the 1.1.1 class). 

Population is more concentrated in 1.1.1 class, and density is the common criterion to 

define cities. 

 



2 Some considerations about Rome 
 

The core city is the area where population is more concentrated, and this is identifiable 

with land cover class 1.1.1, but we can consider the whole city area according to 

different land covers, to have different scenarios. Our analysis of Rome considers a 

radial city and the distribution of land cover and population. 

Since Clark (1951), literature has studied the profile of cities without defining what a 

city and its centre are. When a city is not homogeneously populated, it is very difficult 

to get a good profile. To overcome this obstacle, we can use several variables related to 

urban profile, i.e. density, distance from mean weighted centre of population and land 

cover. We converted the CLC classification into 44 dichotomous variables: for each 

enumeration area a 1 value is assigned to the class corresponding to its prevalent land 

cover type , and a 0 value is assigned to the other 43 dichotomous variables. We 

decided to run a cluster analysis on these data to obtain a classification under a new 

urban perspective, considering all the variables at the same time (Table 4). Clusters may 

be constituted by different types of enumeration areas: cluster 4 is composed by 

continuous urban fabric and green urban areas, cluster 5 is composed by continuous 

urban fabric, discontinuous urban fabric and green urban areas. 

 

  Prevalent Land cover code of enumeration area 

Cluster 

Kms from 

centre 

Continuous Urban 

Fabric (CLC 1.1.1) 

Discontinuous Urban Fabric 

(CLC 1.1.2) 

Green Urban Areas 

(CLC 1.4.1) 

2 1.731 0 1 0 

4 3.684 1 0 1 

1 5.223 1 0 0 

3 6.141 1 0 0 

5 10.431 1 1 1 

 

 Table 4 - Clustering Rome enumeration areas by density, distance and land cover 

 

Cluster Km from centre Area sq km 

% Area 

sq km Population  % Popul. Density N. of en. areas 

2-4-1 3.546 7 0.5 374,031 14.7 55,577 818 

3  6.141 48 3.7 1,120,155 44.0 23,424 3,560 

5 10.431 1,233 95.8 1,052,618 41.3 854 8,721 

Sum  1,287 100.0 2,546,804 100.0 1,978 13,099 

 

Table 5 - Results of k-means cluster analysis for area and population  

 

We found five clusters, but clusters 2 and 4 are very small, so we decided to join them 

to cluster 1. We obtain a partitioned-in-three city (Table 5): the first part includes the 

Central Business District, where land cover class 1.1.1 is predominant with the highest 

density (55577 people/sq km). The second cluster is less populated than the first one, 

with 23424 people/sq km and a prevalent land cover of class 1.1.1 too. The last cluster 

contains a mix of land covers, with a very low density compared to the other areas (only 

854 people/sq km). 

Considering all clusters, the analysis of urban profile should go from the city centre to 

the city boundary, and the central area could coincide (or not) with the most populated 



zone. The presence of ruins in Rome city centre assigns this most densely populated 

area to “discontinuous urban fabric” 1.1.2 class. 
 

 
 

Figure 1 - Distribution of clusters in Rome  

 
 

3 Conclusions 
 

This paper aims at showing how social indicators must be integrated with 

environmental indicators to obtain a correct evaluation of a city population density. 

Rome appears as a big green city with only 1981 people per sqkm, but, if we consider 

only the sub-areas where people actually live, we can evaluate a density of 55577 

inhabitants per sq km in the most populated areas, and a density of 23424 people per sq 

km in the medium-populated ones; the 41.3% of the population lives in semi-

agricultural areas with only 854 people per sq km (Figure 1). 

In the city of Rome, the urbanized area hosts the 58.7% of the population, and it is 

undoubtedly very crowded. The simple density indicator does not allow a realistic 

evaluation of living conditions. 

 
 

References 
 

Berry, B., Simmons, J. and Tennant, R. (1963). Urban population densities: structure 

and change, Geographical Review, 12, pp. 389-405. 

Clark, C. (1951). Urban population densities, Journal of the Royal Statistical Society 

Series A (general), pp. 490-496. 



 

1 
 

Comparison of spatial statistics for identifying 
underlying process in forest ecology 

 
 

Calum Brown, Janine Illian 
Centre for Research into Ecological and Environmental Modelling, University of St 

Andrews, calum@mcs.st-and.ac.uk 
 

David Burslem 
University of Aberdeen 

 
Richard Law 

University of York 
 

Abstract: A number of different mechanisms have been suggested to explain species 
coexistence in diverse communities such as tropical rainforests.  Spatial statistics appear 
to hold great potential for distinguishing the effects of these in empirical data, and a 
wide range of measures intended to describe spatial structure have been proposed.  
Using patterns generated by stochastic individual-based models, we examine the 
relative sensitivity of several of these measures to processes thought to be occurring in 
tropical rainforests, and so assess the potential for identifying specific coexistence 
mechanisms from empirical data.  We then apply the measures to spatially explicit 
census data from a number of large-scale tropical rainforest plots in order to investigate 
the manifestation of ecological processes in forest spatial structure.   

Keywords: spatial structure, coexistence mechanisms, tropical rainforest 
 
1. Introduction 
 
Statistics that summarise spatial pattern are of great interest in ecology, where a large 
number of processes influence, and are influenced by, spatial structure (Watt 1947; 
Bolker & Pacala 1997; Law et al. 2009).  Spatial analysis is used for a wide range of 
purposes in plant ecology: for example to illuminate the relationship between 
environmental conditions and community structure (e.g. Kharuk et al. 2010; Obertegger 
et al. 2010); to study interactions between species (Hurlbert 1971; Wiegand 2007); and 
to isolate the signals of environmental and interactive effects and so assess their relative 
importance in producing observed community structure (Tuomisto et al 2003; Kraan et 
al. 2010).  This is particularly important to attempts to investigate the processes that 
support the coexistence of species in diverse communities such as tropical rainforests 
(Brown et al. 2011).  These processes may include niche differentiation, lottery 
dynamics, the Janzen-Connell effect, heteromyopia, or neutral drift.    
 
The diversity of processes of interest has meant that a very large number of spatial 
summary statistics have been developed, even in place of those that have previously 
proved successful.  These statistics tend to fall into discrete groups.  Some of the most 
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established and widely-used deal with β-diversity (Whittaker 1972), summarising some 
aspect of the turnover in species composition with site.  Measures of neighbourhood 
structure developed from spatial point process theory, however, represent the bulk of 
currently used spatial statistics (Wiegand & Moloney 2004; Illian et al. 2008).    
 
While these measures have been useful both in descriptive and inferential studies of 
community ecology, their relative merits in detecting specific processes have been 
reviewed only infrequently (e.g. Koleff et al. 2003).  In fact, many such measures share 
information used in their construction, and can be broken down into the individual 
counts or measurements which comprise them (Table 1).  Furthermore, these can be 
considered in a multi-dimensional framework describing the level at which they 
operate.  Information can be divided in this way between conspecific and heterospecific 
levels, scale-independent and scale-dependent, and individual, species or community 
level.  The ‘lowest’ level information can therefore be seen as scale-independent 
descriptions of behaviour within species at the individual level; the ‘highest’ as scale-
dependent multi-species community-level data.  Measures of spatial structure use 
information from several different levels, often in combination, and can be formulated 
at higher levels by averaging some or all of the information they contain. 
 
Here, we compare a limited number of popular measures of spatial structure on the basis 
of their ability to distinguish the spatial effects of models of species coexistence.  Our 
aim is to determine which of the individual pieces of information which comprise these 
measures contain the most useful and robust signals.  This allows for more accurate 
consideration of which information, and in what form, may best be used for the study of 
particular processes. 
 
2. Materials and Methods 
 
We consider a limited but representative number of measures of spatial structure that 
exemplify particular techniques for summarising spatial data.  These measures can be 
divided between three broad groups – of β-diversity, within-species structure, and 
between-species structure.  We consider three measures describing the spatial structure 
within species: the degree of aggregation; the measure of interspecific segregation; and 
the proportion of conspecific neighbours.  All are intended to operate at the species or 
community level, although it is possible to calculate the proportion of conspecific 
neighbours at the individual level.  Five measures describe spatial structure between 
species: the individual species-area relationship (ISAR); the mingling index; the spatial 
Simpson index; the degree of association; and the cross-pair overlap distribution 
(xPOD).  Several measures of β-diversity are also included, and defined as by Koleff et 
al. (2003).   
 
In order to test the sensitivity of these different measures to modelled ecological 
processes, we use data from stochastic individual-based models of a plant community 
which provide multispecies spatial patterns under neutral, niche, lottery, Janzen-Connell 
and heteromyopia assumptions. These were chosen as the principal theorised 
mechanisms of species coexistence in diverse plant communities.   
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nj number of individuals belonging to species j per unit area 
nk  number of individuals belonging to species k per unit area 
Njj(r) number of conspecifics within a defined radius 
Nij(r) number of heterospecifics within a defined radius 
Njk(r) number of individuals belonging to species k within a defined radius 
Njk(R) number of pairs of individuals belonging to species j and k separated by 

distance R (in practice, within range (r + dr) 
Ac area considered in count of points 

 
Table 1:  Separate pieces of information used in spatial measures considered here 
 
3. Results 
 
It is on the species level that most measures of spatial structure operate, making use of 
the numerous pieces of information which describe species-specific behaviour (Table 
1).  However, the differences these measures detect between models are often clearer 
when expressed at the community level.  An example is the xPOD, which can be 
defined as: 
 

, 
 
with terms as shown in Table 1.  This measure describes the spatial overlap of all pairs 
of abundant species (with a threshold of 500 individuals) in a community, and shows 
substantial differences between models.  Specifically, it shows that a far wider range of 
behaviour is produced by the niche and lottery models than any other, and the smallest 
range produced by the Janzen-Connell model.  This suggests that species in the Janzen-
Connell model are more mingled than under neutrality, and species in temporal or 
spatial niche models more segregated, on average. 
 
These findings are confirmed by almost all of the other measures which we consider, 
and agree with theoretical predictions from each modelled process.  Importantly, those 
measures which detect differences between the models all find higher levels of 
conspecific clumping and lower levels of heterospecific mingling in the niche and 
lottery models, and the opposite signals in the Janzen-Connell model.  In addition, these 
signals are found in single pieces of information gathered at or averaged to the species 
level, prior to their combination to produce complete measures of spatial structure.  
 
4. Concluding Remarks 
 
In almost all measures (and at all levels), some aspect of the same behaviour is detected. 
In particular, the niche and lottery models produce clumped species which are not 
mingled, the neutral and heteromyopia models produce very similar spatial properties, 
and the Janzen-Connell model produces the least clumped and most mingled species.  
These findings are also apparent in single low-level pieces of information such as the 
proportion of conspecific neighbours, when expressed at the species or community 
level.  In terms of β-diversity, those measures which emphasise simple counts of species 
unique to pairs of quadrats find the largest differences between models.  This suggests 
both that the potential for distinguishing the modelled processes is limited to the spatial 
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characteristics listed above, and that relatively simple measures of spatial structure, 
operating at an appropriate level, have similar discriminatory power as those which are 
far more complex. 
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Abstract: Graph theory derived models and measures are increasingly being used to 

quantify landscape connectivity in order to contribute to conservation biology and 

management. This is particularly relevant in the case of real landscapes in which local 

actions may have crucial consequences for maintaining biodiversity on large scale. A 

number of graphs were compared sharing an identical node weight definition and whose 

link weights representing functional patch-connectivity, were derived from conceptually 

different approaches. Habitat suitability was taken into account. Calculated patch-

connectivity was compared between all the graphs and these differences, evaluated by a 

set of indices describing network properties at the element structure level, were 

investigated.  

 

Keywords: fragmentation, habitat suitability, matrix permeability, maximum entropy, 

graph theory, connectivity. 

 

 

1. Introduction 

 

Since the 1960‟s, the issue of species persistence in fragmented landscapes is crucial in 

both conservation biology and landscape ecology. Amongst other approaches, graph 

theory derived models and measures (Urban et al. 2009) are increasingly being used to 

quantify landscape functional connectivity in order to contribute to species and habitat 

conservation and management. Such tools have the potential to account for habitat 

availability, dispersal ability, species habitat requirements and dispersal route quality. 

These aspects are crucial to the conceptualisation and measurement of a landscape‟ 

permeability to the movement of organisms and thus to actually measure functional 

connectivity, as opposed to structural connectivity. However, landscape graph indices 

and models -  as well as other techniques taking into account a heterogeneous landscape 

matrix - with desirable properties, may become too computation intensive for real large 

landscapes. The aim of this paper is to investigate the trade offs between a switch from 

binary landscape perspective to one embodying ecological continuity for a large real 

landscape.  
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2. Materials and Methods 

 

The study area (EU NUT3 ITF45 Lecce, 275,716) is characterized by a very low forest 

share (1.4%) and a very high degree of fragmentation which challenge metapopulation 

dynamics (Hanski; 1991). One such dynamic is the dispersal of fleshy fruit broadleaved 

in pine plantations, likely to be mediated by bird species, among which the focal species 

was selected and described in terms of both breeding habitat and dispersal distance 

(5000 and 2500 m, 90-percentile). The habitat for the focal species was defined on two 

spatial data sets: 1) a 2008 land use vector map (1:5000 nominal scale) with potential 

breeding habitat (semi-natural woodland and plantations), and 2) a grid map (resolution 

50 m) with probabilities of species-geographic distribution as a proxy to habitat 

suitability. These probabilities were obtained by applying an Environmental Niche 

Model (MaxEnt, Phillips and Dudík, 2008). The model was run using presence data 

(128 points) from a sub-regional ornithological monitoring program (La Gioia and 

Scebba, 2009). Several environmental predictor variables (i.e., land use, climate, 

landform, density of water elements and semi-natural vegetation),  Linear Quadratic 

Hinge feature and a regularisation parameter equal to 3.0 , to compensate for potential 

overfitting, were considered in the model specification. The habitat system was cast in 

terms of graph theory, as a graph G, consisting of n nodes connected by m links. A node 

here is a functional unit: a patch with a local population, obtained from the clustering of 

nearby fragments likely to exchange individuals, within 250 m, which also served to 

greatly reduce the number of units, while preserving the exact habitat area. Patch 

population size is expressed as potential number of breeding pairs (reproductive units, 

RU) for which focal species is proposed as a measure of node weight (wi). RU is 

determined by the area of suitable habitat and quality of the area. This is obtained by 

combining the  definition  of breeding habitat (vector format), with the MaxEnt derived 

definition of quality (raster format). Four graphs, two for each dispersal distance, were 

generated with identical nodes and node weights but different links. These were 

calculated either from Euclidean distance (D) assuming a negative-exponential 

relationship or with a simplification of the original GRIDWALK stochastic grid-based 

movement model . Distance-based links are symmetrical, as opposed to movement 

model based asymmetrical ones. The graph analysis was made as follows. Firstly, the 

weights of all links and the distance-based values (pd) vs movement-based ones (pm) 

were compared. Secondly, a set of published index, were based on the PC index 

routinely used for landscape conservation planning and change monitoring applications 

(Saura and Rubio 2010). These indices were compared at element level (Rayfield et al. 

2011) by means of the measure of the individual patch‟s importance (dPC), and its 

breakdown into dPC(intra, flux, connector). The performance of a simplified, less 

computationally intensive, version of such indices was tested. In particular, PCDP and 

DE indices were considered. In PCDP index, the direct probabilities pij,weighted by 

source and target node, are used instead of maximum product probabilities p
*

ij . The DE 

index (dispersal efficiency index),sums the values of all the fluxes in the graph. . In 

itsspecification a flux is defined as source node weight multiplied by link weight (wi × 

pij) and represents a relative measure of the number of dispersers expected to be 

exchanged between patches. For both indices we can define individual patch 

contributions, dPCDP and dDE as well. The map output similarities were evaluated by 

a fuzzy numerical approach (Hagen-Zanker et al., 2006, http://www.risks.nl/mck/), an 

extension to the numerical maps of Fuzzy Kappa method, generally used for comparing 

http://www.risks.nl/mck/
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categorical maps in order to account for fuzziness of locations and category. The 

comparison result is represented by a third map, indicating for each location the level of 

agreement in a range from 0 (non identical) to 1 (identical) between cells and by the 

similarity statistics evaluated as average of a combined one-way similarity over the 

whole map. An exponential decay function (2.5 km -5 km) was used for evaluating the 

similarities between maps in order account for the function used to evaluate the 

connectivity.  

 

 

3. Results 

 

The set of the statistical analysis on the model performance provided among MaxEnt 

model output information indicate a good model performance. As expected MaxEnt 

assigned different probabilities of distribution  values to different patches (= 0.490, 

=0.184), and particularly to woodlands (= 0.672, =0.220) and plantation (= 0.553, 

=0.167) patches even though they belong to the same habitat type (i.e. suitable 

breeding habitat) for the focal species. This is because the model refers each focal 

habitat spatial element to its surrounding context conditions as defined by the niche 

factors fed into the model. Comparing distance-based with movement-based 

connectivity, we see little similarity. Differences were expected as the distance-based 

model ignores several factors that are known to affect the probability of encountering a 

patch, and that are taken into account in the movement-based values. A 
2
 test  suggests 

complete independence between the variables. The distance-based values for the size of 

the target node (Moilanen and Nieminen 2002) were weighted by raising them to power 

of ½ in order to improve the correlation with the movement based ones.  In general, the 

values of the distance-based approach are larger, providing a more optimistic view of 

connectivity. However, the impact of matrix heterogeneity is low: comparison of pd 

with pm values for a homogeneous matrix does not lead to a smaller 
2
 statistic. When 

directly comparing pm for heterogeneous and homogeneous matrix the 
2
 values are 

very small, amounting to 0.0615 and 0.0867 for 2500 and 5000 m dispersal distance, 

respectively. For both the shorter and the longer dispersal distances considered (2500 m 

and 5000 m), the pairwise comparison shows a certain similarity between the dPC and 

dPCDP maps, as indicated by the values of similarity statistic which respectively 

assumes the values of 0.643 and 0.573. The similarity is weaker between dPC and dDE 

(0,410 and 0,480 respectively for the two distances). Indices dPC_flux and dDE, proxies 

for route specific fluxes, do not appear to be associated at neither distances (0.366 and 

0.023).  

 

 

4. Concluding remarks 

 

It seems to be clear that by incorporating habitat quality (MaxEnt output) in the node 

weight, the resulting patch population carrying capacities were reduced in comparison 

to an approach based on the distribution of habitat only. However, the map defining 

matrix permeability, appeared to be relatively uniform at the local scale (50 m). As a 

consequence, we observed relatively little impact of matrix heterogeneity on 

connectivity, with pm being relatively similar in homogeneous and heterogeneous 

landscapes. In this case, the value of working with a structured landscape matrix instead 
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of assuming a homogeneous matrix seems somewhat limited. This, far from 

contradicting the evidence that the matrix really does matter (Fisher et al., 2008), 

indicates that the methods (including scale) we apply to estimate and express spatial 

heterogeneity, also matter. Distance and movement-based connectivity were very 

different but could be made more similar by correcting pd with target patch size raised 

to ½. The extent to which correction is possible and it is however limited, as the real 

factor influencing accessibility (encounter rate) is the physical size of the patch 

accounting for shape as well, for which node weight (in RU) is just a weak 

approximation. In addition, there are several other factors determining accessibility in a 

movement-based approach, including „shadowing‟ effects between patches, that are 

hard to correct for (but see . Likewise, it would be hard to correct for matrix 

heterogeneity. However, an interesting option appeared applying the movement model 

for a binary landscape. In this case, no assessment of landscape heterogeneity is needed, 

but still we implicitly deal with the impact of patch size and shape, and shadowing 

effects on patch connectivity. The large differences in underlying connectivity values 

(pd versus pm) do not translate into very different values of indices on the level of the 

nodes (dPC and dPCDP), the connected area metrics. We found a very high correlation 

between the index based on maximum product paths dPC and a comparable but simpler 

index based on direct probabilities dPCDP. Our results suggest that the latter may be 

used to substitute the first when dealing with large networks (>10^3 nodes and/or >10^5 

links), reducing computation time from days to minutes. However, a more thorough 

analysis of the behaviour of dPCDP compared to that of dPC is required, to ensure that 

essential properties of dPC are preserved in the approximation.  
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Abstract: The risk assessment conducted by many federal and state agencies have generally 
relied on deterministic approaches, that use single input/output values, generally selected to 
fulfill the goal of being health-protective. But, the presence of uncertainty and variability within 
the parameters of the procedure of risk assessment let them assume different values within a 
range of possible values, each with different probability of occurrence. In particular, the case 
study deals with groundwater contamination by agrochemical substances occurring in the French 
aquifer of Alsace. The regional supply of drinking water, water for irrigation and industrial water 
depends mainly on this water resource. A proper management of this area must consider, thus, 
the sustainability of a landscape capable of multiple uses and the overwhelming presence of 
censored data. For this reason, particular attention is given to the characterization of the extent 
and the chemico-physical distribution of the pollutant source for what concern the delimitation of 
the hazardous areas, to the determination of the probability density functions of the concerned 
variables and of the representative concentrations.. 
 
Keywords: groundwater contamination, geostatistics, estimation, non-linear methods. 
 
1. Introduction 
An instrument of high political and social importance is the risk assessment, or the evaluation of 
the risk associated with any event that can negatively affect the human health or the 
environment. Thus, the environmental impacts must be anticipated and prevented before they 
really happen and risk assessment has the logical structure to do it. The most immediate 
approach is therefore deterministic: by assigning to each of the input variables a single value, it 
gets a punctual value of risk. Every single value is generally selected to be reasonably certain 
that risk is not underestimated and to err on the side of overestimating risk. But, the presence of 
uncertainty and variability within the parameters of the procedure of risk assessment makes them 
actually random variables, as they are parameters that can assume different values within a range 
of possible values, each with different probability of occurrence. Therefore, these parameters can 
only be considered through a stochastic approach. In order to describe natural phenomena 
correlated in space and time and to quantify the uncertainty of the estimations of these 
phenomena carried on from a sampling generally very fragmentary, this work refers to the theory 
of the regionalized variables. It was developed by Matheron (1965) and then popularized by 
many others. In particular, the case study addresses the various method of linear and non-linear 
geostatistics for characterizing the exposure concentration through the inference of spatial 
structure from spot samples. Moreover, the overwhelming presence of censored data needs 
several statistical methods to be assessed, implemented and applied in order to characterize both 
variability and uncertainty of the exposure, effects and risk assessment. 
 
2. Materials and Methods 
2.1 Case study 
In the Rhine valley, the alluvial formations create a large aquifer, one of the largest reservoirs of  



 

2 
 

drinking water in Europe. In the Alsatian part, this reservoir has the order of 45 billion m3 of 
water for an area of 2800 km2. The shallow depth of the groundwater makes its exploitation 
easy, which is an economic advantage. In fact, the groundwater provides three quarters of the 
drinking water needs of the population and more than half of the industrial and agricultural water 
needs. But besides this, the lack of protective geological cover and the shallowness of the aquifer 
make it particularly vulnerable to contamination due to human activities. And so, pesticides, as 
Atrazine, have been detected in the Alsatian groundwater. 
Atrazine is an herbicide of the triazine chemical family, with radical absorption. It has been used 
in France on the cultures of corn since 1962, thus its use was prohibited by the 30 September 
2003. Because it does not absorb strongly to soil particles (Koc = 100 g/ml) and it has a lengthy 
soil half-life (60 to 100 days), it is expected to have a high potential for groundwater 
contamination, even though it is only moderately soluble in water (33 µg/ml). The Drinking 
Water Directive (DWD), Council Directive 98/83/EC, defines the sanitary thresholds (0.1 µg/l) 
for the concentration of these contaminants in drinking water.  
The chosen data set is composed by four months of measurement: September 2002, March 2003, 
September 2003 and March 2004. This choice is based on the available samples (September 
2003 is largely sampled – heterotopic case), the continuity of information available in time for 
each station, as well as the significance from the hydrological point of view. In fact, these 
months represent the beginning and the end of the recharge period of the aquifer. The period is 
also in correspondence of the interdiction of Atrazine’s use in France. 
 
2.2 Methodology of analysis 
Geostatistics is based on the study of the spatial behaviour of variables. Even the concept of 
variable is converted in its spatial context as the regionalized variable [Matheron, 1965]. The 
model of the regionalized random variable is the basis principle of such kind of science.  
The proposed procedure carries on through a series of steps, which will be deliberately presented 
in a synthetic and intuitive manner. For further details it is possible to refer to Matheron (1965, 
1970), Chilès & Delfiner (1999), Rivoirard (1995) and Chauvet (1999). 
1st. Exploratory data analysis. It refers to a statistical study of the data sets, for getting a first 
idea about data, their distribution, significance and consistency.  
2nd. Structural analysis. It concerns all the methodologies aimed to investigate the spatial 
structure of data and exploit it to build reasonable spatial models. A synthetic form for 
explaining the structural variability of data is the experimental variogram. By fitting a 
continuous mathematical function on raw variogram it is possible to exploit such powerful 
instrument in order to model the variability structure for the whole spatial domain (not only on 
the measured points) [Isaaks and Srivastava, 1989].  
3rd. Validation of a structural model. In practice it is important to evaluate the performance of 
fitting a variogram model.  
4th. Local estimation. It allows passing from a discrete information to a continuous description of 
the phenomenon. The geostatistical estimator used for the estimation process is called kriging. 
For each target point, the linear estimator Z*(x0) is expressed as the linear combination of the 
known points Z(xi), together with the conditions of unbiasedness and of minimization of the error 
variance. 
5th. Multivariate aspects. Several regionalized variables could be treated together, so it is 
possible to enjoy also joint information that would increase the degree of accuracy of the results. 
The conjoint spatial structure of the variables is described by their cross-variogram and 
coregionalization models are used, between which the linear model of coregionalization [Journel 
& Huijbregts, 1978] is the simplest one. Thus the estimation is performed by cokriging. 
6th. Non linear methods. This work refers to two principal methods: the probability from 
conditional expectation and the indicator cokriging. The first approach is of parametric type and 
is based on the “conditional expectation” estimator. It requires that the variable is multigaussian; 
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thus, first of all, a transformation of the original variable Z(x) – called anamorphosis ¬ is 
necessary for obtaining a random function Y(x) with gaussian distribution. It can be shown 
[Goovaerts, 1997] that the conditional distribution of Y(x) is Gaussian-shaped, with mean equal 
to its simple kriging Y(x)SK from the available data and variance equal to the simple kriging 
variance σ2

SK(x). Therefore, the posterior or conditional cumulative distribution function (in 
short, ccdf) at location x is 
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where G(.) is the standard Gaussian cdf. Its implementation relies on an assumption of strict 
stationarity and knowledge of the prior mean m, in order to express Y(x)SK [Emery, 2006]. In the 
second approach, of non parametric type, the exceedance or not of a given threshold s (a 
concentration risk, for instance) at a point x can be coded by the indicator variable. Therefore, a 
cokriging estimation of the indicators could be performed, in order to consider simultaneously 
the indicator variables associated to different thresholds. 
 
3. Results 
Univariate linear geostatistical techniques have allowed obtaining estimation maps of Atrazine. 
This was a preliminary study of the data, which took account of the data set as measured, so 
without any kind of transformation, despite the highly asymmetric and discontinuous variables. 
In this case, the undefined values were exactly considered equal to their instrument detection 
limit (IDL). Same assumption has been made for the estimation in multivariate conditions, where 
variables are treated together, thanks to their significant correlations. 
But kriging and its extensions provide what might be called, by abuse of language, the most 
probable value of the pollutant concentration at any point in space, combined with the variance 
of the error. This has two consequences. The first is that the map erases the "peaks" and 
"hollows" of pollution and is "attracted" by the average pollution on the area of interest: the real 
variability in the space of the pollution is not reproduced when the data are interpolated 
(smoothing property). The second consequence is that the complete distribution of the error is 
not accessible: just the mean (zero by construction) and the variance are known [Deraisme et al., 
2003]. Therefore, these maps provide only an image more or less accurate of the reality. While, 
the comparison to a regulatory threshold needs to take into account the estimation error in order 
to reproduce the spatial variability. This is the object of non-linear methods. The proposed 
approaches reflect both the conditional expectation and indicator cokriging. While this second 
method can solve the uncertainty due to censored data, because all values are encoded in a binary 
variable [0,1], according to a certain threshold value bigger than the IDL, the first method is a bit 
more complex to implement. Needing a multi-Gaussian distribution, firstly it requires a 
parametric approach, performing thus a normalizing transformation of the strongly asymmetrical 
original data. These transformed variables must be thus multigaussian, that is to say every linear 
combination of the gaussian values should follow a gaussian distribution. In practice, the 
multigaussian hypothesis cannot be fully validated because, in general, the inference of multiple-
point statistics is beyond reach. Usually, only the univariate and bivariate distributions are 
examined [Goovaerts, 1997]. However, the uncertainty of censored data persists, even in the 
Gaussian field, making the obtained transformed distribution inaccessible, and virtually 
impossible to analyze. The study then solves this "inaccessibility" through the use of indicator 
variables associated with different thresholds of the Gaussian transformed. In fact this allows, on 
the one hand, testing the bivariate normality (instead of the multivariate) of the obtained 
variables and, on the other hand, having a model to use in the estimation phase. Moreover, again 
because of this "inaccessibility" of the obtained transformation, the mean of the distribution is 
unknown, therefore, an approach via ordinary multigaussian kriging is preferred to using the 
simple kriging. In figure 1 the maps of atrazine obtained by linear estimation methods and non-
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linear methods are reported, just for September 2003: tendentially they identify the same 
contaminated areas. 
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Fig. 1 Maps of atrazine obtained by estimation methods and non-linear methods – Sept 2003. 
 
4. Concluding remarks 
The proposed validation, through an ad hoc method of cross-validation, provided as result that 
the obtained probability by indicator cokriging is closer to the original data. The explanation for 
this result is that, probably, making a hypothesis of bivariate normality on the highly asymmetric 
and discrete available data sets is not unimportant in the estimation phase. Finally the risk results 
well characterized, also in function of the several assumptions and checks made during the 
analysis, and allows making considerations in terms of potential areas to be remediated and 
population potentially exposed to a hazard. Thus, the performed study is able to take into account 
uncertainty and variability related to the distribution of pesticides in groundwater in 
characterizing the scenario of contamination in the process of risk assessment. Moreover, the 
sensitivity analysis has allowed proceeding step by step in the study of the contamination by 
atrazine, considering limitations and advantages of the geostatistical methods, linear and non-
linear. Finally, most of the methodologies presented in this study are also applicable in other 
field, as soil or air contamination. 
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Abstract:  
The water quality in the marine coastal areas is affected by “natural” features (geo-
morphology, hydrology) as well as by the “human” use of land. Understanding the 
linkage between water quality and river catchments is fundamental for the evaluation of 
different options in the coastal zone management. Monthly monitoring surveys were 
performed by ARPA Puglia during the January 2008-December 2009 period, both in the 
Adriatic and Ionian Seas. Spatial and temporal patterns of water chemical-physical 
parameters and the trophic index (TRIX) were investigated using the GIS approach for 
the evaluation of the influence of freshwaters inflows on the coastal area. The results 
indicate the effectiveness of standard monitoring activities in the water quality control 
and the usefulness of the GIS tool in order to detect the influence of the river’s runoff. 
 
Keywords: GIS, mixed effect modeling, TRIX, coastal water, river runoff 
 
1. Introduction 
The coastal zones are areas where natural processes (change in precipitation inputs, 
erosion, weathering of terrain materials) as well as anthropogenic influences (urban, 
industrial and agricultural activities) are concentrated (Focardi et al, 2009). Among the 
anthropogenic activities, are worth of notice the over-utilization of groundwater 
resources, the pollution and discharge of wastewaters into the sea. Particularly, the 
rising water demand from agriculture in Southern Italy, an area with a natural water 
resource scarcity, leads to the accumulation of nutrients in river basins. An overall 
quantitative estimate of nutrients loadings runoff to the Mediterranean sea is reported by 
Strobl et al. (2009). Mixing between inland and coastal waters represents a key process 
for biological productivity, with strong implications for the whole coastal system 
functioning and ultimately on the fishery. For this reason, the understanding of linkage 
between river catchment and water quality in the associated coastal zone is fundamental 
for evaluation of different options in the integrated coastal zone management. The 
purpose of this study is to investigate the influence of the freshwater inflows on the 
marine-coastal waters of the Apulia Region by mean of GIS approach. Standard water 
monitoring surveys were performed by ARPA Puglia during January 2008-December 
2009 period along Apulian coasts. Spatial and temporal surface distribution of TRIX 
index (Vollenweider et al., 1998) was examined to evaluate the trophic status and 
surface quality of the coastal water and was studied in relation to the physical (salinity) 
and biological (Chlorophyll a) parameters.  
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2. Materials and Methods 
 
The standard water monitoring surveys were carried out at 15 transects along the 
Apulian coast (Fig.1). For each transect three sampling points, at distances ranging from 
100 m to 3000 m, were chosen. Five transects were located in front of rivers mouth. 
Monthly water sampling of salinity, chlorophyll a, dissolved oxygen, dissolved 
inorganic nitrogen (DIN) and total phosphorus (TP) was performed from January 2008 
to December 2009. In order to describe the spatial and temporal trend of TRIX, salinity 
and chlorophyll a in Apulian region coastal waters, we computed two types of maps for 
these parameters through interpolation via kriging using a linear variogram with 
slope=1 and anisotropy=1 (Golden Software, 2002). Namely, Surface Water Maps 
(hereafter SWM; Fig. 2) are calculated by space (transects) and time (months) 
interpolation of data collected at surface water, while Depth Water Maps (DWM; Fig. 
3) are calculated by space (sampling points) and time (months) interpolation of data 
collected along the water column. The distribution of TRIX values among coast type 
and season have been analyzed through a mixed effect models, taking account the 
spatial autocorrelation of data (transect as random factor) and different variance-
covariance structure (transect x station x season). The fixed factors were: season (four 
levels: winter, spring, summer, autumn); coast type (two levels: river mouth, coast); 
station (three levels: ST1_500 m, ST2_1000 m; ST3_3000 m). The initial full model 
was: Y = season x coast type x station. The model was refined, in order to define the 
fixed part, by manual backward stepwise selection using maximum likelihood to 
remove not significant terms. The resulting model was validated to verify the normality 
of residual. 
 

 
Figure 1: Study area and transects: river mouth stations (filled circles) and coastal 

stations (empty circles).  
3. Results 
 
SWM of salinity, chlorophyll a and TRIX value related to all transects were studied. An 
example is reported in Fig. 2. The river mouth transects showed different characteristics 
with respect to the coastal ones. In fact, mouth river transect was characterized by the 
presence of low salinity waters throughout the two years and high chlorophyll a and 
TRIX value (February-April 2008 and October-December 2009) with respect to the 
coastal ones.  In order to investigate whether and how the river waters and coastal 
discharge affected the water column, the DWM of salinity and chlorophyll a were 
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studied along all transects. The layer of fresher waters and chlorophyll a were detected 
along the water column for the transects reported above (Fig.3). The selected statistical 
model indicates that TRIX index is affected by the interaction between coast type and 1) 
distance from the coastline 2) season (Fig. 4). 
 

 
Figure 2: SWM of salinity, chlorophyll a and TRIX value in the river mouth (Foce 

Candelaro) and coastal transect (Capo Bianco) by kriging using a linear variogram with 
slope=1 and anisotropy=1. Note the not proportional distance among the stations. 

 

 

 
Figure 3: DWM of salinity and chlorophyll a in the river mouth (Foce Candelaro) and 

coastal transect (Capo Bianco) by kriging method using a linear variogram with slope=1 
and anisotropy=1. 
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Figure 4: Mean values (± 1 e.s.) of TRIX index among coast type and i) distance from 
the coastline (left) ii) season (right) following the result of the final mixed linear model. 

 
4. Concluding remarks 
 
The investigation of the influence of freshwater on the marine-coastal waters was 
carried out at different sites of Apulia region, using the  distribution of the TRIX index. 
With regard to the Northern Adriatic Sea, previous studies are available on the influence 
of salinity  on the distribution of TRIX index on the coastal environment (Cocchi and 
Scagliarini, 2005). This work represented the first study regarding the role of land-
derived water discharge in the coastal area in Apulia region, where most of the rivers 
are torrent-like characterized by temporary regime (Anonymous, 2005). The main 
results highlight the influence of the river runoff on the coastal water quality. A clear-
cut distinction between rivers’ mouth and coastal sites is revealed by means of statistical 
analysis. The highlighted differences are related to: low and homogenous TRIX values 
along coastal transects, while higher values and a gradient from inshore to offshore have 
been detected according to rivers’ mouth sites. 
 
References 
 
Anonymous (2005). Piano di tutela delle acque della regione Puglia. 
Cocchi D., Scagliarini M. (2005) Modelling the effect of salinity on the multivariate 

distribution of a water quality index. Journal of Mathematics and Statistics, 1 (4), 
268-272. 

Focardi S., Specchiulli A., Spagnoli F., Fiesoletti F., Rossi C. (2009) A combinated 
approach to investigate the biochemistry and hydrography of a shallow bay in the 
South Adriatic Sea: the Gulf of Manfredonia (Italy), Environmental Moniitoring  
Assessment, 153, 209-220. 

Strobl R. O., Somma F., Evans B. M., Zalvìdar J. M. (2009) Fluxes of water and 
nutrients from river runoff to the Mediterranean Sea using GIS and a watershed 
model, Journal of Geophysical Research, Vol.114, G03012. 

Surfer. 2002. Surface Mapping System, Surfer version 8.0. Golden Software, Inc. 
Vollenweider R. A., Giovanardi F., Montanari G., Rinaldi A. (1998) Characterization of 

the trophic conditions of marine coastal waters with special reference to the NW 
Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality 
index. Environmetrics, 9, 329-357. 



Applying a new procedure for fitting a
multivariate space-time linear

coregionalization model 1

Sandra De Iaco
Dip.to di Scienze Economiche e Matematico-Statistiche, Facolta’ di Economia,

Universita’ del Salento, Italy, sandra.deiaco@unisalento.it

Monica Palma
Dip.to di Scienze Economiche e Matematico-Statistiche, Facolta’ di Economia,

Universita’ del Salento, Italy.

Donato Posa
Dip.to di Scienze Economiche e Matematico-Statistiche, Facolta’ di Economia,

Universita’ del Salento, Italy.

Abstract: The near simultaneous diagonalization of the sample space-time ma-
trix covariances or variograms makes the fitting procedure of a space-time linear
coregionalization model (ST-LCM ) easier. The method is illustrated by a case
study involving data on three environmental variables measured at some monitor-
ing stations of the Puglia region, Italy. It is shown that the near diagonalization
works very well for this data set and the cross validation results show that the fitted
matrix variogram is appropriate for the data.

Keywords: space-time linear coregionalization model, simultaneous diagonal-
ization, environmental data.

1 Introduction

In this paper, the new fitting procedure of a ST-LCM (De Iaco et al., 2011) based on
the generalized product-sum variogram model, is illustrated through an application
to a multivariate space-time data set concerning three environmental variables. This
method, based on the simultaneous diagonalization of the matrix variograms com-
puted for several spatial-temporal lags, makes the identification of the parameters
of the ST-LCM very simple and flexible.

1Supported by Fondazione Cassa di Risparmio di Puglia.
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2 The case study

The data set consists of ozone, O3 (µg/m3), Temperature (◦C) and Relative Hu-
midity (%) daily maximum values, collected during June 2009 at some monitoring
stations of the Puglia region, Italy (Fig.1). The space-time correlation structure of

Survey stations for Temperature
Survey stations for Relative Humidity
Survey stations for Ozone

Classification of Ozone monitoring stations:
T = traffic
P =
I  = industrial

peripheral

Taranto

Brindisi

Lecce

P
P

I

T

T

I P

T

I

T

T

I

T

0 25

Kilometers

Figure 1: Posting map of survey stations in the South of Puglia region, Italy.

the variables under study has been modelled by a ST-LCM, whose basis components
are generalized product-sum variograms.

2.1 Fitting process of a ST-LCM

The first step of the fitting process consists of computing the space-time direct and
cross-variogram surfaces for the variables under study. Fig. 2 shows the variogram
surfaces computed for 5 spatial lags and 10 temporal lags. Hence, 150 symmetric (3×
3) matrices of sample direct and cross-variograms have been obtained. Afterwards,
the 150 symmetric (3×3) matrices of sample direct and cross-variograms have been
simultaneously diagonalized by using the matlab code “joint diag r.m” (Cardoso,
1996). Hence, the orthogonal (3 × 3) matrix Ψ which simultaneously diagonalizes
all these matrices is given below:

Ψ =

[

0.9725 −0.0719 0.2213
0.0969 0.9898 −0.1041
−0.2116 0.1227 0.9696

]

. (1)

Successively, by extracting the diagonal elements from the 150 diagonal matrices,
the sample spatial-temporal variograms of the independent basic components have
been obtained. Since the spatial and temporal marginal variograms of the second
and third basic component show the same behavior, meaning that the spatial and
temporal ranges are almost equal for the second and the third basic component,
solely the first and the second basic component have been retained. Two different
scales of spatial-temporal variability have been considered: 21 kilometers in space,

2



and 3 days in time, at the first scale of variability; 35 kilometers in space, and 8
days in time, at the second scale of variability. Hence, spatial and temporal marginal
basic variograms, fitted to the empirical basic components have been the following:

γ1(hs, 0) = 206Exp(||hs||/21), γ1(0, ht) = 185Sph(|ht|/3), (2)

γ2(hs, 0) = 3.1Sph(||hs||/35), γ2(0, ht) = 8.3Exp(|ht|/8), (3)

where Sph(·) and Exp(·) are the abbreviated forms for the spherical and the ex-
ponential models, respectively. The contributions associated to the first and the

H
u

H
u

H
u

Figure 2: Space-time variogram surfaces of O3, Temperature and Relative Humidity daily
maximum values.

second basic components, i.e. the first and the second scales, are 293 and 8.7,
respectively. Then, the coefficients kl, l = 1, 2, are obtained as follows:

3



k1 =
206 + 185− 293

206 · 185
⇒ k1 = 0.00257, k2 =

3.1 + 8.3− 8.7

3.1 · 8.3
⇒ k2 = 0.10494.

Next, the entries in the matrices Bl, l = 1, 2, have been computed:

B1=

[

0.98635 0.08532 −0.08360
0.08532 0.03038 −0.01980
−0.08360 −0.01980 0.33447

]

,B2=

[

17.55814 2.09302 −7.61628
2.09302 0.70930 −2.45349
−7.61628 −2.45349 4.53488

]

. (4)

Hence, the ST-LCM for the analyzed variables is given below:

Γ(hs, ht) = B1 g1(hs, ht) +B2 g2(hs, ht), (5)

where the matricesBl, l = 1, 2, are as in (4) and the space-time variograms gl(hs, ht),
l = 1, 2, are modelled as a generalized product-sum model as follows:

g1(hs, ht) = γ1(hs, 0) + γ1(0, ht)− k1γ1(hs, 0) · γ1(0, ht),

g2(hs, ht) = γ2(hs, 0) + γ2(0, ht)− k2γ2(hs, 0) · γ2(0, ht),

where γ1(hs, 0), γ2(hs, 0), and γ1(0, ht), γ2(0, ht), are the spatial and temporal
marginal basic variogram models respectively, as indicated in (2) and (3), while k1
and k2 are the coefficients of the model.

2.2 Validation of the fitted coregionalization model

Using the modified GSLib routine “COK2ST” proposed in De Iaco et al. (2010),
cross-validation has been performed in order to evaluate the goodness of the fitted
ST-LCM. O3, Temperature and Relative Humidity daily maximum values have been
estimated at all data points by space-time cokriging using model (5). The proportion
of absolute normalized errors (normalized by the cokriging standard deviations)
exceeding 2.5, is very small (less than 1.5%) for each variable: from Chebyshev’s
inequality this proportion should be less than 1/6.25 (i.e, 16%). Hence, the fitted
matrix variogram can be considered appropriate for the observed data.
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Abstract: Root disease has the potential to cause large economic losses of agricultural 
production. Techniques are available for assessing the amount of pathogen present in 
soil using DNA assays. There is spatial variability in pathogen levels across fields and 
spatial methods would appear an obvious tool to use to map the incidence and 
distribution and as a basis to plan cropping programs. The information required for 
agronomic decisions has to be obtained in sufficient time and at an acceptable price for 
this to be a viable technique. Two examples where this is being used are wheat in large 
(40 to 100 ha) fields and potatoes grown in centre pivots. The largest difficulty 
encountered is obtaining a sampling scheme that produces a small nugget variance. 
Alternative sampling strategies are considered. 

Keywords: Disease mapping, Agriculture and biodiversity  

 

 
1. Introduction 
Sampling fields for nutrient levels is used as a tool to optimize inputs and profits. More 
recently with the development of DNA based testing services, growers can now 
measure pathogen levels as an indicator of the disease potential of a field.  
 
The challenges in sampling are to provide a ‘fit for purpose’ sampling scheme. 
Currently sampling is achieved by using cores of soil, or some alternative sampling 
scheme that provides a uniform representation of say the top 100 mm of soil. The 
sampling scheme has to be unbiased and it should have a small coefficient of variation 
and be cost efficient. The variation among samples arises from local variation (on a 
scale much less than 1 m) and also on a much larger scale (100 m or more). The local 
variation (nugget effect) represents variation between samples taken close together. 
 
One method of reducing the local variation is to take many (up to 40) cores and 
combine them to form a composite sample. (Note that in some literature a core may be 
referred to as an aggregate sample and the composite as a cumulative sample). The 

                                                           
1 Funding was provided by the Grains Research and Development Corporation Australia, South 
Australian Grain Industry Trust and the Australian Potato Research Program”. 
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composite samples represent an average of many core samples and hence should be 
more representative (have smaller coefficient of variation) of the local area. 
 
Commonly cores to be composited are taken in some convenient predetermined pattern 
– perhaps in a circle around a vehicle. Alternatively samples could be taken in a straight 
line. The composite sample ideally should represent the range of variation near the 
nominated sampling point. Conventional wisdom says that increasing the distance apart 
of samples typically increases the variation between samples. A convenient and 
effective pattern for local sampling is therefore to take a series of small cores along a 
straight line. This suggests an alternative method of sampling where the sample is taken 
as a slot that is cut using a circular saw. Such a device is known as a linear sampler. It 
effectively takes samples from a line simulating the effect of taking many cores in a 
straight line.  
 
A known source of local variation is the crop rows. These could hold increased levels of 
pathogen DNA compared to the inter-row. Furthermore there could be differences in 
nutrient status as fertiliser is usually applied with the drill. Differences between the row 
and inter-row are therefore to be expected. An alternative approach is to sample across 
the rows – this can be simply achieved with the linear sampler. 
 
A trial has been carried out at two sites to explore variation in wheat. Each composite 
sample was assessed for phosphate (as representative of nutrient status) and for 
Fusarium pseudograminearum a stubble borne pathogen typically concentrated in the 
row, which causes to assess pathogen status of the fields. Data on six pathogens 
(including Black Dot, Colletotrichum coccodes) have also been collected from a range 
of potato crops that are grown using centre pivot irrigation. These data have been 
obtained from composite samples each representing one ha, with 40 cores used for 
every composite. 
 
2. Materials and Methods 
 
Linear sampler: A linear sampler was used to take some of the samples in the wheat 
field. The linear sampler essentially consists of s circular saw mounted on a carriage. 
The saw cuts a 10 cm deep slot in the soil (Figure 2) and output collected. Care was 
taken to ensure that the soil is representative of the 0 – 10 cm soil layer. 
 
Core sampling of wheat fields: The wheat field was sampled at 26 sites in a systematic 
pattern to represent the area. At each sampling site, 10 cores were taken on the stubble 
row, 10 between the stubble rows, 10 on the stubble rows, a linear sample between the 
rows and two separate linear samples cross the rows. 
 
Sampling of potato soil: Potatoes were grown under a centre pivot, with each pivot 
covering 30 – 50 ha. A 100 m square grid (1 ha) was superimposed on each centre pivot 
and a single composite sample was formed from 40 cores (12 mm diameter and 100 mm 
deep) taken along a W shaped transect from each ha. Each composite sample was 
assessed for potato root pathogens. 
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Variograms were constructed using the ‘geoR’ package (Ribeiro Jr. & Diggle 2001) 
using the ‘variofit’ function with ‘max’ set to half the observed maximum distance. 
 
3. Results 
Wheat root disease 
There was effectively no correlation between of the pathogen DNA data obtained by the 
different sampling methods with correlations of the phosphate data ranging from 0.44 to 
0.70 for samples taken within two metres of each other. 
 

 
Figure 1: Spatial distribution and corresponding variograms for crown rot at Kybunga 
for average over a sample types series of samples of root disease (top half) and results 
from the linear sampler (bottom half). High amounts of disease are indicated by large 
red circles grading to low amount of disease shown as small blue circles. Each unit of 
distance is approximately 1 km.  
 
Figure 1 shows the spatial distribution and estimated variogram for one series of linear 
samples. In most cases the variograms were not stable and the exponential fits would 
not converge for the inter-row samples (data not shown). Two sampling schemes (cores 
between rows and linear sampler on the row) showed a large nugget effect but also an 
increase in variance with distance. Although the data were expressed on a natural log 
scale, there were high estimates of the variance even when the samples were close 
together. This was despite using composite sampling or the linear sampler. Even when 
all six sampling types were averaged there was still no evidence of increasing variance 
with distance, but the estimated variance approximately halved (Figure 1). 
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Potato root disease  
Potato disease shows some spatial patterning (but the sampling c.v. is still well over 
50%). The commercial reality is that a farmer will use a maximum of four samples to 
represent a pivot of approximately 40 ha when making management decisions. Data 
from each ha are available for research purposes and these have been used to give a 
good approximation of the proportion of area that has pathogens levels that exceed an 
acceptable level. Detailed data are available to assess how well 4 samples can represent 
a pivot. A simulated commercial sampling was achieved by choosing a single ha from 
each quadrant of a pivot and obtaining its mean. The proportion of the pivot that 
exceeded a risk level was plotted against the mean DNA level of the four samples 
(Figure 2 right panel) and a logistic distribution was fitted. The results indicated that 
data from each of four 1 ha samples can be used to give a ‘correct’ answer in about 85% 
of cases despite the variability of the sampling. 
 

 
 

 
Figure 2: Left panel shows distribution of BD DNA in a typical pivot. Right panel 
indicates proportion of correct decision would have been made based on 4 samples. 
High and low levels indicate currently recognised limits of risk of commercial harm. 
 
4. Concluding remarks 
The number of samples available in a commercial agricultural application of the 
distribution of soilborne pathogens is far less than the number available for 
conventional spatial statistics. Furthermore, each sample has a very large variability 
(c.v. >50%). Despite these shortcomings, useful commercial decisions are currently 
being made. 
The ongoing challenge to agricultural statisticians is how to take cost effective samples 
for the evaluation of root disease risk assessment, and to use our knowledge of spatial 
statistics to optimize this process. Nugget variance is a limiting use of spatial methods. 
 
Reference 
Ribeiro Jr., P.J. & Diggle .J. (2001) geoR: A package for geostatistical analysis. R-
NEWS, 1 (2), 15-18. 
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EM estimation of the Dynamic
Coregionalization Model with varying

coefficients1

Francesco Finazzi and Alessandro Fassò
University of Bergamo - Dept. IIMM, alessandro.fasso@unibg.it

Abstract: The satellites from NASA’s Earth Science Project Division, like
AURA, produce data for the concentration of various airborne pollutants. Calibrat-
ing satellite data using ground level monitoring networks and other meteorological
and land characterizing variables is mandatory. To do this, it is important to use
an approach which is able to manage large datasets coming from different sources,
structural missingness and spatial and temporal correlation. In this paper, we ex-
tend the Dynamic Coregionalization Model introduced in Fassò and Finazzi (2011)
to the case of space-time varying coefficients in order to increase the model flexibility
and to make it suitable for large regions such as Europe.

Keywords: air quality monitoring, missing data, dynamic coregionalization

1 Introduction

The Dynamic Coregionalization Model (DCM) of Fassò and Finazzi (2011) has been
proven to be quite appropriate for modeling multivariate space-time environmental
data in the non-collocated case and in the presence of missing data. When data
are collected over continent-size regions, the statistical model considered must be
enough flexible to accommodate for local conditions. In order to gain this flexibility,
the DCM is extended here to the case of varying coefficients. The model is described
in Section 2 and its estimation is addressed in Section 3.

2 The varying coefficients model

Let y(s, t) = (y1(s, t), ..., yq(s, t)) be the q−variate response variable at site s ∈
D ⊂ R2 and time t ∈ N+. The model equation is

y(s, t) = X(s, t) ·

[
Kxβ + Kzz(t) +

c∑
j=1

γjK
j
wwj(s, t)

]
+ ε(s, t) (1)

1This research is part of Project EN17, ‘Methods for the integration of different renewable energy
sources and impact monitoring with satellite data’, Lombardy Region under ‘Frame Agreement
2009’
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where X(s, t) is a matrix of known coefficients (for instance X(s, t) = Iq ⊗ x(s, t)
is the q × (bq) diagonal block matrix built from the 1 × b covariate vector x(s, t)),
z(t) is a latent p−dimensional temporal state with markovian dynamics z(t) =
Gz(t − 1) + η(t) with G a stable transition matrix and η ∼ N(0,Ση) while each
wj(s, t) =

(
wj1(s, t), ..., wjq(s, t)

)
, 1 ≤ j ≤ c is a q-dimensional gaussian latent

coregionalization component with covariance and cross-covariance matrix function
Γj = cov

(
wji (s, t) , wji′ (s′, t)

)
= Vjρj (h, θj), 1 ≤ i, i

′ ≤ q, 1 ≤ j ≤ c. Each Vj is
a correlation matrix and each ρj is a valid correlation function parametrized by θj.
Finally, ε(s, t) = (ε1(s, t), ..., εq(s, t)) is the measurement error which is assumed to
be white-noise in space and time with εi(s, t) ∼ N(0, σ2

ε,i), 1 ≤ i ≤ q.
The matrices Kx, Kz and Kj

w are matrices of known coefficients which guarantee
conformability of the model equation (1) and acts as selection matrices with respect
to the columns of X(s, t). The model parameter set is Ψ = {β, σ2

ε ,G,Ση, γ,V, θ}
where β = (β1, ..., βq)

′, σ2
ε =

{
σ2
ε,1, ..., σ

2
ε,q

}
, γ = {γj, ..., γc}, θ = {θ1, ..., θc} and

V = {V1, ...,Vc}.

3 Likelihood function and missing data

At each time t, each variable yi is observed over the set of spatial sites Si =
{si,1, ..., si,ni

}, 1 ≤ i ≤ q. The sets in S = {S1, ...,Sq} are not constrained and
can be disjoint. The observed vector at time t is then yt(S) = (y1,t(S1), ...,yq,t(S1))′

= yt and it has dimension N = n1+...+nq. The observation equation is yt = µt+εt,
where µt = Ux,tβ + Uz,tzt + γ1U

1
w,tw

1
t + ...+ γcU

c
w,tw

c
t , Ux,t = XtKx, Uz,t = XtKz

and Uj
w,t = XtK

j
w.

In the definition of the likelihood function, the distributions involved are(
yt | zt,w1

t , ...,w
c
t

)
∼ NN (µt,Σε)

(zt | zt−1) ∼ Np (Gzt−1,Ση)

wj
t ∼ NN

(
0,Σj

)
, 1 ≤ j ≤ c

Let Y = (y1, ...,yT ), Z = (z1, ..., zT ) and Wj =
(
wj

1, ...w
j
T

)
. The complete-data

log-likelihood function is given by:

−2l
(
Ψ; Y,Z,W1, ...,Wc

)
= T log |Σε|+

T∑
t=1

(yt − µt)′Σ−1
ε (yt − µt) +

T log |Ση|+
T∑
t=1

(zt −Gzt−1)′Σ−1
η (zt −Gzt−1) +

c∑
j=1

T log
∣∣Σj
∣∣ T∑
t=1

(
wj
t

)′ (
Σj
)−1

wj
t

At each time t, the observation vector yt can be partitioned in the following way:

y∗t =
[

y
(1)
t y

(2)
t

]′
where y

(1)
t = Ltyt is the sub-vector of the non-missing data

and Lt is the selection matrix of the observed data at time t. The vector y∗t is a

2



permutation of yt and yt = Dt ·
[

y
(1)
t y

(2)
t

]′
, where Dt is a permutation matrix.

The partitioned measurement equation becomes y
(l)
t = µ

(l)
t + ε

(l)
t , l = 1, 2. and

the variance-covariance matrix of the permuted errors is conformably partitioned,

namely V ar

[(
ε

(1)
t , ε

(2)
t

)′]
=

[
R11 R12

R21 R22

]
. In what follows, Y(1) =

(
y

(1)
1 , ...,y

(1)
T

)
is the collection of the observed data.

4 EM estimation

At the E-step of the EM algorithm, the following conditional expectation is evalu-
ated:

Q
(
Ψ,Ψ(k)

)
= EΨ(k)

[
−2l

(
Ψ; Y,Z,W1, ...,Wc

)
| Y(1)

]
= EΨ(k)

[
EΨ(k)

[
−2l

(
Ψ; Y,Z,W1, ...,Wc

)
| Y(1),Z,W1, ...,Wc

]
| Y(1)

]
= T log |Σε|+ tr

(
Σ−1
ε

T∑
t=1

Ωt

)
+

T log |Ση|+ tr
{
Σ−1
η (S11 − S10G

′ −GS′10 + GS00G
′)
}

+

c∑
j=1

T log
∣∣Σj
∣∣ · tr{(Σj

)−1
T∑
t=1

wj,T
t ·

(
wj,T
t

)′
+ Aj,T

t

}

where:

Ωt = EΨ(k)

[
et · e′t + Λt | Y(1)

]
= EΨ(k)

[
et · e′t | Y(1)

]
= Dt

[
Ω

(11)
t Ω

(11)
t R−1

11 R21

R21R
−1
11 R21R

−1
11 Ω

(11)
t R−1

11 R21 +
(
R22 −R21R

−1
11 R12

) ]D′t

et = EΨ(k)

[
yt − µt | Y(1),Z,W1, ...,Wc

]
= Dt

[
y

(1)
t − µ

(1)
t

R21R
−1
11

(
y

(1)
t − µ

(1)
t

) ]
Λt = V arΨ(k)

[
yt − µt | Y(1),Z,W1, ...,Wc

]
= Dt

[
0 0
0 R22 −R21R

−1
11 R12

]
D′t

Ω
(11)
t = EΨ(k)

[
e

(1)
t | Y(1)

]
· EΨ(k)

[
e

(1)
t | Y(1)

]′
+ V arΨ(k)

[
e

(1)
t | Y(1)

]
wj,T
t = EΨ(k)

(
wj
t | Y(1)

)
; 1 ≤ j ≤ c

Aj,T
t = V arΨ(k)

(
wj
t | Y(1)

)
; 1 ≤ j ≤ c

Moreover, zTt = EΨ(k)

(
zt | Y(1)

)
and PT

t = V arΨ(k)

(
zt | Y(1)

)
are given by the
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Kalman smoother output and

S11 =
T∑
t=1

zTt
(
zTt
)′

+PT
t ; S10 =

T∑
t=1

zTt
(
zTt−1

)′
+PT

t,t−1; S00 =
T∑
t=1

zTt−1

(
zTt−1

)′
+PT

t−1

The maximization step of the EM algorithm involves the minimization

Ψ(k+1) = arg min
Ψ

Q
(
Ψ,Ψ(k)

)
The estimates θ̂(k+1) =

{
θ̂1, ..., θ̂c

}(k+1)

and V̂ =
{

V̂1, ..., V̂c
}(k+1)

are obtained by

numerical minimization. The close form solutions for Ĝ(k+1) and Σ̂
(k+1)
η are already

given in Fassò and Finazzi (2011) while the solution for the remaining parameters

are obtained by solving
∂Q(Ψ,Ψ(k))

∂Ψ
= 0 and they are

(
σ̂2
i,ε

)(k+1)
=

tr
(∑T

t=1 Ωt|i,i
)

Tni

β̂(k+1) =

[
T∑
t=1

(
U′x,tUx,t

)]−1

·

[
T∑
t=1

X′x,t
(
eTt + U′x,tβ

(k)
)]

γ̂
(k+1)
i =

tr
[∑T

t=1

(
FT
t −GT

t −HT
t

)]
tr

[∑T
t=1 Uw,t

(
wi,T
t ·

(
w1,T
t

)′
+ Ai,T

t

)
U′w,t

]
for each 1 ≤ i ≤ q, with Ωt|i,i the i− th diagonal block of Ωt. Moreover

FT
t =

(
eTt + γiU

i
w,tw

i,T
t

)(
wi,T
t

)′ (
Ui

w,t

)′
GT
t = 2

c∑
j 6=i

γjU
i
w,tCovΨ(k)

(
wi
t,w

j
t | Y(1)

) (
Uj

w,t

)′
(2)

HT
t = 2Uz,tCovΨ(k)

(
zt,w

i
t | Y(1)

) (
Ui

w,t

)′
(3)

and the conditional covariances in (2) and (3) are computed straightforwardly from
the multivariate Gaussian distribution of the joint (yt,wt, zt).
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Likelihood Inference in
Multivariate Model-Based Geostatistics 1

Clarissa Ferrari, Marco Minozzo
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Abstract: Multivariate model-based geostatistics refers to the extension of clas-
sical multivariate geostatistical techniques, in particular the classical linear model of
coregionalization, to the case of non-Gaussian data. Extensions of this kind are still
limited in the statistical literature, mainly for the inferential problems they pose,
and almost invariably inference is carried out in a Bayesian context. In this work we
present some new results on likelihood inference for the unknown parameters of a
hierarchical geostatistical factor model. In particular, we show the implementation
of some Monte Carlo EM algorithms and discuss their performances, in particular
their sampling distributions, mainly through some simulation studies.

Keywords: Cokriging, Generalized linear mixed model, Markov chain Monte
Carlo, Monte Carlo EM, Multivariate geostatistics.

1 Introduction

The classical linear model of coregionalization, or its simpler counterpart, the pro-
portional covariance model, otherwise known as intrinsic correlation model, and
the related ‘factorial kriging analysis’ have become standard tools in many areas
of application for the analysis of multivariate spatial data. However, in presence
of non-Gaussian data, in particular count or skew data, the use of these geostatis-
tical instruments can lead to misleading predictions and to erroneous conclusions
about the underling factors. To cope with these situations, following the proposal
put forward in the univariate case by Diggle et al. (1998), and somehow extending
the works of Zhang (2007) and of Zhu et al. (2005), we propose in Section 2 a
hierarchical multivariate spatial model, built upon a generalization of the classical
geostatistical proportional covariance model. Adopting a non-Bayesian inferential
framework, and assuming that the number of underlying common factors and their
spatial autocorrelation structure are known, in Section 3 we show how to carry out
likelihood inference on the parameters of the model by exploiting the capabilities of
Markov chain Monte Carlo (MCMC) and Monte Carlo EM (MCEM) algorithms.

1We gratefully acknowledge funding from the Italian Ministry of Education, University and
Research (MIUR) through PRIN 2008 project 2008MRFM2H.
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2 Multivariate Model-Based Geostatistics

Let us consider the following hierarchical extension of the classical geostatistical
linear model of coregionalization. Let yi(xk), i = 1, . . . ,m, k = 1, . . . , K, be a set
of geo-referenced data measurements relative to m regionalized variables, gathered
at K spatial locations xk. These m regionalized variables are seen as a partial
realization of a set of m random functions Yi(x), i = 1, . . . ,m, x ∈ R2. For these
functions we assume, for any x, and for i ̸= j,

Yi(x)⊥⊥Yj(x)|Zi(x) and Yi(x)⊥⊥Zj(x)|Zi(x), (1)

and, for x′ ̸= x′′, and i, j = 1, . . . ,m,

Yi(x
′)⊥⊥Yj(x

′′)|Zi(x′) and Yi(x
′)⊥⊥Zj(x

′′)|Zi(x′), (2)

where Zi(x), i = 1, . . . ,m, x ∈ R2, are mean zero joint stationary Gaussian pro-
cesses.

Moreover, for any given i and x, we assume that, conditionally on Zi(x), the ran-
dom variables Yi(x) have conditional distributions fi(y;Mi(x)), that is, Yi(x)|Zi(x) ∼
fi(y;Mi(x)), specified by the conditional expectations Mi(x) = E[Yi(x)|Zi(x)], and
that hi(Mi(x)) = βi+Zi(x), for some parameters βi and some known link functions
hi(·). For instance, we might assume that for some or all i, and for any given x, the
data are conditionally Poisson distributed, that is, that

fi(y;Mi(x)) = exp{−Mi(x)}(Mi(x))
y/y!, y = 0, 1, 2, . . . , (3)

and that the linear predictor βi + Zi(x) is related to the conditional mean Mi(x)
through a logarithmic link function so that ln(Mi(x)) = βi + Zi(x). On the other
hand, for the rest of the i, we might assume that, for any given x, conditionally on
Zi(x), the random variables Yi(x) are Gamma distributed with conditional expec-
tations Mi(x) = E

[
Yi(x)

∣∣Zi(x)] = exp
{
βi + Zi(x)

}
= νb, (here again hi(·) = ln(·))

and conditional variances Var
[
Yi(x)

∣∣Zi(x)] = νb2 = ν−1 exp
{
2βi + 2Zi(x)

}
=

ν−1(Mi(x))
2, where ν > 0 and b > 0 are parameters, that is, we might assume

fi(y;Mi(x)) = (yν−1/Γ(ν)) exp{−yν/Mi(x)}(ν/Mi(x))
ν , y > 0. (4)

Here the ‘shape’ parameter ν is constant for x ∈ R, whereas the ‘scale’ parameter
b varies over R depending on the conditional expectation Mi(x). In addition to the
Poisson or Gamma distributions, other discrete or continuous distributions could be
considered to account for particular set of data.

For the latent part of the model, we adopt the following structure. For the m
joint stationary Gaussian processes Zi(x), let us assume the linear factor model

Zi(x) =
P∑
p=1

aipFp(x) + ξi(x), (5)
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where aip arem×P coefficients, Fp(x), p = 1, . . . , P , are P ≤ m non-observable spa-
tial components (common factors) responsible for the cross correlation between the
variables Zi(x), and ξi(x) are non-observable spatial components (unique factors)
responsible for the residual autocorrelation in the Zi(x) unexplained by the common
factors. We assume that Fp(x) and ξi(x) are mean zero stationary Gaussian pro-
cesses with covariance functions Cov

[
Fp(x), Fp(x+h)

]
= ρ(h), and Cov

[
ξi(x), ξi(x+

h)
]
= ψiρ(h), where h ∈ R2, ρ(h) is a real spatial autocorrelation function common

to all factors such that ρ(0) = 1 and ρ(h) → 0, as ||h|| → ∞, and ψi are non-
negative real parameters. We also assume that the processes Fp(x) and ξi(x) have
all cross-covariances identically equal to zero.

Assuming that the number P of latent common factors and that the spatial
autocorrelation function ρ(h) have already been chosen, the model depends on the
parameter vector θ = (β,A,ψ), where β = (β1, . . . , βm)

T , A = (a1, . . . , am)
T , with

ai = (ai1, . . . , aiP ), for i = 1, . . . ,m, and ψ = (ψ1, . . . , ψm)
T . Let us note that, as

the classical linear factor model, our model is not identifiable. However, the only
indeterminacy stays in a rotation of the matrix A.

3 Likelihood inference via MCEM

Adopting a non-Bayesian inferential framework, likelihood inference on the param-
eters of the model would require the maximization, with respect to θ = (β,A,ψ),
of the likelihood based on the marginal density function of the observations yi(xk).
However, since this marginal density is not available, and since the integration re-
quired in the E-step of the EM algorithm would not be easy, here, to maximize the
log-likelihood, we will resort to the MCEM algorithm (see Wei and Tanner 1990).

Our implementation of the algorithm proceeds as follows. Let us define ξ =
(ξ1, . . . , ξm) where ξi = (ξi(x1), . . . , ξi(xK))

T , i = 1, . . . ,m, and F = (F1, . . . ,FP )
where Fp = (Fp(x1), . . . , Fp(xK))

T , p = 1, . . . , P , and let f(y, ξ,F;θ) be the joint
distribution of the model, that is, the complete log-likelihood, accounting also for
the unobserved factors. Assuming that the current guess for the parameters after
the (s− 1)th iteration is given by θs−1, and that Rs is a fixed positive integer, the
sth iteration of the MCEM algorithm involves the following three steps (stochastic,
expectation, maximization):

S step – draw Rs samples (ξ(r),F(r)), r = 1,. . ., Rs, from the (filtered) conditional
distribution f(ξ,F|y;θs−1);

E step – compute Qs(θ,θs−1) = (1/Rs)
∑Rs

r=1 ln f(y, ξ
(r),F(r);θ);

M step – take as the new guess θs the value of θ which maximizes Qs(θ,θs−1).

With Rs very large this procedure approximates the EM algorithm, whereas a
simulated annealing version could be obtained by choosing an increasing sequence
Rs → ∞, as s→ ∞, (see, for instance, Fort and Moulines 2003). The S-step of the
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Figure 1: Histograms of the simulated marginal distributions of the MCEM estima-
tor for the 8 parameters of a model with m = 4 and one common factor, obtained
by running the algorithm over 50 simulated data sets. Dashed lines are the true pa-
rameter values; dotted lines are the empirical arithmetic means of the distributions.

algorithm can be dealt with through importance sampling or MCMC techniques,
whereas the M-step typically requires the use of numerical routines.

When the matrix A is known, the complete log-likelihood belongs to the curved
exponential family and by choosing an appropriate increasing sequence Rs the al-
gorithm converges to the maximum likelihood estimate (Fort and Moulines 2003).
On the other hand, when the matrix A is unknown, the complete likelihood does
not belong any more to the curved exponential family and theoretical convergence
properties are not available. However, we show, either in the case in which A is
known or unknown, through some extensive simulation studies, that the MCEM
algorithm provides estimates with quite reasonable sampling distributions. For in-
stance, Figure 1 shows the simulated distributions of the MCEM estimator in the
case in which P = 1 and A is known.
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Abstract: This paper reports on on-line measurement of total nitrogen (TN), organic 
carbon (OC), moisture content (MC) and bulk density (BD) which was carried out in three 
European farms. The measurement system consists of a multiple sensor platform, which 
includes a mobile, fibre-type, visible and near infrared (vis-NIR) spectrophotometer, a 
draught (D) and a depth (d) sensor. The prediction models developed were tested in three 
fields in Denmark, Czech Republic and UK. Results revealed that the measurement 
accuracy was very good for TN (RPD = 2.33 - 2.38), very good/excellent for OC (RPD = 
2.31 - 2.52) and excellent for MC (RPD = 3.16 - 3.25). A reasonably good correlation 
between the measured and on-line predicted BD (R2 = 0.56 – 0.73) was obtained. The on-
line measured maps were similar to those developed with traditional laboratory method of 
soil analysis. 
 
Keywords: On-line measurement, sensor fusion platform, soil properties. 
 
1. Introduction 
 
Proximal soil sensing becomes one of the main requirements for successful implementation 
of precision agriculture. Among others, vis-NIR on-line sensors are characterised to be fast, 
robust, cost effective and environment friendly soil spatial variability detecting techniques. 
Among few vis-NIR on-line soil sensors available today, the system of Mouazen (2006) is 
a sensor fusion platform that enables measurement of several soil properties with the vis-
NIR spectroscopy in addition to data fusion algorithm for the measurement of soil BD 
(Mouazen and Ramon, 2006). This paper aims at reporting on automatic data collection of 
multiple soil properties at farm scale using a sensor fusion platform (Mouazen, 2006) in 
three fields across three European farms. 
 
2. Material and methods 

The on-line measurement system designed and developed by Mouazen (2006) was used. 
An AgroSpec mobile, fibre type, vis-NIR spectrophotometer (Tec5 Technology for 
Spectroscopy, Germany) with a measurement range of 305-2200 nm was used to measure 
soil spectra in reflectance mode. The spectrometer was IP 64 protected for harsh working 
environments. A shear beam load cell (9 tonne capacity) for the measurement of D and 
draw wire linear sensor (connected to a depth wheel) for the measurement of subsoiler d 
were used. A single A DGPS (EZ-Guide 250, Trimble, USA) was used to record the 
position of the on-line measurements with sub-meter accuracy. A Panasonic semi-rugged 
laptop was used for data logging and communication. The spectrometer system, laptop and 
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DGPS were powered by the tractor battery. A total of 3 fields were measured in three farms 
in Czech Republic, Denmark and the UK in summer 2010. In each field, blocks of 150 m 
by 150 m, covering about 2 ha of land were measured. About 2 or 3 soil samples were 
collected from each measurement line with 28 to 48 soil samples collected from each field.  

Soil chemical analyses and optical measurements were carried at Cranfield University. Soil 
OC and TN were measured by a TrusSpecCNS spectrometer (LECO Corporation, St. 
Joseph, MI, USA) using the Dumas combustion method. Soil MC was determined by oven 
drying of soil at 105 ºC for 24 h. Having MC measured, BD was calculated for all samples. 

Each soil sample was dumped into a glass container and mixed well. Big stones and plant 
residue were excluded. Then each soil sample was placed into three Petri dishes, which 
were 2 cm in depth and 2 cm in diameter. The soil in the Petri dish was shaken and pressed 
gently before levelling with a spatula. The soil samples were scanned with the same 
AgroSpec spectrophotometer used for on-line measurement. A 100 % white reference was 
used before scanning. A total of 10 scans were collected from each cup, and these were 
averaged in one spectrum. 

Soil spectra were first reduced to 371 - 2150 nm to eliminate the noise at both edges of each 
spectrum. Spectra were further reduced by averaging three successive points in the vis 
range, and 10 points in the NIR range. The Savitzky-Golay smoothing, maximum 
normalisation and first derivation were successively implemented using Unscrambler 7.8 
software (Camo Inc.; Oslo, Norway). The pre-treated spectra and the laboratory chemical 
measurement values were used to develop calibration models for OC, TN and MC.  

General calibration models developed previously for TN, OC and MC, using 480 soil 
samples collected from 4 farms across 4 European countries were used in this study. Out of 
188 samples collected from the three fields in Europe, 63 samples were randomly selected 
for the calibration and the remaining 125 samples were used as independent validate set. 
However, the range of variation of each property for both the calibration and validation sets 
was almost identical. The calibration samples were spiked into the original calibration set 
of the general calibration models developed for European soils. The calibration spectra 
were subjected to a partial least squares regression (PLSR) with the leave-one-out cross 
validation using the Unscrambler 7.8 software.  

A model (Eqn. 1) to predict BD based on measured D, d and MC was developed by 
Mouazen et al. (2009), which is valid for sand, loam, silt loam and silt loam/silt soils. 
Equation (1) was used to predict BD in this study. 
 

3
. - .

( ) ( .
.

+= ×
2D 21 36 MC 73 9313d

BD 1.240 - 0 592MC - 0.000792clay)
1 6734

 (1) 

 
Where D is subsoiler draught [kN], MC is gravimetric moisture content [kg kg-1], d is 
cutting depth [m] and BD is bulk density [Mg m-3] and clay is expressed in %. 
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3. Results and discussion 
 
The measurement campaign proved that the sensor fusion platform can provide 
simultaneous measurement of several soil properties. This platform enabled the collection 
of around 3000 data points from each field with an average of around 2 points per meter 
travel distance. The chemical analysis values of the manually collected samples were 
compared with the on-line predicted concentration values using vis-NIR spectra collected 
in the same positions. Table 1 summarises the results of general model accuracy and on-
line validation results. The general calibration models refer to those developed originally 
using 480 samples with the spiked 65 samples from the three fields measured in this study. 
The validation of the on-line measured data was based on 125 samples collected from the 
three fields for validation. Examining the ratio of prediction deviation (RPD), which is the 
standard deviation (SD) divided by root mean square error of prediction (RMSEP), 
revealed that RPD values were above 2 for all soil properties in all fields. An RPD value 
between 1.5 and 2 and between 2.0 and 2.5 indicates good and very good quantitative 
model predictions, respectively. Values above 2.5 indicate excellent prediction results 
(Viscarra Rossel et al., 2006). Adopting this classification system of the prediction 
accuracy reveals that prediction performance for TN, OC and MC is very good to excellent 
performance (Table 1). 

    OC   TN MC BD 
Validation   RMSEP 

% 
RPD RMSEP 

% 
RPD RMSEP 

% 
RPD R2 

CZ field 0.07 2.33 0.007 2.52 0.72 3.16 0.56 
DK field 0.05 2.38 0.004 2.47 0.37 3.25 0.72 
UK field 0.09 2.38 0.008 2.31 0.59 3.25 0.73 

Calibration 
models 

  0.104 2.89 0.009 2.93 1.05 4.32 - 

Table 1. Calibration and field validation results of the on-line measurement in 3 fields 
 
The prediction of BD with the on-line sensor fusion platform provided reasonably good 
accuracy (Table 1). Although the model was developed for fields in Belgium (Mouazen et 
al., 2009), the R2 values shown in Table 1 confirm that the model (Eqn 1) can be expanded 
to other fields across the European countries considered in this study, as long as the same 
soil textures to those used to build the original calibration model (Eqn. 1) are used.  

Using an ArcGIS 10 (ESRI, USA) mapping software, maps for the selected soil properties 
were developed. The inverse distance weighting (IDW) method was used for the spatial 
interpolation. In order to allow for useful comparisons between reference and on-line 
measured maps, the same number of classes (seven classes) was considered for all maps. 
Figure 1 compares between maps of on-line and laboratory measured TN in the UK field, 
taken as an example. The same number of samples (18 validation samples) was used to 
develop both maps. A comparison between maps of measured and predicted TN shows 
large similarity, which was also achieved for OC, MC and BD (data is not shown). 
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(a)                                                                              (b)  

Figure 1. Comparison between laboratory (a) and on-line (b) measured total nitrogen (TN) 
in the UK field, using 18 validation samples 

 
4. Conclusions 
 
This paper reports on the performance of on-line sensor fusion platform for the 
measurement of multiple soil properties at farm scale in Europe. Results reported in this 
study allow the following conclusions to be drawn: 
1- The on-line sensor fusion platform enabled the collection of large data points (about 
3000 points per field).  
3- The accuracy of on-line measured OC, TN and MC was classified as very good to 
excellent prediction performance. Reasonable good measurement of BD was reported. 
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Abstract: Given a set of geo-referenced data points, the Getis–Ord Gi* statistic 
identifies hot-spots of points with values higher in magnitude than one might expect by 
a random chance. This tool works by looking at each data feature and its neighboring 
features in comparison to the overall spatial distribution of the phenomenon explored. If 
the difference between the local sum for a feature and its neighbors is highly larger than 
expected (the overall sum) a hot-spot is accepted. Leaf-roll virus (LRV) in vineyards 
appears in clusters which expand from year to year when no pest control is carried out. 
Exploring the spatio-temporal expansion of hot-spots of the LRV is limited with the Gi* 
statistics since relative hot-spots are accepted according to the infestation level of a 
specific year. A modified Gi* was developed which identifies year-to-year hot-spots 
which are relative to a year of reference. LRV symptoms were mapped yearly in a 
vineyard from 2005 to 2010. The Gi* indicated for a northern hot-spot only in 2007 and 
a southern one in 2009. Using the modified Gi* with 2005 as a year of reference, the 
northern and the southern clusters were identified in 2006 and 2007, respectively. 

 
Keywords: Getis–Ord Gi*, Leaf-roll virus, Spatio-temporal dynamics 
 
 
1. Introduction 
 
Leafroll is one of the most widespread viral diseases of grapevine. Leafroll disease is an 
economically important graft-transmissible disease of grapevines and occurs in all 
grapevine-growing countries. Although grapevine leafroll virus (LRV) can affect the 
growth, development, longevity and yield of the vines, its most serious effect is on 
lowering the sugar content and raising the acidity of must. In the field, the spread of 
LRV associated with particular insect vectors has been reported in several countries, 
including Israel (Cabaleiro and Segura, 2006; Tanne et al., 1989). In vineyards with 
available virus inoculum and mealybugs present, LRV spreads quite quickly from vine 
to vine (Cabaleiro et al., 2008). Study of the spatio-temporal dynamics of the leafroll-
infected vines in the vineyard scale may be helpful to determine whether or not spread 
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of the viruses is occurring, and the best control measures to take. The spreading via the 
mealybugs creates clusters of infested vines which expanding from year to year. Local 
spatial statistics may assist with the identification of the infestation clusters. Local 
spatial statistics identifies those clusters with values higher in magnitude than is 
expected to be found by random chance. The Getis–Ord Gi* hotspot cluster statistic is 
one of the many possible approaches used for local spatial analysis (Getis and Ord, 
1996). The Gi* statistic measures the degree of spatial clustering of a local sample and 
how different it is from the expected value which is the mean of the whole data set. 
Study of the annual expansion of the LRV can use the annual maps of hot spots and 
follow their expansion. Yet, since the Gi* statistic is a relative measure to the overall 
infestation level mean in a particular year and since the mean infestation increases 
annually, the discovery of hot spots is limited. The objective of this paper is to describe 
a modification of the Gi* statistic which enables a spatio-temporal analysis of the LRV 
hot-spots expansion.    
 
2. Materials and Methods 
 
The Gi* statistic 
The Gi* statistic measures the degree of spatial clustering of a local sample and how 
different it is from the expected value (Equation 1). It is calculated as the sum of the 
differences between values in the local sample and the mean, and is standardized as a z-
score with a mean of zero and a standard deviation of 1: 

Equation 1:  
 
where i is the centre of the local neighborhood, d is the lag distance (radius), wij is the 
weight for neighbor j from location i, n is the number of samples in the data set, Wi* is 
the sum of the weights, S1i* is the number of samples within d of the central location, x* 
is the mean of the whole data set, and s* is the standard deviation of the whole data set. 
The Gi* statistic is two-tailed, so a score of ±2 represent strong clustering, as 95% of 
the data under a normal distribution should be within 2 standard deviations of the mean. 
Values between ±2 may be interpreted as weakly clustered, with values being less than 
2 standard deviations away from what one would expect if there were no spatial 
clustering (Laffan, 2006). While positive values of Gi* represent clusters that are, on 
average, greater than the mean (Hot-spots) the negative values represent clusters that are 
less than the mean (Cold-spots). The Gi* statistic is a relative measure and the existence 
of hot spots of LRV infested vines is highly depended on the overall mean. Since LRV 
is expanding annually the overall mean increases and local expansions of infestation 
might not be observed. This attribute limits the use of the Gi* statistic for spatio-
temporal analysis of the LRV expansion. A modified Gi* is suggested which calculates 
Gi* using a pre-defined overall mean (x*) and standard deviation of (s*) infestation 
which function as a common baseline. In this way local expansion of hot spots may be 
observed.  
To explore the potential in using the modified Gi* (mGi*) real data of LRV infested 
vines were used. Ten rows in a vineyard in the Golan Heights in Israel were monitored 
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for LRV symptoms from 2005 to 2010 (overall of 1142 vines). The study area was 
divided into 4X4 meters cells (3-4 vines). Each cell was set with the number of infested 
vines inside it in each year. Gi* statistic was calculated for a radius of 24 meters (d in 
equation 1) for each year allowing at least 30 data features which are required for a 
valid analysis (Getis and Ord, 1996). No weights were set to the data. For the 
calculation of mGi* the overall mean (x*) which is the proportion of the infested vines 
the standard deviation (s*) of the year 2005 were used. The calculations were made in 
Matlab, transferred into shapfiles and mapped in ArcGIS 9.3.1.    
 
3. Results 
 
Table 1 shows the average and standard deviation of  LRV infestation levels in the years 
2005-2010. The infestation level increased over the years. A notable increase was 
between the years 2008 and 2009 and between 2009 and 2010.   
 

Year Infestation mean STD 
2005 0.162 0.421 

2006 0.219 0.492 

2007 0.266 0.592 

2008 0.320 0.694 

2009 0.563 0.964 

2010 0.823 1.159 

 
Table 1: The mean and standard deviation of infestation levels in the years 2005-2010. 

 
Figure 1 presents maps of number of LRV infested vines in 2005, 2007 and 2009. 
Visual interpretation of the maps indicates for clustered infestation distribution. There 
was a group of infested vines in the northern part of the vineyard which expanded along 
the years. In 2009 another distinctive group of infested vines was located in the southern 
part.  
 

   
Figure 1: Maps of infested vines in 2005 (left), 2007 (center), and 2009 (right) 
 
Figure 2 presents maps of hot and cold spots in 2005, 2007 and 2009 using the Gi*. The 
hot spot analysis using the Gi* generally agrees with the visual analysis. Nonetheless, 
an increase in cold spots was also observed and this is despite the fact that the average 
infestation level was doubled from 2007 and 2009 (Table 1). Additionally, the southern 
hot spot in 2009 is relatively small in comparison with the infestation map of 2009. The 
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respective maps created based on the mGi* calculations (Figure 3) shows the 
advantages and weakness of the mGi*. In 2007 the mGi* discovered a much larger 
cluster in the northern part on comparison with the Gi*. The mGi* also discovered the 
southern cluster already in 2007 while by the Gi* this cluster was discovered only in 
2009. On the other hand, in 2009 almost all the vineyard was mapped as hot spot.   
 
4. Concluding remarks 
 
The mGi* may be used for spatio-temporal study of LRV expansion but better reference 
values for its calculations need to be defined. 
 
 

   
Figure 2: Maps of hot and cold spots using Gi* in 2005 (left), 2007 (center), and 2009 

(right) 

   
Figure 3: Maps of hot and cold spots using mGi* in 2005 (left), 2007 (center), and 2009 

(right) 
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Abstract: Detection of variability in agricultural fields depends on the spatial scale of 
the observed variable. Plant water status can be evaluated using thermal IR images that 
can provide valuable information on the water status, whereas visible RGB images can 
provide detailed information on the plants' color, which is not a good indicator of the 
water status. The informative mode (thermal IR images) has coarse resolution, as 
opposed to the excessive resolution of the less informative mode (visible RGB). In the 
present study, we present a method to enhance the information obtained from the 
thermal IR mode, by combining information from the visible RGB mode. We propose 
to un-mix the temperature of objects in the thermal images based on the information 
extracted from the high resolution RGB image.  
 
Keywords: thermal un-mixing, end members, segmentation. 
 
1. Introduction 
 

One limitation in the use of thermal imaging for determining crop temperature and crop 
water status is that a pure sunlit canopy temperature is needed, and inclusion of shaded 
leaves and soil background can result in false detection of water stress. To overcome 
this, high spatial resolution thermal images were combined with images in the visible 
and NIR ranges (Moran et al., 1994; Clarke, 1997, Möller et al., 2007; Sela et al., 2007). 
Our group (Sela et al., 2007 and Möller et al., 2007) worked on high resolution images 
and used the images in the visible range to exclude soil and shaded leaves,  resulting in 
high correlations between the calculated crop water stress index (CWSI) and stomatal 
conductance. One of the main conclusions from the last works (Sela et al., 2007 and 
Möller et al. 2007) was that the high spatial resolution (~500 pixels per leaves) enabled 
proper selection of sunlit leaves. But, the size of the image (6 X 6 m) was impractical 
for production of crop water status maps on a commercial scale. A much larger image 
size can be obtained from airborne photography and the increased pixel size introduces 
new challenge for extracting sunlit leaf temperature by un-mixing a mixture of sunlit 
and shaded leaves and bare soil that are included in a single pixel. 

                                                           
1 This research was supported by grant of the Israeli Ministry of Science 
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Extracting sunlit leaf temperature can be performed by un-mixing. A leading approach 
for coarse resolution images is the theoretical Vegetation Index-Temperature (VIT) 
trapezoid (Moran et al. 1994). The VIT trapezoid is the shape obtained when plotting 
surface composite temperature (Ts) minus air temperature (Ta) as a function of 
fractional vegetation cover. Theoretically, all variations of crop water stress for different 
vegetation cover should fall within this trapezoid. Clarke (1997) further showed that the 
trapezoid could be divided into plant stressed and unstressed regions. The objective of 
the current work is to develop new un-mixing approach to extract sunlit leaf 
temperatures using multimodal images (visible RGB and thermal infra red). In the 
current work we introduce a method that is based on segmentation of high resolution 
RGB images to a number of end members, and subsequent computation of the end-
members’ temperature using statistical un mixing methods. 
Spectral un-mixing is a common method used to extract pure spectral signatures of 
objects that are in a mixed environment, and their spatial dimensions are less than the 
smallest detectable object. In this common case, the additional information that must be 
provided is the end members, i.e. the characteristics of all the objects that are known to 
be mixed in that pixel. Based on that additional information, the proportion of each 
specific material in the pixel can be derived. Our case is different from the common un-
mixing problem since we do not know the characteristics of the end members, i.e. we do 
not know the temperature of the objects that are in the same pixel with the sunlit leaf 
that we want to measure. Instead, in our case the end-members, their proportion on each 
pixel and their characteristics will be extracted from multimodal images (visible RGB 
and thermal infra red). 
 
2. Materials and Methods 
 
High spatial resolution images in the thermal and visible range were acquired around 
noon time in almond trees under five irrigation treatments in Kibutz Lavee, Israel. A 
320x240 pixel microbolometer radiometer (FLIR, SC2000) was used for acquiring 
thermal infra red images, and a high resolution (8Mpixels) RGB camera (SONY F828) 
was used for the visible range. Images were acquired from a crane, about 20-25 m 
above the canopy.  
The proposed un-mixing methodology consists of the following steps:  

a) The first issue that has to be addressed is the co-registration of the images from the 
two modes (visible RGB and thermal infra red). In conventional systems, the images 
are produced by the same sensor and are therefore aligned. The use of two different 
sensors yields two images of the same scene from slightly different viewing angles, 
different optical lenses, and different acquiring sensors. Proper alignment of the two 
images is essential prior to the application of any un-mixing procedure. Alignment or 
co-registration of images is typically performed with images from the same source. 
In these cases, correlation based procedures usually yield satisfactory results. But 
images that carry different basic information cannot be co-registered using 
conventional techniques. We have developed methodology for multi modal image 
registration based on mutual information (Wachs et al., 2007). In this work we used  
mutual information for multi-modal image registration, and manually adjusted the 
registration were errors were found. 

b) from high resolution RGB we obtained the proportions of sunlit and shaded soil and 
leaves. The RGB images were segmented and classified into 3 end members: sunlit 
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leaves, sunlit soil and soil in the shadow.  Segmentation was performed using the 
spectral angle mapper (SAM) and the pixels were divided into the 3 end members. 

c) for each mixed thermal pixel a linear equation that describe the relationship 
between the temperatures of the objects and the mixed temperature is defined.  

lshsssji TfTfTfT
321, ++=

   
(1) 

where: Ti,j is the temperature of the mixed pixel (i,j), f1 and Tss are the proportion and 
the temperature of sunlit soil respectively, f2 and Tshs are the proportion and the 
temperature of shaded soil respectively and f3 and Tl are the proportion and the 
temperature of the leaves respectively. The solution of the set of linear equations 
for all the pixels in the image, is the estimated temperature of the end members. 

Thirty five images were analyzed, and the canopy temperature was estimated using the 
proposed un-mixing procedure. Leaf temperatures of pure thermal pixels were manually 
extracted, and compared to the leaf temperature computed with the proposed un mixing 
model. Paired t-test analysis was performed in Matlab®. (The Mathworks, US) 
 
3. Results 
 
Figure 1a shows a sample high resolution RGB image and 1b the corresponding TIR 
image.  Figures 2a,b,c show the segmentation result to three end members, sunlit soil, 
shaded soil and leaves, respectively. Table 1 shows a comparison of the average leaf 
temperatures manually extracted for each irrigation treatment and the average leaf 
temperatures computed with the proposed un-mixing model. The average deviation is 
approximately 0.4 oC. Statistical paired t-test for comparison between the manually 
measured and un-mixing extracted temperatures showed that there is no significant 
difference between them (α=0.01). 

 (a)  
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 (b) 
Figure 1: Sample high resolution RGB image (a), and the corresponding TIR image (b). 

 (a)  (b)  (c) 
Figure 2 Segmentation to three end members: (a) sunlit soil, (b) shades, and (c) leaves. 
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Irrigation treatment 
Manually measured 

temperature 
[oC] 

Un-mixing extracted 
temperature 

[oC] 

Number 
of 

samples 
High stress 33.7 (0.7) 33.3 (0.6) 9 

Moderate stress 32.1 (1.0) 31.9 (0.9)  6 

Low stress 32.7 (1.3) 32.5 (1.1)  8 

Farmer’s practice 30.4 (1.4) 30.2 (1.3)  4 

No stress 28.8 (0.8) 28.9 (0.8)  8 

Table 1: Comparison of the average leaf temperatures manually extracted for each 
irrigation treatment and the average leaf temperatures computed with the proposed un-

mixing model. Numbers in brackets depicts the standard deviation of the sample. 
 
 
4. Concluding remarks 
 
The proposed algorithm successfully segmented the high resolution images into three 
end members and subsequently extracted their temperatures. This method can be used to 
produce high resolution water status maps. The information provided by these maps will 
be much more detailed that what the growers are used to - it will allow growers to adjust 
irrigation rates at high resolution (precision irrigation) when the irrigation equipment 
allows it – this means that a higher proportion of the orchard will be irrigated close to 
optimum, i.e. the highest, water use efficiency. 
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Abstract: Accelerated land degradation is mostly human induced and occurs in all eco-
regions regardless of social, economic and political conditions. Precision Agriculture is 
an ecological management strategy based on the use of several sources of information in 
order to support decisions concerning the agricultural practice. In this context, the use of 
methodologies, taking into account spatial and temporal variability associated to every 
aspect of agricultural production processes, can improve crop yields and environmental 
quality. In this paper, a geoadditive model with interactions is proposed to analyse the 
nonlinear relations between an indicator of durum wheat production with other crop 
features with the aim of considering explicitly the spatial dependence and the temporal 
variation in production. 

 
Keywords: Geoadditive Model, Matérn family, Spatial Correlation Structures, Cross-
validation, Additive model with Interactions 
 
 
1. Introduction 
 
Precision Agriculture or site-specific crop management is a means of managing spatial 
and temporal variability of different data types: edaphic (i.e. soil related), 
anthropogenic, topographic, biological and meteorological factors which are deemed to 
affect crop yield. The target of Precision Agriculture is to increase crop productivity, 
optimise inputs, increase farmer’s profitability and reduce environmental impact, 
through the application of variable rate inputs on the basis of the actual local 
requirements of crop rather than an estimation averaged over the whole field. In this 
context, defining reliable methods for assessing and predicting within-field variations in 
soil and crop properties is very important. Effects of the soil’s physical and chemical 
properties on crop yield are predictable and can be mapped relatively easily, whereas 
effects due to climatic conditions, nutrient deficiency, pests and diseases, being time-
dependent, are more difficult to predict. The application of proper statistical models, to 
assess spatial and temporal variation and predict crop response to site-specific 
environmental conditions, is then crucial in the perspective of Precision Agriculture. In 
particular, a geoadditive model with interactions is proposed to analyse the spatial 
distribution of the harvest index (White, Wilson, 2006), a commonly used indicator of 
commercial wheat production, and its nonlinear relations with other crop features over 
two years. The model adopted here is a further development of an extension (Cafarelli 
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and Castrignanò, 2011) of the original geoadditive model of Kammann and Wand 
(2003), that explicitly considers data stratified according to crop in two different years. 
Two geoadditive models with interactions, considering the same response variable and 
covariates, for the same linear and non-linear relationships between response variable 
and covariates over time, but differing for spatial correlation structures, are fitted. The 
selection among the fitted models is done by cross-validation (Carroll and Cressie, 
1996). 
 
 
2. Materials and Methods 
 
The trial was carried out on a 12-ha field cropped with durum wheat (Triticum durum 
DESF), located at the CER-CRA research centre for cereals, Foggia (41° 27’ N, 15° 36’ 
E, 90 m above sea level), south-eastern Italy. The soil was a deep, silty-clay Vertisol of 
alluvial origin, classified as fine, mesic, Typic, Chromoxerert. The climate was 
characterized by hot and dry summers and rains concentrated mostly in the winter 
months. The agricultural trial was carried out during two crop seasons: 2005-2006 and 
2007-2008. One-hundred georeferenced measurements of the harvest index (HI), 
number of fertile plants (FP) and electrolytic weight (EW) were taken for each year. 
The samples with more than one missing value were discarded leaving only ninety-three 
and ninety-one georeferenced soil samples to be considered for the first and the second 
wheat season, respectively. that HI had different spatial distributions in the two years, 
which share a marginal bell shaped distribution. This consideration was supported by a 
graphical check, which led us to adopt a semi-parametric approach, based on a 
geoadditive model with interactions. A full representation of the geoadditive model with 
interactions is: 
 

( ) ( ) ( )   ,__10 iiiiyeariii SyearoflocationfFPgEWHI εββ ++++++= xxβx (1) 

 
where 184,,1K=i represents the spatial-temporal observation, g and f are smooth 
functions, xi =(Xi, Yi), in UTM WGS84 coordinate system, is the spatial location of the 
i-th observation and ( ) ( )( )νσ  ,,0~ 0

2 rhNS xx , where 2
xσ  is the sill, r is the range, ν  is the 

smoothing parameter and h0(r,ν) is a Matérn family covariance function used to specify 
the spatial correlation structures. The exponential and the Gaussian covariance 
structures were used in the fitted models. This occurred by setting 2

3=ν  or ∞→ν , 
respectively, in the function h0(r, ν ) (Minasny and McBratney, 2005). Independently of 
the specification of ( )⋅0h , the Gaussian spatial process ( )⋅S  is independent of the error 

term εεεε and the additive components. In model 1, the term ( )⋅yearf  corresponds to the 

number of spatial locations within a particular year and represents the interaction 
between the year factor and the overall spatial effect. The relatively small sample size 
permitted the use of the parsimonious low rank parameterization of model 1 (Hastie, 
1996). The choice of linear components was done according to approximated Z-values 
given by lme, while the significance of nonlinear effects, identified with the 
exploratory data analysis, was assessed by restricted likelihood ratio tests (Kammann 
and Wand, 2003; Greven et al., 2008; Crainiceanu, 2008; Ruppert et al., 2009). 
Independently of the spatial correlation structure adopted, the number of nodes for 
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representing the nonlinear FP effect was 15 and was obtained as in Ngo et al. (2004), 
whereas the number of nodes in the low-rank formulation of the spatial component was 
obtained by CLARA algorithm (Kaufman et al., 1990). The coordinates of the 23 spatial 
nodes were obtained by a space-filling algorithm implemented in function 
default.knots.2D within the R library SemiPar. The low rank formulation of 
model 1 was estimated by REML using function lme of the R library nlme (Pinheiro 
and Bates, 2000). The three cross-validation techniques CV1, CV2 and CV3 suggested by 
Carroll and Cressie (1996) were used to compare the accuracy and the precision of 
estimates of the two models. In particular CV1 was used to assess the unbiasedness of 
the predictor (optimal value: CV1=0), CV2 was used to assess the accuracy of the mean 
squared prediction error (optimal value: CV2=1) and CV3 was used to check the 
goodness of prediction (small value of CV3 indicates a good fit). 
 
 
3. Results 
 
The result comparison suggests that the two fitted models have good and similar 
performances and are very useful for analyzing the relationship between HI and the 
covariates during the two crop years (Table 1). For this reason the most generally used 
exponential covariance structure was chosen. The fitted geoadditive model, obtained by 
using the exponential correlation structure to specify the spatial dependence of the 
geographical component, is reported in Table 2. From the table inspection, one sees that 
both agronomical variables (EW, FP) impact significantly on HI, however the 
relationship with FP is more complex, due also to the higher uncertainty in FP 
measurement. All nonlinear components of the geoadditive model are significant on the 
basis of the degrees of freedom (Table 2) estimates that confirmed the appropriateness 
of including the nonlinear effects of FP, the spatial component and the interaction 
between the factor year and the overall spatial effect in the fitted model. 
 
 

Spatial correlation structure CV1 CV2 CV3 

Exponential  -0.61 1.29 8.44 

Gaussian -0.62 1.31 8.42 

 
 
4. Concluding remarks 
 
The proposed approach is a quick and effective method of predicting the spatial 
distribution of the harvest index using standard agronomic measurements over two 
years. The great advantages of geoadditive models lie mainly in the possibility to jointly 
analyse spatial and temporal variations and to treat the complex interactions, quite often 
non linear, between production process and several different variables (soil, crop, 
atmosphere, management). Moreover, these models allow us to predict agronomical 
variables in specific locations of the field and this piece of information is crucial for 
Precision Agriculture. These considerations and the possibility of estimating linear 
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effects and variance components of non linear effects and error term by REML, using 
mixed effects model procedures routinely implemented in statistical software, lead us to 
recommend a wider use of geoadditive models with interactions in the presence of 
spatial dependence and temporal variation.  
 

Table 1: Cross-validation errors with two different spatial correlation structures 
 

Linear component 

Covariates Coefficients Std.Error p-value 

EW 0.092   0.028 <0.05 
Non-linear component 

Covariates df N° knots 

FP 9.35 15 

locations of year2006 8.02 15 

locations of year2008 8.02 15 

X, Y 7.02 23 

 
Table 2: Summary of the REML based fit of the model with exponential correlation 

structure. 
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Abstract: When spatial interpolation is carried out under a deterministic approach 
rather than according to the classical model-based approach known as kriging, the 
statistical properties of the predictor cannot be assessed. The aim of this work is to 
achieve these properties under a finite population design-based framework, that treats 
spatial locations as the outcome of a probabilistic sample. 
 
Keywords: spatial sampling; ratio estimator, design based inference; spatial 
information in finite population inference. 
 
 
1. Introduction 
 
Given n  locations 1, , nu uK  over a surface, let us consider a fixed but unknown 

deterministic function ( )⋅z  which generates the data 1( ), , ( )K nz zu u . The inverse 

distance weighted interpolator (IDW, Shepard, 1968) for predicting the value in an 
unknown location (denoted by a Greek letter) is 
 

� ( ) 'u z wλ λζ =  , (1) 
 

where the normalized inverse squared distances of the unknown location from all the 

sampled ones 
22

1

n

i i j
j

w λ λ

−−

=

= − −∑u u u u  are contained in the weighting vector 

( )1,..., ,..., 'i nw w wλ =w  and z is the n-dimensional vector of the observed values. The 

IDW properties are well known; the predictor conforms to the Tobler’s law of 
geography. Here we propose to view this predictor under a design-based perspective.  
Let us now consider the n  locations as a probabilistic sample from a population of N  
(Barabesi, 2008): the unknown values at the unsampled locations are the object of the 
inference. 
 
 
2. The Inverse Distance Weighted interpolator in the finite population 
framework 
 
Under the design-based framework, the IDW interpolator can be seen as the result of a 
sampling procedure. Since each individual unobserved value depends only on its unique 
specific geographical relationship with the sampled locations, the simple random 
sampling without replacement is chosen.  

                                                           
1 Work supported by the project PRIN 2008: New developments in sampling theory and practice, Project 
number 2008CEFF37, Sector: Economics and Statistics, awarded by the Italian Government. 
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The sampling design can be suitably taken into account through the use of random 
selection matrices (Bruno et al., 2011), that allow to pass from sample-based quantities 
to population-based ones. Expression (1) becomes 
 

�
' '

( ) '   ,
' '

λ λ λ λ
λ λ

λ λ λ λ

ζ = = =
ζ A Φb ζ K φ

u z w
1 A Φb 1 K φ

(2) 

 

where Φ  is a N N×  symmetric matrix containing the same function of the Euclidean 

distances 
2

λλ

−
−u u  of (1) before normalization with null diagonal, while λφ  is its λ -

th column vector ( 1, ,Nλ = K ). λA  is the diagonal matrix containing the random 

conditional indicator variables ( )|s s
I

λ λ∈ ∉
 and λb  is the randomization of the λ -th 

canonical basis vector λe  through the random indicator variable ( )s
I

λ∉
. Using some 

matrix algebra and results for conditional random variables one can see that λK  is the 

diagonal matrix of the joint random indicator variables ( ),s s
I

λ λ∉ ∈
. The IDW interpolator 

is written in (2) as a function of the N-dimensional vector of population values ζ  and of 
random indicator variables. Through the use of selection matrices, sampled and 
unsampled locations are associated in order to manage exclusion and conditional 
inclusion in the sample through random indicator variables. The resulting predictor 
turns out to be a design-based ratio-type estimator (Särndal et al., 1992).  
 
 
3. Approximated first two moments of the IDW interpolator 
 
Rewriting the IDW interpolator as in (2) allows the calculus of its statistical properties.  
Since it is a ratio of linear random combinations, its properties can be analytically 
computed only as approximations. For managing the involved random variables, we 
define the “association probabilities”, linking a potentially unsampled location with all 
the others. These probabilities represent the starting point for the calculus of the 
statistical properties of the predictor: an uncertainty measure can, in this way, be 
associated to the deterministic IDW interpolator.  
 

Theorem 1: The approximated expected value of (2) is  
 

� 1

2

E ''
E ( ) E = =  

' E '

λ λ λ
λ λλ λ λ λ λ

λ
λ λ λ λ λλ λ

λ λ

ζ ϕ
ζ

ϕ
≠

≠

      =         

∑

∑
�

T

T

ζ K φζ K φ
u

1 K φ 1 K φ
(3) 

 

Proof. 
It follows directly from the expected value of the random matrix λK  as  
 

E[ ]  ,
1

N n n

N Nλ λ
−=

−
K D (4) 
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where λD  is a diagonal matrix of unit values besides the null value at the ( ,λ λ )-th 

position. �  

Let us define the difference between each λ -th population value and its interpolation 
via the other 1N −  values 
 

( ) ( )  ,λλ λ λ λ λ λ
λ λ λ λ

δ ζ ζ ϕ ϕ
≠ ≠

 = −  
 
∑ ∑u u (5) 

as the “structural bias” associated to location λuur . The bias of estimator (2), i.e. 

�E ( ) ( )λ λζ ζ  −
 

u u , is also not null. However, it can be seen that, as the sample size 

increases, � ( )λζ u  tends to its “true” value 
1 2

T Tλ λ  (3). Predictor (2) may exhibit a high 

“structural bias” due not to the sample size but to the nature of the interpolator. 
 

Theorem 2. The approximated variance of (2) is 
 

� ( ) 2

2 3 4

V ' E ' V 'Cov ' , '
V ( ) 2  ,

E ' E ' E '

λ λ λ λ λ λλ λ λ λ
λ

λ λ λ λ λ λ

ϕ ϕ ϕϕ ϕ
ζ

ϕ ϕ ϕ

            − +
            

ζ K ζ K 1 Kζ K 1 K
u

1 K 1 K 1 K
�  

 

which, using a notation similar to (3), can be expressed as 
 

� ( ) ( )2 2 2
4 3 6 7 8 5 1 4 6 8 6 1

2

1
V ( ) 2 2  ,h T T T T T T m T T T T T

cTλ λ λ λ λ λ λ λ λ λ λ λ
λ

ζ   − + + − +  
u �  

 

where c , h  and m  are population constants and quantities λ�T  are similar to those in 

(3). For the proof, see Bruno et al. (2011). �  
 
 
4. A simulation study 
 
We assess the improvement in inference provided by the use of a weighting system 
based only on geographical distances. No model specification is required and the only 
assumption made is that data follow the Tobler’s law. The weighting system we 
propose, suggested by the IDW interpolator (1), is the same for the whole population, 
but the weights change according to the location to predict. When geography is not 
important, it might be more useful to predict the unweighted mean of the N-1 population 
values, for the unknown location. 
A simulation study has been carried out for evaluating the approximate properties of the 
IDW interpolator under the design-based framework. A population of fifteen sparse data 
points is considered. A map of the population under study, the table of the values of the 
variable and the “structural bias” associated to each point of the population are given in 
Bruno et al. (2011). We illustrate two opposite situations, in the four panels of Figure 1. 
For the first location, where 1( ) 5.81 ,ζ =u  the structural bias is null: the use of the 

distances, linked to the IDW predictor, leads to a better prediction (panel a) than the 
consideration of equal weights (panel b), as highlighted by the tendency of the expected 
value (3) to the real value. The other location, where 13( ) 2.79ζ =u , presents a structural 
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bias 13( ) 1.97δ = −u  and (3) fails in properly predicting the true value (panel c). The 

unweighted version of the structural bias is on the contrary *
13( ) 1.00δ = −u . For this 

point, the use of geography is misleading and a situation of unweighted estimation in 
simple random sampling would be preferable (panel d).  

 
 

 
 
 
 
 

 
 
 
 

 
 
 

a)                                      b)                                c)                                d) 
 

Figure 1: Prediction with different and equal weights for two locations ( as n increases). 
Location 1: panels a) and b); location 13: panels c) and d). 

 
 
References 
 
Barabesi L. (2008) Facoltà di Economia “R.M. Goodwin”, Università degli Studi di 

Siena, mimeo. 
Bruno, F., Cocchi, D. and Vagheggini, A. (2011) Spatial interpolation using a finite 

population approach, submitted. 
Cressie N.A.C. (1993) Statistics for spatial data, Wiley, New York. 
Shepard D. (1968) A two-dimensional interpolation function for irregularly-spaced data, 

Proceedings of the 1968 23rd ACM national conference, 517-524. 
Särndal C.-E., Swensson B., Wretman J. (1992) Model-assisted survey sampling, 

Springer-Verlag, New York. 
Stevens D.L. (2006) Spatial properties of design-based versus model-based approaches 

to environmental sampling, American Statistical Association; Section on Statistics & 
the Environment Newsletter, 10, 3-5. 

Ver Hoef J.M. (2002) Sampling and geostatistics for spatial data, Ecoscience, 9, 152-
161. 



Relations between spatial design criteria 1
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Abstract: Several papers have recently strengthened the bridge connecting geo-
statistics and spatial econometrics. For these two fields various criteria have been
developed for constructing optimal spatial sampling designs. We will explore re-
lationships between these types of criteria as well as elude to space-filling or not
space-filling properties.

Keywords: Empirical kriging, compound D-optimality, Moran’s I

1 Introduction

Lindgren et al. (2011) further strengthen the bridge connecting the two somewhat
disparate worlds of spatial analysis. One is rooted in the idea of observing con-
tinuously varying spatial processes and led to what is largely referred to as geo-
statistics. The other, which assumes (usually aggregate) observations attached to
discrete (mostly irregular) lattices, is commonly known under the name of spatial
econometrics. In particular in the latter literature the rift between these two points
of view - manifesting itself along various themes - is a constant challenge towards a
unified understanding (Griffith and Paelinck, 2007). Also for the more narrow topic
of efficient estimation and prediction early contributions can be found there (Griffith
and Csillag, 1993) and that the issue is of great current interest is documentable
as well (Fernández-Avilés Calderón, 2009). The method of explicitely linking some
Gaussian fields to Gaussian Markov random fields on irregular grids given in Lind-
gren et al. (2011) is certainly a very welcome addition to the equipment connecting
the two views as the authors rightfully claim in their discussion section. It remains
to be seen whether practitioners will be able to take it up as easily as a perhaps
more pragmatic recent suggestion like Nagle et al. (2011).

2 Materials and Methods

But let us draw the attention towards a rather neglected (in the discussion sec-
tion of Lindgren et al. (2011) as well most of the literature in general) aspect of
establishing such a link as above. That is the potential impact of this link on the
respective optimal sampling designs and the question of their effective generation.

1A considerably shortened and edited version of this paper will be published as a discussion of
Lindgren et al. (2011) in JRSS-B.
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We will illustrate our points on the same example as used in Section 2.3 of Lindgren
et al. (2011), namely the leukaemia survival data, utilizing some of the calculations
thankfully provided by the authors.

In geostatistics the optimal sampling design is often based upon the kriging
variance over the region of interest X , frequently by minimizing its maximum. It
has turned out that this reflects rather not so well the true variation as the uncer-
tainty introduced by estimating covariance parameters γ is thereby neglected. To
compensate for that Zhu and Stein (2006) and Zimmerman (2006) have suggested
minimizing the modification

max
x∈X

{
Var[Ŷ (x)] + tr

{
M−1

γ Var[∂Ŷ (x)/∂γ]
}}

,

which the latter has termed the EK(empirical kriging)-criterion. Here Mγ stands
for the Fisher information matrix with respect to γ, and we can analogously denote
Mβ for trend parameters β for later usage.

In spatial econometrics it is common to test for spatial autocorrelation by spec-
ifying a spatial linkage or weight matrix W and utilize an overall type measure
such as Moran’s I. Therefore Gumprecht et al. (2009) have suggested to employ the
power of Moran’s I under a hypothesized spatial lattice process given by its precision
matrix Q as the design criterion; let us call maximization of it the MIP(Moran’s I
power)-criterion in the following.

3 Results

Now as there is a link established with respect to estimation between the two mod-
elling paradigms, can we expect a similar link with respect to those associated design
criteria? Looking at the example a sensible design question we could pose is to which
out of the 24 districts in north-west England should we sample if we are limited to a
number k < 24 for financial reasons. To keep things simple, we will in the following
choose k = 3, which allows for

(
24
3

)
= 2024 different designs. For all those designs

we can then calculate the values for the above design criteria and plot them against
each other to judge for a potential linkage. As the only covariance parameter, which
is not predetermined in the example is ρ, we have γ = ρ and EK reduces to scalar
operations localized at ρ = 0.2. For the MIP we required the precision matrix Q,
which was provided by Lindgren et al. (2011). The matrix W was defined by as-
signing 1 to point pairs with intersite distances less than the range ρ = 0.2 and 0
else, which turned out to be an insensitive choice.

At this point we now had to slightly modify the example: since the spatial
correlation is so strong in the leukaemia data most of the realized powers were very
close to one, thus obscuring all potential patterns. We therefore artifically reduced
the number of cases (and thus the powers) by randomly sampling 20 locations from
the 3 districts respectively. This resulted in the scatter plot of criteria displayed
in the left panel of the figure in the discussion of Lindgren et al. (2011). While
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Figure 1: left panel: MIP (horizontal) versus EK (vertical) criterion values; right
panel: MIP (horizontal) versus CD (vertical) criterion values.

from this display the link between the criteria already becomes quite evident, we
present here in Figure 1 an even stronger one well extending into the corners where
the optima lie. This was achieved by simply doubling the diagonal entries of the
covariance matrix Q−1, which emulates a stronger nugget effect.

It thus looks that in cases with reasonable localized spatial dependence one
could achieve reasonably high design efficiencies by employing one for the other
criterion, which offers advantages in both directions. Where MIP requires little
prior knowledge its optimization is nonstandard, whereas for EK and related cases
well developed theory is available (Müller and Pázman, 2003).

Both criteria, however, are computationally quite intensive and it makes thus
sense to look for cheaper alternatives. Motivated by the traditional connection
between estimation and prediction based criteria (”equivalence theory”), Müller and
Stehĺık (2010) have suggested to replace the EK-criterion by a compound criterion
for determinants of information matrices, i.e. maximizing

|Mβ)|α · |Mγ|(1−α),

with a weighing factor α, which we will call in the following CDα(compound D)-
optimality. The relationship of this criterion (assuming a constant trend β) with an
α = 0.5 to the MIP is displayed in the right panel of Figure 1. This clearly shows
that one could computationally very cheaply find the optimum with respect to CD
and still achieve rather high efficiencies on the MIP criterion.

4 Concluding remarks

We must note that our calculations have shown that the dependence between the
criteria is related to the specific setup. It turns out that the strength of the relation-

3



ship between MIP and the other two criteria decreases when the powers approach
one, but strongly increases for decreasing ranges and increasing nuggets. Note also
the relationships to the ubiquitous space-filling designs as explored in Pronzato and
Müller (2011). Summarizing, we believe our discussion showed that the relations
between the two linked approaches can go far beyond mere estimation issues.
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Abstract: In order to manage herbicide treatment we present a method for
optimizing the locations of weed density measurements. The practical problem is
to estimate weed density in each one of the n quadrats of a field, assuming that
m measurements were already collected and using p additional measurements op-
timally located. The proposed method consists in three steps: 1) fit a statistical
model to the m available measurements taking into account the nature of the data,
2) define possible locations of the p additional measurements using a simulated-
annealing algorithm, 3) assess the designs using weed density values simulated using
the fitted statistical model. This method is applied to several wheat fields and the
results show that it improves weed density predictions. Sensitivity to several tuning
parameters is discussed.

Keywords: optimal design, spatial statistics, weed

1 Introduction

Weeds can induce important yield losses in agricultural fields. In order to pre-
vent huge losses weed management is frequently based on herbicide application.
But extensive herbicide application leads to a risk of water pollution by chemicals.
Sometimes, herbicide application is useless and the need of precise knowledge of
weed density in the field is crucial. In order to provide a map of weed density in
a field without counting all the plants, it is necessary to design a spatial statistical
model fitted from a limited number of measurements. The purpose of this paper is
to present a method for optimizing the locations of weed density measurements in
agricultural fields in order to manage herbicide treatment. Consider an agricultural
field divided into n quadrats and assume that weed density measurements were al-
ready collected in m out of the n quadrats, m < n. Our practical problem is to
estimate weed density in each one of n quadrats by using

i) the m available weed density measurements,
ii) p additional measurements, p < n−m, collected in other quadrats located in

the same field,
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and by estimating the weed density in the unmeasured quadrats with a statistical
technique. Potentially, the use of p additional measurements can lead to improved
weed density estimates, but the degree of improvement depends on the experimental
design i.e. on the number of additional measurements p and on their locations in
the field.
This paper presents a method for defining, assessing, and selecting experimental
designs in order to determine an appropriate number p of additional measurements
and optimize their locations in the field.
The proposed method consists in three main steps:

1. fit a spatial statistical model to the m available measurements taking into
account that the data are countings or presence-absence data,

2. assess the design of m + p quadrats using weed countings values simulated
using the fitted statistical model to define the criterion,

3. define possible locations of the p additional measurements using a simulated-
annealing algorithm according to the previously defined criterion.

This method was applied to several wheat fields and the results showed that it
could improve weed density predictions. Sensitivity to several tuning parameters is
discussed.

2 Materials and Methods

2.1 Statistical model for mapping weeds

Assuming m measurements are available, a standard technique to produce a map of
weed countings in a field of n quadrats is ordinary kriging. Kriging performs well
when the data distribution is Gaussian or not far from Gaussian. Weed countings are
discrete data and the Gaussian distribution is not well adapted. Models for Poisson,
zero Inflated Poisson and binary data are designed involving a continuous Gaussian
latent variable accounting for the spatial dependence. The kriging is performed on
the latent variable.

2.2 Conditional simulations

Conditional simulations are simulations of a spatial field according to a spatial model
which are constrained to take observed values in a set of locations. Given a design
of m + p sites, its quality is assessed with the root mean square difference between
conditional simulations and kriging estimates.

2.3 Simulated Annealing Algorithm

The search of an optimal design is achieved by a simulated annealing algorithm: p
quadrats are randomly selected and added to the m initial quadrats. Slight per-
turbations on the previous configuration are iteratively proposed to improve the
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conditional simulation criterion. Configurations that do not improve the criterion
are accepted with a decreasing probability in order to favour the exploration of the
configurations domain.

3 Results

3.1 Simulated data

The procedure is evaluated on simulated data, sharing the same characteristics as the
weed data (size of the field, number of quadrats, countings data of same magnitude).
It turns out that the procedure gives a better design to estimate a weed map when
the data are significantly spatially correlated provided that the variogram of the
latent variable is well estimated. Not surprisingly when the data are not or slightly
correlated a random design does the job as well. As usual the simulated annealing
algorithm is sensitive to the temperature parameter that has to be tuned accordingly
to the magnitude and the kind of the data (countings or presence-absence). Several
ways to modify the design configuration (all the p points or only one are randomly
changed, the modification is random on one or two directions), have been tested but
they result in equivalent outcomes.

3.2 Case study

Weeds have been measured exhaustively in a field divided in 92 quadrats on a grid
4×23. m = 20 regularly arranged sites are selected in such a way to cover the entire
domain. We look for p = 10 other points to improve the estimate of the weed map.
The procedure is achieved with 1000 iterations for the SAA. Figure 1 shows a) the
original data and the 20 points of the initial design, b) the estimated map with 10
sites randomly selected added to the initial design and c) the final design with the
optimized 10 additional sites. The RMSE has improved by 15%, and it is worth
noticing that the procedure locates the new sites in the area where the weeds are
numerous.

4 Concluding remarks

Accuracy of predicted infestation levels depends on locations of weed density mea-
surements. We showed that locations leading to accurate predictions can be found
using a simulation-based approach with a simulated-annealing step. This approach
can be used to map weed infestation in agricultural fields and allows farmers to apply
herbicides in highly infested areas only. The performance of the proposed approach
depends on the spatial correlation of weed densities and on tuning parameters of
the simulated annealing algorithm. An algorithm based on particle filter could also
be used within the same framework.
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Abstract: Classic probability-based designs are widely used for spatial sampling in 
environmental research. When sampling over large regions researchers may wish to 
preferentially sample some sites due to ease of access. If such non-standard probability 
designs are implemented, Horvitz-Thompson analysis provides unbiased estimates for 
spatial means and variances provided first and second order inclusion probabilities can 
be evaluated. However, even with minor departures from standard designs the effect of 
preferential sampling on the sampling variance can be dramatic. We find significant 
increases in sampling variance as sampling becomes more and more preferential. We 
conclude that some non-standard designs can result in significantly weaker sampling 
performance and recommend they be examined by simulation prior to implementation. 

 
Keywords: Probability design, GRTS, Horvitz-Thompson Estimators 
 
1. Introduction 
 
There are two broad categories of approaches available for surveying soil organic 
carbon (SOC) across space - model-based approaches and design-based approaches. 
The former set of approaches is very useful for mapping and prediction but is based on 
strong assumptions on the distributional properties of SOC. The latter is based entirely 
on how sites are chosen for sampling and can produce unbiased estimates of mean SOC 
as well as unbiased estimates of sampling variance. We examine design-based 
approaches here as they have been garnering more and more attention in recent years.  
 
Probability-based designs have not been implemented on a national scale within 
Australia. A major challenge to establishing a national monitoring scheme is the large 
distances one would need to travel to collect data. For many regional sampling schemes 
there is anecdotal evidence that sample sites tend to be “just inside the gate, along the 
fence 50m from the road” which indicates a preference for sites that are easy to access. 
This is a defining feature of what we term the Australian context and this feature can 
bias the results of an otherwise well designed experiment when the true manner in 
which sites are chosen is not incorporated into the analysis. 
 
In this report we explore designs that are compatible with the Australian context, i.e. 
designs that preferentially sample sites that are easy to access over remote sites. Using 
classic statistical design methodology coupled with modern computer simulation 

                                                           
1 Financial support for this research comes from the CSIRO Sustainable Agriculture Flagship. 
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strategies we explore the effects of such preferential sampling on sampling variance. 
While stratified sampling generally improves sampling variance relative to simple 
random sampling, preferential sampling negates this benefit. However, we find that the 
modern technique of generalised random tessellation stratification (GRTS) sampling 
can incorporate preferential sampling quite well. In all our examples preferential 
sampling leads to increases in sampling variance but for GRTS this increase is not fatal 
 
2. Preferential Sampling Probability Designs 
 
We compare the performance of simple random sampling (SRS), stratified random 
sampling (STR) and GRTS using two spatial datasets. Cochran (1977) provides a 
detailed summary of many classic sampling designs and analysis results including the 
work of Horvitz and Thompson (1952) for computing unbiased estimators of mean and 
sampling variance using first and second order inclusion probabilities. GRTS was 
developed for sampling streams and stream networks (Stevens and Olsen 2003) and can 
readily handle any set of first order inclusion probabilities. GRTS has been used 
extensively in the U.S. by the Environmental Protection Agency for water-based 
monitoring (e.g. Schweiger et al 2005, Wardrop et al 2007) and can also be used for 
monitoring natural resources in terrestrial applications (Fancy, Gross and Carter 2009) 
though to the best of our knowledge it has not been used for soil carbon monitoring. 
 
We venture away from classic designs by specifying inclusion probabilities in a manner 
that preferentially samples sites that are closer to roads that span the space of interest.  
We parameterise a linear relationship between inclusion probability and distance to road 
using a single term α that ranges from 0 to 1. When α = 0 the linear relationship is flat, 
i.e. all inclusion probabilities are equal and we have classical non-preferential sampling. 
When α=1 the inclusion probabilities for the sites furthest from the roads are zero.  This 
boundary case is not considered since a design-based approach is no longer applicable 
to the whole region of interest. For values of α between 0 and 1 the inclusion 
probabilities decrease with distance, and the rate of decrease increases with α. 
 
We use the work of Hartley and Rao (1962) to sample a specific number of sites 
according to our pre-specified first order inclusion probabilities as well as for 
computing approximations for our second order inclusion probabilities, simplified 
further by Stehman and Overton (1994). These can be used to compute Horvitz-
Thompson estimators from implementations of non-standard designs. 
 
3. Data 
 
We use two spatial datasets to evaluate these probability designs. The first is a 
simulated non-stationary, non-isotropic process from fixed rank kriging of a spatial 
random effects model (Cressie & Johannesson, 2008).  Values for this process are 
evaluated at 4 million pixels and we draw samples of size n=27. A grid of nine square 
strata is used for STR for this dataset. The second is a dataset of over 2.5 million 
predictions of percentage SOC across a large part (150,000 squared-km) of New South 
Wales in Australia (Wheeler et al, 2010). These predictions come from a Cubist-based 
data-mining model of legacy %SOC data from the Australian Soil Resource Information 
System (ASRIS, McKenzie et al 2005). We draw samples of size n=150 from the SOC 
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dataset. We define 16 strata for this dataset based around the major towns of the region 
with each site allocated to the stratum associated with the closest town. 
 
4. Methods 
 
We repeatedly apply the probability designs to our two datasets changing the strength of 
preferential sampling through the parameter α. For each design and α value we examine 
the distribution of our estimates of sampling variance. Effective sample sizes are found 
by matching the median sampling variance with sampling variance estimates based on 
non-preferential SRS. As is well known, when sampling a spatial process, switching 
from SRS to STR or GRTS leads to an immediate large jump in effective sample size. 
We wish to investigate what happens to sampling variance and effective sample size as 
α changes from 0 to just under 1 for each design. 
 

 

Figure 2: Effect of preferential sampling on the sampling variance of mean estimates for the SOC 
dataset under SRS, STR and GRTS designs. Red lines within each plot indicate 1st, 2nd and 3rd quartiles 
of the variance estimates. The text indicates selected approximate effective sample sizes under non 
preferential SRS designs based on smooth quantile regression. 
 
5. Results and Discussion 
 
Preferential sampling results in larger sampling variances in all cases.  The gains in 
effective sample size one attains by switching to STR can be all but wiped out when 
preferential sampling is employed. Preferential sampling of n=27 sites under STR is 
routinely found to be worse than SRS based on far fewer sites. For GRTS the effect of 
preferential sampling is not as dramatic. Figure 2 plots our estimates of sampling 
variance for many values of α for each design for the SOC dataset. Each panel includes 
red lines based on smooth robust regression of the data to estimate the 1st, 2nd and 3rd 
quartiles as functions of α. The text written over each plot indicates effective sample 
sizes required to achieve similar sampling variances under non-preferential SRS. 
 
This research indicates that continental-scale sampling schemes can be designed and 
implemented in a manner that better reflects how they are used in practice. While 
preferential sampling designs more accurately reflect practical concerns, we 
demonstrate that they can have dramatic inflationary effects on sampling variance. As 
such, we recommend a thorough evaluation of any sampling approach prior to 
implementation. In the examples explored here we found that estimates of sampling 
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variance from GRTS are least affected by preferential sampling. This suggests that 
GRTS is a viable approach for designing spatial sampling schemes at large scales. The 
success of GRTS is due partly to its use of a neighbourhood variance estimator (Stevens 
and Olsen 2004) and partly to the fact that GRTS achieves much better spatial balance 
compared to STR.  
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Desireé Villalta
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Abstract:This paper presents a hierarchical Bayesian Poisson lognormal model
for malaria incidence in Sucre state, Venezuela, during the period 1990− 2002. The
logarithm of the relative risk of the disease for each county or municipality is ex-
pressed as an additive model that includes a multiple regression with social-economic
and climatic covariates; a random effect that captures the spatial heterogeneity in
the study region and a CAR (Conditionally Autoregressive) component, that recog-
nizes the effect of nearby municipalities in the transmission of the disease each year.
For most years the selected model captures well the spatial structure between the
relative risks from the nearby municipalities. When a poor model fit is obtained, a
t-Student model for the spatial heterogeneity parameter improves model fitting re-
sults. From the 15 municipalities in Sucre state during the study period 1990−2002,
7 of them presented high relative risks (greater than 1) in most years. These areas
are mostly agricultural areas with poor living conditions.

Keywords: hierarchical Bayesian model, Poisson lognormal model, malaria in-
cidence, Venezuela

1 Introduction

Malaria is a parasitic infectious tropical disease that causes high mortality rates in
the tropical belt. In Venezuela, Sucre state is considered the third state with the
highest malaria incidence. The Standardized Mortality Ratio (SMR), is the ratio
between the number of observed disease cases (yi) and the expected number of cases

1Project funded by the National Fund for Science and Technology (FONACIT) project No.
2005-000184, Venezuela.
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in the region(Ei), this is, (Banerjee, 2003)

SMRi = ̂Ψi =
yi

Ei

i = 1, ..., k (1)

where k is the number of subregions (in our case the number of municipalities is 15)

and Ei = p∗.ni =
∑

k

i=1
yi

∑

k

i=1
ni

.ni, being p∗ the total proportion of disease incidence.

This incidence rate ̂Ψi is a raw estimate of the relative risk of disease infestation
in the municipality i. A value grater than 1 indicates a disease incidence greater than
expected for a region; therefore this constitutes an alarm for public health authori-
ties, (Banerjee, 2003) and (Lawson, 2003). The objective of this work is to propose
a model including temporal and spatial components, to explain the dynamics of the
disease and to allow simultaneously to identify the explanatory social-economic and
climatic variables related with the disease incidence in Sucre state.

2 Materials and Methods

2.1 Study region and Data

The study region is located in the northeastern region of Venezuela in Sucre state.
This state has 15 municipalities with an area of 11, 800km2. Total cases of malaria
were available for 13 years during the period 1990 − 2002. Interpolated monthly
precipitation was available for the whole state using a Bayesian Kriging approach (Le
and Zidek, 2007). Several social-economic variables measuring basic needs coverage,
unemployment rate, housing characteristics and public services were available from
the National Institute of Statistics (INE). After a dimensional reduction technique
based on principal component analysis (PCA), the following covariates were used
from the PCA results:X1: Percentage of households with fair building quality and
lack of public services (electricity, sewerage, drinking water); X2: Percentage of
poor households with intermediate building quality; X3: Sewerage and drinking
availability; X4: Percentage of population in agricultural activities. Additionally,
the maximum monthly precipitation during the year, X5, was also included. Each
variable was stored in a matrix of dimension of 15 × 13.

2.2 Spatio-temporal model

Let Yit the number of malaria cases in municipality i and year t. A Poisson model is
usually assumed for these quantities, where the mean rate is λit = Eit Ψit. Therefore,

Yit ∼ Poisson(λit) (2)

with t = (1, ..., T ), being T the number of years; in this case T = 13.
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The proposed model for Ψit is:

Ψit = exp(αt + βt.Xit + vit + bit) (3)

where vit ∼ N(0, 1
τht

) is a parameter representing the local spatial heterogene-

ity of the data and bit|b−it ∼ N
(

b̄it,
1

τbtmit

)

is the Conditional Auto-Regressive

(CAR) component representing the spatial dependence among the neighboring coun-
ties in the transmission of the disease. For model 3, we have the vectors αt =
(α1, α2, ..., αT ), βt = (β1, β2, ..., βT ), τht = (τh1, τh2, ..., τhT ), τbt = (τb1, τb2, ..., τbT ),
bit = (b1t, b2t, ..., bkt) , vit = (v1t, v2t, ..., vkt) and Xit is the covariates matrix.

As an alternative model, the spatial heterogeneity parameter vit can also be
assumed to have a t − Student distribution. The complete conditional posterior
probability distributions were calculated for parameters αt, βt, bit, vit, τbt,τht.

The prior distributions for the parameters αt, βt, vit, bit, τht, τbt of model 3,
were assumed as follows: αt and βt are assumed Uniformly distributed; bit|b−it ∼

N
(

b̄it,
1

τbtmit

)

; τht ∼ Gamma(ah, dh) and τbt ∼ Gamma(ac, dc), where parameters

ah = ac = 0.5, dh = dc = 0.0005; b−it is the parameter vector without considering
the municipality i at time t; and mit are the neighbors to municipality i at time t;
although the number of municipalities does not change with time, we use the above
notation.

3 Results

A computer code in WinBUGS was implemented for Bayesian inference using MCMC
methods. Fourteen thousand samples from the parameter posterior distributions
were obtained and 4, 000 samples were used for burnin. Several models were pro-
posed by using different sets of covariates and the lognormal models with and with-
out the CAR component (bit) were also compared. The Deviance Information Cri-
teria (DIC) (Spielgelhalter et al., 2002), and the Minimum Posterior Expected Loss
Criteria (D) (Gelfand and Ghosh, 1998) were used for model selection. The DIC
criteria did not show important variations among models. The D critera was more
sensitive to model variations and suggested that a model with a CAR component and
variables X1, X2, X4 and X5 was more appropriate, since this model presented the
lowest D value. Model residuals for the selected model were tested for independence
by calculating the Moran’s I posterior probability interval for all years.

Posterior predictive model checks were carried out by simulating 2, 000 replicates
from the posterior predictive distribution for each municipality and each year. The
posterior predictive p-value p(yrep

it ≤ yobs
it ) was calculated to compare the observed

vs. simulated values. If the p-value is close to 0 or 1, it means that the observed
values are very unlike to be seen from the simulated values.
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Figure 1: Posterior predictive check for the county Cruz Salmeron Acosta, year 1997
and calculated p-value, by using a normal model (a) and a t − Student model (b)
for the spatial heterogeneity parameter v[i]

Model checks were satisfactory for most years and all municipalities, except for
year 1997 with a good model fit only in 8 of 15 municipalities. To improve model
fitting it was assumed v[i] ∼ t − Student(1, ξ, 2) where ξ ∼ Gamma(0.5, 0.005)
for each municipality during year 1997. Figure 1 shows a comparison of the two
posterior predictive p-values, with the normal distribution (p − value = 0) and the
t − Student distribution (p − value = 0.635).

From the 15 municipalities in Sucre state during the study period 1990 − 2002,
7 of them presented relative risks greater than 1 in most years. These areas are
mostly agricultural areas with poor living conditions.
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Prediction of cancer mortality risks in
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Abstract:
The main goal of spatio-temporal disease mapping is describing the evolution of

geographical patterns of mortality or incidence risks (rates). This could give clues
to epidemiologists and public health researchers to formulate etiologic hypothesis
of the disease. However, the ability of disease mapping models to make predictions
about future mortality or incidence risks has not been widely explored. In this work,
a flexible spatio-temporal model is considered for risk estimation and forecasting.
The prediction MSE of both fitted and forecast values, as well as estimators of those
quantities, will be derived. Spanish cancer mortality data will be used for illustra-
tion.

Keywords: P-spline models, CAR models, smoothing risks, forecasting.

1 Introduction

Health agencies plan cancer prevention resources based on cancer mortality/incidence
risk estimations available to date. However, these official numbers are available
after three or four years. In this context, statistical procedures providing mortal-
ity/incidence risk predictions for different regions or health areas are very useful.
Using jointpoint regression models, Malvezzi et al. (2011) present estimates of mor-
tality for all cancers and for selected major cancer sites in the year 2011 in the whole
European Union and in its six more populated countries. They use actual mortality
data up to the most recent available year, which is between 2005 and 2007 for most
EU countries.

In this work flexible spatio-temporal models are considered to predict risks. The
prediction MSE of both fitted and forecast values, as well as estimators of those
quantities, will be derived. P-splines have been proposed in small areas to forecast
dwelling prices (see Ugarte et al., 2009), and here, we extend this work to disease
mapping spatio-temporal models including interaction terms. The methodology will

1This research has been supported by the Spanish Ministry of Science and Innovation (MTM
2008-03085/MTM).
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be used to analyze several mortality cancer data for all the Spanish provinces in the
period 1975-2008. Risks predictions for future years will be also provided.

2 Materials and Methods

Two models are considered for forecasting. Firstly, a model with CAR distributions
for both the spatial and temporal random effects is considered. This model includes
a spatio-temporal interaction term similar to those described by Knorr-Held (2000).
Secondly, a spatio-temporal P-spline model described in Ugarte et al. (2010) is
used. Smoothing is carried out in three dimensions: longitude, latitude, and time,
allowing for different smoothing parameter in each dimension. Predictions will be
obtained by extending the marginal time B-spline basis.

Consider n contiguous regions labelled i = 1, . . . , n, and T time periods denoted
by t = 1, . . . , T . Conditional on the random region effects rit, the number of deaths
in each area and time period, Cit, is assumed to be Poisson distributed with mean
µit = eitrit, where rit represents the unknown relative risks of mortality from a rare
disease, and eit is the expected number of deaths. Namely

Cit|rit ∼ Poisson(µit = eitrit), log µit = log eit + log rit. (1)

In the spatio-temporal CAR model, the log-risk is modeled as

uit = log rit = β + φi + γt + δit, (2)

where β is an overall risk level, φi represents spatial effects, γt denotes temporal
effects, and δit are space-time interaction effects. The distributions for the random
effects φ, γ, and δ are

φ ∼ N(0, σ2
sDs) ; Ds = (λsQs + (1− λs)Is)

−,

γ ∼ N(0, σ2
t Dt) ; Dt = Q−

t ,

δ ∼ N(0, σ2
stDst) ; Dst = Q−

t ⊗Q−
s ,

where Qs is determined by the spatial neighbourhood structure with the ith diagonal
element equal to the number of neighbours of the ith region and for i 6= j, Qij = −1
if i and j are neighbours and 0 otherwise; Is is the n×n spatial identity matrix, and
Qt is determined by the temporal neighbourhood structure and it is analogously
defined as Qs.

Model 2 can be expressed in matrix form as

u = Xβ + Z1φ + Z2γ + Z3δ = Xβ + Zα, α ∼ N(0,G),

Using a P-spline spatio-temporal model the log-risk is modeled as

uit = log rit = f(x1i, x2i, xt), (3)
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where x1i and x2i are the coordinates of the centroid of the ith small area (longitude
and latitude respectively), xt is the time, and f is a smooth function to be estimated
using P-splines with B-spline bases. One of the most interesting aspects of the P-
spline models is that they can be expressed as linear mixed models using a one-to-one
(orthogonal) transformation. Hence, the P-spline model can be represented as

u = Xβ + Zα, α ∼ N(0,F−1).

The X and Z matrices are given by

X = X3 ⊗ (X22X1)

Z = [Z∗
1 : Z∗

2 : Z∗
3 : Z∗

4 : Z∗
5 : Z∗

6 : Z∗
7],

and

Z∗
1 = Z3 ⊗ (X22X1), Z∗

2 = X3 ⊗ (Z22X1), Z∗
3 = X3 ⊗ (X22Z1),

Z∗
4 = Z3 ⊗ (Z22X1), Z∗

5 = Z3 ⊗ (X22Z1), Z∗
6 = X3 ⊗ (Z22Z1),

Z∗
7 = Z3 ⊗ (Z22Z1),

where the symbol 2 denotes the “row-wise” Kronecker product of two matrices (see
for example, Eilers et al., 2006). Here, X1 = [1 : x1], X2 = [1 : x2], X3 = [1 : x3],
Z1 = B1U1s, Z2 = B2U2s, and Z3 = B3U3s. The matrices B1, B2, and B3 are
the marginal B-spline bases for longitude, latitude and time; U1s, U2s and U3s

come from the singular value decomposition of the penalty matrices for longitude,
latitude and time, and the covariance matrix F−1 is a diagonal matrix arising from
the representation of the P-spline model as a mixed model (see Ugarte et al., 2010
for more details).

The models are estimated using the well known penalized quasi-likelihood tech-
nique (PQL)(Breslow and Clayton, 1993). Risk predictions and their standard errors
are obtained by extending the X and Z matrices.

3 Results

The methodology is illustrated analyzing prostate cancer in Spain from 1975 to 2008.
Figure 1 displays relative risks estimates (1975-2008) and predictions (2009-2011)
for four selected Spanish provinces, together with 95% confidence bands obtained
with the P-spline model (3). A decreasing trend in mortality can be observed.
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Figure 1: Smoothed prostate cancer mortality risks estimations and predictions with
95% confidence bands.
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Predictive assessment of a non-linear
random effects model for space-time

surveillance data
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Abstract: Notification data collected by national surveillance systems are
typically available as weekly time series of counts of confirmed new cases, stratified
e.g. by geographic areas. This work outlines the statistical modeling framework
in Paul and Held (2011) for the analysis of such data. Inherent (spatio-)temporal
dependencies are incorporated via an observation-driven formulation. Using
region-specific and possibly spatially correlated random effects, we are able to
address heterogeneous incidence levels. Inference is based on penalized likelihood
methodology for mixed models. The predictive performance of models is assessed
using probabilistic one-step-ahead predictions and proper scoring rules.

Keywords: Time series of counts, infectious diseases, proper scoring rules.

1 Introduction

Notification data on infectious diseases typically consist of counts of confirmed new
infections, which are observed in defined geographical areas at regular time intervals.
Retrospective surveillance aims to identify outbreaks and (spatio-)temporal patterns
through statistical modeling. Motivated by a branching process with immigration,
Held et al. (2005) propose to decompose the mean incidence additively into three
components: an autoregressive, a neighbor-driven and an endemic component.
The first two components represent an autoregression on past counts in the same
and in other regions, respectively, and should capture occasional outbreaks and
dependencies across regions. The third component parametrically models regular
trends and seasonal variation, e.g. by a sine-cosine formulation. Overdispersion can
be allowed for by replacing the Poisson with a negative binomial distribution.

In the case of spatially correlated time series, the assumption of equal disease
transmission or incidence levels across all regions is questionable. For instance,
transmission might be influenced by age, vaccination status, or environmental
conditions. Such factors could be incorporated into the model as covariates if
suitable information is available. As an alternative, Paul and Held (2011) suggest
to include regional random effects to allow for heterogeneity across regions. The
predictive quality of the models is then investigated using one-step-ahead predictions
and proper scoring rules (Gneiting and Raftery, 2007).
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2 Methods

2.1 Modeling framework

Let yrt denote the number of cases of a specific disease in region r = 1, . . . , R at
time t = 1, . . . , T . The counts are assumed to be Poisson or negative binomially
distributed with conditional mean

µrt = λryr,t−1 + φr

∑
q 6=r

wqryq,t−1 + ertνrt , (1)

where λr, φr, νrt > 0 are unknown quantities, wqr are suitably chosen known weights
and ert corresponds to an offset (e.g. population numbers). A simple choice for the
weights is wqr = 1 if units q and r are adjacent and 0 otherwise.

The three unknown quantities are further decomposed additively on the log-scale
and specified for example as

log(λrt) = α0 + ar (2)

log(φrt) = β0 + br (3)

log(νrt) = γ0 + cr + γ1 sin(2π/52 t) + γ2 cos(2π/52 t) (4)

where α0, β0, γ0 are intercepts, ar, br, cr are regional random effects, and the terms
in curly brackets in (4) define the model seasonal variation. In applications, each of
the three components may be suitably modified or omitted.

The stacked vector of all random effects is assumed to follow a normal
distribution with mean 0 and covariance matrix Σ. For instance, one may choose
Σ = Ω ⊗ I, where Ω is an unknown 3 × 3 covariance matrix, and I is the R × R
identity matrix. This formulation correlates the random effects (ar, br, and cr)
between components, and leaves the random effects within each component (e.g.,
c = (c1, . . . , cR)>) uncorrelated.

In hierarchical models for spatio-temporal data, it is often reasonable to
assume spatially correlated random effects rather than independent and identically
distributed (iid) ones. Therefore, one might also adopt an intrinsic conditional
autoregressive (ICAR) model (Besag et al., 1991) for the incidence levels c, say.
As the associated precision matrix has a rank deficiency of one, we apply a
transformation c = γ0 + Zc̃ and estimate a reduced set of R − 1 random effects, c̃,
that are iid Gaussians (see Paul and Held, 2011).

The estimation of parameters involves integration of the likelihood with respect
to the random effects which cannot be done analytically. Paul and Held (2011)
suggest a penalized likelihood approach for inference, where variance components
are treated as known when estimating the fixed and random effects. The variance
components themselves are estimated through maximizing the approximated
marginal likelihood obtained via a Laplace approximation.

2



2.2 Predictive model assessment

Model choice based on classical information criteria such as AIC is well explored
and understood for models that correspond to fixed-effects likelihoods. However,
their use can be problematic in the presence of random effects (Burnham and
Anderson, 2002, p. 316). For model selection in time series models, the comparison of
successive one-step-ahead predictions with the actually observed data is especially
attractive. The often used mean squared error of several point predictions does
not take prediction uncertainty into account. Instead, Gneiting and Raftery
(2007) recommend the use of strictly proper scoring rules to evaluate probabilistic
predictions in the form of a predictive distribution.

Strictly proper scoring rules simultaneously measure the sharpness and
calibration of a prediction by assigning a numerical score based on a stated predictive
distribution and the later observed actual value. The smaller the score, the better
the predictive quality. Several proper scoring rules for count data are discussed by
Czado et al. (2009). A popular scoring rule is the logarithmic score

logS = − log(P (Y = y)) (5)

which corresponds to the log predictive density at the observed value y. It is highly
sensitive to extreme cases as it strongly penalizes low probability events. A more
robust alternative is the ranked probability score

RPS =
∞∑
k=0

(
P (Y ≤ k) − 1(y ≤ k)

)2
, (6)

where 1 is the indicator function.
Typically, mean scores over a set of predictions are used to rank and compare

different models informally or via tests such as a Monte Carlo permutation test for
paired observations (see Paul and Held, 2011).

3 Case study

In a case study, Paul and Held (2001) applied the model to weekly influenza
surveillance counts in 140 districts of Southern Germany for the years 2001–2008.
Data were obtained from the SurvStat database of the Robert Koch Institute and
analyzed using the functions implemented in the R package surveillance (Höhle,
2007). Exemplary R code to reproduce the analysis is given in the package vignette
available at https://r-forge.r-project.org/projects/surveillance/.

The negative binomial model which yielded the lowest average logarithmic score,
called ‘B2’, was specified by log(λrt) = α0, log(φrt) = β0+br, and log(νrt) = γ0+cr+
γ1t+

∑3
s=1 γ2s sin(2πs/52 t)+γ2s+1 cos(2πs/52 t), where (b>, c>)> ∼ N(0,Ω⊗I) with

Ω =

(
σ2
b ρσbσc

ρσbσc σ2
c

)
. Here we consider a further model ‘S’, where the autoregressive

3



Model logS RPS

B2: with seasonal variation in (4) 0.5633 0.4363
S: with seasonal variation in (2) and (4) 0.5571 0.4224

Table 1: Average scores based on 140 · 104 one-step-ahead predictions.

component (2) additionally contains S = 1 seasonal terms. Average scores for
this model, based on one-step-ahead predictions for years 2007–2008, can be found
together with the scores for model B2 in Table 1.

4 Concluding remarks

The analysis showed that the predictive performance improves when the
autoregressive parameter is also allowed to vary over time. In Paul and Held (2011),
the inclusion of spatially correlated random incidence levels instead of iid ones did
not substantially improve the predictive performance of a model which already
incorporated spatio-temporal correlation via the neighbor-driven component.
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Abstract: The main goal of Disease Mapping is to investigate the geographical
distribution of the risk of diseases. Spatially-structured priors were considered in
all the proposed models in the literature to estimate relative risk surfaces. Selective
inference on area-specific relative risks received little attention in the literature. We
refer to selection and estimation of relative risks of areas at unusual (higher and/or
lower) risk. Previous use of cross-validation posterior predictive distributions to de-
tect outlying observation misses to address the selection effect in inference. In this
work we review this issue in the context of hierarchical Bayesian models and we take
advantage of a real example on the distribution of Lung cancer in Tuscany.

Keywords: Cross-validation predictive distributions, hierarchical Bayesian model,
Disease Mapping.

1 Introduction

Disease mapping, i.e. the study of variability of disease occurrence on space, focused
on relative risk surface estimation. Since the seminal paper of Clayton and Kaldor
(1987) spatially-structured priors were considered in almost all the proposed models
in the literature. However, inference on area-specific relative risks received little
attention in the literature despite of the need to select areas (or regions) at unusual
(high or low) risk. Stern and Cressie (2000) used cross-validation posterior pre-
dictive distributions to explore model fitting and identify outlying areas in disease
mapping. The idea of cross-validation is to re-fit the model removing one observa-
tion in turn. The model is thus fitted to a subset of data Y−i from which the i-th
observation is dropped. The posterior predictive distribution P (Y rep

i |Y−i) for a repli-
cate (Y rep

i ) of the i-th observation conditional to the remaining data Y−i is then used
for evaluation purposes. The extremeness is usually measured by some summaries
over P (Y rep

i |Y−i), for example the posterior predicted p-values, P (Y rep
i ≤ yi|Y−i),

or the conditional predictive ordinate, p(Y rep
i = yi|Y−i). Marshall and Spiegelhalter

(2003) noted that “. . .There are essentially two reasons why observations/regions
may be divergent. First, the statistical assumptions underlying the model may be
incorrect. . .[second], these regions could represent genuine ’hot-spots’ of disease re-
quiring further investigation.” Poor model fit is a reasonable explanation when a
relevant number of observations/areas are identified as divergent while the pres-
ence of real hot-spots or outliers is the usual interpretation of few divergent ones.
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Marshall and Spiegelhalter (2007) proposed a mixed approach to perform cross-
validatory checks in disease mapping.

In this work we review this issue in the context of hierarchical Bayesian models
and we take advantage of a real example on the distribution of Lung cancer in
Tuscany.

2 Methods

Let Yi be the number of observed cases in the i-th area (i = 1, . . . , 287) which follows
a Poisson distribution with mean Eiθi, where Ei is the expected number of cases
under indirect standardization and θi the relative risk.

Besag et al. (1991) specified a random effect log linear model for the relative
risk log(θi) = ui + vi . The heterogeneity random term ui represents an unstruc-
tured spatial variability component assumed a priori distributed as Normal (0, λu)
where λu is the precision parameter modelled as Gamma. The clustering term vi

represents the structured spatial variability component assumed to follow a priori
an intrinsic conditional autoregressive (ICAR) model. In other words, denoting Si

as the set of the areas adjacent to the i-th area, vi|vj∈Si
is assumed distributed as

Normal(v̄i,λvni) where v̄i is the mean of the terms of adjacent areas to the i-th one
(Besag and Kooperberg, 1995) and λvni is the precision, which is dependent on ni,
the cardinality of Si. Through these two random terms the BYM model shrinks the
relative risk estimates both toward the local and the general mean.

The choice of a suitable combination of hyperparameters leads to different de-
grees of prior vagueness on the extent relative risk heterogeneity among areas.

For the Besag et al. (1991) model we took advantage of the proposal of Bernar-
dinelli et al. (1995). The hyperpriors for the precision parameters were parameter-
ized in terms of the ratio between the 95th percentile and the 5th percentile of the
relative risk distribution.

2.1 Cross-validation predicted p-values

Divergence from the hierarchical null models is assessed via posterior predictive
distribution. The posterior predictive distribution is:

P (Y rep|Y ) =

∫

P (Y rep|Y, θ)P (θ|Y )dθ =

∫

P (Y rep|θ)P (θ|Y )dθ

assuming conditional independence of Y rep and Y given the parameters. This is
too confident since the data are used twice, for deriving posteriors and for obtaining
replicates (Plummer 2008). To control for excess in optimism the posterior predictive
distribution is replaced by the cross-validation (leave-one-out) posterior predictive
distributions:
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P (Y rep|Y−i) =

∫

P (Y rep|θ)P (θ|Y−i)dθ

Cross validation posterior predicted distributions are computationally prohibitive.
Several approximations have been proposed. A mixed approach was given by Mar-
shall and Spiegelhalter (2007). At each Montecarlo iteration a replicate value for the
random parameters for the i-th observation is generated and then used to generate
a replicate observation Y rep

i . This approach is called mixed because random effects
are drawn from their predictive distribution and not from the posterior.

A measure of divergence can be the cross validation posterior predicted p values
defined, using mid-p for a discrete response, as:

• if Yi > Ei: Pr(Y rep
i > Y obs

i |Y−i) + 1
2
Pr(Y rep

i = Y obs
i |Y−i)

• if Yi < Ei: Pr(Y rep
i < Y obs

i |Y−i) + 1
2
Pr(Y rep

i = Y obs
i |Y−i)

where Yi is the observed and Ei the expected number of cases in the i-th area.
The need of post-processing of any model-based p-values was discussed by Ohlssen

et al. (2007).

3 Results

Lung cancer death certificates were considered for males resident in the 287 munic-
ipalities of the Tuscany Region (Italy) for the period 1995-1999. Data were made
available by the Regional Mortality Register. A set of reference rates (Tuscany,
1971-1999) have been used to compute the expected number of cases for each mu-
nicipality, following indirect standardization and classifying the population by 18
age classes (0-5, . . ., 85 or more).

We explored several choices of hyperprior parameters for the Besag et al. model.
These choices are expressed as prior 90% centile range of relative risk among areas.
They represent different beliefs about the background variability of disease risk.
Each choice produced a different nested set of divergent observations. The priors
defined by the hyperparameters are very informative. In some sense, we deliberately
specified a series of constrained bad-fitting models, which represents a series of
believes on the role of confounders in modifying the baseline risk among areas. A
vague (non informative) null with leave-one out (leave-a-group out) cross-validation
did not work in our Disease mapping context.

4 Conclusion and Discussion

This approach does not correspond to a Bayesian version of hypothesis testing be-
cause a mixture model is not specified. One consequence is that posterior prob-
abilities may not protect to multiple testing. Post-processing of cross-validation

3



posterior predictive p-values was used by Spiegelhalter. Tri-level Bayesian model
was proposed by Catelan et al (2010) in the context of Disease Mapping. Simi-
lar approaches to hierarchical modelling of the null are described in Ohlssen et al.
(2007). The authors argued that fitting null model by leave-one out cross-validation
may be sufficient to detect divergent observations. We disagree with this point, as
we show in the results section. In Disease mapping hierarchical modelling of the
null can be reached by specifying informative null priors. Prior predictive, posterior
predictive and partial predictive distribution can be discussed also in this context.
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Abstract: The lethal earthquake of 6 April 2009 in L’Aquila, Central Italy, re-opened 
the discussion about the earthquake prediction due to the several precursory phenomena 
described in association to the event. One of the most important precursors that 
preceded L’Aquila main-shock was the foreshock activity. Papadopoulos et al. 
(NHESS, 2010) reported that a foreshock activity was there in the last months before 
the main-shock but the foreshock signal became very strong in the last 10 days with 
drastic changes in space-time-size domains of local seismicity. The importance of short-
term foreshocks for the prediction of the main-shock was noted since the 1960’s. 
However, foreshocks appear to precede only some main shocks and not others, while 
there are also foreshocks too small to detect by routine seismic analysis. In this context, 
the aim of the paper is to analyse the phenomenon of swarm as a dynamic ergodic 
stochastic process with particular reference to mean time of transition of a certain class 
of earthquake swarms (belonging to a certain state) to other classes of varying intensity. 
This kind of analysis can be referred to some indicators such as the mean first passage 
time and the mean time to return with their respective probabilities, that constitute an 
important interpretive tool in forecasting. 
 
Keywords: seismic swarm, markovian processes, ergodicity. 

 
1. Introduction 
  
The available data consists of a data set of more than 15.000 shocks that occurred in the 
province of L'Aquila during the entire calendar year 2009 from 1st January to 31th 
December and were drawn by the Italian Seismic Bulletin (ISIDE). 
A preliminary descriptive space time analysis of available data shows that the random 
phenomenon can be considered as a dynamic continuous parameter stochastic process 
and as such dealt with probability theory for  the analysis of events random increments. 
As known, the problem of ergodicity of a dynamic stochastic process has been 
addressed for the first time by physicists in the study of the kinetic theory of gases. For 
example, when a mass of gas is subject to random changes as a result of subsequent 
changes in status, the reiteration of these changes tends to create some regularity of 
behavior in the long run. 
In our study of the swarm we will try to find out if there are similarities in its behavior 
to that of the kinetic theory of gases, using similar methods of analysis. 
 



 

2. Methods and results 
 
The dynamic  characteristics of a destructive earthquake swarm, are known as being 
characterized by a foreshock (frequent shocks that occur before the main shock) and the 
main-shock, The shock of magnitude 6.3 that occurred on 6 th April can be placed 
within a sequence of four time intervals characterized as follow: 
 

• Interval 1  - from January 1 to December 31, 2009 for a total of 15890 shocks; 
• Interval 2 - from March 2 to May 2 (one month before and one month after the 

main-shock) for a total of 8611 shocks; 
• Interval 3 - from March 22 to April 21, 2009 (fifteen days before and fifteen 

days after the main-shock) for a total of 6781 shocks 
• Interval 4  - from 1 to 13 April 2009 (one week before and one week after the 

main-shock) for a total of 4369 shocks 
 
For each of the four time intervals, we have defined five transition states corresponding 
to the following classes of earthquake magnitude: 
 

State 1- (S1)- shock with a magnitude of less than 1; 
State 2 -(S2) -shock with a magnitude between 1 and 1.4; 
State 3 -(S3) -shock with a magnitude between 1.4 and 1.8; 
State 4 -(S4) -shock with a magnitude between 1.8 and 2.4; 
State 5-(S5) -shock with a magnitude greater than 2.4. 
 

From the above time intervals, we have estimated four 5x5 ergodic transition matrices 
and we have calculated the limit vectors and the corresponding matrix of the mean of 
first passage . 
Dynamic processes are related to the time evolution and apply when the time factor (t) 
is a fundamental entity influencing the process. 
In our study, states constitute a finite sequence of events not referred to the time at 
which they occurred. 
An evolutionary system of random events is able to move between h incompatible 
transition states S1, S2, S3, ..., Si, ..., Sj, ..., Sh . At a given time the system may be in one 
and a only of these states. Once a certain state is reached at time (th), the system stays 
there until (tk), with k steps of random transition , passes to the new state Sj . 
In this case study, we are in the presence of a random evolutionary process and would 
like to know what is the probability that the system is in a generic state (Si) with 
probability p(Si),  regardless of the instant at which this happens, taking into account the 
type state previously occurred. 
This can also be defined as the probability of transition from state Si to Sj or Pij. These 
probabilities are obtained studying the statistical behavior of the phenomenon: the 
frequencies with which state changes define an array whose elements correspond to the 
estimated transition probabilities, if normalized by row. 
The “inheritance property” of few steps of transition, even if partial implying the system 
“memory”, may be limited. 
For some classes of earthquake intensity the observed regularity allows to predict the 
future of the phenomenon and to conclude that some memory mechanism exists. 
 



 

An effective way to verify the assumptions just mentioned, is to try to assess the 
situation after n successive steps of the transition process the ergodic behavior at the 
limit of its evolution. 
Let Pij denote the probability of transition from a single step, estimated with the 
observed data, the corresponding probability of transition Pij (n) from i to j, in n steps. 
The transition may occur, in different ways, namely by following multiple mutually 
incompatible route A , B, or C, ... 
The probability Pij (n) is calculated as the sum of the probabilities of each route  
Pij (n) = (pij (A)) + (pij (B)) + (pij (C)), where Pij (n)  gives rise a recurrence relation that 
consent us to distinguish some important features of the process during its evolution, 
such us the average transition time from one state to another or the average time to 
return to the starting state or even the time of permanence in a state, as well as the 
process configuration limit.  
When the process is able to achieve any state of the system starting from any other 
during its evolution, it satisfies the conditions for ergodicity. 
From an analysis of the indicators of the mean time of first passage for the four interval, 
we can see a substantial confirmation of the characteristics of the phenomenon in terms 
of probability of switching from one state to another. 
 
Limit vector (15809 shocks)                                  Limit vector (8611 shocks) 
 

S1 S2 S3 S4 S5 
 

S1 S2 S3 S4 S5 

0.01 0.67 0.13 0.10 0.07  
0.01 0.14 0.34 0.30 0.21 

 
Limit vector (6781 shocks)                                   Limit vector (4369 shocks) 
 

S1 S2 S3 S4 S5 
 

S1 S2 S3 S4 S5 

0.01 0.14 0.34 0.30 0.21 
 

0.046 0.082 0.295 0.344 0.274 

 
Mean first passage time matrix (15809 shocks) Mean first passage time matrix (8611 shocks) 
 

 S1 S2 S3 S4 S5 
 

 S1 S2 S3 S4 S5 

S1 13.16 4.48 3.94 6.072 9.22 
 

S1 156.24 1.24 8.54 13.87 24.48 

S2 13.12 4.18 3.78 6 9.21 
 

S2 169.27 1.49 8.01 12.88 23.46 

S3 13.19 4.31 3.67 5.83 9.19 
 

S3 175.42 1.76 7.63 11.59 22.86 

S4 13.2 4.5 3.8 5.93 9.06 
 

S4 176.25 2 9.01 9.9 20.16 

S5 13.2 4.52 3.92 6 9.03 
 

S5 176.84 2.17 10.32 11.09 14.28 

 
Mean first passage time matrix (6781 shocks) Mean first passage time matrix (4369 shocks) 
 

 S1 S2 S3 S4 S5 
 

 S1 S2 S3 S4 S5 

S1 12.19 3.32 3.2 6.63 24.48 
 

S1 217.38 10.95 3.67 4.71 1.15 

S2 12.64 3.7 3.05 6.44 23.46 
 

S2 227.02 12.19 3.27 4.72 1.04 

S3 12.75 4.22 3.03 5.91 22.86 
 

S3 227.84 13.7 3.33 4.4 0.9 

S4 12.82 4.74 3.65 5.05 20.16 
 

S4 228.25 14.88 4.13 3.98 0.18 

S5 12.94 5.08 4.29 5.83 14.28 
 

S5 228.72 15.78 4.9 4.67 0.08 

 
For example, if we consider the 15.900 shocks, occurred in 2009, it would take 13 
transitional stages to reach the transition state S1 of lowest hazard from any previous 



 

state, 5 steps to reach the state S2, and so on, until 9 steps to be in the most dangerous 
state S 5 with a magnitude greater then 2.4. 
A very different behaviour is observed for the seismic swarm of 4369 shocks occurred a 
week before and one after 6 April 2009. 
During this time interval, shocks belonging to the state S1 occurring very rarely and 
reaching the lowest value of the magnitude contemplated in the S1 state took more than 
200 stages of transition (shock). On the other hand, only one stage of transition is 
necessary  in order to have two successively shocks of the highest magnitude S5. 
The number of stages of transition which determine the mean time to return from 
certain level to same level could be defined as an indicator dangerous due to recursion 
of this type of shock. 
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Abstract: The Bonnard glaciated mass (Valais region, Switzerland) overhangs the 
village of Zinal and its slow downward constant creep constitutes an environmental 
hazard. Ice content data have been acquired to better assess globally and locally the ice 
amount within the area, in order to evaluate the glacier’s global dynamic and future 
evolution. Two ice content modeling approaches are tested: (i) a direct modeling using 
3D simulations and (ii) to account for the relationship between the presence of ice and 
the lithology, a nested approach which consists in (1) simulating lithology with the 
plurigaussian method and then (2) populating each facies with ice content values. Both 
approaches are compared in terms of ice content prediction and of global ice mass. 
 

Keywords: environmental hazard, Bonnard, ice content, facies modeling, plurigaussian. 
 
1. Introduction 
 
The "Glacier Bonnard" is a complex paraglacial complex located in the Canton of 
Valais (Switzerland). The glacier overhangs a settlement and its slow downward 
constant creep constitutes an environmental hazard. It is therefore important to 
understand the glacier’s internal structure, particularly in terms of ice content, in order 
to evaluate its current global dynamic and future evolution. 
Following preliminary geological and geophysical investigations, ice content data have 
been measured within several drillholes. Such data should allow to assess globally and 
locally the amount of ice within the "Glacier Bonnard" area. 
Two geostatistical modeling approaches are considered: a direct modeling of ice content 
and an indirect approach which accounts for the relationship between lithology and ice 
content. Both approaches are presented and compared in terms of ice content prediction 
and of global ice mass among the sampled area. 
 
2. Material 
 
The studied area is part of catchment that ranges between the altitude of 2750 and 
3000 m (cf. Fig 1). At this geographical location, cold temperature (freezing) and snow 
play an important role in the annual water balance. Approximately 80 % of the surface 
is composed by creeping permafrost. The geology of the source area is located on the 
contact between the thrust sheets of the Dent Blanche and Tsaté systems (Pilloud & 
Sartori, 1981). The granitic gneisses of the Dent Blanche covering the glacier Bonnard 
fall from the cliffs that surround summital crests. The outcrops and the cliffs are much 
fissured and produce a very large amount of blocks.  
As basis for determining the bedrock top, 11 lines of refraction seismic have been 
acquired and treated in tomography due to the chaotic relief. Even if the overall results 
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seem to be consistent, small discrepancies were found between the lines (artefacts, 
unlikely geological features). A 3D managing sources software (Adhoc 3D solutions) 
has then been used to fit seismic refraction tomographic sections with drillholes and 
field geological mapping information. Along the refraction lines, points representing the 
bedrock top have been generated every 5 m. Those points are used to make an ordinary 
kriging of the bedrock top. 

   
Figure 1. Left: global view of the studied area with drillholes location (black dots). 
Right: view from the top of the studied area in mid-summer 2009. 
 
Fourteen boreholes have then been drilled using the Down-The-Hole Drill method (Fig. 
1). This is a fast but completely destructive way to drill, which makes interpretation 
quite difficult. Indeed the only material available is cuttings smaller than 2 cm. All this 
information helped in determining homogeneous areas in terms of glaciated mass 
behavior, as illustrated on Fig. 2.  

 
Figure 2. Outline of the studied area (broken line), drillholes (+) and polygons 
displaying homogeneous areas regarding the glaciated mass behavior.  
 
3. Methodology 
 
Several approaches might be applied to assess locally the ice content distribution and its 
variability. 3D conditional simulations have been first performed using the Turning 
Bands approach, after a Gaussian anamorphosis transformation (Chilès & Delfiner, 
1999). This approach accounts for the spatial variability of the ice content, captured by 
a classical variogram analysis.  
A strong relationship is expected between the lithotype and the ice content. Therefore, 
in order to account for that, 3D facies simulations are computed using the Plurigaussian 
algorithm (Armstrong et al., 2003), which allows integrating the geological knowledge 
about the expected transitions between facies (inferred from field survey). The 
algorithm consists first in determining the proportions of each lithothype over the 3D 
domain using drillholes information. The proportions are locally modified using the 

A A' 
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definition of homogeneous areas. Then a lithotype rule is chosen (Fig. 3) to describe the 
relationship between the facies. Variogram models for the two Gaussian variables are 
fitted such as to reproduce the spatial continuity of the lithotypes. Finally, Gaussian 
variables are simulated and truncated so as to get the facies simulations (Fig. 3).  

 
Figure 3. Left: Lithotype rule displaying authorized transitions between the facies. 
Right: Example of a lithotype simulation (along A-A' on Fig. 2) using plurigaussian (see 
Table 1 for lithotype meaning). 
 
Once obtained, the facies simulations are populated with ice content values. The 
distribution of ice content within each facies is assumed random and to follow a 
triangular distribution. 
For both approaches, a preliminary flattening has been performed to increase the lateral 
consistency of facies and ice content data. Once the 3D ice content simulations are 
obtained in the flattened space and converted back to the structural space, a post-
processing is applied to determine the global distribution of ice content mass. The 
results will interestingly be compared with the computation of a statistical global mean 
and standard deviation, which assumes that the ice content is purely random within the 
area of interest. 
 
3. Results & Discussion 
 
The global simulated volume, for the area of interest (Fig. 2), is equal to 465 000 m3. 
Classical statistics show the strong link between lithotypes and ice content (Table 1). 
Merging all data together contributes to largely increase the ice content variability. 
 

Lithotype Count Min. Q50 Max. Mean Std. Dev. 

All 352 0 10 95 29.02 34.37 

Superficial diamict (DS) 48 0 0 0 0.00 0.00 

Glaciated diamict (DG) 137 0 20 60 21.42 13.18 

Ice (GL) 86 60 87.5 95 84.65 10.45 

Diamict (DI) 81 0 0 0 0.00 0.00 

Table 1. Elementary statistics of ice content (in %) globally and for each lithotype. 
 
Fig. 4 shows one ice content simulation obtained for each approach (turning bands 
simulation and plurigaussian simulation followed by a population with ice content 
values). Differences clearly appear: with the plurigaussian simulations ice content 
patterns are well defined due to the consideration of lithology. Furthermore, the 
horizontal changes suggest the presence of 2-3 ice bodies of which at least 2 are almost 
disjoint. Those features are consistent with field observations. 
Finally, global estimates of ice mass are displayed in Table 2 within the area of interest. 
Similarity between the means is obvious whereas the standard deviations are very 
different. The statistical approach ignores data redundancy due to the spatial continuity 
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and therefore underestimates the variability. Regarding geostatistical simulations, TB 
overestimates standard deviations; indeed, lithology being ignored, a lot of unrealistic 
intermediate values are simulated. On the contrary, PGS integrates the lithology and 
therefore produce more realistic results. PGS fits better with the field knowledge, 
particularly in producing simulations presenting discrete elements (ice-bodies, lateral 
moraine, etc.). These results are coherent with the genesis of those different features 
that are more colliding than mixing together. 

 
Figure 4. Cross-section along A-A' of the ice content simulations using turning bands 
(left) or indirectly via plurigaussian (right),for the same simulation. 
 

Approach Mean (kt) St. Dev. (kt) CV (%) Q5 (kt) Q95 (kt) 
Statistics 123.69 2.26 1.83%   

Direct (TB) 130.08 21.87 16.81% 90.45 166.22 
Indirect (PGS) 129.61 10.82 8.35% 111.08 147.33 

Table 2. Classical statistics related to the global ice content mass estimated within the 
area of interest (in kilo tons of ice). 
 
4. Concluding remarks 
 
In this context of complex material with quick spatial changes, classical approaches like 
the single use of geophysics failed in providing an appropriate framework for detailed 
hazard assessment. Plurigaussian simulations allowed quantifying the total ice mass 
while taking into account the available information (lithology, homogeneous areas). 
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Abstract: It is widely shared opinion that not only secondary (aftershocks) but
also main earthquakes have the tendency to occur in space-time clusters. This as-
sumption has affected the preferential choice of stochastic models in the studies on
seismic hazard, like self-exciting (epidemic) models which imply the abrupt increase
of the occurrence probability after a shock and the subsequent exponential decrease
without the desirable increase before a forthcoming event. The importance of this
assumption requires the application of statistical tools to evaluate objectively its co-
herence with the reality at different scale of magnitude-space-time. To this end we
consider the earthquakes drawn from the historical Italian catalogue CPTI04 that
geologists have associated with each of the eight tectonically homogeneous regions
in which Italian territory is divided. Fixing different magnitude thresholds we per-
form statistical tests based on the space-time distance between pairs of earthquakes
under the null hypothesis of uniform distribution in time and space and evaluate
the significance of the possible clusters. Monte Carlo hypothesis testing is also used
to obtain the null distribution and the simulated p-value.

Keywords: detection of space-time clusters, Knox test, K-nearest neighbour
test, Mantel test

1 Introduction

Some occurrence patterns in the worldwise seismicity are ascribable to space-time
clustering; the best-known is due to the aftershocks, smaller earthquakes that follow
a previous large shock within a distance up to twice the rupture length from the
mainshock and can continue over a period of weeks, months, or years. Some articles
in the literature claim that also strong events occur in clusters (Kagan and Jackson
(2000), Lombardi and Marzocchi (2007)); this feature, if validated, would have heavy
consequences on the choice of models in hazard assessment. We think that it is
necessary to pass from quantitative observations to inferential tests which assign the
statistical significance to some assumptions. Three types of tests can be carried out
(Rogerson and Yamada (2009)): general and focused tests and tests for the detection
of clustering. General tests provide a global statistic that assesses the degree to
which a pattern deviates from the null hypothesis of space-time randomness without
giving informaton on the size and location of clusters, focused tests are used to know
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whether a cluster exists around prespecified foci, whereas in the third category many
local tests are carried out simultaneously to uncover the location and size of any
possible clusters by scan-type statistics. This article concerns the first step of a
study on Italian seismicity in which we try to answer the question whether, for
given magnitude thresholds, the global pattern of the past seismicity in tectonically
homogeneous Italian regions is significantly clustered. In the future, where the
answer is positive, we are going to establish, by scan-type statistics, whether the
study region is homogeneous, and, where the answer is negative, to uncover isolated
hot spots of increased activity and to look for geophysical explanations of this fact.

2 Space-time tests on tectonic regions in Italy

We consider three global tests: Knox, Mantel and Jacquez (or k NN) tests (Tango
(2010)). Knox’s statistic counts the number of observed pairs of n events close in
both space and time:

T =
1

2

n
∑

i=1

n
∑

j=1

aS
ija

T
ij (1)

where

aS
ij =

{

1, i 6= j and dS
ij < δ1 (km)

0, otherwise
aT

ij =

{

1, i 6= j and dT
ij < δ2 (years)

0, otherwise

and δ1 and δ2 are unknown critical space and time limits to be prespecified. Under
the null hypothesis H0 - the temporal distances between pairs of events are inde-
pendent of the spatial distances - it is proved that mean and variance of T are given
by:

E(T ) = N1S N1T

N

V ar(T ) = N1S N1T

N
+ 4 N2S N2T

n(n − 1)(n − 2)
−

(

N1S N1T

N

)

2

+
{N1S(N1S − 1) − N2S} × {N1T (N1T − 1) − N2T}

n(n − 1)(n − 2)(n − 3)

where N = n(n−1)/2, N1S = 1

2
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2
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i=1

∑n

j=1

∑n

k 6=j aS
ij aS
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(analogously we get N1T and N2T substituting aS with aT ). Given values of δ1, δ2

and observed T = t, the null distribution of T and its p-value can be approximated
by either one of the following:
• Poisson distribution when N1S and N1T are small compared with N (or E(T ) is
roughly equal to V ar(T )) with

mid−p−value = 1 −
t

∑

k=0

E(T )k

k!
exp{−E(T )} +

1

2

E(T )t

t!
exp{−E(T )}
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• Normal distribution with p-value given by: 1 − Φ

(

t−E(T )√
var(T )

)

• Monte Carlo hypothesis testing: we simulate the null distribution of T calculating
the same statistic for a large number Nrep of data sets obtained by permuting the
times among the fixed spatial locations (or viceversa). In this way we get:

Simulated p−value =
1 +

∑Nrep

ν=1
I(Tν ≥ Tobs)

Nrep + 1
. (2)

Mantel’s test is a generalization of the Knox’s test based on the same statistic (1)
where reciprocal transformations of the distances are used to increase the influence
of close distances and decrease that of the long distances, hence we have:

aS
ij =

1

dS
ij + c1

(aS
ii = 0) aT

ij =
1

dT
ij + c2

(aT
ii = 0)

with c1 and c2 unknown constants. To avoid the issues concerning the choice of the
δ and c constants, Jacquez proposed a Knox-type test where the closeness is defined
by the k nearest neighbours (k NN) such that:

aS
ij =

{

1, if event j is a k NN of event i ( 6= j) in space
0, otherwise

Analogously we get aT
ij . Monte Carlo hypothesis testing is required to obtain the

null distribution of T and the simulated p-value (2) for both the Mantel’s and the
Jacquez’s test.

3 Results

We have applied these tests to two data sets constituted by the 383 and 45 earth-
quakes of magnitude Mw ≥ 4.5 and Mw ≥ 5.3 respectively, occurred in the Central
Northern Apennines West region characterized by normal faults. Figures 1 and 2
synthesize graphically some results of Knox’s and Jacquez’s tests showing the p-
values obtained as the constants of the tests vary. We point out that space-time
clustering of earthquakes of Mw ≥ 4.5 is statistically significant for some values of
δ1, δ2 and k, but it isn’t when the threshold increases; consistent results are also
obtained through the Mantel’s test. This means that in the Italian tectonic context
space-time clustering is not a property invariant to the magnitude threshold con-
trary to what is stated in the literature (Lombardi and Marzocchi (2007)). Hence
this property must be verified through statistical tests so that the most appropriate
stochastic model for hazard evaluation is proposed in each specific context.
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Figure 1: p-value of the Knox’s test applied to earthquakes of Mw ≥ 4.5 (left) and
Mw ≥ 5.3 (right) for different values of δ2 (x-axis) and of δ1 (y-axis): p ≤ 10−6

(violet), 10−6 < p ≤ 0.01 (magenta), 0.01 < p ≤ 0.05 (red), 0.05 < p ≤ 0.10
(orange), 0.10 < p ≤ 0.50 (green), 0.50 < p ≤ 0.95 (blue), p > 0.95 (black).
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Abstract: The main objective of this work is to evaluate the avalanche activity
in a given location and at a given time taking into account a number of variables
including the stratigraphy of snow cover, temperature, direction and wind speed,
altititude, etc. To this end we propose a space-time point model where the intensity
function indicates the limiting expected rate of occurrence of snow avalanches of a
given size occurring on a certain day at location (x, y), conditioned on the histor-
ical information available prior to time t. Some meteorological and environmental
data may be considered as the covariates of the model. To show the ability of the
model in assessing the risk avalanche, data from digitalized Avalanche Database of
the Trentino Region (North of Italy) is considered. Since not all locations in the
Alpine zone are equally likely subject to snow avalanche, the model will be flexible
enough for including a spatially-varying background rate of avalanche which may be
estimate by kernel smoothing the observed avalanches .

Keywords: Snow avalanches, intensity function, spatio-temporal modelling.

1 Introduction

In recent years the study of avalanche phenomena has attracted growing interest
especially for the increase of accidents and deaths, now comparable with those re-
lated to natural disasters. This is mainly due to a wide anthropization of mountain
areas which has often brought a rapid growth of recreational activities, transporta-
tion, and constructions in high-altitude areas without an adequate assessment of
avalanche hazard. Hence, the analysis of avalanche activity is extremely important
to prevent damage and for activities aimed at land use planning in mountain areas.
Many scientists have been studying avalanches to try to map the risk and improve
predictions. To that end several statistical methods have been proposed based on
different approaches. In this work we propose an approach based on space-time

1



point processes for modeling the avalanche risk. In particular, the intensity function
of the process indicates the limiting expected rate of occurrence of snow avalanches
occurring on day t at location (x, y), conditioned on the historical information avail-
able prior to time t. Also, we use a self-exciting model to deal with unobserved
random space-time effects. The location (x, y) represents the baricenter of the poly-
gon which draws the shape of avalanche. For showing the effect of some covariates
(such as elevation, slope, temperature, etc.) different models are proposed. Ap-
plication to the digitalized Avalanche Dataset of Trentino region (Italy) illustrates
the ability of the models to forecast the risk avalanche. Although this approach
has not been previously applied to avalanche events, it has been used for analysis
spatio-temporal analysis of earthquakes occurrences (Ogata, 1998) and wildfire risk
(Peng et al. 2005; Schoenberg et al. 2007).

2 Spatio-temporal models for avalanches

Any spatial temporal point process is uniquely characterized by its conditional in-
tensity function λ(t, x, y|Ht) given by the limiting conditional expectation

λ(x, y, t|Ht) lim
∆t,∆x,∆y↓0

E[N{(t, t+∆t)× (x, x+∆x)× (y, y +∆y)}|Ht]

∆t,∆x,∆y

provided the limit exists. This is a random function that depends on the prior
history, Ht, of the point process up to time t. In this preliminary analysis, we
considered a small number of models that should capture the main aspects of the
avalanche dataset. One first class of models is nonparametric and has separable
spatial and temporal effects. This is given by

λ1a(x, y, t|Ht) = λ(x, y, t) = β0 + β1S(x, y) + β2T (t) (1)

or by
λ1m(x, y, t|Ht) = exp (β0 + β1S(x, y) + β2T (t)) (2)

where β is the parameter vector to be estimated. So, one is an additive model
while the other is a multiplicative model. In these models, S(x, y) is a determinis-
tic function of the location (x, y) and it is estimated by a two-dimensional kernel
smoother

S(x, y) =
1

n0

n0∑
j=1

K

(
x− x0j
ϕx

)
K

(
y − y0j
ϕy

)
where K is a suitable kernel function, taken as the quartic kernel in this paper.
The function T (t) is a periodic with trend deterministic function, also estimated by
kernel methods using the events’ times. The determinist aspect of these functions
make the conditional intensity independent of the past, justifying the first equality in
(1). To have an identifiable model and to avoid numerical instabilities, we centered
all covariates at zero. It is likely that this model has less predictive power than
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other models as it does not incorporate important additional information. However
the model can be improved using covariates. At this moment, we have the elevation
E(x) and slope S(x). In particular, for the slope we created a binary map with areas
with slopes angles within this (25, 50) degrees. Hence, another class of models has an
intensity varying only with the exogenous covariates and the temporal components.
We again have λ(x, y, t|Ht) = λ(x, y, t) for these models, a deterministic intensity
function. It is given by

λ2a(x, y, t) = λ1a(x, y, t) + β3E(x) + β4S(x) (3)

Another version of this model is the multiplicative form where

λ2m(x, y, t) = λ1m(x, y, t) exp (β3E(x) + β4S(x)) (4)

Other covariates can be added in the model such as precipitation, temperature and
the level of new snow. Additional improvements of these models respect to the first
class of models can be tested by means of the difference between the log-likelihood
maximum values of each model. The final class of models we are going to consider
are those that include the history of previous avalanches events in the area near
each point. The conditional intensity is a truly random function that depends on
the previous occurrences. Let

H(x, t) =

∫ ∫ ∫
IBx(r)×[t−ϵ,t)(x, y, t)N(dx, dy, dt)

where IA(·) is the indicator function of the set A and Bx(r) is a small disc centered
at x and with radius r. That is, H(x, t) is the number of events from the point
process N that are inside the three-dimensional cylinder Bx(r)× [t− ϵ, t). Clearly,
H(x, t) is Ht-measurable. Then, the models incorporating this previous history are
of two types, an additive model,

λ3a(x, y, t|Ht) = λ2a(x, y, t) + β6H(x, t) , (5)

and its multiplicative version,

λ3m(x, y, t|Ht) = λ2m(x, y, t) exp(β6H(x, t)) . (6)

3 Applications and results

The data used in this work have been provided by the province of Trento through
the availability of digitalized Avalanche Database (based on a permanent survey on
avalanches). In this application we consider 3350 avalanche events at 970 sites for
the period January 1980 – December 1989. In this preliminary report, we did not
fit the models (5) and (6). They require a much heavier numerical work as each
time unit (day, in our case) has an associated map with the covariate H(x, t) that
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Models Intercept S(x) T (t) Elevation Slope Log-Lik
Model 1 0.16017 0.00027 0.01559 NA NA -1803.152
Model 2 0.05780 0.00027 0.15635 0.23963 0.00035 -1138.234

Table 1: Estimates from models 2 and 4.

enters the likelihood maximization in each iterative step. We are working on this
model and should have final results soon. The results for the models 2 and 4 are
in Table 1. Figs. 1 (middle and right) show an example of the estimated intensity
functions (risk maps) by the two models on February 1, 1986. As expected, model
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Figure 1: Elevation map of Trentino (left); estimated intensity function at February
1, 1986 by model (2) (middle) and model (4) (right). Asterisks represent avalanche
events at the same day.

(4) performs better than model (2). We are going to include other covariates such
as temperature and the amount of snow accumulated in the soil. Both are time
varying and should be useful in terms of prediction of avalanche events. We are in
the process of collecting these covariates and we expect to have an extended version
of this paper incorporating these additional information in the near future.
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Abstract:  
Data from a monitoring network were used to develop a data driven model for 
predicting water table depth in space and time. Records of 160 piezometer sites 
available from 1997 to 2010 were analyzed to detect the overall temporal trend in water 
table depth in a relevant agricultural area in Northern Italy.  Evolutionary Polynomial 
Regressions (EPR) were used to calibrate a predictive tool based on climatic data and 
the records from 47 selected sites between 2004 and 2009 (N = 5611). The model was 
validated against the WT depths observed in 15  independent sites between 2005 and 
2010 (N= 2052). Validation resulted in a mean absolute error of  30.0 cm (R2 = 0.65). 
The general model was extended to the whole area, using the geostatistical estimates of 
the average water table depth as input, providing spatio-temporal maps of the water 
table depth at any give date. 

 
Keywords: Soil water table; Evolutionary Polynomial Regressions; Spatio-temporal 
maps 
 
1. Introduction 
 
In alluvial plain areas of Northern Italy, the presence of seasonally saturated horizons 
due to the presence of a shallow (0.5- 3 m) groundwater within the rooting depth of 
crops, during the growing period, allows optimizing the irrigation water supply, thus 
saving the resource, concentrating the irrigations only where and when really needed. 
To this aim, operational tools are needed to estimate the depth of the shallow water 
table with a good reliability in space and time. Predictions about shallow water table 
dynamics can be made adopting different approaches (Morgan and Stolt, 2004). These 
can be either based on i) climatic records, ii) on field evidences from soil morphology 
and properties, iii) on the outputs of physically based water balance models or iv) on 
combinations of the different approaches. Water balance models require a high load of 
input data, which are not always available, and, especially in the case of spatially 
distributed models, the reliability for applicative goals is not always assured, being this 
often related to site specific soil conditions (Salazar et al, 2008). Empirical modelling 
can represent a suitable alternative, providing good results when locally calibrated. The 
choice among the available approaches is often determined by the density and 
frequency of observations over the space and time domains.  Aim of this work is to 
obtain reliable estimates of water table (WT) depth both in space and time to be used for 
crop irrigation water requirement assessment, using a limited amount of climatic and 
hydrological information. An empirical time series model is presented, based on 
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meteorological data and water table depth records irregularly spaced in time and space. 
The model, calibrated in alluvial plains of Emilia Romagna (Italy), is based on a limited 
number of piezometer wells and climatic data and is supported by existing soil maps 
and geostatistics.   
 
2. Materials and Methods 
 
The study area is located in Northern Italy, in the alluvial plains of Emilia Romagna 
(lat. 43°50’N-45°00’N; long. 9°20’E -12°40’E Greenwich approx). The area is about 
12,000 km2, with elevations between -3 and 150 m a.m.s.l. Climate is temperate-sub 
oceanic, with a mean air temperature of 12.4°C (max. and min. 19.3 and 8.2 °C 
respectively), and a mean annual precipitation ranging from 520 to 820 mm. Rainfall 
and potential evapotranspiration data, for the period 2004-2010, come form a network 
of about 300 pluviometric stations. The spatialisation of these data is obtained by 
ordinary kriging with a grid of 5x5 km.  In the study area a net of 160 piezometer wells 
is present. Though the sites are monitored since 1997, the network has been set up in 
different monitoring projects carried on at provincial level. The temporal series are 
therefore highly heterogeneous, in terms of temporal continuity, frequency of 
observations, and spatial distribution. On average 1.7 readings per month are available 
at the sites. The predictive model was developed using  Evolutionary Polynomial 
Regression (EPR, Giustolisi and Savic, 2006). EPR are regression-based algorithms, 
which use a hybrid between polynomial structures and evolutionary computing to model 
environmental processes and/or systems. The analysis was carried out using the EPR-
Toolbox v.2.1.SA (Laucelli et al, 2010), using the normal SSE function as objective 
function. In order to calibrate the model, 47 sites were selected for  a total of 5611 water 
table readings between 2004 and 2009. At each site, in correspondence with the 
readings, cumulate rainfall and potential evapotranspiration have been calculated at 30, 
60, 180 and 365 days preceding the reading. From these values, evapotranspiration 
deficit has been calculated for the same time intervals. Furthermore, the average water 
table depth between 2004 and 2009 was calculated at each site (N = 118) and added to 
the list of predictive variables to be selected by the EPR model. The predictive model 
has been validated on a subset of independent data (N = 2052 ) from 15 sites not used 
for model calibration, with readings between 2005 and 2010.  
 
3. Results 
The descriptive statistics of the calibration data set (N = 5611) are reported in Table 1. 
The optimal expression provided by EPR to estimate the water table depth at any given 
day i has the following form: 
 

WTdepth_i = -0.0016163* D180 *WTavg+0.00000064746*Pcum30*Pcum60
0.5*WTavg

 +             
-0.000074113*ETP365

0.5*Pcum30
0.5*Pcum60*WTavg

0.5+0.00099791* ETP365* WTavg+ 
+0.0000000045408* ETP365* WTavg 

2*D180 -19.564 
 
The EPR model was tested on an independent data set (N = 2052); calibration and 
validation results are shown in Table 2.  Figure 1 shows the time series of observed vs. 
predicted values for one of the validation site.  
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WT depth 

(cm) 
ETP365 

(mm) 
ETP180 

(mm) 
ETP90 

(mm) 
ETP60 

(mm) 
ETP30 

(mm) 
Pcum365 

(mm) 
Pcum180 

(mm) 
Pcum90 

(mm) 
Pcum60 

(mm) 
Pcum30 

(mm) 

 
D180 

(mm) 

Mean 158 1031 508 292 203 106 573 276 139 95 49 -232 

Min. 3 869 173 48 26 12 243 26 4 0 0 -762 

Max. 300 1166 914 537 382 203 1173 857 723 494 312 631 

Std. Dev. 63 47 223 149 104 55 138 87 68 57 40 245 

Table 1. Descriptive statistics of the calibration data set (N = 7,050). 
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Figure 1: Estimated vs. observed water table depth  at a validation site. 

 
 Calibration data set  (N= 5,611) Validation data set  (N=2,050) 

R2 0.71 0.65 
RMSE, cm 34.14 37.68 
MAE, cm 26.27 30.04 
E', - 0.51 0.43 
AIoA/d', - 0.73 0.69 

Table 2. Model performance. MAE, mean absolute error; RMSE, root mean squared 
error; E’, modified coefficient of model efficiency; IoA’, modified index of agreement. 

 
In terms of input data requirements, the EPR model relies on climatic data at any given 
site in the study area and on the long term average of WT depth. . In order to provide 
spatio-temporal map of soil water table depth at any given day i,   the average WT depth 
has been estimated for the  whole area via ordinary kriging over a 1x1 km grid using the  
available sites between 2004 and 2009  (N=118). The parameter of the model fitted to 
the experimental omnidirectional variogram are shown in table 3. Concerning the 
capability of the model in extrapolating in the spatial and temporal domains,  Figure 2 
shows the water table depths at four different dates in 2010, whose data were not used 
for model calibration. Water table levels show distinct geographic patterns across the 
plain, which are more evident in the dryer periods. For example, the recently reclaimed 
lowlands in the north-eastern part of the plain, where the water table level is 
hydraulically controlled,  are characterized by shallower WT (110-150 cm) while the 
opposite is observed in the south-eastern portion of the study area, which is 
characterized by a deeper water table (>175 cm). Results are coherent with rainfall 
spatial distribution, whose  relevance in affecting WT depth is variable  in time and 
space. 
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c0 c1 c2 a1 (m) a2 (m) IGF 

0.38 0.35 0.31 14,400 44,000 1.68e-03 

Table 3. Variogram model parameters: c0, nugget variance; c1, c2,  sill components, and 
a1 and a2 the correspondent ranges. IGF: Indicative Goodness of Fit (Pannatier, 1996). 

 

a) 2010.03.31       b)2010.06.30  

 
c) 2010.09.30       d) 2010.12.31 
 

Figure 2: Estimated WT depth at four dates in 2010. 
 
4. Concluding remarks 
 
The seasonal occurrence of shallow groundwater as water source for agricultural crops 
is crucial for a sustainable use of water resources. The empirical regionalised model 
presented in this paper, based on daily climatic records and on spatial estimates of 
average water table depth provides a tool to predict and map water table depth. The 
model allows for projecting ahead WT depth for the whole area regardless the 
availability of new WT readings, using daily climatic records and taking explicitly into 
account the spatial variability of WT and the spatial and seasonal variability of rainfall.   
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Abstract: In this study spatial variability was used to analyze soil factors influencing 

the occurrence of high nitrate concentrations in agricultural soils in the Molise region 

of Southern Italy. The proposed methodology applied to two agricultural areas 

combines measurements of soil nitrate concentrations carried out by a monitoring 

network of 164 top-soils. A multivariate approach based on multivariate geostatistics 

and GIS was used to model spatial variability of the soil variables. The maps of each 

individual soil variable and regionalised factor show the areas of the landscape that 

might cause nitrate loss from agriculture soils. The results can be used to support 

sustainable land use planning in order to mitigate soil nitrate leaching. 
 

Keywords: nitrate contamination, soil variability, multivariate approach, 

geostatistics. 

 

 

1. Introduction 

 
Evaluation of nitrate loss from agricultural soils is a useful tool to support sustainable 

land use planning. An understanding of the spatial-temporal variability of important 

soil properties and associated nitrate contamination can provide a framework for 

assessing and modelling of the main processes occurring in the soil. Many factors 

may affect the spatial distribution of nitrate in the soil and the consequent nitrate 

pollution of groundwater. Important factors include topography, hydrogeology, 

climate,  pedology, land use, and the type of crop (Power and Schepers, 1989). All of 

these factors need to be accounted for when  analyzing spatial distribution of nitrate 

in soil. On the other hand, the spatial patterns of these factors do not change over 

short periods of time and, therefore, are not the major contributors to changes in 

spatial distribution of nitrate from year to year (Marriott et al., 1997). The aim of our 

research is to analyze nitrate concentrations in agricultural soils with respect to 

specific explanatory soil variables, using GIS and geostatistical methods to delineate 

areas at different risk of soil nitrate leaching as a result of soil management. 
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2. Materials and methods 
 

The study sites were Campomarino and Venafro, two agriculturally fertile areas in 

the region of Molise (southern Italy). The land use consists mostly of olive orchards, 

vineyards, fruit orchards, maize, and horticultural crops. The town of Venafro is 

located near an important agricultural plain, identified as a nitrate vulnerable zone by 

the European Community according to the EU Nitrate Directive (91/976/EC). 

Campomarino is a small farming town in lower Molise. Molise has a typical 

Mediterranean climate, with mean annual rainfall varying from 600 mm to 1500 mm, 

and mean annual temperature ranging from 10 to 16° C. Surface soil samples (Ap 

horizons) were collected to a depth of 0.40 m. A total of 71 samples   were collected 

in Venafro and 63 samples were collected in Campomarino. The variables analysed 

were: pH, texture, available water capacity (AWC), cation exchangeable capacity 

(CEC), electrical conductivity (EC), CaCO3 content, total organic carbon (TOC), and 

total nitrogen (Ntot)  according to the standard Soil Methods of Analysis. Nitrate-N 

was extracted from the field-moist soil samples with 0.1 M KCl solution at a 

soil:solution ratio of 1:2 and determined colorimetrically.  

Statistical data analysis was done in two steps. First, classical descriptive statistics 

were determined, and then geostatistical analysis was performed to investigate spatial 

dependence, to map soil variables, and to delineate homogeneous areas. 

Even if ordinary cokriging does not require the data to follow a normal distribution, 

variogram modelling is sensitive to strong departures from normality because a few 

exceptionally large values may contribute to many very large squared differences. To 

produce the map of the variables we used multi-Gaussian cokriging (Wackernagel, 

2003). The multivariate spatial data were analysed by cokriging and Factor 

coKriging Analysis (FCKA). The theory underlying FCKA has been described in 

many papers (Castrignanò et al., 2000; Wackernagel, 2003). The approach consists 

of decomposing the set of original second-order random stationary variables into a 

set of reciprocally orthogonal regionalized factors, related to NS spatial scales. The 

three basic steps of FKA are the following: 

1) modelling the coregionalization of the set of variables using the so called Linear 

Model of Coregionalization (LMC) and interpolating the variables by cokriging; 

2) analysing the correlation structure between the variables by applying Principal 

Component Analysis (PCA) at each spatial scale;  

3) cokriging a set of specific factors at each characteristic spatial scale and mapping 

them. 

All statistical and geostatistical analyses were done by using the software package 

ISATIS®, release 11.0. 

 

3. Results  
 

 

The spatial maps of the eight raw variables from the Venafro site, obtained by 

cokriging on a 10 m x 10 m square grid cell, display distinct spatial patterns and also 

reveal some degree of spatial association among the different textural attributes. The 

surveyed area can be roughly divided into two main zones of approximately equal 

extent along the NW-SE direction. The southern part is characterised by higher clay 

contents, while the northern part is coarser textured. The spatial maps of the ten raw 
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variables from Campomarino, obtained by cokriging on a 10m x 10m square cell-

grid, were better structured spatially, probably due to the impact of topography and 

soil parent material. As regards the textural properties, the higher contents of sand 

occur along the sea coast up to a distance of 2500 m inland, whereas clay is more 

concentrated at the south-east and south-west corners. The maps of Ntot and TOC 

show  a wide area characterized by higher values in the south-eastern part where the 

soils are manly finer textured. The map of N-NO3 are more variable, probably due to 

the impact of agricultural management. There is a wide central inner area 

characterized by higher values, which means that this area is potentially at risk of 

contamination (in Figure 1 only some maps are shown). 

 

  

  
Figure 1. Spatial distribution of C/N ratio and N-NO3 (Nitr) in Venafro soil (top) and 

Ntot and TOC (OM) in Campomarino soil. 

 

To synthesize the complex, multivariate variation of the two areas in a small number 

of zones, to be ranked as to different risks of contamination, the factor cokriging 

analysis was applied separately to the two data sets from Venafro and Campomarino. 

The main component of variation for Venafro occurs within a range of 800 m, 

whereas for Campomarino the spatial variation is dominated by the structured 

components at both short (1000 m) and long (5500 m) ranges. In the following 

analysis we have retained only the eigenvectors producing eigenvalues greater than 

one and omitted the ones corresponding to nugget effect because the latter are mostly 

affected by measurement errors. Therefore, we focus for Venafro on the first factors 

at shorter (800 m) and longer scale (3000 m) which account for about 61% and 56%, 

respectively, of the variation at the corresponding spatial scales. For Campomarino 

the first two factors at shorter range (1000 m) and the first factor at longer range 

(5500 m) account for 45%, 25% and 78%, respectively, of the related spatial scale 

variation. The loading values for the factors (data not reported) indicate that for 

Venafro the TOC and clay content and, to a lesser extent, Ntot and C/N, as the most 

influencing first factor at shorter range. On the other hand, CSC and, to a lesser 

extent, silt content, TOC, C/N, and fine sand weigh more, but negatively, on the first 

factor at longer range. As for Campomarino, clay content and, to a lesser extent, N-

NO3 weigh more and positively on the first factor at shorter range, whereas TOC and 

Ntot weigh more on the second factor. The first factor at longer range is quite 
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exclusively dominated by elevation and partially and negatively by pH and CaCO3. 

Figures 2 a-b show the maps of the two factors for Venafro. The one at short scale 

looks more variable, characterised by many spots of about 800 m wide with 

contrasting values of Ntot probably due to differences in land use and management. 

The soil factor at longer range is more related to CSC and partly to TOC and Ntot 

contents and looks better structured spatially.   

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Maps of the first regionalized factors at shorter and longer range (a-b) of 

Venafro and of the first regionalized factor at longer range (c) of Campomarino. 

 

The map of the first factor at longer range (Fig. 2c) reproduces the topographic 

patterns faithfully and shows also a wide area characterized by higher values of 

CaCO3 and pH at the north-west corner of the area.  

 

 

4. Concluding remarks 
 

In this study a multivariate geostatistical approach on different soil parameters was 

used to delineate the zones which might cause contamination by nitrate loss from 

agriculture soils. The resulting zones were also used to characterise spatial variability 

in physical and chemical soil properties that may potentially have an impact on soil 

nitrate contamination. In order to give useful site-specific recommendations to 

farmers for N fertilization, finer sampling is necessary. 
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Abstract:  
The main objective of this study was to analyze, with geostatistical techniques, the soil 
variability for some soil parameters on a 12-ha field cropped with durum wheat in 
Foggia (Southern Italy). Soil samples were collected at 100 georeferenced locations in 
2005 and 2007. The application of multivariate geostatistical technique, called factorial 
co-kriging, allowed the delineation of the field into 3 main clusters. Contingency tables, 
k statistics and Q-Q plots were applied to assess the temporal variation. 
The results showed a significant increase in soil organic matter and a decrease in P 
content up to 40 cm depth during the trial period. 
 
Keywords: Soil variation; Multivariate geostatistics; Organic matter; Phosphorous. 
 
1. Introduction 
 
Soils commonly exhibit within-field spatial variability of some inherent properties such 
as texture, depth of topsoil and organic C content, resulting from complex geological 
and pedological processes acting over different spatial and temporal scales. Therefore, 
soil variables are expected to be correlated in a scale-dependent way (Castrignanò et al., 
2000). Moreover, meteorological conditions and anthropogenic activities, such as tillage 
and fertilization, may cause spatial and temporal variation in soil (Basso et al., 2009). 
The main objectives of this work were to characterize the soil variation of a field in 
southern Italy and test whether the soil management has affected chemical fertility 
significantly. We deemed a geostatistical analysis of coregionalization to be more 
revealing than a univariate approach, and we studied the scale-dependent correlation 

                                                           
1This research was funded by the Integrated system for development of southern cereal farming 
(SI.Cer.Me). Program for southern Italy development: Research and Technological Innovation. 
Resolution CIPE 17/2003 -1.1 and 83/2003. 
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structure of some soil properties, focusing on the delineation of the field into 
homogeneous areas. 
 
2. Materials and Methods 
 
The research was carried out in a 12-ha field cropped with durum wheat (Triticum 
durum Desf.) at the Experimental Farm of the CRA - Cereal Research Centre (Foggia, 
41° 27’ N, 15° 36’ E, south-eastern Italy), during November 2005 – July 2008 period. 
The soil is silty-clay Vertisol of alluvial origin, classified as Fine, Mesic, Typic 
Chromoxerert by Soil Taxonomy-USDA. The climatic conditions were characteristic of 
a Mediterranean environment, with a drier season between May and September and cold 
likely returning in the spring months (March-April). 
One hundred georeferenced locations were selected so to evenly cover the field. Soil 
samples were collected at these locations, before sowing and fertilization, to 0-40 cm in 
2005 and to 0-20 and 20-40 cm in 2007, and analyzed for sand, silt and clay contents 
(%), organic matter (%, OM), available P (mg kg-1, expressed as P2O5), according to the 
standard methods of soil analysis (Pagliai, 1997; Violante, 2000).  
The multivariate spatial and temporal data set was jointly analyzed by cokriging to 
produce thematic maps and by the Factor Co-kriging Analysis, developed by Matheron 
(1982), to delineate homogeneous areas. The geostatistical analyses were performed 
with ISATIS (Geovariances, 2010). Contingency tables and k statistics were calculated 
to assess the spatial association of the P maps and the ones of OM at the two dates. Q-Q 
plots were used to test the temporal trend. The approach was implemented with the 
FREQ procedure of the SAS/STAT software package (SAS/STAT Software Release 
9.2, 2010). 
 
3. Results 
 
The exploratory analysis of the data revealed considerable spatial variation in soil 
properties at each sampling date and most variables were significantly correlated, which 
justified the choice of a multivariate approach. A linear model of coregionalization 
(LMC) was fitted to all both direct and cross-variograms, including the following basic 
spatial structures: a nugget effect and two exponential models with a range of 100 and 
300 m. 
Figures 1(a-d) display the co-kriged maps of the available P and the OM contents at the 
two sampling dates. The P maps were characterized by great erraticity, with several hot 
spots evenly spread over the field. However, it is possible to notice a tendency to higher 
values on north-western border of the field at both dates. On the contrary, the OM maps 
seem better spatially structured and can be roughly split into three main zones: a 
southern part with generally higher contents, a central area with lower ones, and a more 
variable northern area. All maps showed a general consistency over time. However, to 
make less subjective the results of a visual inspection, the contingency tables for P and 
OM were calculated using a common classification in three isofrequency classes. The 
overall accuracy was 58 and 59% for P and OM, respectively. The results showed that 
the structures of spatial dependence for P and OM remained stationary over about 58% 
of the field, due to inherent soil variation, but also other dynamic factors affected their 
spatial distributions, more related to meteorological conditions and crop management. 
The Bowker’s test of symmetry verified the significance of P and OM variation over 
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time and the simple kappa coefficient values were 0.38 and 0.39 for P and OM, 
respectively.  

(a)
(b)

(c) (d)

 
Figure 1: (a,b) Maps of available P (mg kg-1 P2O5) and (c,d) of organic matter (%) 

contents at the two dates 
 

Actually, the spatial association between the two maps of either P or OM was not very 
high, confirming the dynamic character of soil fertility. However, the Q-Q plots (Figure 
2) revealed a significant increase in organic matter and a significant decrease in P 
content during the trial period. Although a two-year trial period is not enough to draw 
general conclusions on observed P and OM trends, crop residue management very 
probably had a positive impact on increasing soil fertility. 

                                                   (a)                                                        (b) 

 
 

Figure 2: Q-Q plots of the variables P and OM for 2005 and 2007 
 

As far as factor analysis, we retained only the first factor at longer range (=300 m; F1) 
with eigenvalue greater than 1, because it could produce a delineation of the field into 
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areas of size manageable by farmer. F1 was negatively correlated (data not shown) with 
OM and fine sand contents in both years and positively with clay contents and coarser 
sand content in both years, which also means that the main structures of spatial 
dependence are permanent over time.  
The map of the first factor (Figure 3), displayed using three isofrequency classes, 
showed a wide central area with lower content of OM to 0-40 cm depth and higher 
contents of clay and coarser sand, whereas the northern and southern areas were 
characterized by higher content of finer sand and lower organic fertility. F1 could then 
be used as an indicator of soil organic fertility and soil texture. 

 
Figure 3: Map of the regionalized factor F1 produced using the Factorial co-Kriging  

procedure 
4. Concluding remarks 
 
Multivariate geostatistical analysis has produced the partition of an agricultural field 
into three homogeneous areas with different organic fertility and particle size 
distribution, which could be managed differentially. The results are encouraging and the 
approach might be used to test the effects of soil management over time. 
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Abstract: The project CYCAS-MED: Crop yield and climate change impacts on 
agriculture: adaptation strategies to desertification processes in the Mediterranean 
areas, aimed at the development of tools and methodologies for the assessment of the 
response of three major crops in Morocco to climatic change. Results for durum wheat 
are here presented. 
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1. Introduction 
 
The rising trend of global atmospheric carbon dioxide is expected to induce a change in 
climate. Despite the uncertainty regarding the magnitude of this climate change, 
assessments of its impacts on agricultural production are needed for both scientific and 
policy-making purposes. The complexity of climate-crop production interactions makes 
simulation a very useful and practical approach available for making the needed 
assessments (de Jong et al. 2003).  
The CYCAS-MED project aimed at assessing the magnitude of the response of three 
major crops in Morocco (barley, soft wheat and durum wheat) to climate change. 
Weather daily data have been analyzed to outline the climate of Morocco. This analysis 
allowed the calibration of a stochastic weather generator that, in turn, has been used to 
provide future climate scenarios. At the regional scale, the relationship between weather 
and crop yield has been investigated by linear regression and, according to this 
relationship, the mean crop yield under different climate scenarios has been obtained. 
Moreover, the Land Suitability approach for rainfed wheat as been applied to analyse 
land use modifications. At the farm level, a further analysis has been carried out by 
applying the crop simulation model CERES-Wheat (Ritchie and Otter-Nacke, 1985).  
 
 
                                                           
1 Project partially founded by the City of Milan under the program Defending Biodiversity: Solidarity and 
International Cooperation, Grants 2008 
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2. Materials and Methods 
 
Data. Daily data on rainfall and temperature at 30 meteorological stations have been 
provided by the partner Insitut National de la Recherche Agronomique (Morocco)  and 
refer to the period from 1973-2006. Annual  crop yield data for 15 provinces come from 
The Ministry of Agriculture, Rural Development and Fisheries of Morocco.  
Regional scale analysis: impact on annual production. The FAO methodology 
developed for Africa and based on the Crop Specific Soil Water Balance (CSSWB), and 
its implementation by the software AgroMetShell (AMS; Gommes 1993) have been 
used for operational crop yield forecasting. This model requires daily weather data only 
and is specific for regions lacking of more agronomical information. The output of 
AMS consists of several indexes: water excess, water deficit and actual 
evapotranspiration computed at several phenological phases, water satisfaction index 
(WSI) and total water requirement. The relationship between annual crop yield and 
these output variables (weather yield function) has been estimated by linear regression 
analysis. The stochastic weather generator M&Rfi (Dubrovský et al. 2004) has been 
calibrated on daily weather data and used to generate synthetic time series of current 
and future weather. Two different scenarios have been considered: SRES B1 (low 
impact) and SRES A2 (high impact; IPCC, 2000) and projections of climate at 2050 
derived from the coupled atmosphere-ocean general circulation model HadCM3. The 
estimated regression equations have been used to compute the expected crop yield for 
each time series from current and future climate.   
Regional scale analysis: impact on land use modification. Evaluating land suitability 
means defining  the requirements of the different land-use types for each land units of a 
certain region. A land suitability classification for rainfed wheat growing in the 
province of Settat has been made. Land is classified as suitable, using 3 different classes 
of suitability, or not suitable.  
Farm scale analysis. The crop simulation model CERES-Wheat (Ritchie and Otter-
Nacke, 1985) included in DSSAT v. 4.0 (Jones et al., 2003) has been used to predict 
grain yield of a local variety grown at six experimental farms for which all the 
pedological, climatic, genetic and agronomic information necessary for model 
calibration and evaluation are available. 
 
3. Results  
 
Climate analysis. An accurate analysis of the climate in Morocco is prevented by short 
and strongly discontinuous time series, especially for rainfall. Data from four stations 
only allow analyzing the inter-annual variability of temperatures. These data show a 
homogeneous increase of temperatures (Mann-Kendall test) and of the index Tn90, 
describing the number of warm nights (Frich et al. 2002). The other climatic indexes 
considered in this study do not show similar results (see Bodini et al. 2011).  
Regional scale analysis: impact on annual production. The goodness-of-fit of the 
linear regression model was high (R2 > 0.85), a part for a few cases. Regression analysis 
of annual crop yield on the AMS output variables highlights that WSI is always 
significant, as expected. However, a second significant variable is sometimes obtained, 
varying with place and cereal, whose meaning has to be further investigated. See Bodini 
et al. (2011) for detailed results. 
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The weather generator M&Rfi was able to well reproduce temperature data, however it 
strongly underestimated precipitation variability. However, as AMS allows a trade-off 
between amount of rainfall and length of the growing season,  this underestimation do 
not seem to affect crop yield estimation. According to the weather yield functions 
estimated from the available data, mean future yield for each time series from the two 
scenarios have been computed and compared to those obtained from simulations 
representing the current climate. For durum wheat (Figure 2), crop yield will decrease 
everywhere, and in some places, like Marrakech (MAR) crop yield could halve. Similar 
results are obtained for the other cereals (see Bodini et al. 2011). 
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Figure 2  Mean expected annual crop yield for durum wheat at 2050, according to 
current climate (actual), scenario SRES B1 (low impact) and scenario SRES A2 (high 
impact). The plotted values are mean from 1000 simulations. 
 
 
Regional scale analysis: impact on land use modification. Land Suitability analysis 
shows that the class of highest suitability (S1) for rainfed wheat became half at 2050 
(high impact scenarios), and completely disappears at the 2100 projection, whereas S2 
class reduces from 10% to 40%. In synthesis, a general reduction of major portions of 
territory suitability is evident, and the marginal suitability class (S3) increases in 
importance, doubling (2050 low and high, 2100 low) or tripling its incidence (high 
scenario 2100), as shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3  Map of Land Suitability for rainfed wheat in Settat province for actual climate 
(left), high impact  scenario at 2050 (centre), and high impact scenario at 2100 (right). 
 

UnsuitableN

Marginally suitableS3

Moderately suitableS2 

Highly suitableS1

UnsuitableN

Marginally suitableS3

Moderately suitableS2 

Highly suitableS1



4 
 

Farm scale analysis. The application of the crop model at different locations shows a 
general tendency to a reduction of wheat yield moving from actual conditions to higher 
impact future scenarios.  See Cesaraccio et al. (2011) for more details about this 
analysis.  
 

4. Concluding remarks 
 
The analysis of the impacts of future climate change scenarios highlights a significant 
reduction of the suitable areas for agriculture in Morocco and a significant reduction of 
rainfed cereals yield regardless of emission scenarios.  
Adaptation strategies for responding to changes in climate regimes need to be 
investigated to adapt agricultural systems to the new conditions. From this perspective, 
tools and methods used in this project can be used to investigate other crops 
performances under changed conditions. Future work will concern the improvement of 
the WG and the investigation of other crop performances under climate change 
scenarios.  
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Abstract: Data collected during sampling of the soils of former industrial waste lands are rarely 
scrutinized closely. However, exploratory analysis is an essential stage in order to describe the main 
characteristics of the concentration: possible heterogeneities, vertical variations, etc. Then the 
variographic analysis aim to characterize and to quantify the spatial variability. For hydrocarbon 
pollution, the very large spatial variability at small distances results in large uncertainties in the 
estimates. The kriged concentration map can be combined with the associated kriging standard 
deviation map to identify areas in which the uncertainties make it impossible to decide whether 
concentrations are greater or lower than a fixed quality threshold.  

Examples are given using data from sites polluted by hydrocarbons. 
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Abstract: The groundwater of the Plaine d’Alsace (France) is one of the largest water 
reservoir in Europe. It is highly vulnerable to pollutants coming from anthropic 
activities (industrial and agricultural). The monitoring carried on by the local agencies 
on the groundwater pollution concurred to form a very large public database on water 
quality. In this study the nitrate concentration has been examined in detail for two years, 
namely 1997 and 2003, for which dense sampling was available, and the evolution of 
the distribution of the pollutant has been highlighted.  
 
Keywords: groundwater, nitrates, geostatistics, estimations 
 
 
1. Introduction 
 
The cartographic representation of a pollutant distribution in a large area is a key tool in 
the safeguard of the hydraulic resources. From the monitoring data, a correct description 
of the pollution can be reached taking account of the regional character of the relevant 
variables (G. Matheron, 1972), in the geostatistical framework (de Fouquet, 2006). The 
groundwater of the Plaine d’Alsace in the North East of France is highly vulnerable to 
pollutants, due to the intense anthropic activities (agricultural, industrial, etc.) on the 
whole area (BRGM, 2006). The use of the hydraulic resource for domestic and 
industrial purposes makes its safeguard essential for the sustainable development of the 
region. The present study examines the distribution of nitrates and its evolution for the 
years 1997 and 2003.  
Quantitative and qualitative information about the groundwater were deduced form 
ADES groundwater national portal. D'Agostino et al. (1998) analyzed the distribution of 
nitrates in the groundwater of Lucca plain (Italy) with reference to three different 
periods of the same year. In this study the concentration of nitrates measured in the 
1997 and 2003 were analysed with reference to the same time interval, namely August 
and September of each year. A multivariate approach allowed the representation of the 
evolution of nitrates concentration in the reference time interval. 
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2. Data Analysis 
 
Figure 1 shows the nitrates concentration monitoring points for 1997 and 2003 data sets 
(i.e. 696 and 601 monitoring points respectively for 1997 and 2003). Full details on data 
sets can be found in Spacagna (2009). In order to perform a multivariate variographic 
analysis, 574 monitoring points belonging to both data sets were identified. The 
considered measures are related to a seven weeks time interval, during which stationary 
hydraulic regime for groundwater was assessed. In Table 1 the main statistical 
parameters of the two data sets are summarized. The histograms highlight the 
frequencies of concentrations over the threshold value (red for 1997 and blue for 2003 
in Figure 1). The highest concentrations of nitrates are mostly located along the western 
border of the geographical area, between the Vosges and the Plain of Alsace, 
characterized by geological discontinuities, relatively small thickness of the 
groundwater and intensive agricultural activities. 
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Figure 1: Monitoring points localisation a)1997; b) 2003 and nitrates concentration histograms  

 
The good correlation (ρ = 0.86) between data of 1997 and 2003 sets is shown by Figure 
2, where the nitrate concentrations are grouped in 30 classes ranging from 0 to 300 
mg/l. The values greater than 100 mg/l or between 50 and 100 mg/l are mainly located 
under the bisector line, as well as the empirical regression of 2003-concentrations on 
1997-concentrations. This suggests a decrease in the average concentration from 1997 
to 2003.  
Directional variographic analysis on different observation scale highlighted a 
geometrical anisotropy of the concentration at great distances, with a greater continuity 
along the N15° direction, according to the main flow direction of the Rhin river, 
whereas no anisotropy was detected at small distances (up to 5 km). The experimental 
variogram was then calculated with reference to the directions 15°, 60°, 105° and 150° 
setting a 4 km step. The simple variograms for 1997 data (γ97) and 2003 data (γ03) and 
the cross-variogram (γ97,03) are fitted by means of a co-regionalisation linear model, 
considering the phenomenon as a sum or superposition of independent processes 
occurring at different spatial scales. The parameters of the theoretical variogram models 
are reported in Table 2. 
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Figure 2: Correlation between the concentration of nitrates in 1997 and 2003 

 
 1997 2003 
 complete set common data complete set common data 
points  696 574 601 574 
minimum [mg/l] 0.17 0.17 0,50 0.50 
maximum [mg/l] 295 217 217 217 
average [mg/l] 28.06 27.28 27.36 27.30 
std. dev. [mg/l] 23.00 24.60 24.67 24.39 
variation coeff. 0.98 0.90 0.90 0.89 
kurtosis 17.83 19.34 9.93 9.94 
skewness 3.11 3.20 2.39 2.35 

Table 1: 1997 and 2003 nitrates concentration data set. 
 

 model sill Range 

γ97 
nugget effect 166 - 

isotropic spherical 360 5 km 
anisotropic spherical 280 N15: 65 km / N105 15 km 

γ03 
nugget effect 255 - 

isotropic spherical 140 5 km 
anisotropic spherical 248 N15: 65 km / N105: 15 km 

γ97,03 
nugget effect 162 - 

isotropic spherical 220 5 km 
anisotropic spherical 242 N15: 65 km / N105: 15 km 

Table 2: Simple and cross variograms model parameters 

 
3. Estimation 
 
In order to estimate the evolution of nitrates concentrations during the selected time 
interval, the difference D between 1997 and 2003 concentrations at the same measure 
points is introduced. The simple and cross variograms (namely γD and γ97,D) of the 
difference D and the 1997 concentration are derived from the concentration bivariate 
model : 

( ) ( ) ( ) ( )hhhhD 03,970397 2γγγγ −+=  and ( ) ( ) ( )hhhD 9703,97,97 γγγ −= ; 

the models parameters are summarised in Table 3. As the cokriging ensure the 
consistency between the estimations of different variables, it is equivalent to cokrige the 
two concentrations and to calculate their difference or directly to cokrige the difference 
from the two concentrations data (Rivoirard, 2003). 
Figure 3a shows the nitrate concentration in 1997 estimated by means of cokriging. 
Figure 3b represents the cokriging of D with 1997, with evidenced the isofrequency 
classes of variation, whereas in Figure 3c the standard deviation of the estimation error 
of cokriging is presented. 
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 model sill Range 

γD 
nugget effect 97 - 

isotropic spherical 60 5 km 
anisotropic spherical 44 N15: 65 km / N105: 15 km 

γ97,D 
nugget effect -4 - 

isotropic spherical -140 5 km 
anisotropic spherical -38 N15: 65 km / N105: 15 km 

Table 3: Simple and cross variograms model parameters 
 

 960000  970000  980000  990000  1000000  1010000  1020000  1030000  
2
3
0
0
0
0
0
 

 
2
3
5
0
0
0
0
 

 
2
4
0
0
0
0
0
 

 
2
4
5
0
0
0
0
 

110

100

 90

 80

 70

 60

 50

 40

 30

 20

 10

  0

 960000  970000  980000  990000  1000000  1010000  1020000  1030000  
2
3
0
0
0
0
0
 

 
2
3
5
0
0
0
0
 

 
2
4
0
0
0
0
0
 

 
2
4
5
0
0
0
0
 

110

100

 90

 80

 70

 60

 50

 40

 30

 20

 10

  0

 960000  970000  980000  990000  1000000  1010000  1020000  1030000  
2
3
0
0
0
0
0
 

 
2
3
5
0
0
0
0
 

 
2
4
0
0
0
0
0
 

 
2
4
5
0
0
0
0
 

30

28

26

24

22

20

18

16

14

12

10

 8

 6

 4

 2

 0

960 970 980 990 1000101010201030

2
30

0
2

3
5

0
2

4
0

0
2

45
0 3a

960 970 980 990 10001010 10201030

3b

960 970 980 990 1000101010201030

2
3

0
0

23
5

0
2

4
0

0
2

45
0 3c

 960000  970000  980000  990000  1000000  1010000  1020000  1030000  
2
3
0
0
0
0
0
 

 
2
3
5
0
0
0
0
 

 
2
4
0
0
0
0
0
 

 
2
4
5
0
0
0
0
 

  50
  40

  30
  20

  10
   0

 -10

 -20
 -30

 -40
 -50

 -60
 -70

 -80
 -90

-100
-110

960 970 980 990 1000101010201030

23
0

0
2

3
50

2
4

00
24

5
0 3b

 
Figure 3. Estimation of nitrates concentration and its evolution between 1997 and 2003: a) 

1997cokriging; b) Cokriging of the difference 2003-1997; c) standard deviation of estimation errors of the 
cokriged difference 

 
4. Concluding remarks 
 
The spatial structure of the nitrates concentrations was investigated by means of 
multivariate variography, highlighting the anisotropy closely related to the prevailing 
direction of groundwater flow (APRONA, 1999). Based on the correlation between the 
data collected at the same monitoring points and on the study of the difference of 
nitrates concentrations, a reduction of the highest concentrations of nitrate between 
1997 and 2003 data was observed.  
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Abstract: Spiders are known as one of the most important group of predators in
olive agroecosystems, limiting the populations of insect pests and the damage they
can cause. However, some agricultural practices are known to modify spider com-
munities changing their species composition and abundance. To assess the influence
of different management systems we collected data on spider fauna in three different
olive groves and with three different methods. For the three sampling methods bio-
diversity indexes as Simpson’s, Shannon’s and Sørensen’s were calculated in terms
of spiders’ families, in order to evaluate their temporal evolution and the relation to
crop management systems. This purpose is accomplished in the context of general-
ized linear models and cluster analysis of dissimilarity matrices.

Keywords: Araneae, biodiversity indexes, cluster analysis, cultural practices,
dissimilarity coefficients, GLM, Olea europaea

1 Introduction

All spiders (Araneae) are predators that feed primarily on insects and other arthro-
pods (Wise, 1993). Many studies have revealed that spiders are a large fraction of
the predator fauna in agroecosystems, both in terms of population density and in
diversity of species (Ghavami, 2006), representing the most diversified group and,
after the ants, the most abundant group of predators in olive groves (Morris et al.,
1999). It was observed that spiders are more sensitive than their prey to pesti-
cides: thus the absence of these predators can induce pest outbreaks (Maloney et
al., 2003). Some cultural practices, as the use of pesticides, bring changes in spider
composition (Santos et al., 2007). The purpose of the present study was to char-
acterize spider biodiversity of three olive groves subjected to different intensities of
cultivation practices. The effect of three different sampling tools was also evaluated.
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2 Materials and Methods

In May 2010 a research was initiated in three olive groves in the countryside of
Valenzano (Bari, Italy) to assess the influence of different management systems on
the spider fauna. The study was conducted until March 2011 in three olive groves: a
private olive grove (field A) and two experimental groves (fields B and C) managed
by the Faculty of Agriculture (University of Bari). Field A was abandoned, at least
over the last decade, Field B was under minimized agronomical practices and Field
C was under a larger number of farming practices (insecticide treatment and weed
control). Spiders were collected fortnightly using three different sampling methods:
1) pitfall traps for collecting wandering spiders at ground level; 2) cardboard bands
placed around the trunk for spiders sheltering between the bark anfractuosities; 3)
frappage for sampling spiders living on the foliage of the olive trees. In each grove,
five pitfall traps about 15 meters apart were placed. Pitfall traps, having a diameter
of 12 cm and a height of 12 cm, were buried up to the top and filled to fourth with a
mixture to preserve the animals collected. A cardboard band about 15 cm high, was
wrapped in 3 to 4 laps around the trunk of five olive trees per field, at about one
meter above the ground level. Collection by frappage was carried out on five trees
per grove, selected randomly at each sampling. Two branches per tree were beaten
over an entomological umbrella (1m x 1m), collecting all the spiders dislodged.
Overall, five units were taken per each sampling method (pitfall, cardboard bands,
frappage on plant) and olive grove (A, B, C). In the laboratory all the spiders
collected were identified using dichotomous keys. Most of the spiders were released
in the respective collection field after identification. As measures of α-biodiversity
the Shannon and Simpson indexes were calculated for each date, field and sampling
method (summarizing the five replications). While the Shannon index depends
on the number of families identified and on the evenness of their abundance, the
Simpson index measures the probability that two individuals randomly selected from
a sample will belong to the same family. The variation of both measurements with
time, habitat and sampling method was investigated by generalized linear models
(GLM, Zuur et al., 2009). In order to compare the different habitats and sampling
methods a measure of β-biodiversity as Søresen index was also considered. This
index measures the dissimilarity between pairs of objects and was calculated for
each combination of habitats and sampling methods. Cluster analysis based on
such a dissimilarity matrix was subsequently applied.

3 Results

GLM’s for the Shannon and Simpson indexes were fitted considering the same set
of effects: habitat, sampling method and linear time trend. Standard routines con-
tained in the statistical environment R (R Development Core Team, 2008) were used
throughout. The two response variable were both preliminary transformed in order
to obtain tractable marginal distributions. The monotone transformation 1/(1 + x)
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Effects Shannon Simpson
estimate SE p-value estimate SE p-value

Field A 2.390 0.103 < 0.000 1.573 0.049 < 0.000
Field B 2.573 0.107 < 0.000 1.613 0.049 < 0.000
Field C 2.769 0.110 < 0.000 1.740 0.051 < 0.000
bands - - - 0.037 0.044 0.402
beat - - - 0.111 0.043 0.012

time trend -0.036 0.007 < 0.000 -0.011 0.003 < 0.000

Table 1: GLM’s for Shannon and Simpson indexes, parameter estimates.

allows for null values of the biodiversity indexes (two observations with only one
spider family) and produces a switch from left to right skewness compatible with
the Gamma distributional assumption (inverse link). Overall model and effects sig-
nificance were used to select relevant covariates of the two models reported in Tab.
1. The highest number of spiders was collected in field B, the lowest (less than half)
in field C (the one with a higher cultural pressure), while intermediate values were
observed in A. Gnaphosidae, mainly collected by cardboard bands, were the family
clearly dominant in the three olive groves, they were followed by Zodariidae, col-
lected exclusively by pitfall traps. The highest values of both Shannon and Simpson
indexes were observed in the olive grove subjected to more intensive cultivation prac-
tices (field C), as a consequence of the greater evenness of spider families. While
both indexes are significantly influenced by the habitat, only the Simpson index
shows a significant difference of the frappage (beat) sampling method with respect
to the other two. A negative linear time trend was detected for the two transformed
indexes, implying a slight decrease of the α-biodiversity across time.

In Fig. 1 the heat map relative to the Søresen index (Borcard et al., 2011)
highlights similarities between habitats for each sampling method. For the frappage
sampling method, the intensive management in field C can be distinguished from
the others. From a cluster analysis point of view this leads to a higher heterogeneity
in relation with this sampling method.

4 Concluding remarks

The higher intensity of some cultural practices, in particular treatment with insec-
ticides, caused a decrement in biodiversity of spiders on the foliage of olive trees
soon after the treatments. To obtain a more complete description of the spider
fauna of an agroecosystem as the olive grove, different collection methods should be
used simultaneously. The three methods used in the course of this research seem to
complement each other, allowing to detect a greater number of families.
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Figure 1: Heat map of the distance matrix based on Sørensen’s index reordered
according to the dendrogram.
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Abstract: The objective of this paper is to report on the crop classification activities 
carried out during the first year of  the Italian project “Use of COSMO-SkyMed data for 
LANDcover classification and surface parameters retrieval over agricultural sites” 
(COSMOLAND), funded by the Italian Space Agency. The project intends to contribute 
to the COSMO-SkyMed mission objectives in the agriculture and hydrology application 
domains. In particular, the objective of the classification activities is to assess the 
potential of multi-temporal series of X-band COSMO-SkyMed SAR data for crop 
classification. The selected agricultural site is located in the Capitanata plain close to 
the Foggia town (Puglia region, Southern Italy). Over this area, 8 Stripmap PingPong 
COSMO Sky-Med images at HH/HV polarization and at low incidence angle were 
acquired from April to August 2010. In the paper, a classification scheme based on the 
Maximum Likelihood algorithm is applied to the multi-temporal data set and its 
accuracy is assessed with respect to a reference map obtained by means of SPOT data.  
 
Keywords: Land cover classification, SAR, COSMO-SkyMed, multi-temporal data 

 
1. Introduction 
 
The mapping of land cover/use and the monitoring of  spatial and temporal variability 
of land surface parameters are important issues in the management of land and water 
resources. The improved spatial resolution and the reduced revisiting time of the new 
generation of spaceborne SAR systems, such as Cosmo-SkyMed, aroused an increasing 
interest in SAR data for land use classification. Several past studies have assessed the 
sensitivity of SAR data at C and L band to various crop or land classes and their use for 
crop mapping or land classification (McNairn et al., 2004, Skriver et al., 2010). On the 
contrary, relatively little work has been conducted up to date by using X-band SAR data 
due to the lack of long series of data. Nowadays, the availability of spaceborne SAR 
systems operating at X-band and characterized by a short revisiting time represents a 
good opportunity to deeper explore the use of this frequency for land cover 
classification. 
In this context, the objective of this paper is to report on the crop classification activities 
carried out during the first year of  the Italian project “Use of COSMO-SkyMed data for 
LANDcover classification and surface parameters retrieval over agricultural sites” 

                                                           
1 This research is supported by the Italian Space Agency under contract I/051/09/0. COSMO-SkyMed 
data were provided by ©ASI in the framework of ©CSK AO 2161. SPOT data were obtained from CNES 
(2010) Distribution Spot Image ISIS-368. 
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(COSMOLAND), funded by the Italian Space Agency. The activities are still in 
progress and their final aim is to assess the potential of multi-temporal series of X-band 
COSMO-SkyMed SAR data (ASI ref., 2010) for crop classification.  
In this paper, a multi-temporal series of X-band COSMO-SkyMed SAR data acquired in 
2010 over an agricultural area in the Capitanata plain, Southern Italy, is investigated. 
The experimental data set is described in the next section, then the adopted 
classification algorithm and the first obtained results are illustrated and discussed. 
Finally, a summary and future work are drawn. 
 
2. Materials and Methods 
 
The investigated site (Figure 1) is located in the Capitanata plain close to Foggia town 
(Puglia region, Southern Italy), which is the second largest plain in Italy. The study area 
of approximately 700km2 is mainly devoted to durum wheat cultivation (more than 50% 
of the total cultivated area). Other important seasonal crops are tomato and sugar beet. 
The classification image reported in Figure 1 shows an updated land cover map derived 
from 2 SPOT images acquired in 2010 (SPOT4 on 04/07/2010, and SPOT5 on 
26/07/2010) classified by using the Maximum Likelihood algorithm. It is worth noting 
that wheat fields are already harvested in June, and therefore the class “wheat” on these 
dates was obtained classifying “harvested wheat”. The overall accuracy obtained is 
approximately 89%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Land cover map of the Foggia site derived from SPOT data  acquired in 2010. 
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Over this area, 8 Strip-map (Ping-Pong) level 1C-Geocoded Ellipsoid Corrected (GEC) 
products, at HH and HV polarization and at 26° mean incidence angle were also 
acquired from April to August 2010 (Table 1). It may be worth noting that there were 
no SAR acquisitions in June, which is an important period of the growing season.  
The SAR images were coregistered, geocoded, and spatially filtered with a Boxcar filter 
of 5x5 pixels. 
 

 
 
3. Results 
 
Previous results have shown that single-date SAR data usually are not sufficient to 
accurately discriminate crop classes, on the contrary multi-temporal information can 
significantly improve the classification accuracy (Skriver et al., 2011). To investigate 
the extension to which such a result holds for the Foggia site, two different scenarios 
were compared:  

1) classification of 1-date SAR image at HH & HV;  
2) classification of 3-dates SAR images at HH & HV. 

The selected classes are: wheat, sugar beet, tomato, vineyard and olives. Whereas, the 
selected dates are from ID D1 to D6, as reported in Table 1 (i.e. 6 out of 8 COSMO-
SkyMed data-taken available), because they cover the main phenological cycles from 
April to July of the non-permanent crops. In August and September all the crops are 
either already harvested or about to be harvested. The adopted classification algorithm 
is the Maximum Likelihood (ML) for multivariate Gaussian distributed data, as SAR 
data with a number of looks larger than 10 can be assumed. Training data extracted 
from the SAR images in correspondence of fields cultivated with the selected crops, 
were identified and used in the ML algorithm.  
The overall accuracy (OA%) of correct classification is reported in Figure 2 for the two 
investigated scenarios. By using single-date SAR data (i.e. D1,…,D6),  the OA ranges 
between 70% and 80% whereas, by using multi-date SAR data (e.g. 3D4 means 3 dates: 
D4, D5 and D6), the OA ranges between 80% and 90%. Therefore, multi-temporal 
information can bring an improvement ranging between 10% and 20%. It is also worth 
emphasising that a significant dependence of the OA on the specific dates is observed. 
For instance, on D3 and D4 the OA is significantly lower than on D1, D2, D5 and D6. 

ID Date Mode swath Mean incidence 
angle [°] 

Polarization 

D1 03/04/10 StripMap PP02 26 HH/HV 
D2 27/04/10 StripMap PP02 26 HH/HV 
D3 21/05/10 StripMap PP02 26 HH/HV 
D4 29/05/10 StripMap PP02 26 HH/HV 
D5 08/07/10 StripMap PP02 26 HH/HV 
D6 24/07/10 StripMap PP02 26 HH/HV 
D7 01/08/10 StripMap PP02 26 HH/HV 
D8 09/08/10 StripMap PP02 26 HH/HV 

 
Table 1: COSMO-SkyMed images (level 1C-Geocoded Ellipsoid Corrected (GEC) 
products) acquired over the Foggia test site in 2010 . 
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This is likely due to the fact that on D3 and D4 there is a reduced separation in the radar 
response of the five crop classes related to their phenological stages.  
Figure 3 shows an example of land cover image obtained from multi-temporal, dual 
polarization COSMO SkyMed images (i.e. case 3D4, HH+HV). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Concluding remarks 
 
This paper reported on the classification activities carried out during the first year of the 
COSMOLAND project. A multi-temporal series of X-band COSMO-SkyMed SAR data 
acquired over the Foggia agricultural site was used to investigate the potential of SAR 
data fro crop classification. Results showed that classification accuracies improve of 
10%-20% by using multi- with respect to single-date X-band SAR data. Future work 
will be dedicated to extend the analysis to a larger set of test fields over the Foggia site, 
to longer time series of COSMO data and to the other agricultural sites included in the 
COSMOLAND project.  
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Figure 3: Land cover image obtained 
from HH+HV, multi-temporal COSMO-
SkyMed images (acquisition dates 2010-
05-29, 2010-07-08, 2010-07-24). Wheat, 
sugar beet, and tomato fields are in 
yellow, green and red, respectively. 
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Figure 2: Overall accuracy % of single / 
multi-temporal, single / multi-polarization 
images obtained for training data.  D1 to D6 
are the dates of the COSMO-SkyMed
images. 3D1 to 3D4 are the groups of 3 
images starting from date D1 up to D4.  
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Abstract 
Mediterranean harbours are today experiencing criticalities on the management of bottom 
sediment. Bari harbour among them is one of the most important in southern Italy, in terms 
of both commercial and touristic activities. Surveys dealing with the geophysical and 
sedimentological characterization of harbour sediments were performed during the period 
2009-2011. The aim was: 1) a volume estimation of the sediments; 2) a granulometric 
characterization for the classification of sediment quality. The bathymetric and geophysical 
survey allowed a detailed estimation of the total sediment volume. The  grain–size 
characterization consisted in the analysis of sediment samples collected at different depths 
in the harbour area.  A combined elaboration of results lead to a multidimensional 
representation of the physical characteristic of sediments by means of a GIS platform.  
 
Keywords: harbour sediments, geophysics, granulometry, harbour management. 
 
1. Introduction 
Bari harbour is located along the Southern Adriatic sea and is a multipurpose harbour (both 
commercial and passenger traffic). It is among the main Italian harbours, considering that it 
deals with a yearly commercial displacement of about 5 million tons (mainly dry generic 
goods) and about 2 million passenger transits (of which 600000 cruisers). The Harbour 
Authority of Levante, constituted according to the Italian law 84/1994, is in charge of port 
management. The hydrodynamic characteristics of the harbour and the geologic nature of 
its bottom substrate lead to a sediment circulation that provokes thickening of sediment 
near the entrance and docks. These sediment accumulations do not allow an optimum 
exploitation of the harbour operational depths. For this reason, maintenance dredging is 
necessary. The new legislative framework requires complex procedures for the obtainment 
of environmental permits, which dramatically slows down harbour’s maintenance. In order 
to organize maintenance activities, a detailed knowledge of the harbour bathymetry, 
sediment thickness and grain size is needed. It is to remember that sediment disposal is 
regulated by severe environmental laws, especially for the pelitic fraction (< 0.0064 mm) 
(ICRAM-APAT, 2007). 
 



2. Materials and Methods 
A stratigraphic and bathymetric survey, followed by a coring campaign and sediment 
sampling was performed in the Bari harbour in the period 2009-2011. The stratigraphic and 
bathymetric survey, completed in 2009, was carried out for determining the status of the 
seafloor. The survey was certified according to the IHO Special Order S-44. The navigation 
and geophysical data acquisition system consists of a central computer equipped with two 
specific softwares (Thales PDS 2000, Communication Technology SwanPro), both 
interfaced with the positioning system, the sound velocity profiler, the high-resolution multi 
beam echosounder transducer and the single-channel sub-bottom profiler. Raw bathymetric 
data were processed by CARIS HIPS 7.0 sw, which allows the creation of a weighted grid 
surface (BASE, Bathymetry Associated with Statistical Error), reduced to the mean sea 
level as vertical datum reference. The stratigraphic survey was executed using the high 
resolution seismic reflection methodology. 
The probing campaign with sediment sampling was carried out in the period January-
February 2011. Cores of 10 cm radius were extracted in the sectors where, by the data of 
the previous bathymetric survey, the depth of the sea bottom resulted lower than the 
operational depth of the commercial and touristic traffic. The cores were of a length 
between about 1 and 2.5 m. Sediment samples were extracted each 50 cm. Most of the 
cores refer to the inner harbour perimeter and docks. An area near the harbour entrance was 
also cored. On the sediment samples, grain-size analyses were carried out. The grain-size 
distributions were represented as relative frequency distribution of percent weight and 
cumulative distributions. 
 
3. Results 
With regard the stratigraphic survey, the collected data consist of n. 87 seismic profiles (fig. 
1) showing the geometry generated by the major acoustic reflectors and related to the 
interfaces between different sedimentary layers. Seismic data were processed by TEI sw in 
order to reconstruct the thickness of the sediments layer deposited on the bedrock through 
the picking operation. The modelling of the surfaces of the seabed and limestone bedrock 
respectively, allows to estimate  the amount of loose sediment to be dredged in 120,000 m3, 
in relation to established minimum safety depth for movement and berthing port areas. 
 

 
Figure 1: A seismic profile. The position of seismic reflectors allows locating the limit 
between the calcareous rock substrate with the overlying sediments. 
 
The mosaic of the seismic profiles, performed by using GIS software platforms, allowed 
the 3d reconstruction of both the geometry of the rock substrate (fig 3a) and the sediment 
thickness (fig. 3b), allowing to highlight the main thickenings and accumulation of 
sediments near the harbour entrance and docks. 



The grain-size spectrum from the sediment samples analysis covers a range between 2mm 
and 0.002mm, and is represented by means of the φ metric, where φ is = -log2 d, and d is 
particle diameter in mm. From the cumulative distribution the median size, Mdφ (50th 
percentile of the cumulative distribution) and sorting, σφ (16th-86th percentile/2), which 
represent, respectively, a graphic approximation of the central tendency and of the 
dispersion of the distribution was calculated (fig.2). 
 

 
Figure 2: A sediments sample from the Bari harbour: an example of grain-size distribution 
histogram and cumulative distribution. 
 
4. Concluding remarks 
By combining data from the bathymetric investigation and from the granulometric 
characterization of sediments, it is possible to evaluate both the total volume of sediments 
inside the harbour and also the amount that needs to be dredged for the harbour 
maintenance. Furthermore, it is possible to highlight the relationship between sediment 
thickness and grain size, as shown on figure 3c. Data show a broad variability of grain size, 
both as a function of depth and location inside the harbour. These data are to be interpreted 
with reference both to the net sediment supply as due to the marine currents and also as a 
function of sediment recirculation, inside the harbour, as due to the ships movement. 
Sediment recirculation is favoured in the front of docks and much attenuated on the docks 
rear.  In conclusion, starting from these data and by means of further investigation, it will 
be possible to implement sediment circulation models in the various sector of Bari harbour, 
and the relative sedimentation rate, with the aim of better designing the dimension and 
effectiveness of maintenance dredging according to the available rules and guide-lines 
(AA.VV., 1999; ICRAM-APAT, 2007). These results represent a good base for the purpose 
of future  integrated management of the  investigated harbour. 
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Figure 3: a = depth of the calcareous rock substrate. b = sediment thickness. c= sediment 
grain size. 
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Abstract: Multivariate statistical techniques, such as Principal Component Analysis, 
Absolute Principal Component Scores, Cluster Analysis and Discriminant Function 
Analysis were applied to data set (pH, Electrical Conductivity, Total Dissolved Solids 
(TDS), Dissolved Oxygen (O2), Chemical Oxygen Demand (COD), the major ions (i.e. 
Na+, Ca2+, Mg2+, K+, Cl-, NO3

-, SO4
2- and HCO3

-), vital organism at 22 °C and 36 °C) of 
ground waters collected in 473 sites of the Apulia region during the “Expansion of 
regional agro-meteorological network” project. Multivariate statistical techniques 
allowed to identify for each province sites with different characteristics as respect to 
similar characteristics ones. Moreover Absolute Principal Component Scores allowed to 
identify generally  three pollutant sources. 
 
 
Keywords: ground water, water pollutants, source apportionment, statistical analyses 
 
 
1. Introduction 
 
During the years 2004-2007 the Agricultural and Food Authority of Apulia Region has 
implemented the project “Expansion of regional agro-meteorological network” in order 
to assess, monitor and manage the regional groundwater quality. The wells monitored 
during this activity amounted to 473 and the water samples analyzed were 998. 
This resulted in a huge and complex data matrix comprised of a large number of 
physical-chemical parameters, which are often difficult to interpret and draw 
meaningful conclusions. Further, for effective pollution control and water resource 
management, it is required to identify the pollution sources and their quantitative 
contributions.  The application of different multivariate statistical techniques such as 
cluster analysis (CA), principal component analysis (PCA), source apportionment by 
multiple linear regression on absolute principal component scores (APCS) for 
interpretation of the complex databases offers a better understanding of water quality in 
the study region. Moreover Discriminant Function Analysis (DA) was used in order to 
identify the characteristics of the all sites investigated in the Apulia region. 
 
 
2. Materials and Methods 
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Groundwater samplings were performed under dynamic conditions, after flushing a 
large amounts of water for about 30 minutes. Samples were collected in polyethylene 
tanks with cap and under cap, filled to the brim in order to prevent the transfer of the 
analytes in the headspace and their loss at the opening of the tanks. After collection, 
samples were stored in cooled bags and transported to the laboratory as soon as 
possible.  
The samples were analyzed for pH, Electrical Conductivity (Electr. Cond.), Total 
Dissolved Solids (TDS), Dissolved Oxygen (O2), Chemical Oxygen Demand (COD), 
the major ions (ie. Na+, Ca2+, Mg2+, K+, Cl-, NO3

-, SO4
2- and HCO3

-), vital organism at 
22 °C and 36 °C, according to the official guideline proposed by the Ministero delle 
Politiche Agricole (the national agriculture authority) in a specific law (Decreto 
Ministeriale del 23 Marzo 2000 “Metodi ufficiali di analisi delle acque per uso agricolo 
e zootecnico”). Each parameter was analyzed in three replicates. In table 1 the number 
of monitored wells and collected samples for each Apulian province have shown. 
 
    

Province Wells Samples 
collected 

BARI 96 260 
BRINDISI 89 102 
FOGGIA 85 219 
LECCE 84 165 
TARANTO 119 252 

 
   Table 1: Groundwater quality monitoring              
 
 
3. Results 
 
DFA applied to all data set allowed to individuate the variables with bigger 
discriminatory power. The results are shown in table 2: among variables those with 
bigger discriminatory power are highlighted  in bold.      
PCA, CA, APCS methods were firstly applied to the samples collected in each Apulian 
province separately. Form results obtained by PCA and CA was evident that for  each 
province some sampling sites investigated showed dissimilarities, mostly due to the 
location of the site (close to the sea, close to not purified water channels), the land use 
and management techniques (fertilizing and nourishing techniques) and groundwater 
overuse of the investigated sites. For all these reasons several natural and anthropogenic 
sources affect the groundwater quality of the investigated sites. As example some 
results of PCA and APCS for Taranto province are shown in figure 1 and 2.  
Considering the score plot (figure 1) in the plane of the first  and second Principal 
Component it is possible to note some scattered samples, highlighted in rectangular 
lines. Moreover considering the loading plot (not shown here) the samples (sites) 
enclosed in the red lines (figure 1) show high loading values for vital organism at 22 °C 
and 36°C; samples enclosed in the green line show high loading values for TDS, Electr. 
Cond., Cl-, Na+, Mg2+; samples enclosed in the brown line show high loading values for 
COD,   SO4

2-, Ca2+ and those in magenta line show high values for K+. 
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Table 2: Variables selected by Wilks lambda 

 

Figure 1: Score plot for Tarano province data matrix 
 

The sites in red line are located close to a channel collecting waters from municipal 
purifier plant; those in green line are located close to the coast and for those it’s possible 

Variables Wilks Λ  Partial �Λ  
pH 0.3488 0.6743 
Elect Cond 0.2429 0.9684 
TDS 0.2376 0.9900 
O2 0.2379 0.9886 
Na+ 0.2355 0.9987 
Ca2+ 0.2359 0.9971 
Mg2+ 0.2438 0.9649 
K+ 0.2529 0.9301 
COD 0.2365 0.9945 
Cl- 0.2353 0.9995 
NO3

- 0.2388 0.9851 
SO4

2- 0.2382 0.9876 
HCO3

- 0.2416 0.9737 
Vit. Org. 22°C 0.2362 0.9956 
Vit. Org. 36°C 0.2356 0.9983 
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suppose an intrusion of marine water. The sites enclosed in brown line are located in an 
area with high agricultural impact: this means high use of fertilizers and nutrients.  
The CA results support the PCA ones. 
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Figure 2: Percentage of source’s contribution to each parameters for Taranto province 

data matrix  
 
In order to individuate the pollutant sources the APCS method was applied to the data 
matrix  of physical-chemical parameters collected. By APCS method it’s been possible 
generally to identify three  pollutant sources. About Taranto province data matrix (see 
figure 2) the pollution sources identified were: a source due to fertilizer applications and 
use of unpurified irrigation water; a pollution source due to agricultural techniques, 
marine water intrusion in the site one and a source mostly due to the calcareous 
characteristics of the soil in that area.  
 

 
4. Concluding remarks 
 
Multivariate statistical methods represent a valid tool to understand complex nature of 
groundwater quality issues, determine priorities in the use of ground waters as irrigation 
water and suggest interactions between land use and irrigation water quality. The results 
obtained by multivariate statistical methods can be used  to suggest to stakeholders, for 
example, a mitigation in the groundwater overuse of some wells mostly in dry seasons 
and to require  orderly quality tests of the channel waters when they are used for crop 
irrigation. 
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viale Morgagni 59, 50134 Firenze (Italy) - gallucci@ds.unifi.it

Abstract: We try to verify whether significant changes in the seismic activity
are identifiable prior to a main shock, by means of statistical tests for structural
changes applied to earthquakes models. A panel of models is selected, ranging from
zero-inflated Poisson model to temporal and spatio-temporal point processes.
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1 Introduction

As Kanamori (1981) pointed out, “various seismicity patterns before major earth-
quakes have been reported in the literature”. Indeed, there is not uniform empiric
evidence about the observed seismic activity in proximity of a relevant earthquake.
Leaving aside differing definitions, some kinds of pattern are diffusely identified,
sometimes following one another in the same seismic sequence: foreshocks (a large
number of small events clustered in the main shock area), quiescence (reduced seis-
mic activity before a large event), precursory swarms (distinct clusters of small
earthquakes) and doughnut patterns (a quiet focal area surrounded by a region
characterized by intense activity). However, different observations have in common
the presence of a change in the seismic activity before a major event. Our aim is to
detect these changes by means of statistical tests for structural breaks.

2 Materials and Methods

We choose to focus on the area surrounding the city of L’Aquila to verify the asser-
tion of Papadopoulos et al.(2010). In their analysis of the seismic sequence prior to
L’Aquila (Italy) earthquake (Mw 6.3) of 6th April 2009, the authors claim to have
observed a change in the seismicity rate (daily number of events).

Data on earthquake events for Italy are publicly available on the website of the
Istituto Nazionale di Geofisica e Vulcanologia (INGV). The area is identified as the
square with side length of 100 km centered in the conventional coordinates of the
city of L’Aquila (Lat. 42.35, Lon. 13.40), corresponding to the Forte Spagnolo.
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The simplest way to describe a sequence of earthquake events in statistical terms
is to consider the number of occurrences in periods of a certain length (days, weeks,
months), which can be described in terms of a Poisson distribution. However, if
the selected length is short enough, then a considerable number of periods with
no events is present. To model this characteristic, we will refer to a zero-inflated
Poisson (ZIP) model, as proposed by Guillas et al. (2010) in their analysis of the
relationship between the ENSO and EPR seismicity. The number of events in the
i-th period, Yi, is described as follows:{

Yi ∼ 0 with probability p

Yi ∼ Poisson(µ) with probability 1− p
(1)

To consider the presence of autocorrelation, neglected by the basic ZIP model, we
will also perform time-series analysis, firstly introducing an auto-regressive compo-
nent.
However, earthquake occurrences are more frequently described by means of point
processes. Among this class of models, the most known is the Epidemic-Type After-
shock Sequence (ETAS) proposed by Ogata (1988). The first version of the model
did not consider spatial coordinates, which were introduced in successive works (e.g.
Ogata 1998). In this model, every single event is susceptible to produce an after-
shock sequence. The occurrence rate of events, that is the conditional intensity λ, is
therefore given by background seismicity µ and aftershocks, which are a function of
magnitude (M) and of spatio-temporal (x; y; t) coordinates of the triggering events:

λ(t, x, y) = µ(x, y) +
∑
j:tj<t

v(t− tj)× g(x− xj; y − yj;Mj −Mc) (2)

where Mc is the cutoff magnitude. Various kinds of g(· ) functions are proposed.

Several tests for structural breaks are available in literature (e.g. by Chow,
Quandt and Brown, Evans and Rubin). As noted by Hansen (1990), test procedures
based on repeated estimation of the model are demanding, and not practically ap-
plicable, in case of complex models, which require relevant computational efforts.
Therefore the author proposes a Lagrange multiplier (LM) test which only requires
to estimate the model under the null hypothesis of no variations in the parameters.

3 Results

The analysis of the data leads to identify two periods when the seismic activity is
appreciably intensified: the first between the end of 1997 and the first half of 1998,
when the area was partially affected by the earthquake sequence in Umbria and
Marche, and the second since April 6th main shock in L’Aquila. These two events
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clearly represent a departure from the normal seismicity in the area, and shall be
excluded from the analysis to avoid conditioning the results. Therefore, we consider
the period from June 1st, 1998 and March 31th, 2009.

The first analysis accomplished with the ZIP model confirm the importance of
considering the temporal correlation, but they are in contrast with the claim for a
change on October 28th 2008 (see Table 1), as stated by Papadopoulos et al., while
a change at the end of March 2009 seems to be more reasonable (see Table 2).

Estimate Std. Error z value Pr(> |z|)
µ regression

Intercept −0.136 0.036 −3.778 0.000
AR(1) 0.106 0.012 8.810 < 2 · 10−16

p regression
Intercept −0.347 0.072 −4.855 1.2 · 10−6

Break date: 2008/10/28 0.136 0.118 1.148 0.251

AIC = 8244 p = 0.41402 (SE 0.02457)

Table 1: ZIP model (1) – no significant break is detectable on October 28th 2008.

Estimate Std. Error z value Pr(> |z|)
µ regression

Intercept −0.132 0.036 −3.689 0.000
AR(1) 0.088 0.013 6.695 2.2 · 10−11

p regression
Intercept −0.363 0.073 −4.998 5.8 · 10−7

Break date: 2009/03/25 1.133 0.266 4.264 2.0 · 10−5

AIC = 8220 p = 0.41028 (SE 0.02525)

Table 2: ZIP model (2) – a significant break occurs on March 25th 2009.

ETAS model analysis is in a preliminary stage, but similar results seem to arise:
Figure 1 shows a change in the residual process at the end of the considered period.

4 Concluding remarks

Due to different seismicity patterns empirically observed, the result of the analysis
may vary with respect to the location and the extension of the considered area.

With respect to the period and the location we consider, and albeit further
investigation is necessary, we shall doubt about a significant change occurred at the
end of October 2008, but we can expect it to be identifiable in late March 2009.
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Figure 1: Residuals of the ETAS model
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Abstract: In this work a methodology using Geographical Information Systems was 
developed and applied to a temporal series of land cover layers (for the years 1956, 
1978, 1991 and 2010) in the municipality of Vall d’Uxó, Eastern Spain. Four types of 
metrics were implemented (1) spatial representation of the degree of artificialisation, (2) 
patchiness and fragmentation, (3) fertility dynamics of soils according to their land 
capability, and (4) soils imperviousness and loss of water retention capacity. 
Results showed that the set of metrics can efficiently represent spatial and temporal 
dynamics. Furthermore, a link can be distinguished between trends in the degree of 
artificialisation, landscape structure and soil fertility and water retention properties for 
the region analysed. 
 
Keywords: Land use-cover change, anthropogenic soil sealing, land degradation, 
spatial landscape metrics 
 
 
1. Introduction 
 
Land use-cover change is an ongoing process in both time and space. In recent years, 
land cover dynamism has accelerated in urban area hinterlands, being notorious in the 
Mediterranean region. It has been observed that the major mechanisms of change in 
western Mediterranean areas are intensification and transformation, which can be 
integrated in the general trend of artificialisation (Pascual Aguilar, 2002).  While 
intensification mainly concerns the change from traditional rain-fed agriculture to cash 
crop irrigation practices, transformation is related with the substitution of one type of 
land use (and subsequent cover) by another, as in the transition from cultivated fields to 
buildings and roads. 
According to the European Union perspectives, a transformation trend known as 
anthropogenic soil sealing is one of the most worrying aspects of soil degradation, along 
with the loss of useful biota, affecting desertification in dry environments where rainfall 



 

2 
 

is scarce. One of the major impacts of soil sealing is the loss of fertility and the 
alteration of the water regime due to imperviousness of the top soil layers. 
Approaches to help understand pattern dynamics of land use-cover changes has been 
developed. Less studied are the interactions between trends in such spatial metrics and 
the environmental effects of land use-cover dynamics on soils and their water regimes. 
The general aim of this research is thus the development of a descriptive framework 
based on landscape and environmental metrics to assess land use-cover spatial and 
temporal dynamics. Specific objectives are the application of spatial environmental 
metrics to analyze historical trends in (1) anthropogenic soil sealing, (2) in landscape 
structure changes, and (3) in soil productivity and soil water dynamics. 
The analysis has been applied to the municipality of Vall d’Uxó in the province of 
Castellón, Eastern Spain. It is located in a transition area between Mediterranean coastal 
plains and pre-littoral mountain ranges. In recent decades, the region has undergone an 
intense dynamism dominated by the transition from traditional agricultural systems to 
highly technified irrigated cash crops and artificial surfaces (Pascual Aguilar, 2002), 
both processes identified in other regions and described respectively as intensification 
and conversion (Lambin, 1997). 
 
 
2. Materials and Methods 
 
Several layers of information were built up using conventional Geographical 
Information Systems software (ArcGis 9.3). Initial maps consisted of (1) detailed (scale 
1:10000) land cover layers for the years 1956, 1978, 1991 and 2010, and (2) the 
construction of a soil map according to FAO nomenclature from published reports 
(Rubio et al. 1995). 
Initial data were further processed to obtain layers with artificial surface urban and 
infrastructures classes for the respective land cover years and, from the soil maps one 
layer with soil agricultural capabilities following existing well established 
methodologies (Antolín, 1998) and a second one with soil water retention properties 
were extracted from the information from samples provided in soil reports (Rubio et al. 
1995). 
Four different types of metrics have been developed. First, landscape structure metrics 
were used. A cartographic value was developed, the Synthetic Index of Landscape 
Artificialisation (SILA), which expresses trends of artificial covers per unit area (a 
representative square of 100 x 100 m).  The index includes under the same landscape 
class both agricultural intensification and paved and concrete surfaces and is the result 
of calculating the percentage of this class for each representative square area. 
Second, based on existing metrics (e.g. Cushman et al. 2008), landscape structure was 
analyzed to determine the degree of fragmentation and patchiness with the specific 
landscape class of paved and built up surfaces, with major impact on soils and their 
water regime. The metrics applied to each year were the Number of Patches (NP), the 
Maximum Patch Size (MxPS in hectares), the Patch Average Size (MePS in ha), and the 
Patch Size Variance (PSV). 
Third, specific metrics were developed to obtain insight about the potential 
environmental impact on soils fertility, understood as their capability to produce food. 
Fourth, specific metrics have been also calculated to describe the impact of soil sealing 
on the water holding properties of soils. Metrics developed for land capability and water 
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retention are: Total Surface by Land Capability Type, TSLCT (in ha); Water Retention 
Capacity, WRC (in m3); Cumulative Loss of Land Capability for a given year, CLLC 
(in ha); Cumulative Loss of WRC for a given year, CLWRC (in m3);Ratio between 
WRC and TSLCT for a given year, WRC/TSLCT, and ratio between remaining water 
holding capacity (m3) and remaining total land capability land (ha) for a given year, 
RWRC/RTSCU. 
 
 
3. Results 
 
In 54 years a landscape character change of considerable dimensions has taken place. 
The SILA index graphic expression (Figure 1) shows a constant increase in time and 
space with almost 50% of the reference squares above 50% of change due to 
agricultural intensification and artificial surfaces. 
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Figure 1: Cartographic representation of the Spatial Synthetic Index of Landscape 
Artificialisation 

 
Landscape structure is analyzed by a set of four metrics (Number of Patches, NP; Mean 
Patch Size, MePS; Maximum Patch Size, MxPS; Patch Class Size Variance, PSV) 
(Table 1). All four series are monotone. A Mann-Kendall trend test with exact 
distribution of the test statistics, which is suitable for short time series (Hamed, 2009), 
suggests a significant trend at the 95% level for monotone series and a series length of 
four, as given here. We therefore regard these trends as significant, and the strength of 
the trend is approximated by the slope of a straight line, which is fitted to the data. The 
values, which are given in Table 1, suggest strong trends with constant increasing 
patchiness with time and consequent reduction of the remaining metrics (MePS, MxPS, 
and PCSV). The increase in number of patches results in the physical fragmentation of 
the initial landscape units and consequently, MePS, MxPS and PSV get smaller because 
there is a trend to reduce differences between patch sizes. Also, environmental 
consequences of the above trends are reflected in the reduction (the soil sealing process) 
of soils covered by natural or cultivated vegetation. 
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Relationships between landscape structure due to artificial landscape classes and soil 
fertility and hydrological properties are established by a new group of environmental 
metrics (Table 2 and Figure 2). They are related to five types of land capability to 
produce biota (Very High, A; High, B; Moderate, C; Low, D and Very Low, E). 
Fragmentation and patchiness are produced by the increment of artificial surfaces that 
substitute former soil covers of natural or agricultural landscape classes, which area 
synthesized by land capability A, B, C, D, and E types and represented by CLLC metric 
(Table 2). Also the anthropogenic sealing will cover the soil top layer avoiding water 
processes and soil moisture dynamics (CLWRC). Apparently these metrics are different 
for different landscape classes. For A-C the formula “the better the soil, the lower the 
yearly loss” can be established. However, the two lowest biota producing classes, D and 
E, have very low loss rates in 1960. Trends in decline in soil fertility are evident with 
time. Land capability classes C, D and B have lost greater proportion of soil fertility and 
water holding efficiency. Due to this trend, the low biota producing class D undergoes a 
dramatic loss of soil fertility and water holding efficiency: in 2010 it has the second-
highest losses. The largest losses occur for class C. All land capability classes 
experience stronger losses from 1990 on. Moreover, the RWRC/RTSCU ratio reflects a 
general trend in the decline of both indicators. However, the trend in the ratio is not 
strong, as gets apparent in Figure 2. 
 

Metrics 
Year Slope of 

Trend 1956 1978 1991 2010 
NP: Number of Patches  274.0 789.0 1641.0 1725.0 29.2  
MePS: Mean Patch Size (ha) 24.7 8.6 4.1 3.9 -0.4 
MxPS: Maximum Patch Size (ha) 1583.3 1203.1 1007.1 997.2 -11.2 
PSV: Patch Class Size Variance 16794.6 3549.9 1386.7 1316.8 -286.0 

 
Table 1: Synthetic landscape structure metrics 

 

Land 
capabili
ty type 

Soil fertility and soil hydrology metrics 
TSLCT 
(ha) 

WRC  
(m3) 

WRC/ 
TSLCT CLLC (%) CLWRC (%) RWRC/RTSCU 

Reference situation 1956 1978 1991 2010 1956 1978 1991 2010 1956 1978 1991 2010 

A 1441.8 24077678 1670.0 3.9 4.0 4.4 10.6 3.9 4.0 4.4 10.6 1670.0 1670.0 1670.0 1670.0 

B 1083.7 1809312 1669.6 5.7 8.6 10.2 18.0 5.7 8.6 10.2 18.0 1669.6 1669.6 1669.6 1669.5 

C 681.3 828819 1216.6 11.8 23.3 27.1 29.6 16.0 32.1 40.2 43.7 1158.1 1077.2 997.8 972.4 

D 1408.7 726233 515.5 1.2 4.4 6.9 21.7 1.3 6.9 12.8 32.0 514.9 501.7 482.9 447.5 

E 2209.0 1066269 482.7 1.4 2.5 3.6 4.6 1.4 2.4 3.4 4.4 482.9 483.2 483.6 483.4 

Totals 6824.4 6838400 1002.1 3.6 6.3 7.9 14.0 5.2 8.7 11.0 17.9 985.9 976.0 967.6 956.9 
TSLCT: Total Surface by Land Capability Type. WRC: Water Retention Capacity. CLLC: Cumulative Loss of Land Capability for a given year. CLWRC: 
Cumulative Loss of WRC for a given year. WRC/TSLCT: Ratio between WRC and TSLCT for a given year. RWRC/RTSCU: ratio between remaining total water 
holding capacity (m3) and remaining total land capability land (ha) for a given year. 

 
Table 2: Metrics related to soil fertility and soil hydrology 
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Figure 2: Metrics related to soil fertility and soil hydrology 
 
 
4. Concluding remarks 
 
Based on the process of landscape artificialisation due to land use-cover dynamics, the 
methodology developed a set of simple spatial metrics to relate potential impacts on soil 
fertility and hydrology. We found that the landscape structure for the region of Vall 
d’Uxó has become increasingly scattered over the last 50 years. Moreover, the link 
between conventional landscape pattern and structure metrics to new specific ones for 
land capability and water holding properties in soils describes the relation between land 
cover dynamics (in time and space) and their environmental interactions. We found 
different soil fertility and water holding capacity losses for different land types, which 
are distinguished according their potential to produce biota. However, an enhanced loss 
of all metrics within the last 20 years is identifiable for all land types. 
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Abstract: Hierarchical spatio-temporal models permit to estimate many sources of 
variability. In many environmental problems, different features characterizing spatial 
locations can be found. Differences in these classifications can show discrepancies 
either in mean levels or in the spatio-temporal dependence structure. When these 
characteristics are not included in the model structure, model performances and spatial 
predictions may lead to poor results. Here, we compare alternative enrichments of the 
hierarchical spatio-temporal model that consider the presence of groups. Our application 
concerns Ozone data in the Emilia-Romagna region in which the monitoring sites can 
be classified according to their relative position with respect to traffic emissions. 
 
Keywords: spatio-temporal models, hierarchical models, groups of sites, ozone data. 
 
 

1. Introduction 
 
Hierarchical models, being very flexible, are suitable for dealing with differences both 
at the measurement and the process level (Wikle, 2003). 
In the following, we expand the general framework describing hierarchical spatio-
temporal models for studying geostatistical data by the inclusion of domain 
classifications with respect to certain differentiating features (Wang et al., 2009). When 
studying air pollution, for example, monitoring stations may be differently located with 
respect to traffic or household density. This peculiarity can be modeled in a number of 
different ways. Models that allow for differences between groups of sites have recently 
been proposed (Cocchi and Bruno, 2010). In environmental applications: for example, 
Paci (2010) proposed a hierarchical spatio-temporal model for pollutants where the 
group differences were captured by the intercept of the model (i.e. difference in 
pollution levels between the urban and rural locations). In Sahu et al. (2006) a 
hierarchical space-time model for PM2.5 that includes two spatio-temporal processes 
was proposed, where the first captures the background effects, and the second adds 
extra variability for urban locations by using the relationship between the response 
variable and suitable covariates (the population density, in this case). 
Here the inclusion of groups in spatio-temporal models is formalized in a more general 
way. We describe alternative proposals for including group differences in hierarchical 
Bayesian models. The assessment of the consequences for spatial prediction under this 
innovation will be also considered. 

                                                           
1 Work supported by the project PRIN 2008: New developments in sampling theory and practice, Project 
number 2008CEFF37, Sector: Economics and Statistics, awarded by the Italian Government. 
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This paper is organized as follows: the next section describes the Ozone dataset; Section 
3 sketches the main models that include spatial groups; the final section presents the 
main results and some concluding remarks. 
 
 

2. The Ozone Dataset 
 
Tropospheric ozone is one of the most important pollutants when studying  air quality. 
Here, the dataset consists of Ozone daily measurements (in µg/m3) collected from 31 
monitoring stations across the Emilia–Romagna Region in 2001. Monitoring sites can 
be classified according to traffic pollution exposure (D.M.A. 16/05/1996); the two 
groups consist of 17 background monitoring sites (denoted by “G1”) and 14 sites 
characterized by their vicinity to traffic emissions (denoted by “G2”). Monitoring sites 
belonging to G1 are expected to measure higher Ozone levels than sites belonging to 
G2. Some meteorological covariates are available for each site and each time. In 
particular,  one of the most correlated with Ozone is the daily mixing height, that will be 
included as a covariate in the model. 
 
 

3. Model specification 
 
Let �∗ = ��∗��, �	; � ∈ ���, ⋯ , ��∗	, � ∈ �1, ⋯ , �	� denote the log-Ozone 
concentrations for the generic location and time ��, �	. We consider 27 of the 31 sites 
for estimation and 4 sites for prediction assessment (2 for each group). Let define  � as 
the ��-dimensional subset of the original dataset under these specifications. 
Following the usual hierarchical spatio-temporal specification (Banerjee et al. 2004), let 

� = � + � (1) 
where � is the ��-dimensional spatio-temporal process and � is a Gaussian noise 
process ���, ������×��	, representing the spatio-temporal measurement error structure 
via homoscedastic and independent components. Conditionally on � and ��� the 
distribution of � is: ��|� ,  ��� ~ ��� , ������×��	  
The second stage of the hierarchy can be defined as the combination of a large scale 
spatio-temporal process �"	, a spatial effect �#	 and a temporal effect �$	: 

� = " + %�×� ⊗ # + $ ⊗ %�×� (2) 

The expression for the ��-dimensional trend component �"	 is: 

" = '( (3) 

where ( = �)* , )�	′ and ' is a �� × 2 covariates matrix with unit values in the first 
column and daily mixing heights in the second column. The expression in (2) provides 
additive temporal and spatial effects (multiplicative on the original scale). The temporal 
random effect  $ = -.�1	 , ⋯ , .��	/′ and the spatial random effect 
 # = -0���	, ⋯ , 0���	/′ capture respectively any spatial and temporal dependence 
which remains unexplained by the model for the mean (3). The distribution of the 
random effect $ can be expressed via the multivariate distribution 

$  ~ �-�,  �1� 2�3	/   where   -2�3	/45 = 678-−3 :�4 − �5:/ (4) 
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and  �1� is the scalar variance of the temporal component; 2�3	 is the � × � correlation 
matrix defined by the exponential function. 
The spatial random effect # is modeled as a Gaussian process 

#  ~ �-�,  �;�  <�=	/   where   -<�=	/45 = 678-−= :�4 − �5:/ (5) 

and  �;�  is the scalar variance of the spatial process; <�=	 is the � × � spatial 
exponential correlation matrix. 
The model hierarchy is completed by the specification of noninformative prior 
distributions for the hyperparameters.  
In the following subsections we propose two different specifications of model (1) – (5) 
(from now on called “Model (A)”) in order to take groups into account. 

3.1 Modeling differences in the trend component 

When the differences between the two groups are captured by the average level, the 
discrepancies are developed from model (3), the large-scale process can be rewritten as: 

" = >?�∈@�,�AB�,⋯,�	 + '( (6) 

In (6) > is a scalar type-specific intercept and ?�∈@�,�AB�,⋯,�	 is a Tn-dimensional vector 
collecting the dummy variables that classify the spatial sites into groups. The )* 
parameter represents the intercept for the sites belonging to G2 and > + )* represents 
the intercept for the other group. This model will be referred to as “Model (B)”. 

3.2 Modeling differences in the spatio-temporal covariance structure 

When differences in the spatio-temporal dependence structure are included in the 
model, alternative  �;�  <�=	 might be considered in (5). Matrix  �;�  <�=	 is constituted 
by blocks, with group-specific spatial variance matrices in the diagonal after reordering 
sites according to the groups. The most complex model includes an out-of-diagonal 
between-group variance block matrix,  �;�@�,@�	� C-=@�,@�/, that is characterized by 
group parameters: 

 �;�  <�=	 = D  �;�@�	�  <�=@�	  �;�@�,@�	�  C-=@�,@�/
 �;�@�,@�	�  C-=@�,@�/  �;�@�	�  <�=@�	 E (7) 

Specification (7) needs the estimation of a huge number of parameters. When 
interactions between locations belonging to different groups are ignored, 
 �;�@�,@�	� C-=@�,@�/ is fixed at zero (in what follows “Model (C)”). 
 
 

3. Results 
 
The comparison between models is performed both in terms of goodness of fit (via 
DIC) and in terms of predictive assessment (via Predictive Model Choice Criterion, 
PMCC, Sahu et. al 2006).Table 1 shows that Model (B) has the best performance. This 
highlights that the main differences between groups concern the mean levels and it is 
reasonable to assume a common correlation structure for both groups. 
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Model (A)  
for G1 sites 

Model (A)  
for G2 sites 

Model (A)  
for all sites 

Model (B) Model (C) 

DIC 6403 5737 11840 11830 11840 
PMCC 187.50 231.03 391.32 377.13 400.99 

Table 1: DIC and PMCC for all models considered 
 
 

Figure 1 shows the predictions for a specific site and for all models. The predictive 
performances are similar for all models, the prediction credibility bands contain almost 
always the observed values. 
 

 
Figure 1: Predictions for a site belonging to G1 for 2001, estimated for all models 
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Abstract: Aim of this study is to assess the effect of smoothing a hospitalization rates 
map, based on the assumption that they may be influenced by the neighboring 
municipalities, the health service organization (HSO) and environmental risk factors. 
To smooth rates, two different Multilevel Multimembership Models were fitted: in the 
first the random effects were the municipality heterogeneity, the spatial dependence of 
the municipalities and the local HSO; in the second we replaced the local HSO effect by 
the environmental risk effect. The models were applied to show  the spatial rates of 
hospitalization for lung cancer in Apulia in the year 2006. 
Maps shaded with the rates obtained at the end of the smoothing procedure seem to 
express a geographic distribution pattern of higher or lower rates in specific areas of the 
region. The effect of smoothing was greater in municipalities with a more unstable Risk 
Adjusted Rate. 
 
Keywords: Spatial analysis, Lung cancer, Smoothing, Multilevel Model 
 
1. Introduction 
Spatial analysis is often used to assess mortality or hospitalization rates but in such 
cases a problem of instability arises when they are calculated on small areas, owing to 
the small number of expected and observed cases (Olsen, 1996). Spatial smoothing 
could help to generate a correct  interpretation of geographic variations of the risks of 
hospitalization or mortality (Carrington, 2007). 
The primary aim of this study was to show, by spatial representation, how the 
hospitalization rates can be influenced both by the immediately neighboring 
municipalities and by the local health service management (ASL) to which the 
municipality belongs, as well as by environmental risk factors associated with the 
disease under study. As an example, the hospitalization rates for lung cancer recorded 
for the Apulia region were used. 
 
2. Materials and Methods 
To estimate the spatial effects with a multilevel model, the model must contain two 
components specifying the structure of random effects: a random effect or heterogeneity 
term, and a term representing the spatial contribution of neighborhood areas. 
Because relative risks can be spatially autocorrelated, the multilevel model must be seen 
as a “Multiple Membership Model” (Goldstein, 2003; Goldstein, 1998), where each 
municipality belongs to a higher level unit that also contains the neighboring 
municipalities. The criterion used to establish the cluster level was the distance radius 
(25 km) within which all the municipalities are considered to belong to the same cluster. 
Let's consider the i-th municipality with Ei expected cases obtained at the end of a 
procedure of Risk Adjustment by gender and age. The Multiple Membership Model is: 
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where log (Ei) is treated as an offset, α is a constant, vi represents the random effects due 
to the spatial dependency, ui represent the effects of the heterogeneity among the 
municipalities and xiβ = 0 if there is no covariate. 
Each municipality i is spatially dependent on one or more municipalities j belonging to 

the higher level geographic area ∂ i , each contributing with weight zij . The sum of the 
weights of municipality i is equal to one. Therefore, when drawing up the model each 
spatial effect vi referred to municipality i must be taken as the sum of a set of 
independent random effects, so that: 

 
 can be seen as the effect of municipality j on the other municipalities and  zij is its 

associated weight. 
In our first hypothesis the hospitalization rate varies among municipalities also 
according to the different management of the diagnosis by the local health service units. 
For this reason, we added a further random effect wi  representing the ASL each 
municipality belongs to: 

 
After building the matrix of random effects (Langford, 1999) Model A was estimated 
by (3) and the smoothed hospitalization rates for each municipality were calculated. 
In equation (3), the parameters were estimated by the maximum likelihood technique. 
In the second hypothesis the hospitalization rates vary among municipalities according 
to the degree of exposure to some risk factors. We identified 12 mutually esclusive 
areas of environmental risk, each centered around a municipality where industries with a 
high environmental impact are located, and extending for a radius of 10 km around it 
(Dominici, 2006). Then Model B was estimated by (3), with the random effect wi that 
represents the risk area in which the municipality is located. Industrial poles with a high 
environmental impact are indicated on the proposed maps to explore their effect on the 
geographic distribution of the disease. The analysis was conducted by selecting, from 
the Hospital Discharge Forms (HDF) for Apulian residents for the year 2006, those 
patients admitted with ICD9-CM codes of primary diagnosis 162--. To fit the multilevel 
models we used the SAS software. 
 
3. Results 
In 2006, a total of 2,591 patients resident in Apulia were hospitalized with a primary 
ICD9-CM diagnosis in the category “Malignant tumors of the trachea, bronchi and 
lungs” (crude regional rate = 6.36 per 10,000 inhabitants). The parameters and 
estimated standard errors with Models A and B are shown in Table 1. 
In Model A, the only significant parameter was the variance due to  the municipality 
heterogeneity (p=0.0092). The spatially structured variability quota is lower: 18.27% 
(0.0091/0.0498), while the ASL value is equal to 1.00% (0.0005/0.0498). 
In Model B the estimated random effect due to the environmental risk areas is not 
significant (p=0.2261), nor is the heterogeneity variance (p=0.0654), while  the only 
significant parameter is the clustering variance (p=0.0183). The spatially structured 
variability quota is equal to 47.32% (0.0247/0.0522) and the environmental risk area 
variability is 0.57% (0.0003/0.0522). 
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  A -  Model with spatial 

effect and ASL effect 
 B - Model with spatial 

effect and risk Area effect 
 

  Estimate St. Error  Estimate St. Error  
Fixed part   
Intercept     -0.0369     0.0575       0.0826      0.0759  
Random part        
σ

2
u heterogeneity      0.0402*     0.0154       0.0272      0.0147  

σ
2
v clustering      0.2635     0.2498       0.7179*      0.3043  

σ
2
w ASL      0.0218     0.0203     

σ
2
w environmental risk area          0.0064      0.0085  

     ni      29.07        29.07   
     mi      43.00        19.85   
     σ2

v/ ni      0.0091        0.0247   
     σ2

w/ mi      0.0005        0.0003   
σ

2
TOTALE      0.0498        0.0522   

AIC 389.4 393.2  
* p<0.05 

Table 1: Parameters and estimated standard errors in the rates smoothing models 
 
Three maps were built: the first one using the rates obtained at the end of the Risk 
Adjustment procedure before smoothing and the second and third using the smoothed 
rates obtained after estimating Models A and B, respectively (Figure 1). 
The map in figure 1a does not offer a clear visual picture of areas with higher or lower 
hospitalization rates for lung cancer. In figure 1b it can be seen that there is a tendency 
toward clustering of municipalities with a higher admission rate for lung cancer in the 
Salento, the southernmost part of the Ionian curve and the Gargano.  In figure 1c the 
introduction of the random effect of the areas at environmental risk produces little 
variation in the appearance of the municipalities hospitalization rate level as compared 
to figure 1b. The Gargano area is differently highlighted in figure 1b and figure 1c, 
where the latter gives the appearance of high rates for this area, probably due to the 
effect of environmental factors included in Model B, as compared to the municipalities 
aggregated in Model A. 
In the maps with smoothed rates (figures 1b, 1c), the areas with  higher admission rates 
are centered around municipalities with large industrial plants (such as Taranto in the 
Ionian curve) suggesting the effect of environmental risk factors and  occupational 
exposure  as determinants of higher rates of disease. 

 
 

a) RAR before 
smoothing  
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Figure 1: Maps of the Hospitalization Rate for Lung cancer. Apulia (Italy), 2006. 

 
4. Concluding remarks 
The results of the estimated models in which the clustering and heterogeneity 
components were adequately specified demonstrated that both heterogeneity and spatial 
autocorrelation were significant parameters. The effect of the smoothing procedure was 
greater in smaller municipalities, and especially in those with a more unstable RAR 
value. When the ASL was considered as a second hierarchical level parallel to that of 
spatial dependency, the municipalities heterogeneity component increased markedly and 
a better fit of the model to the data was obtained. The map of hospitalization rates for 
lung cancer in the Apulian Region estimated by the SRAR revealed the areas at higher 
risk better than the map estimated with the RAR. The inclusion of the ASL changed the 
spatial distribution of the risks, demonstrating a reduced hospitalization rate in the 
Gargano zone. This could probably be due to the different organization in this ASL, 
perhaps in the sense of  a lesser likelihood of admitting  patients to hospital and a lower 
availability or accessibility of diagnostic services, as compared with other ASL. The 
environmental risk, considered as a hierarchical level, did not provide  a better 
explanation of the geographic distribution. Perhaps environmental risk should be 
entered in the model as a covariate, because it must be considered as an attribute of the 
municipality itself. 
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Abstract: Particulate matter (PM) is one of the most critical air pollutants be-
cause of its effects on the human health and the environment. It is well known that
covariates, such as meteorological and geographical variables, have a significative
influence on PM concentration. In this work we model PM concentration, mea-
sured by the monitoring network in Piemonte, taking into account the uncertainty
of covariates that are output of a deterministic model chain, by means of a spatio-
temporal error-in-variables model. The aim is to map the PM concentration random
field all over Piemonte region considering all the uncertainty sources, i.e. the error
related to the PM measurements and the covariate simulation as well as the error
coming from the spatial prediction procedure.

Keywords: Error-in-variables model, Bayesian hierarchical model, MCMC

1 Introduction and motivating case study

The aim of this paper is to provide a spatio-temporal model of PM concentration,
observed by a monitoring network, as function of some significative covariates (such
as meteorological variables) given as output of a deterministic modeling system.
While it is routine to consider that PM measurements are subject to an instrumen-
tal error, it is not usual to take into account the uncertainty of numerical model
outputs. Usually such outputs are considered deterministic, thus known without
error. However, numerical models try to reproduce reality but are affected by uncer-
tainty related to initial conditions, parameters in model equations as well as model
structure (Bayarri et al., 2009). To take into account these uncertainty sources we
propose a spatio-temporal error-in-variables model (also known as measurement er-
ror model) where latent processes are introduced for modeling both the “true” PM
and covariate fields. Our proposal is an extension of the models proposed in Van
de Kassteele et al. (2006a, 2006b), where purely spatial error-in-variables models
are considered in order to “correct” the numerical model outputs for nitrogen diox-
ide and particulate matter, respectively. Thus Van de Kassteele et al. (2006a, b)
quantify the uncertainty of numerical model outputs, taking them as covariates in

1Work partially supported by Regione Piemonte.
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a spatial model for the same pollutant. Instead, we want to take into account the
uncertainty of exogenous covariates in air pollutant modelling.

In our case study, we consider daily particulate matter with an aerodynamic
diameter of less than 10 µm (PM10) measured at n = 24 sites and T = 93 days
(from November 15, 2005 to February 15, 2006) in the Northern Italian region
Piemonte. Moreover, we select m = 10 sites for validation purposes (see blue dots
in Figure 1(a)). Because of the complex orography of the region, the pollutant
dispersion is strongly affected by meteorological and geographical conditions. To
take into account this relationship, we consider the following significative covariates
(selected through a preliminary regression analysis): altitude (in m), coordinates
(UTM, in km), daily mean wind speed (in m/s), daily mean temperature (in oK)
daily maximum mixing height (in m) and daily emission rates of primary aerosols (in
g/s). The time-varying covariates are simulated on a 4 km× 4 km regular grid by a
numerical model implemented by the environmental agency ARPA Piemonte (Bande
et al., 2007) and are available at the monitoring sites as well. These numerical
output covariates are introduced in our model with errors, whereas the constant in
time covariates are supposed to be known without error.

2 The error-in-variables model

Let y(si, t) and xk(si, t) denote, respectively, the measured PM10 concentration and
the simulated value of the k−th covariate at location si and time t, with i = 1, . . . , n,
t = 1, . . . , T and k = 1, . . . , K. Assuming that both y(si, t) and xk(si, t) are affected
by an additive error, we define the following equations

y(si, t) = η(si, t) + εy(si, t) (1)

xk(si, t) = ξk(si, t) + εxk(si, t) (2)

where η(si, t) and ξk(si, t) are two latent variables, εy(si, t) ∼ N(0, σ2
y(si)) and

εxk(si, t) ∼ N(0, σ2
xk

(si)) are the measurement and model errors, supposed to be
independent. Moreover, we assume that the variances σ2

y(si) and σ2
xk

(si) do not
depend on time and are known at each site si.

The relation between the two latent variables is defined by the following equation:

η(si, t) = β0 + γpz(si) + βKξ(si, t) + ω(si, t) + εq(si, t), (3)

where z(si) = (z1(si), . . . , zp(si))
′ is the vector of the p constant-in-time covariates

known without error and γp = (γ1, . . . , γp) is the vector of their coefficients. More-
over, ξ(si, t) = (ξ1(si, t), . . . , ξK(si, t))

′ denotes the vector of the K “true” covariate
values and βK = (β1, . . . , βK) is the vector of their coefficients. The term ω(si, t) is a
spatio-temporal process assumed to be i.i.d. over time, so that the spatio-temporal
covariance function is given by

Cov(ω(si, t), ω(sj, t
′)) =

{
0 if t 6= t′

σ2
ωρφ(h) if t = t′

2



where h = ||si − sj|| is the Euclidean distance between site si and sj and σ2
ω is the

constant-in-time-and-space variance of the process. The function ρφ(h) = exp(−h
φ
)

depends on the parameter φ, representing the decay rate of a spatial correlation
with spatial distance. Finally, εq(si, t) in Eq.(3) is the equation error that takes
into account the not optimal relation between η(si, t) and ξ(si, t); it is supposed
to be normally distributed with zero mean and common variance σ2

q . Thus, the
parameter vector to be estimated is Φ = {β0,γp,βK , φ, σ2

ω, σ
2
q}. As regards inference,

i.e. parameter estimation and spatial prediction of PM10 concentration at a new
location s0 and time t, we adopt a fully Bayesian framework via Markov chains
Monte Carlo (MCMC) methods implemented through the WinBUGS software.

3 Results and concluding remarks

An exploratory analysis of the case study data showed skewed distributions for
the considered variables. In order to make the PM10 and covariate distributions
approximately Normal, a Box-Cox transformation (Box and Cox, 1964) was applied
to the original data. Moreover, we standardized - site by site - the covariate data,
in order to remove the effects related to the different ranges.

(a) PM10 site location (b) Time series predictions

Figure 1: Locations of the 24 PM10 monitoring sites (red triangles) and 10 validation
stations (blue dots) and prediction of PM10 for 26 Borgo San Dalmazzo (top) and
28 Chivasso (bottom) station: solid red line refers to PM10 observations, black dots
to PM10 predictions and grey solid lines to 95% prediction intervals.

With regards to the variances supposed known in the model, in this preliminary
study we fixed σ2

xk
(si) = 1, ∀i, k and σ2

y(si) = σ2
y where σ2

y is the variance of
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PM10 data all over the sites. Considering the posterior estimates for the covariate
coefficients, as expected there is a significative negative relationship between PM10

and altitude, as well as mean wind speed, mean temperature and maximum mixing
height. The posterior mean of φ is 90.0423 which means that the spatial correlation
decreases slowly with distance: for example, at 50 km the correlation is 0.5739
and 0.1212 at 190 km. Figure 1(b) displays the predicted PM10 for two different
validation stations (26 Borgo San Dalmazzo and 28 Chivasso). It seems that the
predictions are close to the observed average for each of the ten sites, even though
some problems can be detected when very high or very low PM10 concentration
levels occur in contiguous days giving rise to a higher local variability. A possible
solution to this issue can be achieved by choosing different values, one per site, of
PM10 and covariate variances, in order to take into account the possibly different
measurement error of PM10 and numerical model error of covariates in the sites.

Moreover, our ongoing research is focused on facing the so-called “change of
support problem”, which arises when the numerical model output is provided at
a different spatial resolution from the scale of the PM measurements. Thus, it is
interesting to extend the proposed spatio-temporal model in order to deal with both
point-referenced and areal data.
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Abstract: The air quality 2008/50/EC directive allows providing evidence of PM10 
daily limit value exceedances due to natural sources, which are not to be considered for 
the purpose of the directive. In this work the African outbreaks, affecting the PM10 
exceeding events occurred in Apulia region during 2010, are identified as follows. The 
PM10 daily concentrations were measured by the regional air quality monitoring 
stations, and complemented with meteorological maps, air mass back-trajectories, 
aerosol satellite retrievals, dust model simulations, ground measurements of aerosol 
optical properties. To quantify the daily net African dust load in PM10, we applied a 
methodology designed by the European Commission and based on the analysis of PM10 
levels time series from regional background stations.  
 
Keywords: mineral dust, Saharan outbreaks, PM10 daily limit value.  
 
1. Introduction 
 
The Italian peninsula, as well as the whole Mediterranean basin, is subjected to frequent 
Saharan dust events, especially during the summer season. The EU Air quality Directive 
2008/50/CE allows providing evidences that the exceedances are due to natural sources. 
In this case, these exceedances are not considered as such for the purpose of the 
directive. In this study, for the 2010 main dust events occurred in Apulian region and 
identified on a daily resolution (Pederzoli et al. 2010), the daily net African dust load in 
PM10 has been quantified using a statistical methodology designed by the European 
Commission (Escudero et al., 2007). In this work we evaluated the occurrence of the 
PM10 exceedances, caused by African dust outbreaks in Apulia, and the mean annual 
contribution of African dust to PM10 levels at air quality monitoring sites. 
 
 
2. Materials and Methods 
 
The combined use of several sources of information allowed the identification of main 
Saharan dust outbreaks for Apulia region in 2010. A first discrimination of days with 
dust intrusions was carried out analyzing the daily series of PM10 concentrations as 
measured at Cerrate and Ciuffreda, the two regional background air quality monitoring 
stations. They are located in areas (figure 1a) far from urban and industrial areas so the 
anthropogenic contribution to PM10 concentration at these stations can be considered 
negligible. To confirm the saharan dust transport for each selected day, the 5-day 
isentropic back-trajectories at three different altitudes (750, 1500 and 2500 m.a.g.l.) 
were computed using HYSPLIT model with modeled vertical wind velocity. In 
addition, determination of the meteorological conditions causing the African dust 
outbreaks over Apulia region was carried out inspecting the NCEP synoptic 
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meteorological reanalysis during the period of dust outbreaks. The presence of dust over 
Apulia was also confirmed by looking at the maps of dust surface concentrations 
modeled by BSC-DREAM8b and by NAAPS global aerosol model. The satellite 
measurements have been used to detect the presence of atmospheric dust. In particular, 
the evolution of aerosol optical properties, like the Aerosol Optical Depth (AOD) and 
related Angstrom Exponent (α) at 550nm from Modis-Terra and Modis-Aqua satellite 
retrievals over the Mediterranean area, have been analyzed. Usually high AOD values 
combined with low α values are typical of Saharan dust (Pace  et al., 2006). These 
values on Apulia region were also compared with the α and AOD values measured in 
the same days by an AERONET sun-photometer at Lecce. 
The European Guidelines (Council of the European Union, 2011) propose a validated 
methodology for the quantification of the daily African PM10 load during dust 
outbreaks. This methodology is based on the subtraction of the daily regional 
background level from the PM10 concentration values at regional background stations. 
The daily regional background is obtained by computing a monthly 40th percentile to the 
PM10 time series at a regional background station, after a prior exclusion of the data of 
the days with African dust transport. 
  
 
3. Results 
 
In 2010 the PM10 exceedances due to Saharan dust outbreaks occurred on Apulia 
region only during winter and summer. The mechanism of mineral transport is different 
for the two seasons. In summer in North Africa the low precipitation level and the very 
high temperature are very favourable conditions for the massive resuspension of huge 
quantities and for the advection at different altitudes (up to 4-6km). In winter some 
sporadic Africans outbreaks may occur caused by depressions resulting in intense winds 
over the Saharan area. The description of the single summer event, identified by this 
methodology, is shown in the following figures. Figure 1b reports the daily series of 
PM10 concentrations measured at Cerrate and Ciuffreda between June 10th and June 
22th. The data show an evident increase in the concentrations till June 16th. A similar 
trend was reported in all other PM10 monitoring stations. 
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Figure 1 a) Rural background monitoring sites in Apulia region; b) Daily serie of PM10 
concentration measured at Cerrate (LE) and at Ciuffreda (FG). 
 
The meteorological analysis by the synoptic charts (not shown) has revealed for the 11th 
of June a 850 hPa african anticyclone on the North Africa, in gradual expansion on 
southern Italy until June 14th. In the following days this high-pressure system moves 
eastward continuing to affect Apulia up to June 20th, when the arrival of north Atlantic 
low pressure renews the air masses.  

The transport of dust from Sahara up to June 20th is confirmed by a 5-day isentropic 
back-trajectories analysis computed at three different altitudes (750m, 1500m and 2500 
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m a.g.l.) using the HYSPLIT model. In figure 2a,b,c the back-trajectories with starting 
time 12 UTC on June14th, June  16th and  June 20th are shown. 
 

   
 
Figure 2 120-hours back-trajectories at 1200 UTC at 750m, 1500m, 2500m on 
a)14th,b)16th and c) 20th June . 
 

The Saharan dust presence on Apulia is confirmed by satellite aerosol retrievals. Figure 
3a,b,c shows the evolution of Aerosol Optical Depth (AOD) at 550 nm over the 
Mediterranean area, with grid resolution 1 degree x 1 degree, retrieved by MODIS-
Terra for June 14th, 16th and 20th. Large amounts of dust (AOD>0.6) are observed as 
expected on June 14th and 16th, while on June 20th the AOD values are reduced 
significantly. Figure 4a,b shows the series of AOD and related α, as derived from 
observation by an AERONET sun-photometer at Lecce. AOD increases between June 
11th and 20th, while the related Angstrom exponent (α) in the same period is reduced. 
Values of α greater than 2.0 indicate the presence of fine mode particles (e.g., smoke 
particles and sulfates), while values of α near zero indicate the presence of coarse mode 
particles such as desert dust. The Saharan dust event is also predicted by the BSC-
DREAM8b model and by NAAPS Model. Maps of PM ground concentration in µg/m3 
from June 10th to 21th have been analyzed (not shown). The daily evolution of PM 
surface concentration over Apulia region, predicted by these models, is qualitatively 
quite similar to the trend of PM10 concentrations measured by air quality monitoring 
stations.  
 

   
 
Figure 3 Maps of Aerosol Optical Depth (AOD) at 550 nm as retrieved by MODIS on 
a) June 14th, b) 16th and c) 20th.  
 
 

  
 
Figure 4 Series of a) AOD at different wavelengths  and Angstrom exponent measured  
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by sun photometer in June 2010. In Table 1 for each province of Apulia is reported the 
range of the occurrence of the PM10 daily exceedances and the range of the mean 
annual contribution to PM10 levels at air quality monitoring sites, caused by the main 
African dust outbreaks occurred during 2010. 
 

Range of  
African dust 
contribution  

BARI BRINDISI FOGGIA LECCE TARANTO 

Occurrence of 
PM10 daily 
exceedances  

(%) 

25 - 86 13 - 88 50 - 100 21 - 75 32 - 100 

Mean annual 
of PM10 

concentration  
(µg/m3) 

0.14 – 0.55 0.75 – 1.06 0.22- 0.43 0.67 – 0.98 0.60 – 1.13 

 
Table 1 Range of the occurrence of the  PM10 daily exceedances and range of the mean 
annual contribution to PM10 levels, for each Apulia province. 
 
 
4. Concluding remarks 
 
In this study we carried out i) the identification, on a daily resolution, of the 2010 main 
dust events occurred in Apulian region, ii) the quantification of PM10 exceedances 
caused by African dust outbreaks, iii) the mean annual contribution of African Dust to 
PM10 levels at air quality monitoring sites. In 2010 the PM10 exceedances due to 
Saharan dust outbreaks occurred on Apulia region only during winter and summer. As 
expected, the lowest percentages of African episodes are observed at monitoring 
stations where the local anthropogenic emissions (traffic, industrial, heating) are greater. 
In conclusion, in 2010 the mean annual contributions to PM10 levels were below or 
around 1µg/m3.  
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Abstract: The purpose of this study is to assess the potential health impact at start-up of 
a new incinerator on the general population living near the facility. An algorithm was 
applied in order to calculate the number of deaths and hospital admissions associated 
with a given concentration of PM10, exposed population, specific mortality/morbidity 
rates. For every health end-points, an estimate of RR was obtained from literature. 
Using PM10 as a tracer, simulations were made of incinerator emissions fallout. 
Residents within 2-km radius from the plant were considered. The reduction of average 
concentration of PM10 to 40 µg/m3 could prevent 0.12% of natural causes of death. 
Proportionally, the increment in PM10 concentration of 1 µg/m3 could be associated to 
0.02% of deaths. The estimated exposure to estimated incinerator emissions should not 
lead to additional health risks for the neighbouring population. 
 
Keywords: air pollution, incinerator, hospital admissions, mortality. 
 
 
1. Introduction 
 
Several studies on the possible health effects related to population residing in the 
proximity of incinerators have been published, and well-conducted reviews are 
available on this subject. While some positive studies suggest associations with 
reproductive outcomes and cancer, the evidence is, overall, not conclusive to establish 
the occurrence and magnitude of risks. Furthermore, positive studies refer mostly to old 
generation incineration plants. 
The adoption of Best Available Technologies (BAT) in abating emissions resulted in 
much lower levels of exposure to pollutants and consequently less likely occurrence of 
measurable health effects on populations resident in the proximity of new generation 
incinerators (Franchini et al. 2004, WHO 2007, Italian Epidemiological Association 
2008, Porta et al. 2009, Ranzi et al. 2011). 
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This conclusion is supported mostly by extremely low concentrations of toxic 
substances measured in emissions of new generation incinerators (Moniter Projects 
Preliminary Results, 2010). However, residents’ concerns -- living in areas near 
incinerators -- require evaluation of potential health effects associated to estimated 
emissions from new plants. 
The aim of the present study is to assess the health impact on people living in the 
proximity of a new incineration facility in Modugno, Province of Bari (Puglia, Italy) in 
relation to PM10 exposure, by using current health records. 
 
 
2. Materials and Methods 
 
Health statistics on mortality for 2005 (last available year) were retrieved from the 
Regional Mortality Atlas (Regional Epidemiological Observatory, Puglia). The Atlas 
contains cause-specific mortality data at municipal level. Hospital Admissions (HA) 
data for this study were gathered from regional hospital discharge archives for 2008. 
Mortality and morbidity end-points were chosen from the scientific evidence available 
and from recent evaluations of impact assessments. In particular, mortality endpoints 
include overall mortality (International Classification of Diseases, 9th Revision (ICD-
9:1-799), cardiovascular (ICD 9: 390-459) and respiratory (ICD 9: 460-519) causes of 
death. Selected morbidity outcomes are related to cardiac (ICD 9: 390-429) and 
respiratory (ICD 9: 460-519) diseases. Hourly data on PM10 were obtained for the year 
2008. The PM10 daily average, measured by air quality stations located in the area, was 
45.3 µg/m3. A simple algorithm was used to calculate the number of attributable deaths 
and hospital admissions associated with a given counterfactual factor of 40 µg/m3 (as 
suggest from European Union limits), exposed population, specific mortality/morbidity 
rates and relative risk (RR) estimates (Martuzzi et al. 2006).  
The number of cases attributable to an air pollution concentration over a given 
counterfactual factor, E, is given by the following equation: 

E = A* B* (C/10)* P, 
where: P = the population exposed; C = the relevant change in concentration (difference 
between the observed concentration and the counterfactual level), obtained from 
monitoring networks in each city; A = the proportion of effect on health attributable to 
air pollution, which can be calculated as follows: A = (RR-1)/RR. 
Residents living within 2 km from incinerator, area of expected maximal deposition 
estimated by ISAC-CNR-Lecce through dispersion modeling, were considered as 
exposed (15,056 inhabitants). 
Concentration-response risk coefficients were derived from epidemiological studies 
(Table 1) (Martuzzi et al. 2006). 
 
Outcomes  RR  CI 95% 
All causes of mortality (excluding accidents) 1.006 1.004-1.008 
Cardiovascular deaths 1.009 1.005-1.013 
Respiratory deaths 1.013 1.005-1.020 
Cardiac HA 1.003 1.000-1.006 
Respiratory HA 1.006 1.002-1.011 

 
Table 1: Summary of RRs and confidence interval 95% (95% CIs) 
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The analyses were performed in two steps:  
- at first, we estimated how many deaths could have been avoided if the observed 

PM10 concentration could have been reduced to the given counterfactual level 
(40 µg/m3); 

- on a second phase, assuming that the incinerator will operate in combination 
with a Combined-Cycle combustion Gas Turbine (CCGT) power generation 
facility (that is another plant under construction in the area of study), we referred 
to the additional contribution to PM10 within 2 Km radius estimated through 
dispersion modeling: 0.03 µg/m3 for incinerator and 0.15 µg/m3 for CCGT plant. 
As worst-case scenario, we have chosen an increase of 1 µg/m3 of PM10 
exceeding 40 µg/m3. 

 
 
3. Results 
 
The results of step 1 are reported in Tables 2 and 3. In detail, 0.12% of overall deaths, 
0.19% of cardiovascular and 0.27% of respiratory mortality are attributable to levels of 
PM10 exceeding 40 µg/m3 (Table 2). For morbidity: 0.06% of HA for cardiac and 
0.12% of HA for respiratory diseases (Table 3).  
The results of step 2 are reported in table 4. 
 

Causes of 
death 

Cases 
Rates              

(100,000 
inhabitants) 

Attributable 
cases 

CI 95% 
% 

Attributable 
cases 

CI 95% 

Overall 
mortality 

208 562 0.26 0.17 0.34 0.12 0.08 0.17 

Cardiovascular 78 211 0.15 0.08 0.21 0.19 0.11 0.28 
Respiratory 18 49 0.05 0.02 0.08 0.27 0.11 0.42 

 
Table 2: Cause-specific deaths attributable to mean levels of PM10 exceeding 40 

µg/m3. Modugno, 2008 
 

Hospital 
admissions 

Cases 
Rates              

(100,000 
inhabitants) 

Attributable 
cases 

CI 95% 
% 

Attributable 
cases 

CI 95% 

Cardiovascular 1,189 3.110 0.74 0.00 1.48 0.06 0.00 0.12 
Respiratory 586 1.533 0.73 0.24 1.33 0.12 0.04 0.23 

 
Table 3: Cause-specific hospital admissions attributable to mean levels of PM10 

exceeding 40 µg/m3. Modugno, 2008 
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Outcomes 
Attributable 

cases 
CI 95% 

% 
Attributable 

cases 
CI 95% 

Overall mortality 0.05 0.03 0.06 0.02 0.02 0.03 
Cardiovascular mortality 0.03 0.02 0.04 0.04 0.02 0.05 
Respiratory mortality 0.01 0.00 0.01 0.05 0.02 0.08 
Cardiovascular HA 0.14 0.00 0.28 0.01 0.00 0.02 
Respiratory HA  0.14 0.05 0.25 0.02 0.01 0.04 

 
Table 4: Cases attributable to increase of 1 µg/m3 of PM10 exceeding 40 µg/m3. 

Modugno, 2008 
 
 
4. Concluding remarks 
 
Estimated PM10 levels associated to new incinerator emissions should not lead to 
additional health risks for the neighbouring population. 
This evaluation is to be considered limited, given the following parameters: the small 
amount of residing population; the chemical and toxicological data of specific 
compounds; the characterization of individual exposure. Nevertheless, we confirm the 
need to activate an environmental and epidemiological surveillance in the examined 
area. 
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Abstract: We display pseudo-likelihood as a special case of a general estimation
technique based on proper scoring rules. Such a rule supplies an unbiased estimating
equation for any statistical model, and this can be extended to allow for missing
data. When the scoring rule has a simple local structure, as in many spatial models,
the need to compute problematic normalising constants is avoided. We illustrate
the approach through an analysis of data on disease in bell pepper plants.

Keywords: proper scoring rule, pseudo-likelihood, ratio matching, unbiased
estimating equation

1 Introduction

Maximum likelihood estimation of a spatial process can be computationally de-
manding because of the need to manipulate the normalisation constant of the joint
distribution. Besag (1975) developed the method of pseudo-likelihood to sidestep
this problem. This has traditionally been considered as an approximation (of un-
known quality) to the full likelihood. However, as we describe below, the method
can be justified in its own right, as leading to an unbiased estimating equation.
Other methods, constructed from proper scoring rules , have similar justification
and properties, and supply useful alternatives.

2 Proper scoring rules

A scoring rule S(x,Q) is a loss function measuring the quality of a quoted probability
distribution Q for a random variable X , in the light of the realised outcome x of X
— see e.g. Dawid (1986). It is proper if, for any distribution P for X , the expected
score S(P,Q) := EX∼PS(X,Q) is minimised by quoting Q = P . A prominent
example is the log score, − log q(x), where q denotes the density or probability mass
function of X .

Given a proper scoring rule S and a smooth parametric statistical model P =
{Pθ} for X , let

s(x, θ) :=
∂S(x, Pθ)

∂θ
.
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Then we can estimate θ by θ̂S, the root of the estimating equation

s(x, θ) = 0. (1)

When S is the log score, this is just the likelihood equation, and θ̂S is the maxi-
mum likelihood estimate. More generally, for any differentiable scoring rule and any
smooth statistical model, Eθ{s(X, θ)} = 0, i.e. (1) is an unbiased estimating equa-
tion (Dawid and Lauritzen 2005). In particular it will typically deliver a consistent,
if not necessarily efficient, estimator in repeated sampling. We can then choose S

to increase robustness or ease of computation.
In the context of a spatial process X = (Xv : v ∈ V ), we can define a useful class

of proper scoring rules (Dawid et al. 2011) by

S(x,Q) =
∑

v

S0(xv, Qv), (2)

where Qv is the conditional distribution of Xv, given the values x\v for the variables
X\v at all sites other than V , and S0 is a proper scoring rule for the state at a single
site. In particular, if Q is Markov on a graph G, then Qv only depends on the values
xne(v) at the sites neighbouring v. This avoids the need to evaluate the normalising
constant of the full joint distribution Q.

Corresponding to (2) we have estimating equation

∑

v

s0(xv, Pθ,v) = 0 (3)

with each term in the sum having expectation 0. When S0 is the log score, (3)
gives the (negative log) pseudo-likelihood (Besag 1975). For Xv binary and S0 the
quadratic (“Brier”) score, it yields the method of ratio matching (Hyvärinen 2007).

Missing data are readily dealt with (although with some loss of efficiency). Let
Av = 1 if any value in {v} ∪ ne(v) is missing. Then so long as the data are missing
completely at random, s0(xv, Pθ,v) × Av has expectation 0, so we can just omit
incomplete terms from (3) while retaining an unbiased estimating equation.

3 Phytophthora data

Figure 1 displays the presence or absence of the pathogen Phytophthora capsici Leo-
nian in bell pepper plants on a regular 20× 20 grid (Chadoeuf et al. 1992).

We model the data as a stationary first-order Markov process with respect to the
grid, which thus follows the autologistic model (Besag 1972; Besag 1974; Gumpertz
et al. 1997):

logitπij = α + β(xi−1,j + xi+1,j) + γ(xi,j−1 + xi,j+1) (4)

where πij is the probability of Xij = 1, given all other values.
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Figure 1: Presence (1) and absence (0) of pathogen in bell pepper plants

To fit by maximum pseudo-likelihood (PL), we simply proceed as if the (Xij)
were all independent, and maximise the resulting “likelihood”. This can be done
by a standard generalized linear model analysis, readily implemented in standard
software such as R, using the binomial family and (default) logit link function.

Alternatively, and possibly more robustly, we could apply ratio matching (RM),
based on the Brier scoring rule, which leads to the least-squares recipe: min-
imise

∑
(xij − πij)

2. Again this can be implemented in standard GLM software,
treating the data as if they were normal with constant variance, and using the
logit link function (in R this is effected using the glm() command with option
family=quasi(link=logit,variance=constant).)

Note however that, although it is easy to compute the estimates, the associated
“standard errors” output by the software will be inappropriate, since they do not
take account of the dependence in the data.

4 Results

Table 1 displays the results of fitting the model (4) by pseudo-likelihood (PS) and
by ratio matching (RM). Values at sites on the boundary of the grid, which do not
have four observed neighbours, are not used as responses, though they are used as
covariate values for their neighbouring interior sites. There are thus 18 × 18 = 324
data-points used to fit the model.
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Method Intercept, α WE, β NS, γ

PL -2.4390 1.6514 0.6266

RM -2.2654 1.5864 0.5375

Table 1: Coefficients estimated by pseudo-likelihood (PS) and ratio matching (RM)

5 Concluding remarks

The PL and RM methods, as well as others derived from different proper scoring
rules, all involve solving an unbiased estimating equation. In the example studied,
the estimates from PL and RM are broadly in line. However further theoretical and
experimental work is needed to explore and compare their accuracy, efficiency and
robustness properties.
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Abstract: Urban quality of life (QOL) is usually measured through an index
de�ned as the estimated value of a set of urban amenities. However there is an
increasing awareness that omitted variables might seriously undermine the method�s
ability to accurately estimate QOL. Here we extend the hedonic approach using a
multivariate geostatistical model to address the omitted variable bias by identifying
the latent common factors responsible for the spatial distribution of the amenities.
A new QOL index is then de�ned as a function of the latent factors whose implicit
prices are estimated through hedonic regressions. Our methodology is shown on a
data set of individual-level property transactions from the city of Vicenza. As a
result we obtain the spatial distribution of QOL calculated according to the new
index.
Keywords: Hedonic prices, Housing market, Monte Carlo EM algorithm, Spa-

tial factor model.

1 Introduction

The well-being of people living in a city depends on the level of development of the
city itself. The more the city is able to provide services and infrastructures, the
better the living conditions are for its inhabitants. Obviously the range of factors
that a¤ect QOL is much wider and includes, among the others, climate conditions,
environmental quality, the level of security for persons and things, and the socio-
demographic environment. However, only partial statistical information is generally
available, concerning a limited set of indicators that do not exhaust all the relevant
factors. In this paper, we formulate a speci�c hypothesis to overcome the problem
of shortage of statistical information. We suppose that the diverse factors a¤ecting
QOL can be subdivided into two groups; factors depending on the intervention of
the public authority or of a private agent constitute the �Agent-dependent factors
group�, whereas factors that do not depend on the intervention of some agent, as
some characteristics of the landscape, constitute the �Agent-independent factors
group�. Then, assuming a model similar to that of Minozzo and Fruttini (2004), the

1We gratefully acknowledge funding from the Italian Ministry of Education, University and
Research (MIUR) through PRIN 2008 project 2008MRFM2H, and Polo Scienti�co Didattico �Studi
sull�Impresa�(Vicenza) of the University of Verona.
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two latent common factors behind these two groups are identi�ed. Once the spatial
distributions of these two latent factors are evaluated, we are able to assess their
impact on QOL following the hedonic theoretical model of Rosen (1979)and Roback
(1982). This approach usually de�nes a QOL index as a weighted sum of a set of
urban amenities, where the weights are the hedonic prices of the amenities derived
from the compensating di¤erentials in the housing or in the labor markets, or in
both.
We proceed as follows: in Section 2, we describe the di¤erent sources of available

data. In Section 3 we brie�y review the theoretical framework developed by Rosen
(1979) and Roback (1982) from which the QOL is recovered. Then we de�ne the
multivariate geostatistical model used to identify the latent factors. Finally, we
de�ne a new QOL index as a function of the latent factors. The last section concludes
the work.

2 Housing and Urban Data

The data come from di¤erent sources and are combined into a single data set. Hous-
ing market data come from the �Osservatorio del Mercato Immobiliare�(OMI) man-
aged by a public agency (�Agenzia del Territorio�), and refer to some 600 individual
house transactions in Vicenza between 2004 and 2009. In addition to housing mar-
ket values, the data set provides information also on structural characteristics of
the properties. Housing prices are expressed in 2004 constant euros. On the other
hand, the data on the amenities and the socio-demographic characteristics of the
city are from the municipality and refer to environmental characteristics, educa-
tional services, commercial and administrative facilities, and public transports.All
housing units and local amenities were geocoded by assigning to each of them a lat-
itude and longitude coordinate by using a GIS-based geocoding application. Then,
for each of the K housing units, that is, for each pointwise geographic location xk,
k = 1; : : : ; K, of these units, we computed the Euclidean distance from the unit to
the nearest representative of each of m categories of amenities. These distances,
which we indicate with y1(xk); : : : ; ym(xk), for k = 1; : : : ; K, constitute the key data
for our geostatistical factor model.

3 Detection of Spatial Latent Factors for QOL

Our methodology is based on the model developed by Rosen (1979) and by Roback
(1982) to assess urban QOL. The model depicts cities as interrelated bundles of
wages, rents and amenities, with the speci�c combination of these elements di¤ering
across cities. Households and �rms choose their location to, respectively, maximize
utility and minimize production costs. Households are assumed as workers which are
homogeneous in income and tastes. They maximize their utility function choosing
the optimal bundle of composite good and residential location which allows access to
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local amenities. Firms combine capital and local labor using a production technology
with constant returns to scale. The cost function depends both on input prices and
the bundles of amenities. In equilibrium all households, regardless of their location,
attain a common level of utility, and the unit production costs are equal to the unit
production price. Equilibrium di¤erentials for wages and housing prices can be used
to compute implicit prices of amenities. Given the estimates of the implicit prices
of amenities, the QOL index for any urban area is obtained by summing over all
the average quantities of amenities using the implicit prices as weights. A serious
drawback of this model is that the information about all urban attributes a¤ecting
QOL is unlikely to be available, and as Blomquist et al. (1988) note, even if all
data were available, econometric speci�cation problems such as collinearity would
prevent the inclusion of all urban amenities. Furthermore, economic theory does
not provide guidance for determining the optimal list of attributes. As a result, the
empirical speci�cation of the model may be plagued by omitted variable bias and
measurement errors.
We overcome these problems by complementing this hedonic approach with the

use of a hierarchical geostatistical factor model which will allow to arrive at a new
QOL index. This model, which allows to deal with non-Gaussian data, can be
seen as an extension to the multivariate context, of the classical geostatistical linear
model of coregionalization (or of the spatial generalized linear model (Wang and
Wall, 2003)). For a given set of distances y1(xk); : : : ; ym(xk), for k = 1; : : : ; K, we
assume that these are the realization, at the set of spatial locations x1; : : : ;xK , of a
set of m random functions Y1; : : : ; Ym, for which we assume that, for x 2 R2,

Yi(x)jZi(x) � fi(y;Mi(x));

and

Zi(x) =
PX
p=1

aipFp(x) + �i(x);

where fi(y;Mi(x)) is a Gamma density andMi(x) = E[Yi(x)jZi(x)] is the conditional
mean of the data given the latent part of the model, which is linked to Zi(x) by the
link function hi(Mi(x)) = �i + Zi(x). As we said, Yi(xk) represents the minimum
distance between the housing unit located at point xk and the ith amenity. The
latent part of the model resembles the classical linear factor model. Here, Fp(x),
for p = 1; : : : ; P , and �i(x), for i = 1; : : : ;m are the common and the unique
factors of the model, that we assume Gaussian, and for which we assume a spatial
autocorrelation structure depending on a spatial autocorrelation function �(h), for
h 2 R2, such that �(0) = 1, and �(h) ! 0, as jhj ! 1. In particular, we
assume that Cov[Fp(x); Fp(x + h)] = �(h), and Cov[�i(x); �i(x + h)] =  i�(h), for
 i > 0 (for more details see Minozzo and Fruttini, 2004, Minozzo and Ferrari, 2010).
According to our proposal, we assume here that P = 2, that is, that there are two
common latent factors responsible for the spatial distribution of the two groups
of urban amenities (�Agent-dependent�and �Agent-independent�). For this model,
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the intercept parameters �1; : : : ; �m, the coe¢ cients ai1; ai2, for i = 1; : : : ;m, and
the variances  1; : : : ;  m, can be estimated through Monte Carlo EM algorithms,
whereas predictions of the common latent factors F1(xk) and F2(xk), at the spatial
locations xk, for k = 1; : : : ; K, can be obtained by MCMC methods. Once the
predicted spatial distributions of the two common latent factors have been obtained
over the city area, and in particular at the set of K property locations, we can
proceed in using this predictions to obtain the spatial distribution of our QOL
index, de�ned as the weighted sum of the two common latent factors, using the
implicit prices as weights. These implicit prices can be estimated by simple hedonic
regressions or adopting more sophisticated techniques.
Preliminary assessments con�rm a monocentric structure of the city QOL is

higher in the city centre where there is a greater quantity and variety of amenities
and decreases non monotonically as the distance from the center increases.

4 Concluding remarks

This paper extends the hedonic approach to measure urban QOL by using a hierar-
chical geostatistical factor model. The proposed methodology improves our ability
to assess the spatial distribution of QOL and to identify its main causes. The
standard approach developed by Rosen (1979) and Roback (1982) gives a synthetic
measure of the QOL that people can on average enjoy in the considered areal unit,
for example a city or a neighbourhood. Our approach allows to determine the QOL
level at each spatial point obtaining the entire spatial distribution of QOL index
instead of its average value.
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Abstract: In recent years statistical analyses for monitoring the environment
are increasingly in demand in different areas such as epidemiology, engineering, econ-
omy, etc. An example is the statistical monitoring of air quality, which makes it
possible to statistically quantify the amount of certain pollutants in the lower tro-
posphere. For a better understanding of the stochastic behavior of pollutants we
focus on describing their extreme responses, because excessively extreme levels in
the air may have implications in the environment and on human health. We then
consider multivariate extreme value models and the class of maxstable processes in
order to asses the frequencies of several extreme pollutant levels in central Europe
and their spatial dependence structure.

Keywords: max-stable processes, multivariate extreme value distributions, gen-
eralized extreme value distribution, extremal coefficient, correlation function, Fréchet
distribution, pollution.

1 Introduction

Nowadays in many disciplines such as epidemiology, engineering, economy, etc, are
in great demand the statistical analyses for monitoring the environment. Specifi-
cally, it is very important to statistically quantify the amount of certain pollutants
in the lower troposphere and this is possible thanks to the statistical monitoring of
the air quality. A main aspect of environmental processes is their natural spatial do-
main, presupposing a statistical spatial analysis approach. One of the primary aims
of the latter is to asses the dependence structure of the underlying process. In this
case it is important to determine the degree of dependence of the pollutants’ levels
among the monitoring stations. There are a number of generic approaches to spatial
modeling that to date have already been widely applied (e.g., Diggle and Ribeiro,
2007). But these are suitable for modeling the mean process levels, therefore they
are inappropriate for handling extremal aspects. For a better understanding of the
stochastic behavior of pollutants we focus on describing their extreme responses, be-

1This research is part of Project EN17, “Methods for the integration of different renewable
energy sources and impact monitoring with satellite data”, funded by Lombardy Region under
“Frame Agreement 2009”.
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cause excessively extreme levels in the air may have implications in the environment
and on human health.

With this work we aim to describe the extreme values of certain pollutants, such
as fine particulate matters, sulphure, nitrogen dioxides, etc. recorded in central
Europe. Each pollutant is recorded at s = 1, . . . , S locations, within a continuous
region, for n-temporal observation with n = 1, 2, . . .. At each site we compute
the maximum with respect to a block of N temporal observations. For example,
for hourly observations, we set N = 24 × 366 and this implies that we focus on
annual maxima of the process. Thus, we derive a temporal series of componentwise
maxima of process measurements denoted by {yt(s)} with t = 1, . . . , T the sample of
block maxima. In order to perform the analyses of the pollutants’ extreme levels we
consider the classes of multivariate extreme value models and of maxstable processes
(see e.g. Chapters 6, 9 of de Haan and Ferreira, 2006). These families provide a
quite general framework, with similar asymptotic motivations to the univariate case,
suitable to model extreme processes incorporating temporal or spatial dependence.
Statistical methods for max-stable processes and data analyses of practical problems
are discussed by Padoan et al. (2010).

2 Methods

A suitable setting for addressing spatial problems in the extreme values context is
provided by max-stable processes.

Let {Y (x)}x∈X be a stochastic process defined on X ⊆ IRq, q ∈ IN, with continu-
ous sample path. Assume that n independent and identically distributed (iid) copies
of it, Yi with i = 1, . . . , n, are available, and hence focus on the limit of the rescaled
process {Mn(x)}x∈X . Specifically, if there exist continuous positive functions an(x)
and real functions bn(x), with n ∈ IN such that

Z(x) = lim
n→∞

{
Mn(x)− bn(x)

an(x)

}
x∈X

(1)

is not a trivial limit, that is the normalized sequence Mn(x) converges in distribution
to a process Z(x) with non-degenerate marginals for all x ∈ X , then we call Z an
extreme value process. Observe, that the limiting process Z posses three important
proprieties: a) it is a max-stable process; b) all its univariate marginal distributions
belong to the generalized extreme value class of distributions; c) all its finite p-
dimensional distributions, with p ≥ 2, are characterized to be multivariate extreme
value distributions (see e.g. Chapters 1, 6 of de Haan and Ferreria, 2006).

Correlation coefficients and correlation functions are typically used in order to
describe pairwise dependence, under Gaussianity assumption, respectively for high
dimensional and spatial analysis. Similarly extremal coefficients and the extremal
coefficient functions describe the dependence for extremes. Specifically, given Zi,
i = 1, . . . , n, iid copies of a component-wise random vector Z = (Z1, . . . , Zp) ∈ IRp

+
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with common unit Fréchet margins, then from the following relation

IP {max(Z1, . . . , Zp) ≤ z} = IP {Z1 ≤ z}θ = exp(−θ/z), z > 0,

where the rightmost term is a Fréchet(θ) distribution, the parameter 1 ≤ θ ≤ p de-
fines the extremal coefficient. When θ = 1 indicates complete dependence, whereas
θ = p corresponds to full independence. The extremal dependence of stochastic pro-
cesses has a similar definition. If now we consider a stationary max-stable process
Z(x) with univariate unit Fréchet margins then, for any pair of locations x1, x2 ∈ X
separated by h = x2 − x1, from the following relation

IP {max(Z(h), Z(o)) ≤ z} = exp(−θ(h)/z), z > 0,

the real-valued function θ(h) defines the pairwise extremal coefficient function, where
o denotes the origin (e.g. Schlather and Tawn, 2003). From a practical point of view
we consider, for modeling the extremes of the pollutants, two specific families of max-
stable processes such as the Brown-Resnick process (e.g. Kabluchko et al., 2009) and
the Extremal Gausssian process (e.g. Schlather, 2002) and the class of multivariate
extreme value distributions named the Extremal-t model (e.g. Nikoloulopoulos et
al., 2009). We can easily fit these models to the pollutants data using the maximum
composite likelihood estimation method (e.g. Padoan et al., 2010) and then to
compare the different results. Moreover, for these models the closed form of the
extremal coefficients is known so that we can, after the fitting step, assess the
dependence structure and estimate the frequencies with which different high levels
of the pollutants occur.

3 Data

The dataset considered for the analysis consists of hourly measurements of some
pollutants of central Europe (see left panel of Figure 1) available on the Internet
at the website: http://www.eea.europa.eu. Specifically, we took into account a
time-period of 13 years, from January 1996 to December 2008, and we selected a
region of approximately 341.000 km2. The right panel of Figure 1 shows the area
where the monitoring weather stations are located and the numbers from 1 to 3
denote the locations for the different pollutants. In particular, the 139 stations
indicated with the number 1 monitor the benzene (COH6), carbon monoxide (CO)
and nitrogen dioxide (NO2), the 126 stations indicated by the number 2 monitor the
ozone (O3) and the 68 stations indicated by the number 3 monitor the particulate
matters (PM10), sulphure (SO2). For each pollutant there are some missing data
but the percentage is small, we can account on average (between sites) 2 % of missing
values. Given that in the analysis we focus on block maxima of pollutants, where
the blocks are formed by 24 × 366 temporal observations leading to sequences of
annual maxima, the small percentage of missing data should not have an impact on
the description of the extremes.
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Figure 1: Air quality data: the left panel reports the European map and the rectangle
displays the central part where the monitoring weather stations are located. The right
panel shows the expanded zone marked by the rectangle of the left panel and displays
with the numbers the locations of the monitoring stations.
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Abstract: Since the mid-80s Tuberculosis declining trend became softer and even 
reversed in some countries. HIV/AIDS frequently appears as the main cause for the 
resurgence of Tuberculosis. This work aims at identifying critical areas for the joint 
occurrence of these conditions in Portugal, and at confirming the belief that HIV is not a 
major explanation for the slow Tuberculosis incidence decline. 
Based on correlation analyses and space-time scan statistics, a weak statistical 
correlation between HIV and TB incidence rates were observed (0.279; p<0.001). For 
both diseases, Oporto and Lisbon Metropolitan Areas were identified as critical locals, 
with relative risks of, respectively, 1.77 and 1.78 for TB, and 5.66 and 3.31 for HIV. 
Similar areas were identified with a multivariate scan. 
Keywords: Tuberculosis, HIV/AIDS, Spatiotemporal clustering, 
 
1. Introduction 
Although Tuberculosis and HIV /AIDS are presenting a decreasing trend, especially in 
developed countries, critical areas must be identified, to allow a global control of both 
diseases (Anandaiah et al., 2011; de Colombani et al., 2004). Also, it is well known and 
stated in scientific literature that the particular and strong relation between these two 
diseases encourages joint actions (Bhagyabati Devi et al., 2005; Couceiro et al., 2011). 
Some epidemiological dimensions (e.g.: risk factors) that are common to both TB and 
HIV lead to challenges and opportunities in surveillance, by promoting joint 
surveillance and control programs, including the development of TB/HIV indicators 
(Sanchez et al., 2010). Only pulmonary cases are considered, given their outstanding 
role in disease transmission (Couceiro et al., 2011). 
The goals of this study are: to identify critical areas for each disease separately, based 
on two independent datasets, in Portugal Mainland, per municipality and per year 
(2000-2009); and to identify and characterize critical areas for the joint occurrence of 
both diseases.  
 
2. Materials and Methods 
Data available concern the period 2000 to 2009, per municipality and were provided by 
three different official sources: the number of Tuberculosis notified cases - by the 
National Program for Tuberculosis Control; the number of HIV/AIDS notified cases - 
by the National Registry of HIV infected individuals (Communicable Diseases and 

                                                           
1 CIMA/EU, and Lilly Portugal - Produtos Farmacêuticos, Lda. from Project: A Tuberculose em Portugal 
e seus determinantes.  
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Epidemiological Surveillance Center, INSA); and population data - by the National 
Statistical Institute. Constant detection rates among municipalities and in time are 
assumed. This study is exploratory and the interference of external relevant dimensions 
in the focused associations was not accounted for yet. 
In a first approach, for either HIV/AIDS or Tuberculosis incidence rates, some 
independent exploratory data analyses were conducted. Additionally, correlation 
analyses pertaining to both entities were done. 
In order to identify critical high incidence areas, spatiotemporal clustering analyses, 
based on the space-time scan statistic (Kulldorff, 1997), were applied separately for 
each disease. A multivariate scan with a multiple data sets process was applied, as 
HIV/AIDS is one of the risk factors for Tuberculosis and because both diseases have 
common risk factors. This method allows us to identify significant space-time joint 
clusters.  
Space-time scan statistic is one of the most referred techniques in spatiotemporal 
epidemiological scientific literature, due to its appropriateness for the purpose, to its 
robust theoretical framework and also to the existence of free and friendly software 
(www.satscan.org). 
 
3. Results 
Brief descriptive analyses of Pulmonary Tuberculosis incidence rates (TBIR) and of 
HIV/AIDS incidence rates (HIVIR), based on incidence rates per municipality and per 
year (2000-2009), are presented in Tables 1 and 2 and Figure 1. 
 

Table 1. Municipalities TBIR Descriptive Statistics (10-5), global and per year. 
TBIR Global 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Mean 20.50 24.59 22.57 23.25 21.43 20.01 20.11 18.13 16.09 20.16 18.71 

Median 16.99 20.73 18.15 19.34 18.02 16.63 17.50 14.77 13.95 16.53 16.24 

Std. 

Deviation 

18.51 22.58 19.80 19.44 18.13 17.98 17.57 16.45 14.76 17.92 18.08 

Maximum 155.70 144.58 109.57 92.87 103.14 112.28 90.80 77.39 68.98 95.02 155.70 

 
A slow, hesitating and declining global trend in time was apparent for mean TBIR in the 
Mainland, between 2000 and 2009 (Table 1). The global mean (standard deviation) for 
TBIR was 20.50 (18.51). 
 

Table 2. Municipalities HIVIR Descriptive Statistics (10-5), global and per year. 
HIVIR Global 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Mean 7.87 9.73 9.64 8.88 9.18 8.04 7.60 7.89 7.37 6.37 4.02 

Median 2.57 2.39 3.98 4.43 5.42 2.36 4.03 4.22 3.06 .00 .00 

Std. 

Deviation 

12.73 18.04 14.69 13.59 12.79 12.30 11.33 11.18 11.73 10.69 7.26 

Maximum 192.07 192.07 106.54 104.83 103.27 105.04 96.37 82.53 87.92 77.75 43.92 

 
A steeper global decline of HIVIR was observed, in the same period and area (Table 2), 
with a global mean (standard deviation) of 7.87 (12.73). 
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Figure 1: Boxplots of Municipalities TBIR and HIVIR, per year.  
 
The presence of outliers, in most years, makes it difficult to interpret a global time trend 
for the incidence rates, regarding each disease (Figure 1). 
As shown, from the minimum (“0” in all cases), the maximum and the median values, 
as well as from the boxplots, the data distribution was highly asymmetric for either 
TBIR or HIVIR, partly due to the strong presence of those outliers. 
 

Table 3. Spearman Correlation Coefficient between TBIR and HIVIR (p<0.001).  
Global 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

0.279 0.294 0.342 0.308 0.341 0.204 0.280 0.313 0.281 0.213 0.202 

 
The associations between TBIR and HIVIR, globally and per year, as expressed by 
Spearman correlation coefficients, seem stable but rather weak, though significant 
(Table 3). Correlation varied from 0.202 to 0.342 between 2000 and 2009, and it was 
0.279 globally (p<0.001).  
 
Table 4 & Figure 2. Results of TBIR(a) and HIVIR(b) spatiotemporal clustering 
analyses; (c) Multivariate Scan of TBIR and HIVIR (p<0.001).  
 

 

Cl 
Radius 

(km) 

Time 

Frame 

Observed/ 

Expected 
R.R. Maps 

1 24543 
2000-

2009 
6926/4345 1.77 

 
  

2 13203 
2000-

2009 
6563/4078 1.78 

3 All 
2000-

2003 
13561/11722 1.29 

4 11591 
2000-

2009 
6216/2467 3.31 

5 0 
2000-

2009 
2192/429 

5.66 

6 All 
2000-

2004 
10692/9004 1.46 

7 11591 
2000-

2009 

6216/2467 

6447/4029 

3.31 

1.77 

8 0 
2000-

2009 

2192/429 

1668/701 

5.66 

2.46 

9 All 
2000-

2004 

10692/9004 

16545/14705 

1.46 

1.28 
a)TBIR b)HIVIR c)TBIR/HIVIR 

1 

2 

3 (all the area) 

5 

4 

6 (all the area) 

8 

7 

9 (all the area) 
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For both diseases, Oporto and Lisbon Metropolitan Areas were identified as critical 
locals, based on spatiotemporal clustering analyses (Table 4 & Figure 2). Relative risks 
for Oporto and Lisbon were, respectively, 1.77 and 1.78 in TB study, and 5.66 and 3.31 
in HIV case. Clusters 3, 6 and 9 were related to the whole area under study and only for 
the first years (until 2003 or 2004). This fact is concordant with the decreasing apparent 
trend already mentioned for both diseases. 
 
4. Concluding remarks 
 
The evidence of some matching between high incidence critical areas regarding both 
diseases is expected, in accordance with the scientific literature. Joint distributions of 
HIV/AIDS and Pulmonary Tuberculosis in space and time in Portugal Mainland were, 
in fact, not independent: very similar space-time critical areas were found, reinforcing 
the previous conviction that, in Portugal, HIV/AIDS may be faced as an explanatory, 
but not a major dimension for TB incidence. Oporto and Lisbon metropolitan areas 
were identified as important places for urgent Public Health interventions. 
 
In order to improve the characterization of TB and HIV correlation, there is a need to: 
confirm that the detection rates are not interfering with results; explore the role of high 
outlier values as a source of joint variability; better understand the role of demographic 
and socio-cultural dimensions in the apparent associations; develop individuals-based 
studies, as a complement this ecological approach. 
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Abstract: Dioxins and dioxin-like compounds are byproducts of industrial pro-
cesses, commonly regarded as highly toxic persistent organic pollutants. Polycyclic
aromatic hydrocarbons occur in oil, coal, and tar deposits and are produced as
byproducts of fuel burning, coke-making, and metal smelting. We propose an anal-
ysis of the spatial diffusion and temporal evolution of 46 congeners, based on monthly
concentration data for the period October 2008 - December 2010 at three monitor-
ing stations. Given the high dimensionality of the data, a descriptive strategy was
adopted based on the duality diagram approach, a unifying framework including
classical multivariate statistical methods that has become a valuable tool for com-
bining data collected from different sources and using different methods.

Keywords: Air quality, Duality diagram, Multiple factor analysis

1 Introduction

Dioxins, dioxin-like compounds and polycyclic aromatic hydrocarbons are of concern
because some compounds have been identified as carcinogenic, mutagenic, and ter-
atogenic. The urban district of Taranto sits in close proximity to an industrial area
where several large combustion plants are located, including an integrated cycle steel
plant, an oil refinery, three waste incinerators, two power plants, and cement-works.
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2 Materials and Methods

We propose an analysis of the spatial diffusion and the temporal evolution of 46 con-
geners split into five groups (PCDD, PCDF, PCB, LPAH, HPAH), based on monthly
concentration data for the period October 2008 - December 2010 at three monitoring
stations located within the industrial area (MA) and in a traffic/background area
(AA and TA). Given the high dimensionality and multicollinearity of the available
data, a descriptive strategy was adopted to obtain a synthesis of the spatio-temporal
behavior and of the relationships between congeners. The duality diagram approach
is a unifying framework including many classical multivariate statistical methods and
less well-known recently developed tools for combining data collected from different
sources and taking advantage of complex data types (Thiolouse, 2011). Within the
K -table methods class, Multiple Factor Analysis (MFA) studies several groups of
variables defined on the same set of observations and weights each group to achieve
a joint representation of individuals and variables inducing a global representation
of the groups of interest (Escoufier and Pagés, 1994). Weighting of variables groups
is necessary to make the influence of each group comparable in a global analysis.
MFA produces a display in which representations of the set of individuals associ-
ated to each group of variables are superposed. A global representation of groups
of variables is obtained, in which each group is represented by the scalar product
matrix it defines on the set of individuals. MFA search for factors which are com-
mon to several groups of variables is addressed by first setting up general variables,
each one related to all the groups, and then searching for the canonical variable in
each group for each variable. Each group defines a structure on the individuals set
expressed by the shape of a cloud. A superposed representation which sets up the
structure common to the different clouds is obtained in order to compare clouds one
to another. A display in which each group is represented by one point allows to get
a global comparison of groups.

The first step (interstructure) provides the coefficients of a special linear com-
bination of the data tables, leading to an optimal summary called “compromise”.
The second step computes the PCA of this linear combination. The third step
(intrastructure) is a projection of the rows and columns of each table into the multi-
dimensional space of the compromise analysis. Functions implementing the methods
used in this case-study are contained in the library ade4 of the statistical computa-
tion environment R (Dray et al., 2007).

3 Results

MFA is applied to the available data considering 15 groups of variables obtained
crossing the 3 monitoring stations with the 5 groups of congeners. The first two
principal components of the compromise account for 54% of the total inertia. With
such a complex data structure this amount is considered sufficient for exploring the
main features of the data. The behavior of the subsequent principal components

2
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Figure 1: Left, projection of the principal components of each table on the com-
promise. Right, projection of the 23 observations on the compromise principal
axes. Labels with darker background color for most recent time points are framed
according to the season (red=Summer, orange=Spring, light grey=Autumn, dark
grey=Winter).

(not reported) does not add any relevant information to the results obtained by the
observation of the first two.

In Fig. 1, Left the industrial MA monitoring station appears to be quite separate
from AA and TA (traffic/background). For the latter two, PAH’s behave differently
from all other congeners. A general seasonality can be seen in Fig. 1, Right with
Spring/Summer observations in the top-right corner and Autumn/Winter on the
opposite side.

Some more insights can be gained by looking at the biplots of each table in Fig.
2. For the MA monitoring station we observe a reduction in PCDD/F’s and an
increase od HPAH’s. An overall reduction of the 46 congeners is registered at AA,
while PAH’s show a more evident decrease at TA. A stronger evidence of seasonal
congener concentration decrease is found for PAH’s at AA and TA.

4 Concluding remarks

Evidence of proximity to pollution sources is gained for the MA monitoring station
given both the less pronounced seasonality, compared to AA and TA, and the con-
trasting trend of different pollutant groups, where PCDD/F show a general decrease
while HPAH’s are increasing over time. Industrial sources appear to be a major con-
tributor to PAH pollution for MA compared to civil sources like traffic or domestic
heating. While experiencing the impact of a comparable amount of road traffic, the
MA station, where civil and industrial sources mix, has markedly different congener
relationships compared to AA and TA.
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Figure 2: Biplots of the 15 tables (rows projected on the principal axes, columns
projected on the principal components of the compromise). Dots with darker color
for most recent time points are circled according to the season (red=Summer, or-
ange=Spring, light grey=Autumn, dark grey=Winter).
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Abstract: The purpose of this study is to develop a method for allocating
pollutant concentrations to finer spatial scales conditional on covariate information
observable in a fine grid. Spatial dependence is modeled with the conditional au-
toregressive structure. The maximum likelihood approach to inference is employed,
and the optimal predictors are developed to assess missing concentrations in a fine
grid. The method is developed for a practical application of an output from the
dispersion model CALPUFF run for Warsaw agglomeration.

Keywords: Air pollutant concentration, conditional autoregressive structure,
spatial disaggregation

1 Introduction

Atmospheric dispersion models constitute a basic tool for air quality control. Fur-
ther usage of output from dispersion models include, among others, health impact
assessments. For improved risk assessments, it is often required to develop air quality
data in a resolution higher than the one readily available from dispersion models.

Making inference on variables at points or grid cells different from those of the
data is referred to as the change of support problem. Several approaches have been
proposed to address the problem. The geostatistical solution for realignement from
point to areal data is provided by block kriging (Gotway & Young 2002, Gelfand
2010). In the case that data are observed at areal units and inference is sought at a
new level of spatial aggregation, areal weighting offers a straightforward approach.
Some improved approaches with better covariate modeling were also proposed e.g.
in Mugglin & Carlin 1998, and Mugglin et al. 2000.

In the following we present an approach for areal to areal data realignement,
which accounts for a tendency toward spatial clustering, and is focused on applica-
tion to air quality. The idea stems from the method proposed in Chow & Lin (1971)
for time series, see also Polasek et al. (2010). Regarding an assumption on residual
covariance structure, we apply the conditional autoregressive (CAR) specification.
While the CAR structure is extensively used in epidemiology, it can be also applied
for modeling air pollution over space (Kaiser et al. 2002, McMillan et al. 2010).

1The research of Joanna Horabik was supported by Ministry of Science and Higher Education
under the Iuventus Plus project No. 0128/H03/2010/70.
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Figure 1: SO2 concentration (µg/m3) in a 1 km grid

2 Motivating data set

The study concerns air pollution concentrations (PM10, NOx and SO2 among oth-
ers) obtained from the dispersion model CALPUFF. A 1 km grid for Warsaw area
comprises 563 grid cells. Health risk studies, conducted in parallel, motivated our
search for the air pollution map in a 0.5 km resolution. The dispersion model output
represents an average pollutant concentration over each 1 km grid cell. This value,
multiplied by a cell area, reflects a pollutant level in a grid cell, and it constitutes
the value to be disaggregated.

In addition, available covariate information characterizes transportation, area
and point emission sources of the city in a 0.5 km grid.

3 The disaggregation framework

We begin with the model specification in a fine 0.5 km grid. Let Yi denote a random
variable associated with a missing value of pollutant, say SO2, level yi defined at
each cell i, i = 1, ..., n of a fine grid. Assume that random variables Yi follow a
Gaussian distribution with the mean µi and variance σ2

Y , and given these values Yi

are independent. The values µ = {µi}
n
i=1

represent the true process underlying SO2

level, and the (missing) observations are related to this process through a measure-
ment error of variance σ2

Y . The model for the underlying SO2 process is formulated
as a sum of regression component with available covariates, and a spatially varying
random effect. The applied CAR structure follows an assumption of similar random

2



effects in adjacent cells, and it is given through the specification of full conditional
distribution functions

µi|µj,j 6=i ∼ N

(
xT
i β + ρ

∑

j 6=i

wij

wi+

(
µj − xT

j β
)
,
τ 2

wi+

)
, i, j = 1, ..., n (1)

where wij are the adjacency weights; wi+ is the number of neighbours of area i; xT
i β

is a regression component with explanatory covariates for area i and a respective vec-
tor of regression coefficients, and τ 2 is a variance parameter. The joint distribution
of the process µ is (Cressie, 1993)

µ ∼ Nn

(
Xβ, τ 2 (D − ρW )−1

)
, (2)

where X is a design matrix with vectors xi; D is an n×n diagonal matrix with wi+

on the diagonal; and W is an n×n matrix with adjacency weights wij. Equivalently,
we can write (2) as µ = Xβ + ǫ, ǫ ∼ Nn (0,N), with N = τ 2 (D − ρW )−1.

The model for the CALPUFF output data observed in a 1 km grid is obtained
by multiplication of µ with an N × n aggregation matrix C, where N is a number
of observations in a 1 km grid

Cµ = CXβ +Cǫ, Cǫ ∼ NN

(
0,CNCT

)
. (3)

The matrix C consists of 0’s and 1’s, indicating which cells have to be aligned
together. The random variable λ = Cµ is treated as the mean process for variables
Z = {Zi}

N
i=1

associated with observations z = {zi}
N
i=1

of the aggregated model

Z|λ ∼ NN

(
λ, σ2

ZIN

)
. (4)

Also at this level, the underlying process λ is related to Z through a measurement
error with variance σ2

Z .
The parameters β, σ2

Z , τ
2 and ρ are estimated with the maximum likelihood

method based on the joint unconditional distribution

Z ∼ NN

(
CXβ,M +CNCT

)
,

where M = σ2

ZIN . The analytical derivation is limited to the regression coefficients
β, and further maximisation of the profile log likelihood is performed numerically.
The standard errors of estimators are calculated with the expected Fisher informa-
tion matrix.

Regarding the missing values in a fine 0.5 km grid, the underlying SO2 process
is of our primary interest. The predictors optimal in terms of the minimum mean
squared error are given by E (µ|z). The joint distribution of (µ,Z) is

[
µ

Z

]
∼ Nn+N

([
Xβ

CXβ

]
,

[
N NCT

CN M +CNCT

])
. (5)
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The distribution (5) allows for full inference, yielding both the predictor and its
error

̂E (µ|z) = Xβ̂ + N̂C
T
(
M̂ +CN̂C

T
)−1 [

z −CXβ̂
]

̂V ar (µ|z) = N̂ − N̂C
T
(
M̂ +CN̂C

T
)−1

CN̂ .

Note that in the predictor ̂E (µ|z), a naive regression forecast is corrected with a
residual on the aggregated level distributed over respective grid cells.

4 Concluding remarks

To conclude, the change of support problem in our study is addressed by defining
the underlying air pollution process to be an aggregation for respective grid cells.
The joint distribution (5) allows to view the approach in analogy to block kriging
(Gelfand 2010, p.524).

The application part of the study is under development.
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Abstract: The present study aims at setting up a geostatistical methodology that could 
be implemented in an operational context to assess the spatial representativeness of a 
measurement station. In the proposed definition, a point is considered as belonging to 
the area of representativeness of a station if its concentration differs from the station 
measurement by less than a given threshold.  Additional criteria related to distance or 
environmental characteristics may also be introduced. 
 
Concentrations are first estimated at each point of the domain applying kriging 
techniques to passive sampling data obtained from measurement surveys. The standard 
deviation of the estimation error is then used, making a hypothesis on the error 
distribution, to select the points, at a fixed risk, where the difference of concentration 
with respect to the station is below the threshold.  
 
The methodology is then applied to NO2 experimental datasets for different French 
cities. 
 
Keywords: geostatistics; kriging; spatial representativeness; nitrogen dioxide (NO2). 
 
1. Introduction 
 
Local agencies in charge of air quality monitoring are concerned with assessing the 
geographical areas in which concentrations may be assumed similar to those measured 
by monitoring stations.  
 
Spatial representativeness of a monitoring site is a recurrent notion that appears in 
European regulatory requirements on air quality but has not been precisely defined so 
far. A definition will be proposed and its practical implementation will lead to the 
production of maps to characterize areas represented by the stations. 
 
Application of the method for the background pollution [1] will be presented and some 
issues concerning the consideration of a traffic-related pollution model will be 
discussed. 
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2. Materials and Methods 
 
First, an estimation of the NO2 annual average of the background pollution is provided 
at each point of the domain applying kriging techniques to passive sampling surveys 
data. High resolution auxiliary variables, like the NOx emissions density in a 2km 
radius are also used as external drift. 
 
A first approach to define the area of representativeness of a monitoring station  
located in is to consider all the sites where the concentrations are sufficiently close to 
the station measurement, which implies the introduction of a threshold notion [2][3][4]: 

                                                                                                      

Let’s consider the estimation error of the pollution . We don’t take 
the measurement error at the station into account. 

                                                             

     (E.2) 

A sufficient condition for (E.2) is: 

                                            (E.3)         

We introduce the statistical risk that the concentration of a point considered in the area 
of representativeness of differs from the station measurement by more than the given 
threshold : 

                          (E.4) 

Then, making a Gaussian hypothesis on the error distribution, the standard deviation of 
the estimation error is used to select the points in the area of representativeness: 

                              (E.5) 

In this approach, a point can be considered as belonging to several areas of 
representativeness. So, additional criteria related to distance, minimal deviation of 
concentration, or environmental features are introduced to make a point belong to a 
unique station. 
 
Local scale also enables to estimate concentrations taking traffic-related pollution into 
account:  distance to the road, traffic-related NOx emissions, or road traffic 
informations can be considered to develop and improve a model. 
 
3. Results 
 
To illustrate the results of the methodology, passive sampling data provided by a survey 
carried out in the French city of Montpellier in 2007 are used. 
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Area of the monitoring site 8005 

Area of the monitoring site 8016 

Area of the new monitoring site 

 
 

 
 
 

Figure 1: Areas of representativeness of the background monitoring sites for the French 
city of Montpellier in 2007, for a threshold  of 10µg/m3 and a risk fixed at 10% 

 
Figure 1 shows the application of the method on the background pollution for a 
threshold  of 10µg/m3 and a statistical risk fixed at 10%. Two areas of 
representativeness can be obtained: a first one for the downtown pollution and a second 
one for the suburb pollution. 
 
Results can be helpful in providing some recommendations for setting up new fixed 
monitoring sites. In this case, sampling passive data can be used to find an appropriate 
site where the concentration of NO2 is the most representative of the missing 
information.  

 
4. Concluding remarks 
 
Application of the method for background pollution using analyzed data of NO2 annual 
concentrations produced on national scale shows its sensitivity to the criterion selected 
to remove intersections between representativeness areas. Stability in time of the areas 
is also related to variations of concentrations on the domain. 
 
This study underlines the difficulty to set up a reliable traffic-related pollution model 
and the influence of the passive sampling data location on the quality of the model. 
 
The way of taking account of the error of this traffic-related pollution model could also 
be discussed in future studies: the introduction of a Gaussian hypothesis as well as the 
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results of Chilès and Delfiner under a continuous and unimodal distribution error [5] are 
envisaged.  
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Abstract: Human exposure to combustion emissions including the associated airborne 
fine particles and mutagenic constituents have been studied in populations in different 
countries. PAH compounds are generated by combustion of organic matter in mobile 
sources as well as in stationary sources; they play a major role in defining the overall 
toxicity of atmospheric particulate matter (PM) although they are negligible in the total 
mass of the PM. The aim of this work was to apply statistical investigations on PAH 
concentrations measured at industrial sampling site in Taranto (Apulia Region, South of 
Italy) from May 2009 to May 2010. These data, related to gaseous pollutants at different 
meteorological conditions, allowed to determine the relationships between industrial 
emissions and ambient concentrations at receptor site. 
 
Keywords: PAHs, industrial site, emission sources 
 
 
1. Introduction 
 
Several epidemiological studies suggested the relevant role of ambient Particulate 
Matter (PM) in contributing to a range of health effects: the increased risk of death has 
been associated to the exposure to high PM concentrations, especially to the finer 
particles (Nadadur et al., 2009). In particular, it was found that the finer particles 
(PM2.5) can transport the pollutants deeply into the lung and cause many kind of 
reactions which include oxidative stress, local pulmonary and systemic inflammatory 
responses (Englert, 2004; Forbes et al, 2009). Particulate Matter consists of major 
components representing the main part of the total mass of particles and trace 
components usually representing less than 1% of total particle mass. Among the PM 
trace components, Polycyclic Aromatic Hydrocarbons (PAHs) constitute a major class 
of environmental pollutants. Many PAHs, particularly the larger five- and six-ring 
compounds that can be metabolized to diol epoxides, are mutagens and carcinogens 
(Binkova et al. 2007; de Kok et al. 2006). The primary source of PAH compounds in air 
pollution is from combustion of fossil fuels (e.g., coal, oil, gasoline and diesel fuel), 
vegetative matter (e.g., wood, tobacco, paper products, and biomass) and synthetic 
chemicals (e.g., from plastics and other chemical products in incinerated municipal, 
hospital and hazardous wastes). Once released in atmosphere, PAHs are subjected to 



several atmospheric processes; heterogeneous reactions (photo-oxidations) and gas-
particle partitioning are the main transformations processes of PAHs. These processes 
are dependent on the different meteorological conditions. The aim of this work was to 
assess the effects of emission sources on particle-bound PAH concentrations determined 
at the sampling site in Taranto from May 2009 to May 2010. These data were linked to 
meteorological conditions and gaseous pollutants measured at the monitoring station 
(NOx, CO, BTX). Finally, Principal Component Analysis (PCA) was applied to the 
dataset in order to provide information on the most relevant emission sources located in 
the area under investigation. 
 
 
2. Materials and Methods 
 
The sampling site is located in Taranto (Apulia Region, South of Italy), close to the 
industrial area (Via Machiavelli, Tamburi district). The sampling station is a customised 
monitoring unit containing a range of real-time instruments for particulate matter and 
gaseous pollutants. It includes a PM10 analyzer (SWAM Monitor), a nitrogen oxides 
(NOx) analyzer (API200A), a carbon monoxide (CO) analyzer (API300), a benzene-
toluene-xylene (BTX analyzer) (Syntech Spectras) and a particle-bound PAHs analyzer 
(EcoChem PAS 2000). Meteorological data (wind direction, wind speed, air 
temperature, rainfall, barometric pressure and solar irradiation) are continuously 
recorded by an automated weather station.  
Principal Component Analysis (PCA) was applied to the pollutant concentrations 
determined at the sampling site in order to obtain information on the characteristics of 
the most relevant emission sources located in the area. 
 
 
3. Results 
 
PAHs data collected from May 2009 to May 2010 were related to meteorological 
conditions, in particular to wind speed and direction determined at the sampling site. 
The higher PAHs concentrations were observed for air masses coming from North-East 
and North-West (Sector I, 0° - 60° (North) e 300°-360° (North)) directions because of 
the presence of the industrial area. As shown by previous studies at the same sampling 
site (Amodio et al., 2009), the days characterized by gust from North or by calm wind 
conditions coincided with the maxima PAHs values. Therefore, the data collected in the 
investigated period were related to wind speed for the higher concentration direction 
(Sector I, 0° - 60° (North) e 300°-360° (North)) and for the other ones (Sector II, 60° - 
180° (North); Sector III, 180° - 300° (North)). As shown in Figure 1, the higher PAHs 
concentrations were found for air masses coming from the North (Sector II), even when 
high wind speed is determined at the sampling site. However, as concern Sector II, 
lower PAHs concentrations than those previously observed can be measured at receptor 
site when air masses come from East direction. It was also found that the most 
significant values for PAHs were observed when calm wind conditions occurred, maybe 
due to low dispersion capacity of the pollutants in the atmosphere. Finally, the analysis 
of data collected in Sector III (180° - 300° (North)) (data not shown) showed the similar 
trend of those in Figure 2; some additional high events of pollutant concentrations were 



determined for air masses come from West - North West direction, as observed for 
‘high polluted’ direction. 
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Figure 1: Sector I, wind speed (m/s) versus PAHs concentrations (ng/m3) 
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Figure 2: Sector II, wind speed (m/s) versus PAHs concentrations (ng/m3) 
 
Principal Component Analysis with Varimax normalized rotation was applied on the 
data matrix of hourly mean concentrations of nitrogen oxides (NOx), carbon monoxide 
(CO), benzene (B), toluene (T) and total PAHs. Since the variables were characterized 
by different orders of magnitude, PCA was applied to normalized data matrix. Loadings 
and percentage of explained variance obtained for each of the components are shown in 
Table 1; only variables with factor loadings greater than 0.3 are shown. Two PCs, 
explaining up to 80% of the total variance of data, were evaluated. The PC1, which 
explained the most of the variance of the data, is characterized by high loadings for all 
the considered parameters, except of benzene (PC2). It was explained with the closeness 
of the monitoring station to the industrial area, that significantly affect the pollutant 



concentrations measured at the receptor. In fact, the same results in PCs, loading and 
explained variable (data not shown) were obtained when the PCA was performed to the 
dataset containing the samples collected in Sector I.  
 

  Loadings 
  1 2 
NOx 0.93  
CO 0.79 0.35 
BENZENE  0.97 
TOLUENE 0.66  
PAHs 0.94  
% Var  56.97 23.39 

 
Table 1: Loadings, eigenvalues and percentage of explained variance obtained in PCA 

on data collected in Taranto sampling site 
 
 
4. Concluding remarks 
 
This work was performed on data collected at Taranto sampling site (Via Machiavelli, 
Tamburi district) from May 2009 to May 2010. It allowed to highlight the relevance of 
the industrial area closed to the receptor site, that caused high pollution events when the 
air masses flow from the North. The same results were obtained by taking into account 
Principal Component Analysis performed on the dataset. 
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Tapering spatio temporal models 1
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Abstract: We consider regression models for multivariate spatio temporal data.
We view the data as a time series of spatial processes and work in the setting of dy-
namic models. In order to add flexibility we consider regression models with spatio
temporal varying coefficients. Spatial dependence among the different measurements
is attained considering the linear model of coregionalization. Since spatio-temporal
data are tipically of large dimension we propose to perform estimation both through
maximum likelihood by means of the EM algorithm and a modified version of it
exploiting the covariance tapering likelihood function.

Keywords: Air quality assessment, Covariance tapering, EM algorithm,r max-
imum likelihood estimation.

1 Introduction

The increasing availability of datasets on multivariate spatio-temporal data par-
allels the need for statistical models which are flexible enough for covering the
underlying complexity and can be estimated by means of well founded inferential
techniques. The dynamic coregionalization model, recently proposed by Fassó and
Finazzi (2011a), has these advantages as it allows modelling of complex multivariate
spatio-temporal dynamics and performing maximum likelihood parameter estima-
tion by means of the EM algorithm.

Due to the advancement of technology, massive amounts of data are often ob-
served at a large number of spatial locations in environmental sciences. For this
reason recent literature focused on geostatistical analysis of large multivariate spatio-
temporal datasets. See for instance Bevilacqua et al. (2011) and Cressie and Johan-
nesson (2008). This is because spatial problems with modern data often overwhelm
traditional implementations of spatial statistics, such as maximum likelihood esti-
mation. In this paper, in order to estimate multivariate regression spatio temporal
models for EU air quality assessment, we consider an approximation of the estima-
tion method proposed by Fassó and Finazzi (2011a) by considering the covariance
tapering approach. The key idea is that the use of covariance tapering allows to
manage large multivariate spatio temporal data.

1This research is part of Project EN17, Methods for the integration of different renewable
energy sources and impact monitoring with satellite data”, funded by Lombardy Region under
Frame Agreement 2009.
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2 Dynamic coregionalization model with varying

coefficients

We consider the following observation equation for the multivariate spatio-temporal
random process Y (s, t) = (Y1 (s, t) , . . . Yq (s, t))′ at time t = 1, . . . , T and site s ∈
D ⊂ R2:

Y (s, t) = X1 (s, t) β +X2 (s, t)K2Z(t) +X3 (s, t)K3W (s, t) + ε (s, t) , (1)

where X1, X2, X3 are matrices of known covariates and K2, K3 are matrices of con-
stants . Z (t) is a p−variate Markovian component, W (s, t) is a r−variate Gaussian
random field and ε (s, t) is a q−variate Gaussian white noise in space and time.

The p−dimensional latent temporal state Z(t) has the Markovian dynamics
Z(t) = GZ(t − 1) + η(t), with G a stable transition matrix and η ∼ N(0,Ση).
The k−dimensional Gaussian random field is described by coregionalization model
of c components

W (s, t) =
c∑
j=1

W [j](s, t)

where each W [j](s, t), for fixed t, is a latent zero-mean Gaussian process with co-

variance and cross-covariance matrix function Γ[j] = cov
(
W

[j]
i (s, t) ,W

[j]
i′ (s′, t)

)
=

Vjρ
[j]
(
h, θ̄[j]

)
, 1 ≤ i, i

′ ≤ r, 1 ≤ j ≤ c. Each Vj is a coefficents matrix and each ρ[j]

is a valid correlation function and h = ‖s− s′‖ is the Euclidean distance between s
and s′. All spatial processes above are purely spatial processes in the sense that are
uncorrelated over different time points. Finally, εi(s, t) ∼ N(0, σε,i), i = 1, . . . q is
the measurement error which is white-noise in space and time. The parameter set
to be estimated is Ψ = (β, σε;G,Ση; θ;V ) = (ΨY ,ΨZ ,ΨW ) where β = (β1, ..., βq)

′,
σε = (σε,1, ..., σε,q)

′, θ = (θ1, ..., θc)
′ and V = (V1, ..., Vc)

′.

3 Estimation method

At each time t, each Yi(s, t) is observed at ni sites Si = (si,1, ..., si,ni
). The sets in

S = (Si, ..., Sq) are not constrained and can be disjoint. The observed vector at time
t is then Y (S, t) = (y1(S1, t), ..., yq(Sq, t))

′ a vector of dimension N =
∑q

i=1 ni.
Due to the Markovian assumption and to the space-time separability property

of the model, and setting Y = (Y (S, 1), . . . , Y (S, T ))′ , Z = (Z0, Z1, ..., ZT )′, with

Zt = Z (t) and W [j] =
(
W

[j]
1 , ...,W

[j]
T

)′
, j = 1, .., c, and W =

(
W (1), ...,W (c)

)′
, the

complete-data log-likelihood function L (Ψ;Y, Z,W ) takes the nice additive form:

l (Ψ;Y, Z,W ) = l (ΨY ;Y | Z,W ) + l (ΨZ ;Z) +
c∑
j=1

T∑
t=1

l
(

ΨW ;W
[j]
t

)
2



where
l (ΨZ ;Z) = l (ΨZ ;Z0) +

∑T
t=1l (ΨZ ;Zt | Zt−1)

The involved distributions are all of Gaussian type. Specifically for the latent vari-
able

Z0 ∼ Np (µ0,Σ0)

(Zt | Zt−1) ∼ Np (GZt−1,Ση)

W
[j]
t ∼ NN

(
0,Σ[j]

)
, 1 ≤ j ≤ c

Note that Σ[j] = Σ[j](ΨW ) is a matrix of dimension R×R. with R =
∑r

i=1 ni
Estimation can be performed adapting the EM- algorithm as proposed in Fassó

and Finazzi (2011a) and modified by Fassó and Finazzi (2011b).
Here we propose a modification of this alghorithm to take into account the

problem of large dataset. Specifically the modification is based on the covariance
tapering likelihood idea Kaufmann et al. (2008) that is we consider the tapered
complete data likelihood:

lTAP (Ψ;Y, Z,W ) = l (ΨY ;Y | Z,W ) + l (ΨZ ;Z) +
c∑
j=1

T∑
t=1

lTAP

(
ΨW ;W

[j]
t

)

where lTAP

(
ΨW ;W

[j]
t

)
is defined as:

lTAP(ΨW ;W
[j]
t ) = −1

2
log |Σ[j] ◦ T (d)| − 1

2
W

[j]
t
′([Σ[j] ◦ T (d)]−1 ◦ T (d))W

[j]
t (2)

This is the multivariate version of the tapering likelihood proposed by Kaufman
et al. (2008). In their approach for the univariate case, certain elements of the
covariance matrix are set to zero multiplying it element by element by a correlation
matrix coming from a compactly supported isotropic correlation function.

Here T (d) is a sparse cross-correlation matrix coming from a valid model of
matrix valued correlation function with compact support and ◦ is the Schur product.
A simple model for the isotopic case is the following: let ρ(h, d) a compact support
correlation function (one of the Wendland (1995) class for instance) and let B a
r × r positive definite matrix of coefficients, then ρ(h, d)B is a r × r valid model
of matrix valued correlation function with compact support. The associated matrix
is T (d) = B ⊗ H(d) where H(d) = {ρ(||si − sj||, d)}ni,j=1. The ‘tapered’ matrix

Σ[j] ◦ T (d) is still positive definite and sparse matrix algorithms can be used to
evaluate an approximated likelihood efficiently. The intuition behind this approach
is that correlations between pairs of distant sampling locations are often nearly zero,
so little information is lost in taking them to be independent.

3
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Abstract: Vineyards vary substantially in the quantity and quality of grapes they 
produce. The study was undertaken in a commercial “Semidano” vineyard block (0.6 
ha) in the municipality of Mogoro (Sardinia isle, Italy) during the vintages of 2008, 
2009 and 2010. A total of 106 plants were sampled and georeferenced. To assess the 
joint spatial and temporal variation of the vine properties, a multivariate geostatistics 
technique was applied, called factor cokriging, which aims at decomposing the overall 
variance in a restricted number of regionalised scale-dependent factors. The thematic 
maps of the vineyard properties and the ones of the factors show a large variability on 
both space and time. All the measurements of spatial agreement reveal a lack of 
temporal stability of the variation patterns over the years.  
 
Keywords: precision viticulture, geostatistical analysis, temporal stability 
 
1.Introduction 
 
Precision Viticulture (PV) is an application of new Information Technologies (IT) used 
to maximize grape production efficiency and quality while minimizing environmental 
impact and risk. It is actually dependent on the existence of spatial variability in either 
product quantity or quality or both. Some variables may also be temporally variable, but 
have stable spatial patterns or show little temporal stability. The most compelling 
argument for the adoption of PV is the accurate assessment of variability that has been 
observed in vegetative growth, yield and grape quality over the past few years 
(Bramley, 2004). The objectives of PV will differ, depending on the market 
requirements for wine, and the use of selective harvesting might be utilized to optimize 
quality (Bramley et al., 2003). Thus winemakers need to produce grapes that maintain 
certified characteristics of good quality over the years and to reduce the interventions by 
adopting site-specific techniques. Grape quality within the zones characterized by 
different vegetative vigor is tested by using a stratified sampling and the results are used 
to formulate differential harvest strategies (Bramley et al. 2005). When maps are 
delivered, farmers receive a large amount of data which has to be analyzed rapidly. This 
means that the decision, as to whether or not it is appropriate to apply site-specific 
management (SSM), has to be made in a few days. This step is even more critical in 
viticulture when the information is delivered and analyzed at the cooperative level. The 



2 
 

primary technological advance that makes precision agriculture feasible is the yield 
map, which enables the farmer to estimate crop yields for sections as small as a few 
square meters and to display the collection of these estimates in color-coded maps. 
Growers can identify high- and low-yielding regions of the field and precisely quantify 
the differences between them. To produce accurate maps of yield and grape quality, the 
use of geostatistics may be much valued but it is also needed to introduce a 
methodology for evaluating the temporal stability of spatial patterns in the vineyard. 
The objectives of this work were to delineate homogeneous zones within a vineyard and test 
their stability over the years. 
 
2. Materials and Methods 
 
This study was undertaken in a commercial “Semidano” vineyard block (0.6 ha) in the 
municipality of Mogoro (Sardinia, Italy) during the years 2008, 2009 and 2010. The 
plants were harvested at 106 locations georeferenced by using a DGPS device (GRS1, 
TOPCON), and the number of bunches, the average bunch weight and the total 
production per plant were determined for each year (9 variables). The Babo° degree of 
the grapes was calculated by rifractometric method using an optical refractometer (MR 
210, Greensis) and the total acidity (tartaric acid) was expressed in ml of NaOH 0,1 N 
used for tritated 7.5 ml of must solution. The measurements were done only in 2010. 
The multivariate data set then included eleven variables. 
To assess the joint spatial and temporal variation of the vineyard properties a 
multivariate geostatistical technique was applied, called factor cokriging analysis 
(FCKA), which aims at decomposing the overall variance in a restricted number of 
regionalised scale-dependent factors. The theory underlying FCKA was described by 
Castrignanò et al., 2000 and Wackernagel, 2003. 
To produce the maps of the variables, MultiGaussian approach was used which requires 
a prior Gaussian transformation of the initial attribute into a Gaussian-shaped variable 
(Wackernagel, 2003, pp. 238-249). 
The transformed data were then submitted to geostatistical analyses and the estimates 
were back-transformed to the raw data to produce thematic maps. 
The three basic steps of FCKA are the following: 
1) modelling the coregionalization of the set of variables, using the so called Linear 
Model of Coregionalization (LMC) and interpolating the variables at the nodes of a 1 by 
1m-cell grid by cokriging; 
2) analysing the correlation structure between the variables, by applying Principal 
Component Analysis (PCA) at each spatial scale; 
3) cokriging specific factors at the characteristic scales and mapping them. 
Contingency table and Cohen’s kappa statistic were used to evaluate the stability of the 
spatial patterns of variation over the three-year period of study. 
 
3. Results 
 
The exploratory analysis (results not shown) of measured variables in the different years 
revealed considerable variation both across the vineyard and over time. The spatial 
variation was attested by the high values of CVs, whereas substantial temporal 
variability between the vintages was observed, as tested by the mean and maximum 
values, which varied significantly among the different dates for each type of variable.  
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A LMC was fitted to the Gaussian transformed data of all variables, including two basic 
structures: a nugget effect and an isotropic spherical model with range=18 m. The 
overall spatial and temporal variance was split into two approximately equal 
components, the not-spatially correlated component (nugget effect) and the short-range 
component. The previous results show that the most variation within the vineyard 
occurred at very short distance. 
The spatial maps of the eleven variables, obtained by cokriging, show a large variability 
on both space and time making difficult to disclose some distinct spatial patterns (only 
the maps of grape mass per plant were reported in Figure 1). Nevertheless, there is a 
wide central area mostly characterised by the highest values of number of bunches, 
average bunch weight and total production per plant in all the three years and by the 
minimum values of acidity and Babo degrees of grapes, in 2010 characterized by a 
general increase in erraticity. 
 

 
Figure 1: Thematic maps of grape mass per plant for the three years. 

 
In PCA applied to 18m-range structure we retained the eigenvectors (factors) producing 
eigenvalues greater than one. Therefore, we focused on the first three factors, which 
accounted for 36%, 30% and 20%, respectively, of the total variation at the 
corresponding spatial scale. The positive loading values for the three factors (data not 
shown) indicated the variables recorded in 2009, 2008 and 2010 as the ones most 
influencing the first, second and third factor, respectively. These factors can then be 
assumed as indicators of grape production in 2009 and 2008 and also of grape quality in 
2010, even if the proportion of the spatially structured variance explained by each one 
of them is quite low. 
Figure 2 shows the maps of the indices obtained by classifying the scores of each factor 
into three isofrequency classes, called low, medium and high. All the maps look quite 
variable, characterised by many spots of contrasting values, so that it is very difficult to 
disclose some common patterns of spatial dependence remaining stable over the years. 
At a visual inspection, the maps (Figure 2) do not reveal a sensible spatial association 
from one year to another one, which means that temporal variation, related to 
meteorological pattern, exceeded spatial variation in the three years. However, to make 
these comparisons more objective, we calculated two contingency matrices (not shown) 
to assess the spatial shift of the classes from the 2008 vintage to 2009 vintage and from 
the 2009 vintage to 2010 vintage. The results show that the classes high, low and 
medium corresponding to the 2008 vintage remained stable in the corresponding classes 
(high, low and medium) of the 2009 vintage at the percentages of 37.40, 32.91 and 
34.14, respectively, whereas the resting part moved to the other classes. About 34%f the 
class high was transformed into low class and 31% of low class into high class. As for 
the transition from the 2009 vintage to 2010 vintage the high class remained stable for 
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41.39% and moved to low class for 26.52%, whereas the low class remained stable for 
46.65% and moved to high for 31.95%. In synthesis, the results show that the overall 
temporal stability of the classes between the vintages 2008-2009 and 2009-2010 was 
about 35% and 45%, respectively. These results are confirmed also by the values of k 
statistics, 0.023 and 0.18 for the two cases, respectively, which are extremely low, even 
if significantly different from zero. Such a low level of spatial association over time can 
be attributed mainly to the sensitivity of the vineyard to the contingent conditions. 
 

Figure 2: Maps of the first three factors. 
 
4. Concluding remarks 
 
The main objective of this work was to assess the magnitude, structure and persistence 
in time of the spatial distributions of quantitative and qualitative properties of a 
vineyard using multivariate geostatistics. In this study we showed that multivariate 
geostatistics can be used to assess the heterogeneous spatial and temporal distributions 
within a vineyard and could then be used efficiently in PV. However, to make site-
specific management successful, the spatial distribution of vine should be well 
structured and the temporal persistence high enough. The preliminary results seem to 
advice against the use of PV in the study vineyard, though the analysis should be 
repeated over several years in order to reveal valuable recurrent patterns over time. 
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Abstract: Bayesian Model Averaging (BMA) and Bayesian Hierarchical Model (BHM) 

are statistical postprocessing techniques for calibrating precipitation forecast ensembles. 

BMA is a mixture model of predictive densities, while BHM is a fully Bayesian 

alternative to BMA. Both techniques are applied on a case-study. BMA is applied to 

quantitative precipitation, yielding a better calibration than the ensemble in 

homogeneous areas. For qualitative precipitation, both BMA and BHM forecasts are 

more calibrated than the ensemble. However, BHM yields a worse performance due to 

the “shrinkage” effect, that lets the forecasts vary across a small range of values.  

 

Keywords: precipitation forecasting, forecast ensemble, ensemble calibration, Bayesian 

hierarchical models.  

 

 

1. Introduction 

 
Short-term weather forecasting is a primary aim in meteorology. Here we consider 

precipitation, which can be seen either as the binary variable precipitation/no 

precipitation, or as quantitative precipitation, with reference to precipitation 

accumulation. The distribution of precipitation accumulation is far from being normal, 

since it has a positive probability of assuming zero value and is skewed. 

Precipitation forecasting has been traditionally regarded as based on deterministic 

numerical models. A technique for including variability and uncertainty in meteorology 

is the implementation of ensemble forecasts. An ensemble forecast provides multiple 

perturbations of numerical predictions differing in the initial conditions and/or the 

numerical representation of the atmosphere, thereby addressing the two major sources 

of forecast uncertainty (Raftery et al., 2005). If the ensemble forecast consists of 

multiple perturbations of a single numerical prediction model, its members should be 

considered undistinguishable and statistically exchangeable, i.e., with prior equal 

predictive skills.  

Ensemble forecasts are often biased and underdispersive and statistical postprocessing 

techniques are required to calibrate them. The output is then a predictive Probability 

Density Function (PDF). In order to warrant a good predictive performance, Gneiting et 

al. (2007) propose to construct probabilistic forecasts according to the diagnostic 
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approach of sharpness maximization, under calibration. Calibration refers to the 

statistical consistency between observations and prediction, while sharpness refers to 

the concentration of the predictive PDF. 

Two statistical postprocessing techniques able to calibrate quantitative precipitation 

ensemble forecasts in presence of exchangeable members are here presented. BMA has 

been introduced by Raftery et al. (2005) and Sloughter et al. (2007) as a mixture model 

of predictive densities, which are themselves mixtures of a discrete component with 

zero value and a gamma distribution. BMA can be considered as an empirical Bayesian 

approach, where all parameters are plug-in Maximum-Likelihood estimates. Here we 

propose a two-level BHM as a fully Bayesian alternative to BMA, extending the model 

originally introduced by Di Narzo and Cocchi (2010) to precipitation forecasting. 

 

 

2. Methods 
 

Bayesian Model Averaging (BMA) is a mixture model of the predictive densities of the 

ensemble members, that accounts for the uncertainty involved in the model selection 

process. Let y be the future daily precipitation accumulation and let f be an ensemble 

output consisting of K>1 ensemble members forecasts �� on that day, coming from K 

different deterministic models. Every ensemble member can be associated with a 

predictive PDF, ����|��, ��	, interpretable as the conditional PDF of y, given that �� is 

its “best” forecast, while �� are the member-specific model parameters. The BMA 

outcome is a predictive density, that combines predictions under each model in a 

weighted average: 
 

( )
1

| , ( | , )
K

k k k k

k

p y f x w p y f θ
=

=∑ . (1) 

 

For each k, the weight 
� is the model posterior probability over a training period x and 

reflects the relative predictive skill of each forecast ��. Under the assumption of 

exchangeability of the ensemble members, parameter and weights are supposed to be 

not member-specific; hence we have w�  1/K. 

Sloughter et al. (2007) propose to model the conditional PDF of precipitation 

accumulation, ����|��, ��	, as a finite mixture of a point mass at zero, modeling the 

probability of non precipitation via logistic regression, and a gamma distribution 

����|��, �	, modeling the precipitation accumulation, given that it is greater than zero. 

By considering the case of quantitative precipitation and assuming exchangeability, 

equation (1) can be written as: 
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BMA is not a fully Bayesian model because the parameter vector � is not considered as 

a random variable and, therefore, it is not integrated out. Moreover, the posterior 

ensemble member probabilities are replaced by Maximum-Likelihood estimates 

according to an empirical Bayesian approach.  

A fully Bayesian version of BMA is offered by a two-level Bayesian Hierarchical 

Model (BHM) (Di Narzo and Cocchi, 2010). For a BHM, equation (2) is modelled 



 

conditionally on a latent member selection process  that every day selects a “best” 

forecast, as follows: 

( ) ( ) ( ) ( )
1

| , | , , |
K

k k k

k

p y f x p y f z k p z k p x d
θ

θ θ θ
=

= = =∑∫ .     (3) 

Since the ensemble members are assumed exchangeable,  is modelled according to 

i.i.d. discrete uniform distributions and the posterior distribution of the parameters 

 is obtained starting from higher level vague prior distributions.  

 

 

3. A case-study: Materials and Results 
 

The dataset analyzed contains 24-hour precipitation accumulation data, measured in 

millimetres. The data consist of observations and their 48-hour ahead forecasts. Both 

the observed and the forecasted data refer to the period from January 1, 2007, to 

December 31, 2007. Forecast data are obtained from the deterministic ensemble 

COSMO Limited-area EPS (COSMO-LEPS), developed by “Azienda Regionale 

Prevenzione e Ambiente della Regione Emilia Romagna – Servizio Idro-Meteo-Clima” 

(ARPA-SIM), which includes sixteen exchangeable members. Observed data come 

from 321 meteorological stations located in the Emilia-Romagna Region. Observations 

and forecasts concur at each location, after interpolating every meteorological station 

value to the model grid.  

Here  both statistical postprocessing techniques are applied on a random sample of 14 

grid points. Fig 1. shows the spatial distribution of the mean and the standard deviation 

of the precipitation accumulation. The two distributions are partitioned according to 

their quartiles: the figure clearly shows the presence of four spatial clusters . In 

particular, the stations corresponding to the higher quartiles (red and yellow dots) are 

placed in the mountains and in the hills, while stations below the median (green and 

blue dots) are placed in the Po valley and near the seaside.  

 

 
Figure 1: Distribution of the mean and standard deviation of observed precipitation accumulation among 

the 321 grid points of the dataset. 

 

BMA is useful for global calibration; it is based on the assumption that all 

meteorological stations are homogeneous, and ignores the possible spatial correlations. 

This might be too strong an assumption for the Emilia-Romagna Region, which is 



 

characterized by the presence of different climate regimes. This lead us to believe that 

calibration might be better achieved within subgroups. For this reason a clustering of 

sites has been adopted following the above criterion. After grouping, stations variability 

of precipitation accumulation within groups is more homogeneous than before. BMA 

has been computed separately on random samples selected within the aforementioned 

clusters. BMA forecasts are far from being calibrated in the two cluster where the 

variance is larger. The stations of these groups are mostly located in the mountain areas 

and where the distance from the sea is the farthest, i.e. where precipitation is usually 

less homogeneous. It is known that precipitation is highly affected by local terrain 

features and some statistical postprocessing techniques for local calibration may yield a 

better predictive performance in the case of Emilia-Romagna. By considering a random 

sample of stations only in the clusters where the variability is under the median, BMA 

yields a better performance than COSMO-LEPS. 

BHM is applied on the same sample of stations used for BMA to calibrate qualitative 

precipitation ensemble forecasts. Both probabilistic forecasts reveal a better predictive 

performance than COSMO-LEPS forecasts; however, BMA forecasts are more 

calibrated than BHM ones. Both statistical postprocessing techniques can improve the 

predictive performance of an ensemble. However, BHM forecasts were more 

underdisperse than BMA forecasts.  

The less satisfactory performance of BMH occurs because this model returns values that 

are “shrunked” towards the common posterior mean with a very small spread. Since we 

have chosen vague prior distributions, the posterior results are mostly determined by the 

observed data, and thus, the posterior common mean of the BHM forecast probabilities 

is very similar to the mean of the observed frequency of precipitation occurrence. The 

shrinkage from the maximum likelihood estimates towards the posterior common mean 

is a typical behaviour in Bayesian hierarchical models. This is usually a valuable 

characteristics of the Bayesian estimates with respect to the maximum likelihood 

estimates.  
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Abstract: The calibration of the precipitation forecasted at high resolution is currently a 
challenge for the ensemble community working with Limited Area Models. Here, the 
potential of using reforecasts to achieve this goal was investigated. Different calibration 
techniques were tested. The impact of the application of these techniques to the 
precipitation forecasts provided by a Limited-area Ensemble Prediction System was 
verified over the Emilia-Romagna Region (Northern Italy), Switzerland and Germany. 
The results revealed a beneficial impact of the calibration process for Switzerland and 
Germany; rather, no significant improvements were obtained for Emilia-Romagna. As 
the model error is likely to have a systematic dependence on geography, orography and 
flow direction, weather-regime dependent correction functions should be generated for 
improving the calibration strategy.  
 
Keywords: calibration, precipitation forecast, ensemble, reforecasts, COSMO-LEPS 
 
 
1. Introduction 
 
The calibration of the precipitation forecasted at high resolution is currently a challenge 
for the ensemble community working with Limited Area Models, especially with 
respect to the improvement of the forecast skill for rare events. The potential of using 
reforecasts to achieve this goal has been shown in recent studies (Hamill et al., 2008; 
Fundel et al., 2010). Reforecasts mean a large dataset of retrospective forecasts obtained 
by the same model that is run operationally. In the present work, thirty years of 
reforecast of one member of COSMO-LEPS (the Limited-area Ensemble Prediction 
System based on the non-hydrostatic limited-area model COSMO) were used for the 
implementation of the calibration strategy over the Emilia-Romagna Region (Northern 
Italy), Switzerland and Germany. Three calibration techniques were tested: cumulative 
distribution function based corrections, linear regression and analogs. The choice of 
these methodologies is due to the need of improving the quantitative precipitation 
forecasts (QPFs) provided by COSMO-LEPS, especially as an input to hydrological 
models. Thus, techniques which enable a calibration of QPFs and not only of the 
probabilities of exceeding a threshold were selected.  
 
 
2. Materials and Methods 
 
The calibration strategy was based on the availability of historical forecast and observed 
rainfall data over the areas under investigation. Thirty years of reforecast of one 
member of COSMO-LEPS (10 km of horizontal resolution, 40 vertical levels) were run 
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by MeteoSwiss. One reforecast run with a 90-h lead time was available every three days 
from 1971 to 2000. This model climatology was used to calibrate forecasts of all lead 
times, without considering the time dependency of model bias (Fundel et al., 2010). 
According to the model climatology, the observed precipitation data were collected over 
the period 1971-2000 for Emilia-Romagna and Switzerland; rather, the observed data 
over Germany were available only for the period 1989-2000. The rainfall data were 
interpolated on the model grid points which cover the areas under investigation.  
The calibration techniques tested in this work provide corrections based on the 
Cumulative Distribution Function (hereafter, CDF), the Linear Regression (hereafter, 
LR) and the Analog method. The described methodologies were used to calibrate each 
member of COSMO-LEPS. Each calibration function was defined by using the 
historical data forecasted and observed over each grid point for a specific season.  
For the CDF method, the calibrated 24-h QPF was determined by comparing the 
reforecast and observed CDF curves. The value of the observed data which had the 
same probability of occurrence of the current 24-h QPF was used as the corrected QPF 
value. For the LR method, the parameters of the regression line estimated on the basis 
of reforecast and raingauge historical data were used to correct the current 24-h QPF 
value. The analog-based methodology was applied using two implementations, which 
differ from each other for the meteorological field used for the analog search. In the first 
implementation, the analog search was performed in terms of the similarity of the 
forecasted precipitation field over the area under investigation. In the second 
implementation, the analog search was performed in terms of the similarity of the 
forecasted circulation pattern, evaluated in terms of the geopotential at 700 hPa, 12 
UTC (hereafter, Z700), over a spatial domain which is significant for the area under 
investigation to relate the synoptic circulation to the precipitation at ground. In the 
following of this paper, the first implementation of the analog-based method is referred 
to as “ANL” and the second implementation as “anlZ”. For both implementations, for 
each 24-h lead time, the root-mean-square (rms) differences between each member of 
the current forecast and each reforecast day were computed (the comparison was carried 
out among fields coming from the same season). The historical date with the smallest 
rms difference was chosen as the analog day, then the gridded raingauge recordings of 
that past day were used as the calibrated QPF.  
The impact of the calibration process was verified for 24-h QPFs operationally provided 
by COSMO-LEPS in the years 2003-2007. The probabilistic verification was carried 
out in terms of the attributes diagram and the Brier Skill Score (BSS).  
 
 
3. Results 
 
The results obtained by the application of the calibration strategy are here discussed 
only for the autumn seasons in the years 2003-2007.  
Figure 1 shows the attributes diagram for the lead time day 2. The verification was 
performed for each model grid point with respect to the ninety-fifth percentile of the 
climatological distribution of observed 24-h precipitation as threshold for the verified 
events. For Emilia-Romagna, the raw ensemble has no good reliability, providing 
overconfident forecasts. Only the calibration based on LR allows an increase of 
reliability. The weakness of the raw forecast system is more evident over Switzerland 
(i.e. the raw ensemble lies under the no skill line). The ensembles calibrated by the 



 

3 
 

CDF, LR and ANL methods show an increase of reliability; nevertheless these 
ensembles are still overconfident. For Germany, a beneficial impact is provided by the 
calibration based on LR, whereas a slight increase of reliability results for the 
ensembles calibrated by CDF and rainfall analogs.  
Generally, the calibrated ensembles are still overconfident, especially for high 
probability values. The calibration based on the analogs of geopotential provides bad 
performance over all the three study areas. This result reveals that the geopotential at 
700 hPa is not a good predictor for the precipitation over the selected areas.  
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Figure 1: Attributes diagrams for the raw and calibrated ensembles over Emilia-

Romagna (left panels), Switzerland (middle panels) and Germany (right panels) in 
autumn at day 2 lead time, for the 95-th percentile threshold. The inset histograms 

denote the frequencies of the use of the forecasts for each probability bin. 
 
Figure 2 shows the results obtained in terms of BSS for the autumn season in the period 
2003-2007 with respect to the ninety-fifth percentile of the observed climatology as 
threshold for the verified events. The observed climatology is used as the reference 
forecast for the computation of the skill score. The calibration process does not provide 
a beneficial impact on the ensemble QPFs over Emilia-Romagna. Actually, the values 
of BSS associated to the calibrated ensembles are lower than the BSS of the raw 
ensemble for all the lead times. The raw ensemble performs worse than climatology 
over Switzerland, but the calibration process provides the greater amount of skill 
improvement. With the exception of the anlZ method, the forecasts calibrated by all the 
methods show a significant increase of BSS values. Even, with respect to climatology, 
unskillful raw forecasts can be turned into skillful forecasts. In particular, the highest 
BSS values are provided by the ANL method. For Germany, a beneficial impact is 
provided by the CDF method for all the lead times; rather, slight improvements are 
obtained for the ensembles calibrated by LR and rainfall analog only for the longer lead 
times. Generally, the decay of performance with lead time is evident for the raw and 
calibrated forecasts. 
An additional verification of the calibration process was performed by the coupling of 
the ensemble precipitation forecasts with an hydrological model. This test was carried 
out for the Reno river basin, a medium-sized catchment located in the Emilia-Romagna 
Region. The river hydrograph simulations were carried out for the autumn and spring 
seasons in the period 2003-2008 by using the distributed rainfall-runoff model 
TOPKAPI. The results of the coupling were evaluated in terms of missed events and 
false alarms which would have been issued based on the discharge scenarios driven by 
the raw and calibrated QPFs, with respect to the exceeding of the warning threshold 



 

4 
 

defined for the aims of civil protection. The results showed that, on the one hand, a 
beneficial impact on the reduction of missed events was provided by the calibration 
performed with the ANL and CDF methods. On the other hand, an increase of false 
alarms resulted by the application of the two above-mentioned calibration methods, 
even though this trend is evident for the ANL method only for longer lead times. 
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Figure 2: BSS for the raw and calibrated ensembles over Emilia-Romagna (panels on 

the left), Switzerland (panels in the middle) and Germany (panels on the right) in 
autumn, as a function of the forecast lead time. Skill at the 95-th percentile threshold.  

 
 
4. Concluding remarks 
 
The results revealed a beneficial impact of the calibration process over Switzerland and 
Germany. No significant improvements were obtained over Emilia-Romagna by 
evaluating the statistical analysis on the calibrated QPFs. The coupling of the QPFs 
calibrated with the ANL and CDF methods with an hydrological model revealed a 
beneficial impact of the calibration on the reduction of missed events for a medium-
sized catchment (i.e. the Reno river basin) used as a test-bed. The lack of a remarkable 
improvement, especially over Emilia-Romagna, resulting from the application of the 
proposed calibration methods suggests the need of defining specific correction functions 
which should be able to link the model errors to the meteorological situation. Actually, 
the search for a unique relationship between forecast and observed data hampers to 
highlight the model errors which are known to have a systematic dependence on 
geography, orography and flow direction. Therefore, the calibration strategy should be 
improved by dividing the training sample size in order to pool data which have similar 
model errors with respect to a given meteorological situation. 
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Functional boxplots for summarizing and detecting
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Abstract: Nowadays, environmental sensor networks produce a large amount
of streaming time series whose storage, manipulation and indexing is impractical.
In this work, we propose a new strategy for summarizing and describing this kind
of data based on functional data representation. It discovers trends and potential
anomalies by using an informative exploratory tool: the functional boxplot. Func-
tional boxplots are introduced for conveying location and variability information. In
addition, for detecting and illustrating variation a distance among functional box-
plots is used.

Keywords: streaming time series, functional data, functional boxplot

1 Introduction

In a wide range of environmental applications, networks of sensors allow to record
huge amounts of temporally ordered data. Often, the sampling frequency is very high
and the monitored phenomenon is highly evolving. This involves that traditional
temporal data mining methods, based on computationally intensive algorithms and
requiring the storing of the whole dataset, become ineffective. Especially there is a
remarkable delay between the recording of the data and the analysis results which
can impact on decisional processes.

In order to deal with this issue, it is necessary to move from the traditional
temporal data mining to the data mining of streaming time series which focuses on
processing the incoming data on-line without requiring their storage.

Usually, algorithms for data streams mining update, in incremental and on-
line way, the knowledge about data by means of synopses. These provide suitable
summaries which are substantially smaller than their base dataset and allow to
discard the data once they have been processed. In literature, several summarization
techniques for streaming time series have been proposed (a wide review is available
in (Mitsa T., 2010)). Some of these transform a streaming time series into a new
one of reduced dimensionality, others use sampling, sketches, histograms.

In this paper we introduce an intuitive tool for visualizing and summarizing
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the behavior of multiple streaming time series, the Functional Box Plot (FBP).
Originally defined for functional data, it is considered as a variable and used as
synthesis of batches of the incoming multiple streaming time series. The monitoring
of the evolution of the data has been performed through the comparison of the FBP
variables using an appropriate distance measure, rather than analyzing the incoming
recordings.

2 The three steps strategy

Let yi(t), i = 1, . . . , n, t ∈ [1,∞] a set of streaming time series made by real valued
ordered observations of a variable Y (t) in n sites, on a discrete time grid.

Our aim is to summarize and describe their changes in a streaming fashion by
means of a comparison of functional boxplot variables. Functional boxplots are
an informative explorative tool for functional data. We use them as variables of
synthesis for the set of n streaming time series splitted in non overlapping windows
and opportunely approximated by functional data. With this scope a three steps
strategy is proposed.

The first step consists in splitting the incoming parallel streaming time series
into a set of non overlapping windows Wj, j = 1, . . . ,∞, that are compact subsets
of T having size w ∈ < and such that Wj

⋂
Wj+1 = ∅. The defined windows frame

for each yi(t) a subset y
wj

i (t) t ∈ Wj of ordered values of yi(t), called subsequence.
Following the FDA approach, we consider each subsequence yi

wj(t) of yi(t) the
raw data which includes noise information (Ramsay, J.E., Silverman, B.W., 2005).
Then we determinate a true functional form f

wj

i (t), we call functional subsequence,
which describes the trend of the flowing data, by using smoothing spline functions.
For each Wj we have that all the subsequences y

wj

i (t) i = 1, . . . , n follow the model:

y
wj

i (t) = f
wj

i (t) + ε
wj

i (t), t ∈ Wj i = 1, . . . , n (1)

where ε
wj

i (t) are residuals with independent zero mean and f
wj

i (·) is the mean func-
tion which summarizes the main structure of y

wj

i (t).
In a second step since we need to have a summary of the batched streaming

time series, we compute functional boxplot variables for each batch. Functional
boxplot(box-and-whisker diagram or plot) is an informative graphically tool for de-
picting functional data through their five-functions summaries. We consider them
as a kind of quantitative variables in the functional setting.

In functional data analysis two different definition of boxplot exist. A first one
makes use of the first two robust principal component scores, Tukey data depth and
highest density regions (Hyndman R.J., Shang, H.L., 2010); a second one is based on
center outward ordering induced by band depth for functional data (Sun Y., Genton
G., 2011). We makes use of the second boxplot definition, that is a natural extension
to the classical boxplot. It is defined starting by a concept which allows to order
curves from center outward: the band depth BD (Lopéz-Pintado and Romo 2009).
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Let f
wj

i (t), i = 1, . . . n be the collection of functional subsequences in a window Wj,
G(f

wj

i ) =
{

(t, f
wj

i (t)) : t ∈ Wj

}
be the graph of the function f

wj

i (t), and

B
(
f
wj

i1
, . . . , f

wj

ik

)
= {
(
t, g

wj

i (t)
)
|t ∈ Wj, min

r=1,...,k
f
wj

ir (t) ≤ g
wj

i (t) ≤ max
r=1,...,k

f
wj

ir (t)} (2)

be the band in R2 delimited by the k different curves
(
f
wj

i1
, f

wj

i2
, . . . , f

wj

ik

)
, obtained

by computing the minimum and the maximum values for all t. Let BD
(m)
n be the

portion of bands obtained by m = 1, . . . ,M different curves containing the whole
graph of f

wj

i (t) expressed by

BD(m)
n (f

wj

i ) =

(
n

m

)−1 ∑
1≤i1≤i2≤...≤im≤n

I
{
G
(
f
wj

i

)
⊂ B

(
f
wj

i1
, f

wj

i2
, . . . , f

wj

im

)}
m ≥ 2

(3)
where I {·} denote the indicator function.

Thus the band depth BDn,M(f
wj

i (t))of any of these function f
wj

i (t) is defined as

BDn,M(f
wj

i ) =
M∑

m=2

BD(m)
n

(
f
wj

i (t)
)

M ≥ 2 (4)

Especially let f
wj

[i] (t) denote the sample of functional subsequence associated to

the ith largest band depth value, the set f
wj

[1] (t) . . . , f
wj

[n] (t) are order statistics, with

f
wj

[1] (t) the median curve, that is the most central curve (the deepest), and f
wj

[n] (t) is
the most outlying curve. Moreover the central region of the boxplot is defined as

C0.5 =

{
(t, fwj(t)) : min

r=1,...,[n/2]
f
wj

[r] (t) ≤ fwj(t) ≤ max
r=1,...,[n/2]

f
wj

[r] (t)

}
(5)

where [n/2] is the small integer not less than n/2. The border of the 50% central
region is defined as the envelope representing the box of the classical boxplot.

Based on the center outwards ordering induced by band depth for functional
data, the descriptive statistics of such functional boxplots FBP are: the upper
f
wj

[u] (t) and lower f
wj

[l] (t) curves (boundaries) of the central region, the median curve

f
wj

[1] (t) and the non-outlying minimum f
wj

[bmin]
(t) and maximum boundaries f

wj

[bmax]
(t).

For each window we have a FBP variable that is considered as a variable com-
pound of five sub functions with the following structure:{

f
wj

[u] (t), f
wj

[l] (t), f
wj

[1] (t), f
wj

[bmin]
(t), f

wj

[bmax]
(t)
}

(6)

The third and latest step, consists in monitoring the evolution of the multiple data
streams by comparing functional boxplot variables. With this aim we introduce
a distance measure between a pair of FBP variables. It is a Manhattan distance
which extends the distance for classical boxplot introduced in Arroio J., Mat C.,
Roque A. (2006) to functional boxplot variables. It is computed by considering that
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each couple of correspondent functions is compared on the same time interval W by
means of a transformation of the functions domain. Thus, the Manhattan distance
between a pair of functional boxplot FBP1, FBP2 opportunely shifted is:

d(FBP1, FBP2) =

∣∣∣∣∫
t∈W

(f
′w1

[u] (t)− f ′w2

[u] (t))dt

∣∣∣∣+

∣∣∣∣∫
t∈W

(f
′w1

[l] (t)− f ′w2

[l] (t))dt

∣∣∣∣+

+

∣∣∣∣∫
t∈W

(f
′w1

[1] (t)− f ′w2

[1] (t)dt)

∣∣∣∣+

∣∣∣∣∫
t∈W

(f
′w1

[bmin]
(t)− f ′w2

[bmin]
(t))dt

∣∣∣∣+

+

∣∣∣∣∫
t∈W

(f
′w1

[bmax]
(t)− f ′w2

[bmax]
(t))dt

∣∣∣∣
where f

′wj

[u] (t), f
′wj

[l] (t), f
′wj

[1] (t), f
′wj

[bmin]
(t), f

′wj

[bmax]
(t) are the descriptive functions of the

shifted FBP. The synthesis obtained by the FBP allows to have a description of
batched streaming time series that can be compared on different time interval, thus
this distance can be applied also on different and non consecutive time windows.

3 Concluding remarks

In this paper we have introduced a new strategy for summarizing multiple stream-
ing time series and for monitoring their evolution. Unlike approaches existent in
streaming time series literature, we have introduced a tool able also to provide an
intuitive graphic summarization of data.

We have performed several tests on climate data in order to assess the effective-
ness of the method. Preliminary results are encouraging.
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Abstract: This paper contribute to the literature on the influence of network structure 
and performance of university students over time. We move from the assumption that 
students’ school performance is influenced by: friendship, exchange of general 
information about the course, contents, lecture notes and trust networks. Social 
influence has been modeled through SARAR model and several spatial weight matrixes 
W and M have been compared. 

 
Keywords: SARAR model, social influence, social network analysis 
 
 
1. Introduction 
 
A number of studies in social network analysis, economic and sociology have recently 
focused on the association between friend networks (or peer effect) and school 
performance. 
In this paper we aim at contributing to the literature on the influence of network 
structure and performance of university students. We hypothesize that class mates can 
develop four different types of relationships. Existing literature usually focuses on two 
main types of such relationships, namely friendship and study networks. In this paper 
we explore also the role of two other relationships which might be associated with 
students’ performance: the exchange of general information and the exchange of lecture 
notes. We measure school performance by the means of students’ University Human 
Capital (UHC).  
We test whether the ego’s UHC is influenced by the UHC of the subgroup of class 
mates with which he/she has a relationship of one of the four kinds and which of these 
relationships has the higher marginal effect on UHC (i.e., we investigate whether UHC 
is influenced by the UHC of study-network members, as well as by the UHC of 
friendship-, information- and lecture notes-network members) (hypothesis 1). Also, we 
inspect if students’ UHC is influenced by unobserved characteristics common to the 
ego’s networks’ structure (hypothesis 2). We will test the hypothesis that high-
performance students tend to relate themselves with other high-performance students, to 
isolate low-performance students and to have less free time to spend hanging out with 
friends (hypothesis 3). 
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2. Materials and Methods 
 

We developed an ad-hoc survey in which students in a given class are asked to detail 
the structure of four different networks to which they belong. Respondents are master 
students in the age range 22-23, attending the Statistics course during their first year of 
a two-year master degree at Iulm University in Milan, Italy. 

Students are asked whether, in order to prepare the Statistics exam, they studied on their 
own. If they did not, they are asked to identify the class mates with whom they studied. 
We consider these peers as members of the ego’s study network. Students are also asked 
whether they have class mates with which they get together outside the university 
environment, and if they do, we ask to identify them and we consider them as members 
of the ego’s friendship network. In order to identify the information network and the 
lecture notes network, we look at class mates whom the ego considers a reliable source 
of information for what concerns the Stats course and with which he/she 
exchange/compare his/her notes, respectively. The structure of all the four networks we 
consider are such that relationships do not necessarily need to be reciprocal. Students 
are surveyed twice: before the mid-term exam and before the final exam at the end of 
the course. Student UHC is then measured using the difference between the student’s 
grade obtained at time 1 and the grade he/she obtained at time 0. Both grades are 
expressed in thirtieths (minimum for sufficiency is 18), a UHC equal to 0 is interpreted 
as no change in performance between time 1 and time 0, while a positive (negative) 
UHC is interpreted as increased (decreased) performance between time 1 and time 0. 

In addition to information relating to the structure of the four networks discussed above, 
the survey also collects information on the students’ field of education during their 
bachelor studies, whether their university career took place in the same University in 
which they are surveyed, and if this is not the case, in which university they took their 
bachelor. Further, the students are asked whether, during their university studies, they 
took a Stats class, and if this was the case, they are asked to specify which class it was. 
Finally, a question is asked to identify who the ego subjectively perceives as the central 
subject among  his/her class mates (“You are the person located in the bottom part of 
this picture. Could you specify, among your class mates, the initials of the person in the 
upper left of the picture?”). This question does not refer to one particular network, 
rather it aims at catching the ego’s perception about the central subject among his 
school mates, in general.  

In order to test our three assumptions, we employ respectively the models: 

1) the spatial lag model, UHC  = ρ1 WUHC +X’β + ε;  ε ~N(0,σ ε
2I)  

2) the spatial error model, UHC = Xβ + ε;  ε = ρW ε + v ; v ~N(0,σv
2I) 

3) the spatial auto-regressive auto-regressive model (SARAR):  

UHC= ρ1 WUHC +X’β + u; u = ρ2 Mu + ε 
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The independent variables ( gender and mark of previous statistics ability) are the same 
for all models; the coefficient ρ1 measures the spatial autocorrelation in the dependent 
variable i.e. a spatial lag (Cliff et al., 1973; Leenders, 2002); if this coefficient is 
positively significant, there is evidence of spatial autocorrelation in UHC or, in other 
words, that students belonging to the same network tend to have similar grade 
differentials over the two time periods. The coefficient ρ2 measures instead the spatial 
autocorrelation in the error term; if this coefficient is positively significant we interpret 
that there are common unobserved factors influencing all members of the same network 
(i.e., unobservable factors will have an effect on the network member’s UHC to which 
they are related, but also on the UHC of his/her peers). The spatial weight matrixes W 
and M, which need not be equal, are non-stochastic spatial weight matrixes which take 
into account the neighbouring structure of the students, such that their entries are non-
null (i.e., two students are neighbours) if the students belong to the same network.  

For each weight matrix, we also define a different set of weights in order to assess the 
robustness of the results found, on the basis of different weight structures. To this aim, 
in the first place weights will be defined in such a way to assign the same weight to all 
members of a given network (thus weights will be proportional to the number of people 
belonging to the specified network). In the second place, weights will be defined to 
assign more weight to the peer who is central in the network. 

Other model assumptions require that the spatial autoregressive ρ1 and ρ2 coefficients 
are bounded in absolute value (i.e.  |ρ1|<1 and |ρ2|<1), εi is independently and identically 
normally distributed with zero mean and variance to be estimates. The model can be 
estimated via Maximum Likelihood or following a GMM procedure. Due to the 
narrowness of our sample size (n=41), we rely on the second approach. We test the 
significance of the two spatial autocorrelation coefficients using Lagrange Multiplier 
Tests.  

 

3. Results 
 
The final sample is constituted of 41 students Table 1 shows some socio-demographic 
information of the our sample: it is not surprising that male students represent only a 
minority (34%) at Iulm university (it is well known that a gender difference exists when 
the field of study is concerned; in particular, women are more often found in humanistic 
subjects). 
 

Variable  Mean/Pro Std. Dev.  
Final grade in Stats  22  5.2  
Sex (prop. of men)  34%  -  
BSc in different 48%  -  
Ever studied Stats 56%  -  

 
Table 1: Descriptive statistics 
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For the lag spatial model we find a network effect on performance among class mates. 
The trust network exerts the most powerful effect on students’ performance, followed 
by the friend and study networks. The Figure 1  summarize these results by the mean of 
a graphical representation. On the y-axis there is the magnitude of the spatial 
coefficient. Then we group models by weight matrix, so in the first case, using the 
friend network, the spatial weight matrix can be defined on the basis of 7 different 
criteria. And the same goes for each of the other 4 types of networks. 
For the other two models we don’t find a statistically significant  effects and  we are 
testing misspecification procedure  on ρ1 and ρ2. 
 

 
Figure 1: Comparison of ρ coefficient (p-value ≤0.05) in five networks 

 
 
4. Concluding remarks 
 

Using a set of different, equally theoretically-grounded weight matrices we show that: 
i. in some cases results are robust to different specifications of W,  

ii.  however, in some other cases parameter estimates –hence conclusions– based on 
autocorrelation models can change according to the chosen specification of W, 

iii.  the network structure need to be translated into a meaningful and theory-guided 
choice of weight matrix (Leenders, 2002).  
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Abstract: In this work, we present a spatial statistical methodology to design
benzene air concentration measurement surveys at the urban scale. In a first step, we
define an a priori modeling based on an analysis of data coming from previous cam-
paigns on two different agglomerations. More precisely, we retain a modeling with an
external drift which consists of a drift plus a spatially correlated residual. The statis-
tical analysis performed leads us to choose the most relevant auxiliary variables and to
determine an a priori variogram model for the residual. An a priori distribution is also
defined for the variogram parameters, whose values appear to vary from a campaign
to another. In a second step, we optimize the positioning of the measuring devices on
a third agglomeration according to a Bayesian criterion. Practically, we aim at finding
the design that minimizes the mean over the urban domain of the universal kriging
variance, whose parameters are based on the a priori modeling, while accounting for
the prior distribution over the variogram parameters. Two optimization algorithms are
then compared: simulated annealing and a particle filter based algorithm.

Keywords: Optimal Design, Geostatistics, External Drift Kriging

1 Introduction

Mapping air pollution as precisely as possible is a major issue for French Local Air
Quality Monitoring Agencies (the AASQAs) both for regulatory and information pur-
poses and for public health concerns. Seasonal or annual average concentration maps
can be obtained from passive sampling data collected at a large number of sites across
the area of interest. The AASQAs regularly carry out such sampling surveys over var-
ious areas at various scales. Given those considerations, they have to design sampling
schemes so that resulting concentration maps will fulfill precision criteria.
The interpolation is performed by kriging, see e.g. [1], and [2] for an application in
atmospheric sciences. With its internal quantification of spatial variability through the
covariance function (or variogram), kriging methodology can produce maps of optimal
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predictions and associated prediction error variance from incomplete and possibly noisy
spatial data. Kriging also provides a prediction error variance that can be seen as a
criterion quality of the resulting maps. As it only depends on the spatial repartition
of the points over the domain, it is a straightforward criterion for the quality of a
sampling design, once a geostatistical model has been fitted on the phenomenon under
study. This work completes and extend [3].

2 Materials and Methods

The proposed methodology consists of three steps: an estimation step, the definition
of a quality criterion for the sampling design and an optimization step.

2.1 Estimation

A geostatistical analysis of the data collected during previous surveys is performed in
order to set up the model (covariates and covariance) that will be used when applying
the optimization method to another area. Data from benzene sampling surveys con-
ducted in two French cities (Lille and Reims) have been used to fit the geostatistical
model, which is made of a drift plus a spatially correlated residual:

Z(x) = β0 + Y ′(x)β + S(x), (1)

where Z is the benzene concentration variable, x ∈ X ⊂ R2 is the spatial coordinate, Y
is the matrix of auxiliary variables exhaustively known on X , ′ is the transpose operator,
β is a vector of parameters and S(x) is a centered, spatially correlated residual.

2.2 Criterion building

The criterion to optimize is defined from the set up model by the integral over the
domain under study of the weighted prediction error variance:

O(η) =
1

|X |

∫
X
V(Z(x)− Ẑ(x))w(x)dx, (2)

where |X | is the area of X . Practically, this integral is evaluated on a grid discretizing
the domain X . A non uniform weight function w(x) can be designed to obtain a more
accurate mapping in some areas, for instance in function of auxiliary variables values.
When some parameters of the model cannot be fitted accurately, we can associate them
an a priori distribution, then a Bayesian version of (2) can be considered:

OBayes(η) =
1

|X |

∫
×

∫
X
V(Z(x)− Ẑ(x)|θ)w(x)p(θ)dxdθ, (3)

where θ ∈ Θ is the set of uncertain parameters and p(θ) is its a priori distribution.
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2.3 Optimization

Once the model to use has been clearly identified, we have to optimize (3) on a dis-
cretization of X . Optimizing (3) on a large grid is a hard combinatorial problem.
Therefore, we rely on heuristics algorithm to perform the global optimization: a simu-
lated annealing scheme and a interacting particle algorithm.

3 Results

A third French agglomeration (Bordeaux) is taken as application case. The perfor-
mances of both algorithms of are compared, in terms of optimization quality and com-
puting time. We also show how the method can be used to dimension the network of
passive samplers.

4 Concluding remarks

The current work has been carried out with the aim of supplying scientific and technical
support to the French local air quality monitoring agencies. For the moment it has
been applied to benzene sampling over urban areas but it can be extended to other
pollutants such as NO2 and to larger spatial domains like regions.
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Point–process statistical analysis for the
ECMWF Ensemble Prediction System

Fabrizio Nerozzi
ARPA Emilia–Romagna, Servizio IdroMeteoClima, fnerozzi@arpa.emr.it

Abstract: The possibility of applying mathematical tools of point–process
statistics to the ECMWF Ensemble Prediction System (EPS) is exploited in this
work, in order to provide a different way to reduce ensemble information. The first
two empirical orthogonal functions enable to represent 5–day ensemble forecasts as
point processes in a plane. These planar representations are hence compared to a
sample of Gaussian random point patterns, obtained by a Montecarlo method. The
estimations of the nearest–neighbour distribution function and of the reduced second
order momentum function for point processes relative to the ensemble predictions
are in good agreement with the corresponding estimations of Gaussian random point
processes.

Keywords: Ensemble predictions, Principal Component Analysis, Point–process
statistics

1 Introduction

Ensemble predictions appear to be the only feasible method to predict the evolution
of the atmospheric probability distribution function beyond the range in which error
growth can be prescribed by linearized dynamics (Molteni et al., 1996).

However, the large amount of information contained in the ECMWF Ensemble
Prediction System (EPS) can be hardly managed in the whole, and two different
strategies, clustering and tubing, are adopted for reducing the 51 EPS members to
few alternative scenarios. For clustering, “similar” EPS forecasts are collected in
clusters, whose probabilities of occurrence are provided by the cluster sizes (Molteni
et al., 2001). As concerns the tubing technique, this consists in an averaging of
all ensemble members close to the ensemble mean, while the excluded members are
grouped together in a number of tubes. Each tube is represented by its most extreme
member belonging to it.

One of the principal shortcomings of the clustering technique is the empirical
distribution of the ensemble members. Although tubing allows a better visualiza-
tion of the most different scenarios in the ensemble than clustering, tubes do not
provide probabilities of occurrence. In order to provide a different way to condense
information, which tries to overcome these shortcomings of clustering and tubing
techniques, it is here exploited the possibility to represent ensemble forecasts as a
finite set of random points distributed in a plane. In particular, it is tested the
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hypothesis according to which these ensemble point processes can be treated statis-
tically equivalent to Gaussian random point processes.

2 Materials and Methods

2.1 The Principal Component Analysis

The Principal Component Analysis (PCA) enables to transform a data set, charac-
terized by a large number of variables in a new one, where the number of variables
is highly reduced. The new variables are calculated as the eigenvectors of the co-
variance matrix and they are orthogonal among them (Preisendorfer, 1988).

For each day of the whole meteorological winter season 2006–2007, starting from
the 1st December 2006 to the 28th February 2007, it has been computed the co-
variance matrix of the 51 ECMWF EPS 5–day forecasts at 12 UTC of the 500 hPa
geopotential height. The geopotential height is a meteorological field, here defined
over a regular grid at 1 degree of resolution and covering the European area (33N–
74N; 27W–45E). Then, for each one of the 51 ensemble members the PCA technique
has been applied, and the first two normalized principal components have been con-
sidered. The explained variance by these first two principal components ranges from
46% to 69% of the total variance.

Eventually, in order to represent the ensemble forecasts as a a random point–
process (hereafter called EPS point–process), for each one of the 90 winter days the
51 ensemble members are represented as single points lying over the plane formed
by the first two PCA eigenvectors, whose coordinates are provided by the first two
principal components of the ECMWF EPS members.

2.2 The point–process statistics

The Gaussian random point–process is here taken as reference model. In particular,
for each winter day 199 bidimensional Gaussian random point–processes with 51
points, zero mean and variance equal to 1, have been simulated by a Montecarlo
method. Hence, for the corresponding EPS point–process and for these 199 simula-
tions the nearest–neighbour distribution function D(r) has been defined computing
the distance from the analysis point (the ”observed” 500 hPa geopotential height
reduced to the first two principal components), chosen as the arbitrary event, to
its nearest event belonging to each one of the 200 random patterns. Analogously,
the derivative L of the reduced second order momentum, K function, is computed
counting for each point pattern the number of events within a distance r from the
analysis point.

The nearest–neighbour distribution function D(r) describes the probability that
distance from a randomly chosen event to its nearest event is less than or equal to
r > 0. This function can be heuristically estimated from the observed pattern:
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D̂(r) =

∑n

i=1
I(ri,A ≤ r, di > r)

∑n

i=1
I(di > r)

(1)

where di denotes the distance of the event from the nearest boundary of the
closed set A and ri,A is the distance from the nearest event in A (Cressie, 1991).

The K function uses information in the pattern over a wide range of scales than
the nearest–neighbour distribution function. Its definition is related to the number
of extra events within distance r from an arbitrary event. Estimating of K from
an observed pattern in a bounded A ⊂ ℜ2 is complicated by edge effects. Here the
Ripley’s edge–corrected estimator is considered (Cressie, 1991):

K̂(r) =
1

nλ

n
∑

i=1

n
∑

j=1′

w(si, sj)
−1I(‖si − sj‖ ≤ r) (2)

The estimator K̂ is approximately unbiased provided that the n events are ap-
proximately independent. Estimates of the derivative of the K function, L̂(r), are
computed by the formula (Stoyan et al., 1987):

L̂(r) =

√

K̂(r)

π
(3)
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Figure 1: EPS against Gaussian Point–Processes: nearest–neighbour distribution
function Q–Q plot (left panel), and the derivative of the K function (right panel).

3 Results and Concluding remarks

The possibility of applying mathematical tools of point–process statistics to the
ECMWF Ensemble Prediction System has been exploited in this work, in order to
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look for a different way to condense the large amount of ensemble information. It has
been proved the first two empirical orthogonal functions enable to represent about,
or more, 50% of the ensemble spread. Therefore the ensemble forecasts have been
represented as point processes in the plane of the first two PCA eigenvectors and
compared to Gaussian random point processes, obtained by a Montecarlo method
and considered as reference models.

In figure 1, it is reported on the left side the Q-Q plot, where the quantiles of the
median of the 199 nearest–neighbour functions relative to 90 Gaussian random point
processes are in the abscise axis. In the ordinate axis there are the quantiles of the
nearest–neighbour function relative to the 90 ensemble point processes (continuous
red line), the median (dashed blue line), the minimum and maximum (dashed black
lines) of the 199 nearest–neighbour functions. On the right side, it is instead reported
the derivative of the K function relative to the 90 ensemble point processes minus the
median of the 199 simulations (continuous red lines). Analogously, the confidence
interval is represented by the minimum and maximum of the 199 simulations, again
subtracted by the median (dashed black lines).

The good agreement between ensemble and Gaussian random point processes,
in terms of the nearest–neighbour distribution function and of the reduced second
order momentum function estimations, coming out of the present work, could render
plausible to consider the probability distribution function of ensemble members as
asymptotically normal.
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Combining geostatistics and process-based water quality model to 
improve estimation along a stream network. Example on a stretch 

of the Seine River 
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Abstract: Models that estimate pollutant concentrations in streams can roughly be classified into 
two categories. Physically-based models tend to reproduce processes and provide dense 
information, but mostly does not suit the measurements. Stochastic models are based on 
observations, but the monitoring network usually provides too few measurements for a relevant 
estimation. This paper aims at combining both approaches to improve water quality 
characterization.  

First a comparison of measurements and model outputs is performed. Then a geostatistical 
multivariate estimation method is used to combine them and provide a measurement interpolation 
based on process-based model outputs, with joint uncertainty quantification. The reasoning is 
applied to nitrate and dissolved oxygen concentrations. 
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Abstract:  
In recent years, among the renewable energy sources, the photovoltaic plants (PVs) 
along with wind power plants experienced a remarkable growth rate. If the visual 
impact assessment of wind turbines is already object of an extensive scientific literature, 
the effects of PVs on landscape have been few analyzed. A real case-study has is 
proposed where, with appropriate rendering techniques, a three dimensional simulation 
of the ground with insertion of PVs pictures has been compared, at different spatial 
scales,  to the bare landscape. In particular, the work is based on the analysis of two 
parameters affecting negatively the landscape: the visibility and the colour of the plants. 
The visibility, accompanied by an opportune three-dimensional design stage, and the 
colour, with the appropriate chromatism of the panels, are mitigation measures for the 
reduction of the visual impact, and they could play a key role in achieving a virtuous 
landscape compatibility. 
Keywords: Landscape, Landscape Impact, Photovoltaic, Rendering 
 
Introduction 
 
Among the environmental components, the landscape safeguard plays a key role. In the 
present article landscape analysis is approached considering its scenic structure and 
sensitivity to transformations, with reference to the visual perception of the landscape 
fundamental elements, that is the mutual relations  between observer’s position and  
some objective characteristics. 
Considering the present increasing trend of photovoltaic plants installation, the 
distribution of the installed power and the number of plants for each region is rather 
differing; moreover the plant average dimension has increased in almost all  regions.  It 
must be underlined that in Northern Italy the average plant dimension is lesser than in 
the South and, in particular, the largest plants are localized in the Puglia Region. With 
19,7% (Fig. 1) this region has the highest national rate of installed registered power, 
followed by Lombardia with  10,7%  and Emilia Romagna with 10,5% (Gestore Servizi 
Elettrici GSE – Solare Fotovoltaico, Rapporto Statistico 2010). 
For this purpose their landscape impact should be frequently assessed. It is then of 
fundamental importance to assess in advance, from the preliminary planning stage, the 
impact that this type of plants have on the landscape, intended as common good.  
Recently (Torres  Sibille et al., 2009) proposed a numerical tool, the OAIssp, for the 
objective assessment of the aesthetic impact of solar systems through evaluation of 
photographic images. In this paper we provide a first step of the OAIssp, corresponding 
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to the production of visual simulations of solar plants through 3D_Rendering images of 
a photovoltaic system of 14 MW in the Apulia Region.   

 
 
 
 
2. Materials and Methods 
 
A real case-study has been analyzed, specifically a 14 MW photovoltaic plant located in 
the municipality of Castellaneta (TA) – “Masseria Fresine”. It consists of about 60.800 
modules rated at 230 Wp, with the capacity to inject an annual amount of  22,34 GWh 
directly into the grid. The whole plant covers a flat area of 24 hectares in agricultural 
zone (Fig. 2A). 
The type of landscape impact  assessment,  which uses pictures and environmental 
insertions  (3D_Rendering), falls in  the framework of visual simulation techniques for 
the assessment  of  landscape compatibility of the projects. In the present case, the 
impact on the agricultural landscape is concentrated on two important indicators 
referring to:  
- plant visibility; 
- plant colour compared to its immediate surroundings. 
The degree of perception, depends on these two factors. 
Torres Sibille et al. (2009) proposed an objective evaluation of the aesthetic impact of 
solar plants through evaluation of photographic images. The indicator of the aesthetic 
impact of a solar panel is expressed through the continuous parameter OAISSP that falls 
between 0 and 1. This parameter is a weighted sum of the following aspects: 
- the visibility of the plant (sub-parameter Iv); 

Fig. 1 GSE – Regional distribution of number and power (MW) of photovoltaic plants 
in Italy (until december 2010) 
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- the colour of the plant compared to the colour of the immediate surrounding (sub-
parameter Icl); 

- the shape of the plant (sub-parameter If); 
- the concurrence of various forms and types of panels in the same plant (sub-

parameter Icc); 
where the percentage of each of these sub-indicators on the global indicator value is 
equal, to 64%, 19%, 9% and 8% rispectively. 
 
3. Results 
 
Fig. 2A shows the plant localization  and  Fig. 2B highlights what could be observed at 
a distance of around 300 m from the intervention, close to an overpass of a fast-flowing 
road. (SS106, E90). 
 

 
 

 
 
 
 
 
 
 
Fig. 3A shows a view of the actual plant while Fig. 3B shows the same plant with a 
simulation of chromatic mitigation. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Plant view (A) and (B) simulation of chromatic mitigation of the photovoltaic 
plant in Castellaneta (TA) – “Masseria Fresine” 

 

Fig. 2A Plant localization 

Fig. 2B Plant and point of view 

 

A 

B 
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A 3D_Rendering of the color panel without (Fig. 4A) and with (Fig. 4B) a chromatic 
mitigation has been proposed. 
 
 
 
 
 
 
 
 
 
4. Concluding remarks 
 
A correct evaluation of all possible alternatives of shapes, colors, lights, effects of 
materials and textures should be considered in the design stage of photovoltaic plants 
for the reduction of their visual impact on the landscape. 
In this paper a first step towards an objective evaluation of the visual impact assessment 
of a photovoltaic plant has been pursued. A complete estimation of the aesthetic quality 
of the landscape is the result of a complex system (Fig. 5) based on: 

- the application of numerical indicators; 
- consultation of stakeholders and public opinion:   

  
 
 
 
 
 
 

Fig. 5 Flowchart of the methodology for the estimation of the aesthetic quality of the 
landscape 

 
 
The use of pictures and visual simulations (Chiabrando et al., 2009), such as the 
3D_Rendering technique,  represents a useful starting point for the creation of tools 
necessary for an optimal analysis of the aesthetic and visual quality of the impact of the 
photovoltaic panels in the landscape.   
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Abstract: In Apulia (SE Italy) three Marine Protected Areas have been established, but 
further regulations are needed to guarantee the large-scale protection of critical habitats. 
The establishment of coherent Natura 2000 networks in Europe, including both 
terrestrial and marine Sites of Community Importance (SCIs), combined with other 
conservation strategies, may address several goals that MPAs cannot accomplish alone. 
In the Mediterranean Sea, Posidonia oceanica seagrass meadows are one of the few 
marine top priorities for the Habitats Directive, deserving protection due to the 
increasing evidences of fragmentation and loss, despite their key functional role. Along 
Apulia, current SCIs have been designed on a first seabed mapping carried out at 
national scale in 1991. In 2006, a new survey allowed map comparison, suggesting 
evidences of relevant seagrass loss and inadequate SCIs distribution. Here, the use of a 
priori identified conservation targets combined with the analyses of current and 
emerging human activities offer new scenarios of protection providing a new foundation 
for ecosystem-based management. 
 
Keywords: Ecosystem-Based Management, Marine Spatial Planning, Posidonia 
oceanica, Apulia, Sites of Community Importance 
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Abstract: Low flow characteristics are usually estimated from flow gauge stations. However 
hydrological data are not always available at the site of interest: regional frequency analysis is 
commonly used for the estimation of flow characteristics at sites where little or no data exists. 
The study is applied to Tuscany rivers discharge dataset. The area is subdivided into 
homogeneous regions using an L-moments procedure. The low flow indices Q(7,2) and Q70 at 
ungauged basins are evaluated with deterministic (Inverse Weighted Distance) and geostatistical 
(Ordinary Kriging) methods. In order to improve the capability of low flow statistics in 
ungauged sites a multivariate model, based on geomorphoclimatic characteristics, is also 
assessed. For each sub-region a relation connecting low flow indices and geomorphoclimatic 
characteristics is found.   
 
Keywords: regionalization, multivariate analysis, spatial interpolation; L-moments. 
 
 
1. Introduction 
 
Knowledge of low flow events frequency is required to plan water supply and irrigation systems 
and moreover to maintain amount and quality of water for wildlife. An estimation of the 
frequency at which low flow events of different severity might occur is therefore essential for 
effective water resource planning. Low flow regime is tightly dependent on the catchment 
hydrogeological feature and a detailed surface and groundwater catchment analysis is necessary 
for an accurate characterization. However on a practical perspective, although scientifically 
proven, statistical analysis is often applied to derive indices to characterize low flow regimes 
and as a measure for low flows. Particularly, low flow frequency behavior is typically 
characterized using a stochastic approach based on the characterization of some selecting 
indices (Gustard et al., 1992; Tasker, 1987) thus avoiding to address all the complicated day-to-
day variations in the flow record. 
Low flow indices can be easily evaluated at gauged sites from observed streamflow time series, 
but their reliability can be affected by poor and not accurate streamflow data. Sivapalan (2003) 
indicated that the prediction of surface water flows in ungauged basins is an urgent problem, of 
immediate relevance to society, dealing with questions such as the impacts of land use and 
climatic change, biodiversity and sustainable development. In the United States there have been 
numerous attempts to predict low flows using empirical equations based on catchment area, 
channel and meteo-climatic characteristics. Another approach to estimate low flow statistics in 
ungauged sites is the regional statistical analysis, widely used since long time and in different 
disciplines. It is the most widely used technique in flow estimation in ungauged sites or where 
few data are available (Riggs, 1973). Regionalization of streamflow characteristics is based on 
the premise that catchments with similar geology, topography, climate, vegetation, and soils 
would have similar streamflow responses. It consists of the identification of regional laws, 
applicable over a more or less wide area, a region, which generally use catchment characteristics 
as independent variables (Santhi et al., 2008). 
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2. Materials and Methods 
 
The analysis is carried out on the discharge data recorded in several rivers in the Tuscany 
Region central Italy by Servizio Idrologico Regionale Toscano (Regional Hydrologic Service of 
Tuscany) during the period 1949-2008. The main rivers of the region are: Arno, Serchio, and 
Ombrone Grossetano. Moreover there are small basins of coastal rivers near the Tyrrhenian Sea 
and the upstream part of Tevere, Fiora and Magra watersheds. A dataset of 65 hydrometric 
stations is considered, excluding all the discontinuous series, with less than 3 years of data, and 
stations with long periods of inactivity. The dataset adequately represents the analysed territory. 
The area is subdivided into different regions using the L-moments method applied to the 7-day 
annual minimum flows and to the Q70 annual series. The division into sub-regions was tested 
using discordancy and heterogeneity statistics (Hosking and Wallis, 1993). A unique region and 
a subdivision into three different sub-regions, following previous studies on rainfall extremes 
were considered. Finally a subdivision into five homogeneous sub-regions was undertaken by 
accounting for hydrological features. With this subdivision the regions are more homogeneous, 
and the subdivision follows hydrological and precipitation features (Rossi and Caporali, 2010). 
An appropriate interpolation technique over the geographical space has to be established in 
order to determine low flow indices in ungauged sites. For each river section two interpolation 
techniques, one deterministic (Inverse Weighted Distance) and another one geostatistical 
(Ordinary Kriging) are applied using the data of the 65 locations of the database. 
In order to improve the capability to predict low flow in ungauged sites, a novel multivariate 
analysis is carried out relating low flow indices and geomorphoclimatic characteristics. The 
analysis allow to estimate the parameters of a linear correlation between dependent low-flow 
characteristics and independent catchment and climatic variables. Using a Digital Elevation 
model (DEM) of the study area, the sub-watersheds for each hydrometric station is found. Each 
sub-watershed is characterized by means of:  
− longest flow paths FP [km] (Tucci et al., 1995; Pyrce, 2004);  
− topographic mean slope Sl [%] (Castellarin et al., 2004; Chokmani and Ouarda, 2004; Laaha 

and Bloeschl, 2006); 
− mean elevation Hmean [m a.s.l.] (Gottshalck, 1985; Castellarin et al., 2004; Pyrce, 2004; 

Laaha and Bloeschl, 2006; Castiglioni et al., 2008; Viglione et al., 2006); 
− difference between the maximum and the minimum elevation ∆H [m] (Castellarin et al., 

2004; Laaha and Bloeschl, 2006; Vigilance et al., 2006); 
− average value of Mean Annual Precipitation MAP [mm] (Castellation et al., 2004; Pryce, 

2004; Lama and Bloeschl, 2006; Castiglioni et al., 2008; Viglione et al., 2006) available 
from previous studies (Caporali et al., 2008); 

− mean soil permeability SP [%] calculated as the percentage of sand into the first 50 cm of the 
soil (Santhi el al, 2008, Castiglioni et al., 2008). This information is obtained from a 
pedological map of Tuscany Region cartographic website. 

The regionalisation approach requires the development of a regional predictive model for Q70 
and Q(7,2). To this aim, the natural logarithms of all geomorphoclimatic characteristics for the 
65 sites were regressed against the corresponding Q70 and Q(7,2) values trough a least square 
mean error procedure. The linear model, used for its simplicity and for the good results it is able 
to give (Laaha and Bloeschl, 2006), has the form: 
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where Q* is either Q70 or Q(7,2); FP, SL, Hmean, ∆H, MAP and SP are the explanatory 
variables of the model, the suitable set of geomorphic and climatic indices; ai, for i = 0, 1,... , 7, 
are parameters. The optimal subset of explanatory variables and the estimates of ai, with i = 0, 
1,... , n for both the indices were identified through a least square mean error procedure. 
Logarithms allow to have variables values easier to be compared (Castellarin et al., 2004) and to 
have coefficients with a certain homogeneity as well as the same order of magnitude. 
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3. Results 
 
The procedure is applied to the whole region and then to the other two proposed subdivisions. In 
Table 1 are summarized the values of the parameters for the different cases. In some 
subdivisions the equations are reduced eliminating some parameters that show a little 
correlation with the calculated index. 
 

Index Subdivision Sub-region a1 a2 a3 a4 a5 a6 a7

Q(7,2) Unique   -2.02 -5.48 -7.50 10.96 -7.34 1.27 -1.88
Nord -19.66 1.64 3.77 4.04   -3.05 1.90

Q(7,2) 3 regions Centre -17.80 0.85 2.77 -0.40 0.18 
South -5.44 0.13 1.19 0.12 0.69    
North East -26.84 3.66 3.07 7.04 -3.50 -4.72 4.93
North West -32.27 -3.15 0.98 5.05 -0.58 3.40

Q(7,2) 5 regions Centre East 6.56 0.60 2.28 0.37 -1.07 -1.32
Centre West -21.57 2.33 3.96 -1.91 0.89 -0.38
South -5.14 0.19 1.48 0.09 0.60    

Q70 Unique   -19.01 -0.07 1.73 17.85 -4.16 -7.67 -0.63
Nord -12.53 7.09 7.33 30.67   -20.09 6.99

Q70 3 regions Centre -44.56 2.67 6.58 -1.12 0.90 
South -17.78 0.50 3.22 -0.18 2.85    
North East -22.34 11.34 -3.60 47.20 -0.08 -25.10 8.45
North West -80.38 -0.47 0.85 16.21 -6.81 3.14

Q70 5 regions Centre East -33.21 0.45 5.57 4.06 -0.05 0.68
Centre West -40.86 7.41 8.65 -5.35 2.26 -1.62
South -17.07 0.65 3.88 -0.27 2.66    

Table 1: Parameters of the considered multivariate model. 
 
The models were validated through the calculation of the root mean square error RMSE. The 
RMSE is calculated for the three proposed subdivisions, for both the proposed low flow indices 
(Table 2) and, with a jackknife procedure, for the three interpolation methods.  
Results for the multivariate analysis confirm the good properties of homogeneity of the final 
subdivision into 5 regions. For Q70 the RMSE varies from 7.80 with a unique region, to a mean 
value of 2.89 with the subdivision in three regions to reach a mean value of 1.53 with the 
subdivision in five regions. 
In Figure 1 are shown the results of RMSE for the three interpolation techniques for the two 
selected indices and the subdivision into 5 regions. Comparing the results of multivariate 
analysis with the other two interpolation techniques it is possible to state that there is an 
improving of results especially for the northern regions.  
 
 
4. Concluding remarks 
 
A method of low flow regionalization is proposed and evaluated. In particular a procedure to 
evaluate low flow indices in ungauged basins is identified using a regional regression approach. 
The area is subdivided in 5 regions using an L-moments approach. This subdivision is verified 
using some interpolation techniques: Inverse Weighted Distance, Ordinary Kriging and a 
Multivariate Analysis. The results are validated using the jackknife method and calculating the 
RMSE – Root Mean Square Error for the different subdivisions and the different techniques. 
The multivariate analysis is the estimation method that performs best. It is able to solve the 
problems in the two northern regions: in these regions the considered low flows indices present 
a high variability that can be explained taking into account the geomorphoclimatic 
characteristics. 
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Figure 1: RMSE values for Q(7,2) (left) and Q70 (right) for the subdivision in 5 regions in the 
three considered interpolation techniques. The circumferences ray is proportional to the RMSE.   
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Abstract: The mountainous massif of Sicó, with a maximum altitude of 553 me-
ters, is an extensive area of 50.000 ha composed of calcareous Jurassic formations.
In these calcareous soils there are some physicochemical properties that are very
important to analyze, because of their relevance in the protection of that region.
This is a preliminary study where four of those characteristics were measured: soil
pH, soil organic matter, plant available phosphorus and soil exchangeable calcium.
Classical geostatistical methods are used to analyze separately the spatial variability
of the variables under study and to model the dependence structure of the data.

Keywords: soil physicochemical properties, spatial analysis, prediction

1 Introduction

Calcareous soils with high pH present chemical restrictions to support plant growth.
These soils have a high capacity to bind phosphorus. On the other hand, hillside
soils are subjected to important erosion processes, if not protected by vegetation.
The establishment of pastures in these soils can be an important step towards soil
protection and to support traditional livestock activity, representing an important
element for humanization of the landscapes in less developed regions. Soil organic
matter plays an important role in soil quality, productivity and soil resilience to
erosion. The variables considered in this study were soil pH, soil organic matter,
plant available phosphorus and soil exchangeable calcium. The aim of this study is to

1Universidade Técnica de Lisboa and Centro de Matemática e Aplicações, Universidade Nova
de Lisboa.
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analyze the spatial variability of those soil properties. First an exploratory analysis
of the data is made in order to address the spatial variability of those physicochemical
properties in the calcareous soils of the massif of Sicó, central Portugal. Using then
classical geostatistical methods, Cressie (1993), Goovaerts (1997) and Diggle et.al.
(1998), the spatial dependency level of those soil attributes is analyzed and their
krigged maps are generated. This is the beginning of a more ambitious study that
will involve more data collected over different periods. As the region under study
is a protected area, to compare the distribution of soil physicochemical properties
through several years is another challenge.

2 Materials and Methods

The data underlying this work were collected in that region in October, 1988 at 60
locations where four variables were measured: soil pH, soil organic matter, plant
available phosphorus and soil exchangeable calcium.

First an exploratory analysis of the data was performed within the R environ-
ment (R Development Core Team, 2006), where many packages are available for
the analysis of spatial data. Table 1 shows the summary statistics for the variables
under study.

Samples soil properties Mean Median Min Max Skewness Kurtosis
pH 8.185 8.200 8.090 8.500 1.7489 6.7177
P2O5 (mg/ kg) 17.317 17.500 9.000 25.000 -0.3007 -0.6736
Org.Mat.(%) 1.721 1.760 0.950 2.190 -0.4405 -0.4989
Ca (cm(+) /kg) 11.183 11.280 7.990 15.090 0.1865 -0.4217

Table 1: Summary statistics

It can be seen that phosphorus and soil organic matter are skewed; phospho-
rus presents very high values for skewness and kurtosis coefficients estimates. Soil
organic matter reveals a high concentration of high values, see histograms Figure 1.

pH

Fr
eq

ue
nc

y

8.1 8.3 8.5

0
5

15

P205

Fr
eq

ue
nc

y

10 20

0
5

10

Org.Mat

Fr
eq

ue
nc

y

0.8 1.4 2.0

0
5

10
15

Ca

Fr
eq

ue
nc

y

8 12 16

0
5

10
15

Figure 1: Histograms of the four variables under study
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Thus the data were log-transformed to perform the subsequent geostatistical
analyses. Sample values of these variables did not show high variability, the highest
value was for phosphorus, 𝐶𝑉 = 23.1%. In accordance with its high skewness, pH
showed the presence of outliers, see boxplots Figure 2.
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Figure 2: Boxplot of the four variables under study

These first steps in the descriptive analysis led us to construct the experimen-
tal semivariograms for lognormal values of pH and soil organic matter. Figure 3
displays the experimental and the theoretical semivariograms and Table 2 gives the
parameters of the models fitted to empirical semivariograms.
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Figure 3: Experimental and theoretical semivariograms for the soil variables

Sample Property Semivariogram fitted Nugget Sill Range
ln(pH) Spherical 2.5× 10−5 4× 10−5 760
P2O5 (mg/ kg) Exponential 5.2 12.7 650
ln(Org.Mat.(%)) Spherical 0.01 0.028 720
Ca (cm(+) /kg) Spherical 1.11 1.5 1120

Table 2: Parameters of the fitted models

These first analysis were done using geoR, Diggle and Ribeiro (2007) and gstat,
Pebesma (2011).
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3 Concluding remarks

This is a preliminary study using observed values of soil pH, soil organic matter,
plant available phosphorus and soil exchangeable calcium, in order to exploit the
variability and to look for models for the spatial dependence. Each variable was
studied separately and some difficulties were found in fitting models to sampled
values. Some more work is needed and is in progress, trying to study the joint
behaviour of the variables.

Another challenge topic is to compare distributions of the variables over the
years, in order to understand the evolution of the soil in that region, regarding these
properties.
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Abstract: “Ecological change” has different meanings: disturbance and perturbation. In 
this study, disturbance and perturbation were both spatially characterized using 
Normalize Vegetation Index (NDVI) delta maps (25 years: 1984- 2009) derived by 
Landsat 5TM imagery. In Circeo National Park, the ecological change spatial pattern 
was characterized using geostatitsc techniques. Instead, the spatial correlation of data 
was performed elaborating Euclidean Distance (ED) maps of urban and industrial areas 
and combining ED maps with disturbance cartography. At 45° a strong anisotropy was 
revealed by the empirical semivariogram of NDVI losses density, whereas NDVI's 
gains showed isotropy. The perturbation corresponds to processes of forests re-
colonization, whereas the disturbance was human-induced. 
 
Keywords: NDVI, Ecological change, Autocorrelation, Disturbance, Landscape 

metrics, Spatial correlation 
 
1. Introduction 
 
The ecological systems are heterogeneous, showing a considerable complexity and 
variability in space and time (Li and Reynolds 1994).Variability and heterogeneity are 
as well described by all those events that allow modifications or changes (e.g. 
disturbance) in ecosystem nominal state. Three landscape characteristics may be 
considered in ecology studies: structure, function and change (Forman and Godron 
1986; Gillanders et al. 2008). "Structure" refers to the distribution of energy, materials 
and species in relation to the sizes, shapes, numbers and types of landscape components. 
"Function" refers to the interactions between the spatial elements and "change" is 
usually identified like the “alteration in the structure and function of the ecological 
mosaic through time”. Ecological systems, in fact, are characterized by dynamics, 
disturbance and change (Reice 1994). The term ecological change can have different 
ecological meaning: disturbance and perturbation are two aspects of the change. In 
according with Grime (1979), the removal of biomass from a system constitutes 
disturbance, or, alternatively, disturbance is a rare and unpredictable event that occurs at 
different spatial and temporal scale (White 1979, Allen and Star 1982, Rykel 1985; 
Pickett and White 1985). Remote sensing offers the possibility to identify the reference 
state of vegetation using an appropriate temporal interval, and the NDVI (Normalized 
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Difference Vegetation Index). For its character of completeness, it is an excellent carrier 
of information for both disturbance and perturbation patterns studies (Griffith et al 
2002; Zurlini et al 2007). In this study the ecological change phenomenon was detected 
using the NDVI delta map and change events were disaggregated in its components: 
NDVI gains (perturbation) and losses (disturbance). The spatial distribution of 
ecological change and its physical relationships with landscape structure were studied 
using  both geostatistic and spatial analysis technique. The Circeo National Park is a 
protected area since 1984 and has a superficies of 8.440,00 hectares. This natural 
reserve is constituted by a variety of different biomass: transitional waters, sandy dunes 
very rich in alophilic vegetation, Mediterranean and xero-thermophilic forests. 
Anthropic pressure is relevant in park area due to tourism, intensive agricultural and 
farming. Disturbance events resulted autocorrelated with a strong anisotropy at 45°, 
corresponding to the main urban settlements. Perturbation events instead resulted auto-
correlated with isotropic pattern, as for a natural driving force. The disturbance data 
were also spatial correlated with the main urban settlements: disturbance intensity 
decrease exponentially at the increasing of distance from the main urban areas.  
 
2. Materials and Methods 
 
Two Landsat 5TM remote sensed images with a temporal interval of 25 years (Landsat 
TM5; July 1984-July 2009, ENVI 3.4) were used to highlight main land use changes in 
the investigated area. The imagines were acquired respectively in July the 20th 1984 
and in July 25th 2009. Imagines were pre-processed to correct atmosphere scattering 
phenomenon with dark object subtraction method (Chavez 1988, 1996),  georeferenced 
UTM WGS 84 zone 33North, and co-registered to enhance their comparison and 
superposition (software ENVI 4.7). Band composite (enhancement) and masking with 
NDVI threshold value techniques were performed to emphasize differences between 
vegetated and urbanized areas in order to enhance visual interpretation. Principal 
Component Analysis was applied to the resulting masked vegetated and unvegetated 
areas to empathise the spectral variance and to better discriminate the different land 
arrangement within the classes. After the pre-elaboration a supervised classification of 
land use was performed (Maximum Likelihood categorization algorithm) starting from 
30 in field relieved ground true training regions (ROI).  In a next step the image 
difference technique was applied to NDVI maps derived by images using a pixel by 
pixel's values subtraction (Coppin et al. 2004, Singh 1989): Difference map data were 
selected for statistical significance by percentiles method. The change thresholds were 
calculated using the tenth and the ninetieth percentiles of pixels distribution (Fung & 
LeDrew, 1998) and allows to assign each pixel to one of the following classes: NDVI’s 
increase (perturbation), no change (e.g. stable areas), and NDVI’s decrease 
(disturbance). The output of this procedure is the map of ecological change. Data were 
exported in GIS environment and study area change map was cut in homogeneous 
square overlaying a regular grid of 1 km2. Change density was calculated for any square 
and geographic coordinate were assigned using the centroid values. Matrix of density 
values were elaborated for spatial autocorrelation using GS+ software. To asses spatial 
relationships between disturbance events and anthropic pressure the categorized recent 
image (2009) was elaborated with spatial analysis ArcGis tool to extract the urban and 
commercial areas generating two source layers. The Euclidean distance was computed 
for both this source layers and the resulting features were combined with disturbance 
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map values. The output matrix explicit how many disturbed pixels were located in the 
focal classes (source layers) proximity. The data were plotted to highlight spatial 
relationships between disturbance events and human pressure. 
 
3. Results 
 
The main results can be resumed in two topics: the disturbance autocorrelation data 
showed a geographical gradient coherent with urban settlements and athropized areas 
were related with disturbance events. The geostatistical analysis highlighted different 
patterns of distribution and propagation of ecological change. The disturbance, intended 
as NDVI losses (biomass losses) semivariogram showed a strong anisotropy in the main 
urban settlement geographic location. The semivariogram range of about 2 km is 
coherent with a local scale. Although this is not a cause-effect relation, we can assert 
that the antrophic areas distribution “justify” the disturbance spatial pattern. This 
consideration is enforced by the ED results: disturbed pixels decreased exponentially 
with the urban areas distance increase. On the contrary, perturbation events showed an 
isotropic spatial autocorrelation: biomass increase proceeded with a natural pattern of 
distribution and is not influenced by urban and commercial areas location. Moreover, 
NDVI gains resulted cross-correlated with stable areas, as for an enhancing effect of 
stability on biomass increase. The perturbation events were also related with urban and 
commercial ED maps: NDVI gain pixels increase with an opposite trend on respect the 
NDVI losses. 
 
4. Concluding remarks 
 
The natural pattern of NDVI gains distribution is drive by natural forcing, in fact, the 
Tobler axiom states that “The closest things are more similar than those distance”, and 
this is the true variables nature of ecological data. In particular, a fundamental 
ecological process as biomass primary production tends to be constant at high 
hierarchical level (landscape level). Instead, NDVI losses are not always spontaneous 
(as for fire, storms or spontaneous vegetation regression dynamics), but often caused by 
human activity. In this case, we appreciate a non-natural forcing that modifies the 
distribution pattern of change: gradients are evident and coherent with anthropized area 
distribution. It is important to establish directional pattern of ecological change to 
modify the environmental policies of natural and protected areas management and to 
enhance the natural resources recovery. 
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Abstract: Traditional summary statistics for biological diversity are rarely able
to fully identify processes maintaining the biodiversity of ecosystems. However,
these processes produce patterns in space, and spatial statistics offer a way to de-
scribe such signals and so identify underlying mechanisms.
A new community-level measure of spatial structure, the cross-pair overlap distri-
bution (xPOD), summarises the spatial overlap of species pairs over a scale defined
by radius R. Here, we extend this approach by developing a radius-weighted version
of the xPOD which provides greater flexibility over spatial resolution. In particular,
this allows us to identify behaviour related to different mechanisms, which can then
be linked to the spatial scale at which they operate. In its general form, this ap-
proach can be applied to any community-level second-order summary statistic which
is a function of scale, leading to a considerable increase in informative power.

Keywords: spatial point pattern, second-order characteristics, biodiversity,
pair-correlation function, cross-pair overlap distribution

1 Introduction

A central problem in community ecology is to link ecological processes to observed
patterns [12, 1]. Traditionally, a focus has been on the species abundance distribu-
tion as a diagnostic for community-scale effects [3, 4, 11, 8],

Summary statistics based on the species abundance distribution (first-order char-
acteristics) are also used to quantify biodiversity, which is typically measured in
non-spatial terms [7]. Recently, it has been shown that the species abundance distri-
bution does not hold enough information on community structure in (highly diverse)
tropical rainforests to draw inferences about underlying processes [2, 10]. However,
spatial properties are found to be informative as they can capture the interactions
that structure the community at the local scale [6, 9]. They are summarised by
second-order characteristics in spatial point process analysis.
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The cross-pair overlap distribution (xPOD) provides a new community-level mea-
sure of spatial diversity [2]. First applications have demonstrated its ability to
reliably distinguish between different processes generating community patterns. A
short-coming of the xPOD as well as other second-order characteristics is their rigid-
ity with respect to the spatial scale R. Though not restricted to a specific value,
this must be set before the statistic is evaluated. Scales at which specific processes
operate are largely unknown [13] and information can be lost by an arbitrary choice
of evaluation radius R as a result.

This paper introduces a radius-weighted version of the xPOD. It is no longer a
function of R and hence increases the flexibility over spatial resolution. This ap-
proach is easily generalised to any community-level second-order summary statistic
which is a function of scale. It is not limited to application in ecology, but extends
methods for multi-type point pattern analysis in general which are relevant in many
different fields of study.

2 Materials and Methods

Consider a multi-type (marked) point process M = [(xn, yn);m(xn, yn)] where the
number of types m(·) ∈ {1, ..., S} is finite, on a window of unit area (x·, y· ∈ [0, 1]).
This can, for example, describe the positions of tree species in a sample area. (For
details on point processes and their statistics, in particular the cross-pair correlation
function, see [5]).

The cross-pair overlap distribution

We calculate the xPOD as a description of interspecific clustering within M .
Based on the cross-pair correlation function g and a chosen spatial scale R (typically
R� 1), it gives the distribution across all types i, j of

Aij(R) =

∫ R

0

log gij(r)dr. (1)

A radius-weighted version of the xPOD

Eqn. (1) can be interpreted as the (rescaled) expectation of log g over the spatial
scale r where equal weights are placed on [0, R]:

1

R
Aij =

∫ 1

0

log gij(r)f(r)dr (2)

where f(r) = 1
R
1[0,R] is the uniform distribution. By choosing a different probability

distribution function (pdf) f we can introduce non-uniform weights on the spatial
scale, e.g.

Ãij = E[log g] =

∫ 1

0

log g(r)Beta(r;α, β)dr. (3)
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Figure 1: Two point patterns and their unweighted xPODs

(a) Random point pattern

(b) Structured point pattern

The Beta distribution was chosen for its easy interpretation as weights as well
as for its natural range of [0, 1]. However, any other pdf for which the expectation
in (3) exists can be used instead. The parameters of the Beta distribution deter-
mine the focus on certain spatial scales (local neighbourhood, intermediate distance,
far distance, or combinations of these) while considering the whole point pattern.
Crucially, this generalization no longer requires the evaluation scale R to be set in
advance.

We demonstrate the performance of the radius-weighted version of the xPOD
given in eqn.(3) by means of two very different point patterns - a random Poisson
point process and a highly structured pattern (Fig.1). The random pattern provides
the usual reference point, while the highly structured pattern was chosen to show a
similar shape of the basic xPOD. The parameters for the Beta distribution are set
to (1) α1 = 1, β1 = 3, (2) α2 = 3, β2 = 3 and (3) α3 = 3, β3 = 1. This corresponds
to zooming in on local, intermediate, and large-scale behaviour. We expect the
differences between the patterns to produce divergent xPODs at different spatial
scales.
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Figure 2: Weighted xPODs for the structured point pattern

(a) Beta(1, 3) (b) Beta(3, 3) (c) Beta(3, 1)

3 Results

In their original (unweighted) version, the xPODs of the two point patterns are
indistinguishable (Fig.1) as the xPOD cannot express scale-specific behaviour.

When the radius-weighted version is applied, the xPOD for the Poisson pattern
remains virtually the same, independent of the chosen weighting – as we expect given
the self-similarity of the point process across all scales. For the structured point
process, on the other hand, the change in structure with scale is now clearly visible
(Fig.2): At small radii, marks or ‘species’, occur together and consistently overlap
more than they would if the entire pattern was random. Hence, when weighted
towards very local behaviour, the xPOD is centered around positive values. At
medium radii this behaviour changes. Marks can now be wholly separated from one
another by the empty areas between rings. This leads to a change in sign when the
xPOD is focussed on this scale. At large radii, neighbouring rings in the pattern are
encountered, and so the values in the distribution become positive again.

4 Concluding remarks

Traditional spatial summary statistics are often not flexible enough to distinguish
processes that operate on different spatial scales. Extending one of these statis-
tics, the cross-pair overlap distribution, to radius-weighted version, we were able to
discriminate patterns while first- and traditional second-order characteristics con-
ceal their radically different behaviour. This suggests that spatial statistics may be
adapted in a way that takes advantage of issues of scale in order to increase their
explanatory power. This is relevant to ecology, where important processes are scale-
dependent, and where the ability of spatial statistics to reveal such processes is of
increasing interest.
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Abstract: Spatio-temporal analysis of biodiversity indices estimated in the bathyal 
demersal species assemblages of the Ionian Sea has been performed. Data were 
collected during 16 trawl surveys carried out from 1995 to 2010 as part of the 
international MEDITS project funded by EC. In the Apulian sector a significant 
increase of species richness and a significant decrease of evenness have been detected. 
In the Southern Calabrian sector a significant decrease of evenness has been detected 
while a positive trend has been found for the Simpson index. GAM’s have then been 
applied to explain the dependence of the indices in terms of time and space.  
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1. Introduction 
 
Loss of biodiversity, and its possible consequences on both ecosystem functioning and 
services, has promoted the assessment and monitoring of species diversity in marine 
ecosystems. Research on the deep-sea assemblages has been also carried out in the 
Ionian Sea during the last years (D’Onghia et al., 1998, 2003, 2004). The previous 
studies indicate depth and geographical area  as the main factors influencing the fauna 
assemblages of the Ionian Sea. In this context, a spatio-temporal analysis of the 
biodiversity indices estimated in the bathyal demersal species assemblages of the Ionian 
Sea has been performed in order to monitor the diversity in the bathyal demersal 
assemblages in two geographic areas of the Ionian Sea. 
 
 
2. Materials and Methods 
 
Data were collected during 16 trawl surveys carried out from 1995 to 2010 as part of the 
international MEDITS project funded by EC (Bertrand et al., 2000). The samples 
analyzed come from a total of 260 and 236 hauls carried out in the Apulian and 
Southern Calabrian sectors respectively, between 200 and 800 m in the spring season 
(May-June). In each sector, the biodiversity indices of Margalef (species richness, d), 
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 Species richness (d) Pielou’s evenness (J) Simpson index (λ) 
parameters estimate p-value estimate p-value estimate p-value 

intercept 2.754 <0.000 0.651 <0.000 4.637 <0.000 
smooth terms df p-value df p-value df p-value 

s(lon, lat) 24.108 <0.000 22.650 <0.000 22.830 0.006 
s(year) 6.863 <0.000 3.155 <0.000   

 
Table 1: GAM’s estimates for the indexes d, J and λ: estimates of the parametric terms, 
and degrees of freedom of the non-parametric ones with respective p-values. 
 
Pielou (evenness, J) and Simpson (λ) were estimated using density data (N/km2) 
obtained for a total of 117 and 110 species collected in the demersal assemblages of the 
Apulian and Southern Calabrian sectors respectively. Data analysis was carried out as 
part of OBAMA project funded by MIUR. The trawl geographic coordinates were 
considered as the main spatial information contained in the data. Such information is 
redundant with the sector specification and the depth measurement. GAMs were applied 
to analyze the indices variation in terms of time and space. The choice between 
competitive models, characterized by different combinations of response distributions, 
link functions and predictors, was performed in terms of effects significance and overall 
model fit.  
 
 
3. Results 
 
While d and J could be considered Gaussian in the GAM specification, the Gamma 
assumption allowed to account for the asymmetry observed in the empirical distribution 
of the Simpson index. Table 1 reports the results for the models chosen to represent the 
three biodiversity indices. Species richness shows significant nonlinearity of both 
spatial and temporal effects. 
As can be seen in Fig. 1 (a) the species richness index shows an increasing temporal 
evolution with a peak around 1998. 
Level curves in Figure 2 (a) represent the spatial behaviour of this index confirming 
smaller values in deeper waters. Time has a slightly negative effect on Pielou’s 
evenness (Fig. 1, b) and the nonlinearity of the spatial component appears to be strongly 
significant. Level curves in Figure 2 (b) represent the spatial behaviour of this index 
with values increasing with depth. 
Time does not have a significant impact on the Simpson index and the spatial behaviour 
shows some peculiarities with respect to the other two, with different evidence between 
areas. 
 
 
4. Concluding remarks 
 
The present study shows changing values in the species richness related to time and 
geographic area. The spatial pattern confirms a decreasing diversity with depth reported 
in previous studies (D’Onghia et al., 2003, 2004). The increase in the species diversity 
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    a)          b) 

 
Figure 1: GAM estimates of the time effect for the species richness d and the Pielou’s 
evenness J. 
 
 

 
 a)                 b)              c) 

 
Figure 2: Gam estimates of the spatial effect for the indexes a) d (richness), b) J 
(evenness) and c) lambda (Simpson Index). 
 
with time can be related to the new species recorded in the last years as already reported 
in the Ionian Sea (Maiorano et al., 2010). The variation observed in the evenness index 
does not reveal a significant difference between the two geographic areas while a 
different pattern was observed for the Simpson index mostly probably due to the 
environmental conditions and fishing pressure between Apulian and Calabrian areas 
(Capezzuto et al., 2010). 
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Abstract: The spatio-temporal variability of the flow status of the Candelaro river and 
its tributaries was assessed in order to analyze the hydrological regime and to provide 
some information to assist the determination of the ecological quality as required by the 
European Water Framework Directive. Different types of flow were defined for this 
temporary river and a flow status frequency method was used to analyse the occurrence 
along the year of the different flow conditions. Daily streamflow data recorded in some 
gauging stations were used and the results were verified through field observations of 
flow status. Based on the results, maps were developed representing the spatial 
distribution of the different flow types along the year.  
Keywords: Temporary river, Water Framework Directive, Hydrological regime. 
 
 
1. Introduction 
 
The European Water Framework Directive (WFD) constitutes a new view of water 
resources management in Europe, based mainly upon ecological elements, its final 
objective is achieving at least “good chemical and ecological quality status” of water 
bodies. To attain good ecological status, aquatic systems must not significant depart 
from reference “natural” conditions. Information describing stream hydrological regime 
are of the major importance for implementation of WFD, since it may be responsible for 
the ecological status. The analysis of the hydrological regime is particularly relevant for 
the intermittent rivers since it varies on spatial and temporal scale depending on 
precipitation patterns and is severely disturbed by flash floods. Many definitions of non 
permanent rivers can be found in the literature (Svec et al., 2005) and in the WFD 
implementation process some EU countries have developed a definition of these water 
bodies based on the number of days per year during which water is flowing in the river. 
In 2008, Italy differs these stream types, and in 2009-2010 gives the criteria for the 
monitoring activities, but it doesn’t include the timing of samplings. Frequency and 
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timing of samplings are crucial points for temporary rivers because the quantitative flow 
status determines the river biological communities. Streams with long dry periods can 
have a reduced fauna compared with permanent but their ecological status can be 
“good” even if the flow is scarce and only pools remain along the river network. In this 
framework, the main objective of the present paper is to analyse the spatio-temporal 
variability of the flow status of the Candelaro river and its tributaries in order to classify 
the hydrological regime and to provide some information to assist the determination of 
the water ecological quality.  
 
 
2. Materials and Methods 

2.1 Study area 
 
The Candelaro river basin is located in the Puglia region in southern Italy (Figure 1). 
The basin is characterised by a mean elevation of 300 m above sea level, ranging from 0 
m to 1142 m. The drainage area is about 2200 km2 and the main river course has a 
length of 67 km. The soils are related to the lithology and generally show a texture 
varying from sandy-clay-loam to clay-loam or clay. The average annual precipitation in 
the catchment in the period from 1986 to 2001 was 579 mm. The rainfall is mostly 
concentrated in autumn and winter, it is unevenly distributed and often occurs with high 
intensities of short duration. The stream flow regime changes rapidly and follows the 
precipitation regime closely.  

 

 
 

Figure 1: Candelaro river basin. River bodies identified by Puglia Region, streamflow gauging stations 
(triangles), simulated streamflow (red points).  

 
 

2.2 Methods 
 
In 2010, the Puglia region authority provided a river characterization based on the use 
of abiotic indicators, following the System B of the WFD and the national Decree 
131/2008.  Seven river types were identified in the Candelaro river basin which in turn 
were differentiated in 14 river bodies according to anthropogenic pressures.  
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For each river body we have analyzed the streamflow at reach scale as proposed within  
the MIRAGE Project1  (Gallart et al., 2010). Five classes of flow were identified as 
relevant to aquatic life: dry (if most of the reach is dry), disconnected pools (when the 
flow is scarce only isolated pools appear along the channel), connected pools (when 
there are a lot of pools connected by a slow flow), riffles (if the flow is continuous) and 
floods. The monthly frequency of occurrence of these flow statuses were evaluated. In 
order to do this, it was necessary to fix the thresholds of streamflow between one class 
and another. At a first analysis these flow values can be determined on the basis of the 
Flow Duration Curves (FDC), but field observation are necessary to verify the 
thresholds between disconnected pools and connected pools and between connected 
pools and riffles. The monthly frequency of each flow status was calculated on 
measured monthly flows, when available (from 1965 to 1996), or on simulated values. 
The hydrological model “SWAT” was used to simulate streamflows from 1990 to 2009.   
 
 
3. Results 
 
Figure 2 shows the FDC (a) and the frequency of occurrence of the five streamflow 
classes (b) of the Celone river (gauge 10 in Figure 1). It shows a seasonal hydrological 
regime. Here, dry conditions generally occur from May to December; floods are 
frequent from January to March, and disconnected pools can take place from April to 
December.  
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Figure 2: (a) Flow Duration Curve of the Celone S. Vincenzo gauging station (85 km2). 

The triangles represent the thresholds identified between two different statuses. (b) 
Flow status frequency graph of the Celone river.  

 
All the streams located in the mountainous part of the basin are quite natural; they show 
the same streamflow regime (gauging stations N. 6, 7, 8, 9, 10, in Figure 1). In this area 
biological samplings should be scheduled before June because after this month dry 
conditions can take over. 
On the ground level of the basin the situation is different. The few natural reaches (1, 2, 
3, 4 in figure 1) can be affected by dry conditions, as well as by isolated pools, also in 
the winter season. On the contrary, the main channel, which is heavily modified, shows 
a regime very far from its natural conditions (gauging stations A, B, C, D, F in Figure 
1). Many waste water treatment plants discharge their sewages into the river, 
consequently the low flow regime is completely altered and it never reaches dry 
                                                           
1 European Community’s Seventh Framework Programme (FP7/2007-2011). MIRAGE Project (211735) 
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conditions. For the same reason, the downstream reaches of Salsola river show a dry 
status period shorter than that recorded in headwater streams. The Celone river, which is 
one of the main tributaries of the Candelaro, shows in its downstream reaches a very 
long dry period, from April to February. This is mainly due to a reservoir, built in 1996, 
that alters the natural regime of the river.  
In 2010, monitoring activities were carried out along all over the river network. During 
the wettest period (January) continuous flow was recorded all over the streams, while 
during the driest period (September) only the 7% of the river network presented a 
continuous flow. Figure 3 shows a map representing the flow statuses during the driest 
period. 

 
Figure 3: Flow status recorded during the driest period in the Candelaro river basin. 

 
4. Concluding remarks 
 
Flows are highly variable both in space and time in the Candelaro river basin. Dry and 
disconnected pools statuses are very frequent and their duration varies both year to year 
and from reach to reach. Hence, biological samplings have to be scheduled taking into 
account the flow statuses at reach scale. A new method has been used to describe 
streamflow regime at reach scale. The results achieved show that the flow status 
frequency graphs can really provide useful information in order to evaluate ecological 
water quality in temporary rivers. 
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Abstract:  
 
The study tested whether long established protected areas (PA) in central Italy are more 
effective in protecting vegetation, than areas with the same characteristics but no formal 
protection. The index used for the comparison is the EVI (Enhanced Vegetation Index), 
measured by the Terra satellite with the  MODIS instrument. For this index has been 
evaluated the spatial variability of the highest values and their correlation with land use, 
geographic and morphological characteristics of study area using the frequency ratio 
(FR) method. The work methodology applied to the regions of central Italy showed that, 
on equal terms, the areas within PA present higher values of the EVI index compared to 
the remaining areas. 
 
Keywords: remote sensing, EVI index, protected areas, frequency ratio 
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Abstract: The WFD1, adopted by the European Community requires that
Member States achieve and maintain a good ecological status of all water bodies
by 2015. In the marine context, the ecological status has to be quantified applying
indexes based on appropriate key biological elements. The CARLIT index is a car-
tographic monitoring tool enabling the EQR2 to be calculated using macroalgae in
coastal hard bottoms as a key biological element. Here we investigate the role of
Cystoseira amentacea var.stricta: a key macroalgae involved in the index definition.
We analyze the relation between the algae presence and geomorphological character-
istics of Pontine Islands coast through standard logistic regression and autologistc
models to account for spatial correlation.

Keywords: bioindicator, logistic regression, autologistc model

1 Introduction

The Water Framework Directive (WFD) 2000 /60 /EC, adopted by the European
Community in 2000 requires that Member States achieve and maintain a good eco-
logical status of all water bodies by 2015. In the marine context, the ecological
status has to be quantified applying indexes based on appropriate key biological
elements, which allow the categorization of water bodies into five Ecological Status
(ES) classes. In order to implement the WFD, several indices based on macroalgae
have been proposed. One of them is the CARLIT index (Ballesteros et al. 2007),
which has been adopted for the evaluation of Italian rocky coasts. A recent applica-
tion of the CARLIT protocol to the entire coast of the five Pontine Islands (Lazio)
revealed a good ecological status of coastal water. However, in Zannone Island,
the available chemical analysis indicates a higher value than the Carlit index. In

1Water Framework Directive 2000 /60 /EC
2Ecological Quality Ratio
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this work we investigate the role of the superficial Cystoseira amentacea var.stricta
belts (a brown macroalgae bioindicator of water quality, see Table 1). We analyze
the relation between the algae presence and the geomorphological characteristics of
Pontine Islands coast through standard logistic regression and autologistic models to
account for spatial correlation in order to specically evaluate the predictive capacity
of these characteristics. Our report is focused on the Island of Zannone.

2 Materials and Methods

The survey was carried out through a small boat at 3-4 meters of distance from the
coastline. The recorded data were obtained noting, by use of a GPS, the discontinu-
ities of the coast concerning algal communities and geomorphological characteristics.
Thus the obtained sample units are homogeneous coastal sectors. For each Island
the following observed data are given: (1)Population Category (Cod-popol ), label
of the observed community as described in table 1; (3) Coastal Morphology catego-
rized as BM-metric blocks, FA-high cliff, FB-low cliff and SP-beach; (4) Sensitivity
to pollution level (Value), (see table 1);(5) Length of the homogenous coastal sector
in meters (Length). All the information has been transferred in ArcGis software.
Exploratory data analysis has been carried out for all the variables and the pres-
ence of Cystoseira was coded as a binary variable (0/1). The association between
the latter and the observed covariates (Slope and Morphology) has been explored
trought he χ2 test. The variable Slope, in this step, has been categorized as 0-30,
45-60, 75-90. These data have been aligned to a Digital Elevation Model layer with
resolution 20 meters, superimposing a grid of 326 cells to Zannone coastline. This
new dataset allows us to investigate the association between the algae presence and
a more detailed evaluation of the Island morphology. In the combined dataset the
presence of each category of Cystoseira coded as a binary variable, the slope, ele-
vation and aspect of the coast are available. The coast slope and aspect have been
coded into 3 and 8 categories respectively for exploratory purposes, while in models
estimation slope is taken back to its original expression.
Standard logistic regression models (Agresti, 2002) are estimated on the combined
dataset to evaluate the predictive capacity of morphological GIS information for
the algae presence with and without discrimating by population category. As stan-
dard logistic regression does not account for spatial autocorrelation, that seems a
natural feature of this type of data, results are then compared with the predictive
capacity of autologistic models (Besag, 1974) estimated through pseudo-likelihood
(Besag 1975, Huang and Ogata 2002). To predict algae presence each grid cell with
model-estimated probability of presence larger then 0.5 is set to 1.
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Category Description Sen.
level

Cystoseira brachycarpa/crinita /elegans Community dominated by
Cystoseira brachycarpa /crinita /elegans 20

Cystoseira sheltered Community dominated by
Cystoseira foeniculacea /barbata /humilis /
spinosa 20

Cystoseira amentacea /mediterranea 5 Continuous belt of
Cystoseira mediterranea /stricta 20

Cystoseira amentacea /mediterranea 4 Almost continuous belt of
Cystoseira mediterranea /stricta 19

Cystoseira amentacea /mediterranea 3 Abundant patches of dense stands of
Cystoseira mediterranea /stricta 15

Cystoseira amentacea /mediterranea 2 Abundant scattered plants of
Cystoseira mediterranea /stricta 12

Cystoseira compressa Community dominated by Cystoseira compressa 12
Cystoseira amentacea /mediterranea 1 Rare scattered plants of

Cystoseira mediterranea /stricta 10

Table 1: Summarized description and sensitivity levels of the community categories
related to Cystoseira as reported in the methodological contribution published by
ISPRA (Mangialajo et al. 2008).

3 Results

The exploratory data analysis of the observed data reported a not significant associ-
ation between the presence of Cystoseira and the coast Morphology at the available
detail, while significant relation is found with slope. When considering a more de-
tailed representation of the Island, as given by the DEM layer, significant association
are found for all Cystoseira communities and the morphological variables slope and
aspect, categories with higher sensitivity values showing stronger association. Logis-
tic for the algae presence without discriminating by category return high significance
of slope and aspect. Through this model 23.31% of the predicted grid cells where
misclassified (with 37 wrong 1’s and 39 wrong 0’s over 326 grid cells). For categories
with sensitivity level 19 and 15 we obtain similar results with a misclassification
error of 15.95% with 12 wrong occurrences and 40 wrong zeros, showing a tendency
to underestimate the number of presences. For less sensitive communities the sig-
nificance of slope and aspect is reduced and the logistic model produces a 26.38% of
missclassified cells, with a stronger tendency to underestimate the algae presence.
within the pseudolikelihood estimation approach, the autologistic model corresponds
to a logistic regression model in which the number of occurrences in each cell’s
neighborhood (SV) is a regressor. In this study a simple first order neighborhood
is adopted. For all community categories the SV shades the relations of the algae
presence with slope and aspect that become not significant, however the predictive
capability of such models is considerably enhanced, misclassification errors drop
considerably (for the general presence of Cystoseira 8.59%, for highly sensitive com-
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munities 2.76% and for less sensitive communities 7.36%), all models tend to slightly
underestimate the presence. A poisson regression (Cameron, Trivedi, 1998)has been
fitted to relate SV and slope and aspect. Results show the strong relation between
these variables explaining why the presence of SV in the model hides the dependence
of the algae presence on the other two.

4 Concluding remarks

All analysis confirm the relevance of morphological variables in determining the
Cystoseira communities presence in the Zannone island with stronger influence on
more sensitive ones. Accounting for spatial correlation allows a considerably more
precise prediction. Future work will deal with the remaining islands of the Pontine
archipelago. It is of interest to investigate other models under a Bayesian estimation
approach.
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Abstract: Urban sprawl is a hotly debated issue, even if a universally agreed definition 
does not exist. Its evaluation on spatial data is very important, but the properties of 
commonly used landscape and sprawl indices have to be assessed, and their 
performance on raster maps at different pixel resolutions checked, in order to better 
understand the uncertainty and reliability of results. 
 
Keywords: urban sprawl indices, land cover, pixel resolution, raster aggregation rules, 
spatial dependence indices. 
 
 
1. Introduction 
 
Urban sprawl is an important issue for biologists, urban specialists, planners and 
statisticians, and also for official statistics, both in developed and new developing 
countries. A universally accepted, well established definition of urban sprawl does not 
exist, but one of its fundamental properties is to capture uncontrolled and inefficient 
urban dispersion, accompanied by low building density. Urban sprawl usually occurs 
when urban planning is not well managed; among its consequences are high average 
transport costs, soil sealing, pollution (Bhatta et al., 2010). Three main types of urban 
sprawl are currently under study: the monocentric form (one core city surrounded by 
sprawled suburbs), the polycentric form (more than one core city) and the decentralised 
pattern (no city centre). 
Various measurement methods have been proposed in recent years (see a review in 
Bhatta et al., 2010); some of them are absolute (based on the choice of a sprawl 
threshold for a selected index), other relative (comparison-based). A very popular 
sprawl index is Shannon’s entropy, but the literature advises that a set of 
complementary indices to integrate information is created to give a more precise idea of 
this complex phenomenon. Each index is calculated with reference to a certain spatial 
extent and a certain spatial data resolution, and measures can be compared over 
space/time.  

                                                           
1 Work supported by the project PRIN 2008: New developments in sampling theory and practice, Project 
number 2008CEFF37, Sector: Economics and Statistics, awarded by the Italian Government. 
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Statistics can address the sprawl issue in many ways, especially by evaluating the most 
common recent sprawl indices, assessing their properties, uncertainty and behaviour on 
raster datasets. Our aim is to identify a suitable set of sprawl indices with good 
properties and the ability to distinguish among the three sprawl forms; additional 
information comes from the study of indices at different aggregation levels, following 
the two most commonly used aggregation methods: the majority and the random rule 
(He et al., 2002).  
In our study we have used official EEA land cover data, from the CORINE Land Cover 
programme (http://eea.europa.eu). They are collected from nearly all EU countries and 
consist of vector data; the data are then rasterised to 100x100 and 250x250m pixel 
resolution; a binary raster dataset is also derived, which divides the land into urbanised 
and non-urbanised zones. 
 
 
2. Motivation of simulation and empirical studies 
 
Starting from the same elementary data, indices of urban sprawl can assume different 
values according to the level (i.e. pixel dimension) and the aggregation method. We 
started with a simulation study, necessary for assessing the non linearity of the problem 
under study, then we used the real dataset mentioned above to detect sprawl occurrence. 
Both studies were run on raster binary data.  
We chose a small set of spatial and landscape indices (i.e. we do not exploit information 
on population, transport, pollution …) and assessed, by simulation, their statistical 
properties. Each index has a different function: they indicate the existence of sprawl 
(Shannon’s Entropy and Contagion’s Index, the last being a measure of clustering-
dispersion), the proportion of the territory involved (Simpson’s Evenness) and the kind 
of sprawl (Moran’s I, a measure of spatial dependence, because we believe we should 
find hardly any spatial correlation among pixels in sprawled areas); the interesting 
ability of Moran’s I to identify the type of sprawl has been hypothesized by Tsai (2005) 
and verified and confirmed by our simulation study. Shannon’s Entropy, is defined as 

1

ln( )
=

= −∑
S

i i
i

H p p , where pi is the proportion of pixels of class i and S is the total number 

of classes (2 in the case of binary data). It varies between 0 (no sprawl) and ln(S) 
(maximum sprawl); the usual threshold for sprawl is ln(S) /2 (Bhatta et al., 2010).  
The proportion error has been computed to check the reliability of pixel aggregation in 
terms of similarity to the original image. We have aggregated both simulated and real 
datasets to three levels following both rules, to compare the two methods’ performance 
and see how much error in our indices’ results they cause. 
Our simulation study has reproduced the three sprawl types in various scenarios, 
generated by an underlying autologistic model (following Hughes et al., 2010) plus 
Gibbs sampling method. The classic autologistic model is defined as 
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where Zi is the i-th pixel’s response, Z-i are all other responses in the grid and the vector 
θ includes the spatial and attraction parameters; the covariates Xi are the spatial 
coordinates, weighted through the spatial β parameter, and the autocovariates Zj are the 
neighbours’ values, weighted through the attraction parameter η. According to this 
model, the probability of finding urbanisation in the i-th cell depends only on its 
neighbours’ responses (the relationship is controlled by η) and by the pixel location 
(through the value of β). To create the core city area, we fixed high values for both 
parameters, while sprawled areas had negative values for η. The neighbourhood extent 
N(i) has to be fixed in advance, and we chose the 4 nearest neighbours system (Bivand 
et al., 2008).  
In our simulations, we firstly varied spatial and attraction parameters in the model, and, 
as an alternative, we imposed a kernel structure from the core city area to the periphery, 
i.e. the pixels’ responses and the proportion of urbanised cells depend negatively on the 
Euclidean distance from the city centre; this second, more realistic hypothesis has led to 
better and more coherent results. For each scenario (9 as a whole), we produced 1000 
replications and aggregated them to two coarser levels with both rules (54 scenarios in 
total). We have then computed the above indices on all replications and resolutions. The 
same computations have been done on both Emilia Romagna and the city of Bologna 
(Figure 1) areas (selected from CORINE data) where the original datasets have been 
aggregated to 500x500,1000x1000 and 5000x5000m pixel sizes.  
 

         
 

Figure 1. Bologna datasets in the original resolution (100x100m, central panel) and aggregated 
to 1x1km with the majority method (left panel) and random method (right panel) .  
 
 
3. Results and comments  
 
Results evaluate indices’ stability along aggregation levels and methods, to respectively 
assess the bias induced by a loss of pixel resolution, and/or using a different aggregation 
method. The majority rule is a deterministic aggregation method, while the random rule 
basically draws a simple random sample for each aggregation, starting from the finer 
resolution data. It appears to be very reliable in the dichotomous case, because the 
probability of an aggregated pixel falling into one binary class is proportional to the 
percentage of original pixels in the population of finer elements. The majority method 
tends to cluster and over-represents the pixels with higher frequency: it is not suitable 
for detecting dispersion in the data, because it will tend to underestimate it. This has 
been noted, e.g., in the simulation results for Shannon’s Index: after two aggregation 
steps with the majority rule, the Index did not show occurrence of sprawl, completely 
contradicting the results from the original data. In conclusion the random aggregation 
rule is good for measuring sprawl, and leads, in general, to very stable results, i.e. more 
similar to the original, even if its variability always has to be considered. 
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The variability in indices’ measures (in simulation analysis, measured with standard 
errors and ranges) is higher the coarser the resolution, irrespective of the aggregation 
method: this suggests it is better to work on the finest resolution possible, even if results 
are stable over aggregation. The proportion error, which is a classification error, also 
increases when the resolution becomes coarser, but this tendency is stronger with the 
majority rule than the random rule. Simpson and Shannon’s measures lead to analogous 
results because they are both based on urbanised pixels’ proportions; since no 
information on pixels’ spatial distribution is used, we suspect that they are not the best 
in identifying sprawl. They are stable when aggregating with the random rule, and, with 
real data, they identify sprawl in Bologna but not in Emilia Romagna, which suggests 
that these indices are not reliable on such a wide spatial extent: sprawl is a metropolitan, 
not a regional, problem. The contagion measure, which is a modified entropy measure 
containing some information on pixels’ neighbourhood, is consistent with Shannon’s I, 
remains stable with the random rule and states that there is sprawl in Bologna. Moran’s 
I is the only index which is able to distinguish (in our kernel simulation study) among 
the three sprawl types, as shown in Figure 2; on real data it detects occurrence of 
monocentric sprawl in Bologna, as supported by its map visualization (Figure 1).  
 

     
 

Figure 2. Kernel simulation study; Moran’s I at various scenarios and aggregation levels, with 
both aggregation rules.  
 

In conclusion, the chosen set of indices is suitable for measuring urban sprawl and for 
identifying the type of dispersion; a further step will be the construction of a unique, 
composite indicator to identify and quantify such spatial sprawl. As CORINE original 
data are in vector form, indices such as Simpson, Shannon and Moran’s (for binary 
data) Index should be also computed on vector data to check consistency among results.  
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Abstract: Fire is acknowledged to be a factor for explaining the disturbance of 
vegetation dynamics interacting with other environmental factors. Depending on the fire 
regime, the amount of herbaceous biomass changes but depends on local conditions. We 
want to clarify the importance and the role of fire on the dynamics of savanna 
vegetation. The study area is the Marovoay watershed located on the north-west coast of 
Madagascar. In this watershed, burning herbaceous cover is the main practice in the 
extensive grazing system. The image dataset is composed of two indicators related to 
vegetation activity changes and one indicator about fire regime that results from a 
combination of fire frequency and seasonality. All indicators were measured between 
2000 and 2007 using a remote sensing MODIS time series. In this work, we 
implemented two approaches of spatial analysis. The first one is based on a per-pixel 
non-spatial GLM model and analyzes the spatial structure of the residuals. In the second 
approach, a spatial GLM model is directly computed. We built stratifications of the 
study area according to the spatial variations of the relationship established between 
vegetation activity changes and fire regime. The use of spatial statistical tools produces 
parsimonious models which we found to be consistent with expert knowledge.  
 
Keywords: fire regime, spatial statistics, GLM model, vegetation dynamics, remote 
sensing 
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Abstract: In Mediterranean areas, some studies suggest universal increases in fire 
frequency due to climatic warming. However, some authors point out that the 
universality of these results is questionable. In this study, we try to go beyond the 
simple analysis of statistical data related with the number of fires and the total burned 
area, which can be misleading in the context of climate change. The fire perimeters have 
been used to inquire spatialized climate indexes and the vegetation cover.  A statistical 
analysis of climate indexes has been conducted and a certain number of Type of 
Homogeneous Areas (THA) defined by introducing information on vegetation cover. 
The comparison of THA and climatic indexes allowed the definition of an index of risk. 
Maps of this index highlight risky areas in Liguria and Sardinia (Italy). 
 
Keywords: climate change, climate indexes, static wildfire risk, vegetation cover. 
 
 
1. Introduction 
 
In Mediterranean area, some studies in the later ’90 (Piñol et al. 1998) predicted a 
continue increase of the number of days of very high fire risk, and more frequent 
catastrophic wildfires. Some studies, in the same period, suggested universal increases 
in fire frequency with climatic warming (Overpeck et al. 1990). However, Flannigan et 
al. (2000) point out that “the universality of these results is questionable because an 
individual fire is a result of the complex set of interactions that include ignition agents, 
fuel conditions, topography and weather including temperature, relative humidity, wind 
velocity and the amount and frequency of precipitation. Increasing temperature alone 
does not necessarily guarantee greater fire disturbance.”. 

                                                           
1 This work has been supported by the project PROTERINA-C: A system for the forecast and the 
prevention of the impact of the variability of the climatic conditions on the risk for the natural and 
urbanized environment. Funded by the EU (2009-2011), “Obiettivo 3 Italia-Francia Marittimo” program. 
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In this study, we try to go beyond the simple analysis of statistical data related with the 
number of fires and the total burned area which can be misleading in the context of 
climate change. The availability of a long data series of  fire perimeters combined with 
a detailed knowledge of topography and land cover allow to understand which are the 
main features involved in forest fire occurrences and their behaviour. In addition, the 
analysis of  climate indexes allows to understand the role of climate on fire regime, both 
in terms of direct effects on fire behaviour and the effect on vegetation cover. 
 
 
2. Materials and Methods 
 
Study areas. Liguria (Italy) is a region of 5400 km2 lying on the northwest coast of the 
Tyrrhenian Sea. For this Mediterranean region, wildfires are recurrent phenomena both 
in summer and winter: an average of 365 wildfires of size > 0.01 km2 burns an area of 
55 km2 per year.  
Sardinia (Italy) is the second-largest island in the Mediterranean Sea. Wildfires 
represent a severe threaten to life and goods during summer. On average, between May 
and October more than 2500 fires burn more than 310 km2 of shrubland, grassland and 
forests per year.  
Data. As far as fire perimeters are concerned, the data set used in Liguria references the 
period from 1997 to 2009 and reports 7390 wildland fires that overall burnt 510 km2 of 
forests and shrubland. The dataset used in Sardinia references the period from 2006 to 
2008 and reports more than 4850 fires that overall burnt 480 km2. The available 
regional vegetation cover maps are different in the two regions, then preventing a 
homogeneous classification. Daily rainfall and temperature data referring to the period 
1951-2008 have been analyzed using time series a) with more than 30 years of complete 
records for trend analysis, and b) with more than 20 years of complete records in the 
standard period 1971-2000, for climate analysis.  
Method. Climate indexes have been analyzed at the seasonal and annual temporal scale. 
In particular,  the maximum number of consecutive dry days (CDD) and the heat wave 
duration index (HWDI) suggested by Frich et al. (2002)  for monitoring change in 
climatic extremes world-wide have been considered. Interpolated maps of the normal 
values have been obtained by either kriging or multiple regression. For each climate 
index, a finite number of classes has been defined on the basis of a preliminary analysis 
of the fire perimeters. These classes have been compared to land cover classes to derive 
the possible Types of Homogeneous Areas (THA). The index: 
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has been defined to measure the risk associated to the i-th THA, where ∆T is the length 
of data series (years), Ni the number of fires occurred in THA i-th, Bik is the burned area 
in THA i-th by fire k-th, Ai

tot  is the total cover area by THA i-th. 
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3. Results 
 
In general, trend analysis does not show clear patterns of climate change at the annual 
time-scale. As far as extreme events in Sardinia are concerned, CDD shows decreasing 
trend in the Central-South part, where consecutive dry days periods are longer. Similar 
results are not obtained in Liguria, where, on the contrary, 3 stations show increasing 
CDD.  
In Liguria, the actual number of THA is 906 in winter and 865 in summer, while in 
Sardinia the number of actual THA is 395.  Figure 1 shows the obtained maps of index 
H and highlights the areas at the highest risk (red). 
 

 

LIGURIA SARDINIA 

Summer Summer 

 

 

Winter 

 

 
 
Figure 1: Risk maps in Liguria (left) and Sardinia (right). In black, the burned areas are 
shown. 
 
 
4. Concluding remarks 
 
In this work, an index of static fire risk  has been introduced that takes into account both 
the climate and the vegetation cover. Two different case studies are presented, Regione 
Liguria and Regione Sardegna (Italy). Both regions are in the center of the 
Mediterranean and are characterized by a high number of fires and burned area. 
However, the two regions have very different fire regimes. Sardinia is affected by the 
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fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with 
higher number of fires and larger burned area. In addition, the two region are very 
different in vegetation cover. 
Concerning Liguria, the proposed methodology is able to put in evidence the different 
seasonal fire regimes, and provides useful information about regional fire risk 
management. Shrublands, in Liguria, represent the first stage of the succession 
dynamics in abandoned agriculture areas and it is the most flammable kind of 
vegetation mainly involved in large fires both in summer and in winter season. Conifer 
plantations near the coastline mainly constituted by Pinus Pinaster heavily degraded by 
Matsucossus represent the most high intensity and frequent fires in summer which 
provide the major risk for the Wildland-Urban Interface. On the contrary, in Sardinia, 
shrubs represent less that 10% of the vegetation cover contained in the higher risk areas 
and conifers are not present at all. Here, the vegetation cover characterizing the higher 
risk areas is mainly composed by Quercus Suber and mixed forests.  
Concerning the climate influence on fire risk, in summer season the highest risk areas 
are characterized in both regions by high air temperature. Only in Sardinia the HWDI 
seems to play a key role. The influence of rainfall regime on fire risk in the summer 
season (Sardinia is affected by fires only in summer) puts in evidence, in both regions, 
that the higher risk areas are characterized by a significant amount of total precipitation 
and by a significant number of rainy days. However, the same areas are characterized by 
a significant number of cumulative dry days especially in Sardinia. This result shows 
that fire ignition is mainly favorite by the presence of annual herbaceous species which 
accumulate biomass in the wet season and represent almost a completely dry fuel in the 
summer season.  
The obtained results are certainly satisfying, however suggest further improvements. 
The role of HWDI has to be discussed, and a seasonal definition introduced. Indeed, the 
relevant role of this index in Sardinia only can be due to the higher temperatures of the 
island.  Further insight into the role of HWDI and CDD has been obtained by 
comparing the dates of fires and the corresponding indexes values. We obtained a 
strong relationship between higher HWDI values and long dry periods in spring. This 
result open the doors to further development of the analysis. 
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Abstract: New classes of cross-covariance functions have been recently pro-
posed, nevertheless the linear coregionalization model (LCM ) is still of interest and
widely applied. In this paper, a new fitting procedure of the space-time LCM (ST-
LCM ) using the generalized product-sum model is proposed. This procedure is
based on the well known algorithm of matrix simultaneous diagonalization, applied
on the sample matrix variograms computed for multiple spatial-temporal lags.

Keywords: spatial-temporal correlation, product-sum variogram model, linear
coreginalization model.

1 Introduction

The LCM, firstly introduced by Matheron in 1982, is still one of the most utilized
models for multivariate spatial and spatial-temporal data analysis (Zhang, 2007;
Babak and Deutsch, 2009; Emery, 2010). However, in the space-time context several
theoretical and practical aspects must be considered, such as the fitting process. In
geostatistics, there is a wide literature concerning the LCM fitting stage (Goulard
and Voltz, 1989; Lark and Papritz, 2003). In this paper, a new fitting procedure of
the ST-LCM using the generalized product-sum variogram model is proposed. It
is shown that the simultaneous diagonalization of the sample matrix variograms is
useful to identify the basic components of the coregionalization model.

1Supported by Fondazione Cassa di Risparmio di Puglia.
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2 Multivariate space-time random field

Given a second-order stationary vector-valued space-time random function
(STRF) {Z(s, t), (s, t) ∈ D× T ⊆ R

d+1}, with Z(s, t) = [Z1(s, t), . . . , Zp(s, t)]
T , p ≥

2, where s = (s1, s2, . . . , sd) ∈ D (generally, d ≤ 3), denotes the spatial coordinates
and t ∈ T is the temporal coordinate, the cross-variogram of two space-time random
functions Z(s, t) and Z(s′, t′) exists and depends on the space-time separation vector
h = (hs, ht), with hs = (s−s′) and ht = (t− t′). As in the spatial context, a second-
order stationary multivariate STRF can be modelled as a ST-LCM. Hence, the
variogram matrix can be written as

Γ(h) = Γ(hs, ht) =
L
∑

l=1

Bl gl(hs, ht), (1)

where Bl = [blαβ], l = 1, . . . , L, α, β = 1, . . . , p, are positive definite (p×p) matrices,
commonly known as coregionalization matrices, while gl(hs, ht), l = 1, . . . , L, are
basic space-time variograms associated with the L scales of variability.
In De Iaco et al. (2003, 2005), each space-time basic variogram is modelled as a
generalized product-sum model (De Iaco et al., 2001):

gl(hs, ht) = γl(hs, 0) + γl(0, ht)− kl γl(hs, 0) γl(0, ht) , l = 1, . . . , L, (2)

where γl(hs, 0) and γl(0, ht) are the spatial and temporal marginal variogram models,
respectively, while parameters kl, l = 1, . . . , L, are given by:

kl =
sill[γl(hs, 0)] + sill[γl(0, ht)]− sill[gl(hs, ht)]

sill[γl(hs, 0)] · sill[γl(0, ht)]
, l = 1, . . . , L. (3)

By substituting (2) in (1), the ST-LCM based on the generalized product-sum var-
iogram models is determined by two marginal LCM’s:

Γ(hs, 0) =
L
∑

l=1

Bl γl(hs, 0), Γ(0, ht) =
L
∑

l=1

Bl γl(0, ht). (4)

Note that other space-time variogram models (Gneiting, 2002; Ma, 2002; Stein, 2005;
Porcu et al., 2008) can be used to describe the basic components of the ST-LCM.
However, the flexibility of the product-sum variogram, in estimating and modeling
the spatial-temporal variability, is often convenient (De Iaco et al. 2003, 2005).

3 Fitting a ST-LCM

After a brief review of the usual fitting process of the ST-LCM using the generalized
product-sum model, the new, more flexible, fitting procedure is discussed.
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The usual fitting procedure

In De Iaco et al. (2003) the process of fitting a ST-LCM using a generalized product-
sum variogram model, was developed as follows.
1. Compute the empirical marginal direct variograms, in space and in time, for all
the p variables under study and then fit nested variogram models. At this step, the
diagonal elements of each matrix Bl, l = 1, . . . , L, are determined as well as the
marginal basic structures γl(hs, 0) and γl(0, ht), l = 1, . . . , L.
2. Determine the marginal cross-variograms and the off-diagonal elements of the
matrices (4), ensuring that each matrix Bl is positive definite.
3. In order to complete the modeling of gl(hs, ht), l = 1, . . . , L, the kl parameters
must be determined. Hence, the space-time variogram surfaces are computed and
fitted to product-sum nested models.
Using this procedure, different practical problems have to be faced: a) the identi-
fication of the blij, i, j = 1, . . . , p, elements of the matrices Bl, l = 1, . . . , L, since
for a fixed l, these coefficients must be the same for the marginal space and time
variograms; b) the estimation of parameters kl, with l = 1, . . . , L.

The new fitting procedure

Given the multivariate space-time data set concerning the p variables (with p ≥ 2)
and the p(p + 1)/2 spatio-temporal direct and cross-variograms, computed for a
selection of H spatial-temporal lags, the new fitting algorithm goes on running 4
sub-procedures sequentially, as follows.
Sub-procedure I: identify the basic structures.

A simultaneous diagonalization technique is applied on the set of H square, sym-
metric and real-valued matrices Γ̂(hs, ht)k, k = 1, . . . , H, of sample direct and cross-
variograms, in order to find a (p × p) orthogonal matrix which diagonalizes or
“nearly” diagonalizes these matrices. At this step, the l-th empirical basic spatial-
temporal component are detected by extracting the l-th diagonal element from all
the diagonal matrices.
Sub-procedure II: fit the basic structures.

Given the space-time surfaces of the basic components, the spatial and temporal
ranges of the basic surfaces are determined so that the scales of space-time vari-
ability are identified. The number L (L ≤ p) of scales depends on the number of
different spatial and temporal ranges the basic components exhibit. Successively,
the product-sum model gl(hs, ht) in (2) is fitted to each empirical basic component,
with l = 1, . . . , L. Hence marginal variogram models, γl(hs, 0) and γl(0, ht) are fit-
ted to the empirical basic marginals.
Sub-procedure III: compute the coregionalization matrices.

Given the direct and cross-variograms surfaces of the variables under study, esti-
mated in step I, the global sill values at the L scales of spatial-temporal variability
are detected. Successively, the elements blαβ of matrices Bl, l = 1, . . . , L, are deter-
mined by dividing the contributions of the direct and cross-variogram surfaces at
the l-th scale of variability by sill[gl(hs, ht)].
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Sub-procedure IV: check the admissibility of the model.

Given the coregionalization matrices Bl, l = 1, . . . , L, the admissibility of the ST-

LCM is checked. If the matrix Bl, with l = 1, . . . , L, presents some negative eigen-
values, they are replaced by zeros, such that the new coregionalization matrix B+

l ,
at the l-th scale of variability, is positive definite.
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Abstract: In this work Bayesian hierarchical models are applied to road acci-
dent data at a county level, in Portugal, from 2000 to 2007. The objective of the
study is to build model-based risk maps for road accidents at county level and to
perform an analysis of association between road accidents and potential risk factors,
through the inclusion of ecological covariates in the model.

Keywords: Bayesian models; Small Area; Road Safety.

1 Introduction

Investigation into risk factors relating to road safety and transport plays an impor-
tant role in road accident analysis and prevention. Heterogeneity in road accidents
can be related to a range of factors, in particular at a small area level. Bayesian hier-
archical models allow the incorporation of spatial and temporal e�ects through prior
information and enable ecological analyses of associations between road accidents
and potential risk factors over aggregated areas. One objective is to explore and to
examine potential associations between road accidents and regional characteristics.
Here we only consider three covariates namely the road length, population county
size and county area.

2 Materials and Methods

Consider Yij ∼ Poisson(Eijθij), where, for each county i and each year j, Yij is the
observerd number of fatal and severe injury crashes, θij is the relative risk, Eij is
the expected number of fatal and severe injury crashes, for a constant incidence rate

1This work is partially sponsored by national funds through FCT - Fundação para a Ciência e a
Tecnologia under the project PEst-OE/MAT/UI0006/2011 and by SFRH/PROTEC/49226/2008
PhD grant.

1



across all 278 counties of Portugal and all 8 years,

Eij = Nij r̄ = Nij

∑
i

∑
j Yij∑

i

∑
j Nij

(1)

with Nij the number of vehicles insured in county i, in year j.

Assume a spatio-temporal model for the relative risk, namely

log(θij) = b0 + bxij + ui + vi + (γ + δi)tj (2)

where b0, bxij are the �xed e�ects,with b0 the intercept, xij a vector of covariates, b a
vector of �xed e�ect parameters; ui are random e�ects acounting for spatial hetero-
geneity and vi are random e�ects accounting for unstructured heterogeneity. We also

assume that ui and vi are mutually independent with priors vi
iid∼ Normal(0, σ2

v) and
the ui ∼ CAR, respectively; γtj is a linear trend term in time tj, δi is an interaction
random e�ect between space and time, with prior δi ∼ CAR. We also assumed the
following di�use priors for the hyperparameters: b0, b, σ

2
u, and σ

2
v mutually indepen-

dent with b0, b, γ ∼ Normal(0, 1000), (σ2
u)

−1, (σ2
v)

−1, (σ2
δ )

−1 ∼ Gamma(0.5, 0.0005).

The models were applied to road accident data in 278 counties of Portugal, from
2000 to 2007 and were implemented using WinBUGS, (Spiegelhalter et al.,1999) and
its add-on program GeoBUGS, (Thomas et al., 2004), and using R-INLA, (Rue and
Martino, 2009).The covariates used were geographical area-A, in Km2, population
size-P, in number of inhabitants, road lenght-L, in meters, by county and year.

3 Results

Eight spatial-temporal models are implemented. Model 1 without covariates -1-.
Models 2 to 4, incorporate one covariate, model 2 includes the road length, 2-
(L), model 3 includes the population size, 3-(P), and model 4 includes the area,
4-(A). Models 5 to 7 incorporate two covariates, model 5 includes road length and
population size, 5-(L+P), model 6 includes road length and area, 6-(L+A), and
model 7 includes population size and area, 7-(P+A). Finally, model 8 incorporates
the three covariates, 8-(L+P+A).

Results obtained using INLA and WINBUGS are very similar, with the advan-
tage of INLA taking much less time to run. Model choice is done using DIC (see
table 1); accordingly model 2, which has a smaller value for DIC, is chosen to pro-
duce maps to display the posterior expected relative risk. Figure 1 display, on the
left side, the observed average of fatal and severe injury crashes along the years
under study and on the right side the expected relative risks obtained using model
2.
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ST Models 1 2-(L) 3-(P) 4-(A)

DIC
INLA 12799.9 12796.1 12800.2 12803.6
WB 12799.8 12796.0 12799.6 12803.2

ST Models 5-(L+P) 6-(L+A) 7-(P+A) 8-(L+P+A)

DIC
INLA 12796.7 12796.7 12803.8 12797.0
WB 12796.7 12797.0 12803.6 12797.3

Table 1: DIC values

Fixed e�ects:
mean sd 0.025q 0.975q

b0 0.03 0.05 0.02 0.04
bL 1.6e-06 4.9e-07 6.5e-07 2.6e-06
γ -0.088 0.003 -0.095 -0.082

Variance of random e�ects:
σ2
u 0.34 0.07 0.18 0.55
σ2
v 0.07 0.02 0.04 0.13
σ2
δ 0.007 0.001 0.004 0.011

Table 2: Summary statistics for the parameters in model 2

Figure 1: Portugal: Average of fatal and severe injury crashes and posterior expected
relative risks for model 2 in 2000

Apparently the model is not able to capture well the risk of accident on the
northwest coast line, indicating that other covariates should be considered to be
included in the analysis. Summary statistics for the �xed e�ects and the variance
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of the random e�ects for model 2, in table 2, show that road length can be a factor
associated with higher risk of accident. The time trend e�ect being negative may
be an indicator that the number of fatal and severe injury crashes decreased over
the study period. The analysis of the variance of the random e�ects shows that the
variability of the relative risk is attributed more to spatial-structured e�ects than
to the uncorrelated heterogeneity or to the space-time interaction.

4 Concluding remarks

This is a preliminary analysis, as we are well aware that there are potential risk
factors that are not accounted for in this study. These include socioeconomic factors
such as age cohorts, sex cohorts, levels of poverty and employment; transportation-
related factors such as road type, road curvature, tra�c �ow, tra�c speed, violation
of tra�c rules, number of vehicle-kilometers traveled, and environmental factors
such as total precipitation, number of rainy days per year, land use, size of rural
and urban areas.
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Abstract: This experimental work empirically compares the results obtained in soil 
moisture spatial estimation performed with different interpolation techniques. Three 
algorithms were compared: Inverse Distance Weight (IDW), Ordinary Kriging (OK) 
and Co-Kriging (CoK). The data used were obtained through an in-situ sampling in a 
test site located in central Italy. The calibration and the validation data set contain 
respectively 40 and 133 point measurements of TDR soil moisture. The covariate used 
is a data set of 533 electrical resistivity (conductivity) point measurements. In terms of 
prediction accuracy results show no great differences between the performance of the 
IDW and the OK methods. Quite more accurate results were obtained incorporating the 
secondary variable information in the CoK algorithm. 
 
Keywords: TDR, electrical resistivity, geostatistic, ordinary kriging, co-kriging. 
 
1. Introduction 
 
Being a key variable in many natural processes acting at different spatial/temporal 
scales, there is a great interest in the observation, estimation and interpretation of soil 
moisture (SM) patterns. Traditionally the in-situ measurements have been performed by 
using the thermo-gravimetric method and, most recently, Time Domain Reflectomery 
(TDR) and neutron probes. These methods can be very precise and accurate but they are 
invasive and carry information representative only for small areas and volumes. 
Emerging electrical resistivity (ER) method has been applied in a growing number of 
surveys. This technique is relatively less invasive, cost effective and gives information 
of a larger volume of soil. Our interest is on the investigation of SM spatial variability 
using different interpolation algorithms, both deterministic (Inverse Distance Weight, 
IDW) and geostatistical. Moreover, we would like to compare punctual soil moisture 
predictions obtained by Ordinary Kriging (OK) method, applied on the poor sampled 
SM variable, with those obtained through the Co-Kriging algorithm (CoK) 
incorporating the more dense information of the secondary variable (ER). 
 
 
2. Materials and Methods 
 
The study area is a 200m x 60m test site located in the Umbria region (central Italy). 
Simultaneous measurements of SM [% vol/vol ] and ER [Ohm*m] were acquired on the 



 

2 
 

nodes of a 5m sampling step regular grid. A mobile TDR probe with 15 cm wave-guide 
length (MiniTrase, Soil Moisture Equipment Corporation) was used for the SM 
measurements. A geo-resistivimeter Syscal Junior (IRIS Instrument) coupled with a 
Schlumberger 4-electrode device was used for the ER measurements at ~20cm of 
pseudo-depth.  
The focus of this work was to compare different interpolation techniques in order to 
verify the advantages of using auxiliary variables for soil moisture patterns estimation. 
A strong under sampling of the SM variable was performed (Fig1) as often is in real 
cases. Through a completely random sampling, 10 calibration data sets (40 points each) 
and a validation data set (133 points) for each calibration data set were sub-sampled. 
We present here the results concerning one of the ten calibration data sets (Fig1). 

0 50 100 150 200

0
20

40
60

Calibration-Validation data sets

Cal: blue; Val: green (random selection)  
Figure 1: Relative positions of points used for the validation and one of the calibration 

data set. 
 
Three different interpolation algorithms, IDW, OK and CoK (Govaerts, 1997; Hengl, 
2007), were applied to obtain SM spatial predictions. All the interpolations and 
variogram models were performed on log transformed variables and then data were 
back-transformed for the validation of the results. 
To fit a linear model of co-regionalization under the constrain of having positive 
definite partial sill matrices, we chose to use electrical conductivity, (EC= 1/ER), values 
[mS/m] because the experimental variogram looked more similar to the SM one. 
Two validation steps were applied: first the difference between predicted and measured 
values (validation data set) was computed; then, a regression between predicted and 
measured values was conducted and residuals compared in terms of: mean prediction 
error (MPE), median, standard deviation (RMSE), mean absolute error (MAE), 
minimum and maximum value. Moreover, the Pearson correlation coefficients between 
predicted and measured values of SM for each interpolation algorithm were estimated. 
 
 
3. Results 
 
The summary statistics (Tab.1) show that SM variability (sd and CV) is broader for the 
validation than for the calibration dataset. The central values are slightly lower for the 
validation than for the calibration set. The log transformation of data was applied in 
order to obtain quasi-normal pdfs. 
 

variable unit count Min.  1st Qu. Median Mean  3rd Qu. Max.   sd CV skewness

sm: calibration % vol/vol 40 21,30 27,48 29,30 30,40 32,78 44,10 5,17 0,17 0,78

sm: validation % vol/vol 133 17,60 26,40 28,90 29,83 34,10 45,90 5,26 0,18 0,31

electrical conductivity mS/m 533 3,70 13,09 16,90 17,96 21,69 39,31 6,76 0,38 0,55  
 

Table 1: Summary statistics of the different data sets. 
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The distributions of the EC, the SM validation and calibration sets are showed in Fig.2 
along with a scatter plot of the logEC-logSM relation for the calibration sample. 
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Figure 2: data set distributions and log(SM) vs log(EC) correlation. 
  
After having modeled the SM variogram, the OK algorithm for spatial interpolation was 
applied and the results compared with those obtained through the IDW. The visual 
comparison of the two maps (not showed) highlighted no strong differences. The 
general large scale patterns are similarly reproduced. The OK map seemed to be 
smoother and with less artifacts. The statistics comparing the experimental errors were 
only slightly better for the OK than for the IDW algorithm (Tab.2). 
 

(measured - predicted) MPE Median RMSE MAE I quart III quart Min Max r

IDW 0,59 0,52 4,45 3,48 -2,10 4,45 -9,99 12,16 0,54

OK 0,56 0,64 4,43 3,47 -2,20 3,21 -9,86 10,70 0,55

CoK 0,38 -0,09 3,82 2,97 -1,74 2,66 -9,86 9,55 0,70  
 

Table2: residual summaries between measured and predicted values. 
 
Once the EC spatial structure and its covariance with SM were modeled (co-
regionalization modeling) (Tab.3), a CoK map was produced. The map well reproduced 
the larger SM patterns and clearly showed better defined SM smaller scale details 
(Fig.3). 
Moreover, the correlation between CoK predicted and validation data was sharply 
higher than that for OK and IDW (0.70 vs ~0.55) and the error statistics showed a better 
performance of the CoK in modeling the SM values (Tab.2).  
 

model psill range (m)

Nug 6,45E-04

Exp 3,57E-03 13

Nug 3,00E-03

Exp 2,98E-01 13

Nug 3,17E-03

Exp 1,06E-02 13

log(EC)

log(SM)log(EC)

log(SM)

 
 

Table 3: Model parameters of cross- and semi- variograms for the log-transformed 
variables 
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4. Concluding remarks 
 
The comparison between different interpolation algorithms in modeling the spatial SM 
patterns was shown. The first comparison was done between OK and IDW algorithms, 
both accounting for the SM sampled data (40 points). These results were compared with 
that of the CoK algorithm that allowed us to incorporate the information of a more 
densely sampled covariate (530 data). The validation of the three interpolation methods 
applied was assessed using an independent validation data set (133 points). 
The results of the validation procedure showed no marked differences between IDW 
and OK performances, with the latter being just slightly more accurate than the former. 
On the other hand, the comparison in term of SM estimation revealed the major 
accuracy of the CoK algorithm respect to the IDW and OK algorithms. This result 
confirm the relevance that secondary variables can have in spatial modeling. Further 
analysis of various issues need to be explored: how sample size and scheme affect the 
spatial predictions of the OK and CoK algorithms? And, how interpolation algorithms 
perform compared to simulations in modeling the spatial variability of the SM? 

 
 

Figure 3: CoK map (top) compared with OK map (bottom) of the SM spatial pattern in 
the test site. Symbols on the map indicate the calibration sampling sites. 
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Abstract: The environmental risk analysis involves the observation of complex
phenomena. Different kinds of information, such as environmental, socio-economic,
political and institutional data, are usually collected. In this paper, spatial-temporal
geostatistical analysis is combined with the use of a Geographic Information System
(GIS): the integration between geostatistical tools and GIS enables the identification
of alternative scenarios and possible strategies for the environmental risk manage-
ment. A case study on environmental data measured in the southern part of Apulia
region (South of Italy), called Grande Salento, is discussed. Sample data (concentra-
tions of PM10, wind speed, temperature) taken at different air monitoring stations
are used for stochastic prediction, through space-time indicator kriging.

Keywords: GIS, Geostatistics, PM10 pollution, space-time indicator kriging

1 Introduction

Environmental risk management involves the integrated use of several tools and
techniques, including GIS, sample design, Geostatistics and data management. In
particular, data management process requires the integration of several data divided
into three categories: i) environmental data (land use, land cover, vegetation, geol-
ogy, meteorology and measures of pollutants concentration); ii) socio-economic data
(population and housing census data, community vulnerability data and data on util-
ities and access); iii) political and institutional data (Chen et al., 2003). Moreover,
a spatial-temporal approach is often required for environmental risk assessment;
hence, the interaction between space-time modeling of air pollution, adopted by the
statistical community in environmental studies (De Iaco et. al, 2001; Kolovos et
al., 2004; Spadavecchia and Williams, 2009, among others), and urban environment
representation (traffic network, location of industrial facilities, emission sources and
topographic conditions), easily managed in a GIS, is necessary. The aim of this
paper is to combine the use of space-time geostatistical techniques and the GIS
potential. A case study on an environmental data set, involving both atmospheric
variables and air pollutant concentrations, measured in November 2009 at moni-
toring stations located in Grande Salento (Lecce, Brindisi and Taranto districts in
the Apulia Region) is discussed. In particular, air pollution due to PM10 (Partic-
ulate matter) concentrations and atmospherical variables, such as wind speed and

1Supported by Fondazione Cassa di Risparmio di Puglia.
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temperature in the same region, are considered. Exploratory Spatial Data Analy-
sis for a deep understanding of the analyzed phenomenon is performed using the
Geostatistical Analyst Tool of ArcGis. Structural analysis for space-time variogram
estimating and modeling and space-time prediction, based on kriging, is computed
by using modified Gslib routines. A 3D representation for the space-time evolution
of the conditional probability associated with PM10 is produced by using ArcScene
(an extension of ArcGis). The overlay between the probability map and relevant
urban spatial data is shown for Brindisi Municipality.

2 Empirical framework and methods

The study of the evolution of PM10 is very important for the effects that this pol-
lutant has on human health. Many studies have shown that exposure to PM10

increases the risk of mortality both in long and short term. According to National
Laws concerning the human health protection, PM10 hourly average concentrations
cannot be greater than 50 µg/m3 for more than 35 times per year. During the
month under study, the PM10 hourly values exceeded the threshold 80 times, es-
pecially on the 13rd, 14th, 23rd and 24th of November. In the present case study,
the following steps have been considered: (1) defining the space-time indicator vari-
ables according to appropriate thresholds, computed from the observed data; (2)
modeling space-time indicator variogram of the variables by using the generalized
product-sum variogram model; (3) using space-time indicator kriging, over the area
of interest and during the period 1-6 December 2009, in order to obtain: a) the
joint probability that PM10 concentrations exceed fixed thresholds and the atmo-
pheric variables take values not greater than the corresponding monthly means, b)
the joint probability that the atmopheric variables take values not greater than the
corresponding monthly means; (4) computation and 3D representation of the prob-
ability that PM10 concentrations exceed the fixed thresholds, conditioned to adverse
atmospheric conditions (i.e. wind speed and temperature which are lower than the
corresponding monthly mean values). In Geostatistics, observations are modelled
as a partial realization of a spatio-temporal random function Z, which is decom-
posed into a sum of a trend component and a stochastic residual component. In the
following case study, the formalism of a spatio-temporal indicator random function
(STIRF ),

I(u, z) =

{
1 in case of Z not greater (or not less) than the threshold z,
0 otherwise,

where u = (s, t) ∈ D × T, z ∈ R (D ⊆ R
2 and T ⊆ R+), is considered. Spatio-

temporal dependence of a STIRF is characterized by the indicator variogram of I:
2γ

ST
(h) = Var[Y (s+ hs, t+ ht)− Y (s, t)], which depends solely on the lag vector

h = (hs, ht), (s, s + hs) ∈ D2 and (t, t + ht) ∈ T 2. The fitted model for γ
ST

must satisfy an admissibility condition in order to be valid. Hence, the following
generalized product-sum model (De Iaco et al. 2001) has been fitted to the empirical
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indicator space-time variograms:

γ
ST
(hs, ht) = γ

ST
(hs, 0) + γ

ST
(0, ht)− kγ

ST
(hs, 0)γST

(0, ht), (1)

where γ
ST
(hs, 0) and γ

ST
(0, ht) are valid spatial and temporal bounded marginal

variograms and k ∈]0, 1/max{sillγ
ST
(hs, 0), sillγST

(0, ht)}]. Basic theoretical re-
sults can be found in De Iaco et al. (2001), moreover recently it was shown that
strict conditional negative definiteness of both marginals is a necessary as well as
a sufficient condition for the product-sum (1) to be strictly conditionally negative
definite (De Iaco et al., 2011).

3 Case study

In this analysis, the STIRF s associated with the spatial-temporal distributions of
PM10, as well as of temperature and wind speed, have been examined in the Grande
Salento region during November 2009. The data set consists of daily averages of 3
variables, PM10, temperature and wind speed, measured in November 2009 at 28
monitoring stations located in the Grande Salento.
After computing descriptive statistics, spatial-temporal indicator kriging using the
generalized product-sum variogram model has been applied in order to predict,
over the area of interest and for the period 1-6 December 2009, the probabil-
ity that PM10 concentrations exceed the fixed limits, in the presence of adverse
atmospherical conditions to the pollutant dispersion, i.e. temperature (T ) and
wind speed (WS ), which are lower than the corresponding monthly mean values
(12.54 ◦C and 2.11 meters/second, respectively). In this case study, the thresh-
olds for the PM10 have been fixed equal to the 75th and 80th percentiles of sam-
ples data (37.804 and 40.57 µg/m3, respectively), which can be considered critical
with respect to the law limit. Hence, 3 indicator random fields have been defined:
I1(u; 37.804, 12.53, 2.11) = 1, if PM10 ≥ 37.804, T ≤ 12.53, WS ≤ 2.11, 0 oth-
erwise, I2(u; 40.57, 12.53, 2.11) = 1, if PM10 ≥ 40.57, T ≤ 12.53, WS ≤ 2.11, 0
otherwise, I3(u; 12.53, 2.11) = 1, if T ≤ 12.53, WS ≤ 2.11, 0 otherwise, with u ∈ D.
Indicator sample space-time variograms for the indicator variables under study and
their models have been determined first. The fitted space-time variogram model for
the random fields I1 is characterized by: γ

ST
(hs, 0) = 0.066 [1− exp(−3hs/15000)],

γ
ST
(0, ht) = 0.185 [1− exp(−3ht/6)], k = 3.767 and global sill equal to 0.205;

for I2: γST
(hs, 0) = 0.059 [1−exp(−3hs/15000)], γST

(0, ht) = 0.169 [1−exp(−3ht/6)],
k = 4.112 and global sill equal to 0.187;
for I3: γST

(hs, 0) = 0.094 [1−exp(−3hs/20000)], γST
(0, ht) = 0.235 [1−exp(−3ht/6)],

k = 3.712 and global sill equal to 0.247. Probability maps have been predicted over
the area of interest for the period 1-6 December 2009. In particular, the indicator
kriging has been used to estimate the joint probability that PM10 concentrations
exceed fixed thresholds and the atmopheric variables take values not greater than
the corresponding monthly means first, and secondly the joint probability that the
atmopheric variables take values not greater than the corresponding monthly means.
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Then, the probabilities that PM10 values do not exceed the fixed thresholds, con-
ditioned to adverse atmospheric conditions, over the area of interest and during
the period 1-6 December 2009, have been computed. From the obtained results
it is evident that, in Brindisi and Lecce districts, the probability that PM10 daily
concentrations exceed the fixed thresholds, under adverse atmospherical conditions,
decreases from the 1st to the 6th of December 2009 and along the NorthWest-
SouthEast direction (Fig. 1). Finally, the Brindisi Municipality is considered in

Figure 1: conditional probability maps of PM10 concentrations, for the thresholds: a) 37.804

µg/m3 (75th percentile), b) 40.57 µg/m3 (80th percentile), during the period 1-6 December 2009.

detail. In this area, the concentrations of PM10 is compared with land use and
traffic network. The probability that PM10 concentrations do not exceed the fixed
threshold is higher in the city center; on the other hand it is much more likelihood
that the PM10 concentrations exceed the limit in the SouthWest hinterland.
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Abstract: The pattern of the highest intensities in macroseismic fields of vol-
canic areas is strongly anisotropic because of the linear extension of the fault. In
the isotropic approach to the estimation of the probability distribution of the site
intensity the analysis starts considering the sites inside circular bins, with fixed
width, around the epicentre. To consider the source effect it seems natural to shift
epicentre to the rupture length and circular bins to elliptical ones. To exploit prior
information on the attenuation trend in Italian seismological and volcanic areas
we transform the plane so that an ellipse becomes a circle with diameter equal to
its minor axis, and then estimate the probability distribution of the site intensity
applying the method proposed in Zonno et al. (2009) to the transformed data points.

Keywords: Bayesian estimation, binomial-beta model, macroseismic intensity,
elliptical isoseismal

1 Introduction

The problem of the macroseismic intensity attenuation and its variation as a function
of the distance from the source is a key factor in the seismic hazard assessment. The
standard procedure consists in applying linear regressions which express the site
intensity Is mainly as a function of the epicentre-site distance and of the epicentral
intensity I0. Avoiding the use of any empirical attenuation relationship, Rotondi
and Zonno (2004) proposed a probabilistic model for Is calibrated by exploiting
information from zones that are assumed homogeneous from the attenuation point of
view. This debatable assumption is dropped in Zonno et al. (2009) and replaced by
a hierarchical agglomerative clustering method - implemented by the agnes function
of the cluster library of R software - by which a set of Italian well-documented
macroseismic fields was decomposed in three classes that are homogeneous from
the viewpoint of attenuation. For each of these classes the distribution of Is was
estimated conditioned on I0 from VII to XI degree of the Mercalli-Cancani-Sieberg
(MCS) scale under the assumption of symmetric decay around the epicentre. Since
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the seismic attenuation in volcanic environment is very quick because of the much
fractured ground and of the very shallow seismicity activity, the Italian volcanic
areas were excluded from Zonno et al. (2009) and examined separately in Rotondi
et al. (2009). It turned out that a decay, similar to the one characterizing the class
with the quickest attenuation, is recorded at a distance reduced by a coefficient 10
in Etna and Vesuvius-Ischia areas, and 2 in Aeolian Islands and Albani Hills. In this
article, to take into account the source effect, that is the asymmetric decay, without
losing the gathered knowledge, we apply a plane transformation to the intensity data
points so as to go back to the circular case. Then we assign the prior distributions
of the Bayesian paradigm on the basis of the previous studies, update the model
parameters and finally associate the probability functions estimated in this way with
the original points.

2 Binomial-beta model for Is

We recall briefly the probabilistic model proposed in Rotondi and Zonno (2004): as
the decay ∆I = I0 − Is is a discrete variable belonging to the domain {0, I0 − 1}, it
is reasonable to choose for Is, at a fixed distance from the epicentre, the binomial
distribution Bin(is|I0, p) conditioned on I0 and p and then restrict the support
to be {1, I0} by defining Pr {Is = 1} = Pr {Is ≤ 1}. Moreover, since the ground
shaking may differ even among sites located at the same distance, we consider p as a
random variable which follows a Beta distribution Beta(p;α, β). To insert our prior
knowledge on the problem, we draw L distance bins Rj , j = 1, 2 . . . , L, of fixed width
around the epicentre of the earthquake and assume that, in all the sites within each
jth distance bin, Is has the same binomial distribution with parameter pj, which,
in turn, follows the distribution Beta(αj0, βj0). On the basis of the comparison with
the class of earthquakes with the quickest attenuation in Italy, we assign to the
prior parameters αj0, βj0 the values αj , βj of that class (note that in the present
case the bins are 10 times narrower). Then, through the macroseismic fields of 17
earthquakes observed on the flanks of Mt. Etna, we update the parameters in the
distance bin Rj and estimate pj through the posterior mean:

p̂j = E (pj | Dj) =
αj,0 +

∑Nj

n=1
i
(n)

s

αj,0 + βj,0 + I0 ·Nj

where Nj is the total number of data points Dj inside Rj and i
(n)

s is the intensity felt
at the n-th site. In order to let the p parameter of the binomial distribution for the
site intensity Is vary with continuity, we smooth the estimates p̂j with the method
of least squares, using an inverse power function g(d) = (γ1/d)

γ2 . In this way it is
possible to assign the binomial probability of Is at any d distance from the epicentre
and to use the mode of this distribution to forecast the intensity that could be felt
at that distance from the epicentre of a future event of intensity I0.
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To judge the predictive power of this model we perfom a retrospective analysis
by comparing the observed macroseismic fields with the predicted ones on the basis
of three validation criteria: the logarithmic scoring rule, the odds ratio and the
absolute discrepancy between observed and estimated intensities at site. This last
criterion can be also used to validate the best empirical attenuation relationship
∆I = 0.98 log d + 1.01 given in the literature for the Etna volcanic area. The
smallest values of the criteria indicate the model with the best performance.

2.1 Anisotropic model

When there is evidence of a preferential direction of propagation, it can be reasonable
to assign elliptical isoseismal contours. To this end we apply a transformation to
the plane so that the ellipse of major axis equal to the rupture length and minor
axis equal to 1 km (width of the distance bin) becomes the unit circle. In this
way we can apply the same probabilistic model defined in the isotropic case to
the so-transformed data points, estimate a new probability distribution of the site
intensity, and associate the new estimates with the original locations. An example of
this transformation is depicted in Figure 1 and consists of the following steps: rotate
the ellipse of semimajor and semiminor axis a = 2.023 and b = 1 long respectively,
and azimuth 2.356 (135◦) counterclockwise by 0.785 rad (45◦) so as to move the point
P1(x1, y1) to the point P2(x2, y2) through the equations x2 = cos(−ψ) x1−sin(−ψ) y1

and y2 = sin(−ψ) x1 +cos(−ψ) y1, being ψ the angle between the positive semi-axis
and the directrix. Then shrink the major axis bringing P2(x2, y2) to P3(x3, y3) by
x3 = x2 × b/a and y3 = y2; finally rotate the circle clockwise so that the point
P3 goes to the point P4(x4, y4) by the equations x4 = cos(φ) x3 − sin(φ) y3 and
y4 = sin(φ) x3 +cos(φ) y3, being φ = arctan(y3/x3)− arctan(y2/x2)+ |ψ|. Since the
asymmetry is more evident for the highest intensities and decreases when moving
away from the epicenter, both the axes of the subsequent ellipses are increased by

the same quantity, - width of the bin - so that the eccentricity ej =
√

1 − (bj/aj)
2

tends towards 0 for increasing j, j = 1, 2, . . . , L.
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Figure 1: Transformation of the ellipse (2.023,1) into the circle with radius 1, az-
imuth = 2.356, ψ = −0.785 rad.
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3 Simulation of damage scenarios

In both isotropic and anisotropic case the method presented allows a complete treat-
ment of the uncertainty; as a matter of fact not only the estimate of the intensity
at any site is obtained but also its entire probability distribution from which it is
possible to draw additional information, like the probability that the expected in-
tensity exceeds a fixed degree and, viceversa, the intensity that will be felt with
a fixed probability threshold. Figure 2 shows an application of the method to the
simulation of the damage scenarios that could be generated by an earthquake of
intensity IX in the circular (left) and elliptical (right) hypothesis.
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Figure 2: Damage scenarios simulated in isotropic and anisotropic case for I0 = IX.
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Abstract: Mapping environmental radioactivity from field gamma-ray spectrometry is a valuable 
tool for understanding and interpreting pedological control of naturally occurring radioactivity. Soil 
properties and water content affect the behaviour of natural radioactivity. The main aim of the study 
were to explore and map the activity of three naturally occurring radionuclides (232Th, 238U, 40K) in 
an olive orchard and investigate the relationship between some soil properties and the activity of the 
three radionuclides. 
 
Keywords: natural radioactivity, soil, water content, grain size 
 
1. Introduction 
Environmental natural radioactivity in the soil is due to the decay of radionuclides derived from 
minerals in the earth’s crust. Many naturally occurring elements have radioactive isotopes, but only 
potassium, and the uranium and thorium decay series have radioisotopes producing gamma rays of 
sufficient energy and intensity to be measured by gamma ray spectroscopy (IAEA, 2003). The 
radioactive isotope of potassium 40K occurs as a fixed proportion of K in the natural environment 
and these gamma rays can be used to estimate the total amount of K present. Uranium and thorium 
occurs naturally as the radioisotopes 238U, 235U and 232Th. Neither 238U nor 232Th emit gamma rays 
and their concentrations are estimate from their radioactive daughter products and reported as 
equivalent uranium (eU) and equivalent thorium (eTh). 
The mineral composition of the parent material controls the natural radioactivity of soils (Navas et 
al., 2011) and the processes of weathering, sedimentation, leaching and sorption, and the movement 
of groundwater may influence activity levels of natural radionuclides (Dowdall and O’Dea, 2002). 
Soils play a major role in the cycling of radionuclides and their physico-chemical properties 
influence the mobility and bioavailability of these radionuclides in terrestrial ecosystems (Kabata-
Pendias and Pendias, 2001). A fundamental characteristic of the soil, which greatly influences the 
environmental transport of radioactivity, is the distribution by grain size. 
Approximately 95% of the measurable gamma radiation is emitted from the upper 0.5 meters of the 
profile (Gregory and Horwood, 1961) and the value of gamma spectroscopy lies principally in the 
amount of radioisotopes of K, U and Th contained in rocks and soil profiles (Dickson and Scott, 
1997). Signal attenuation of radioactivity increases by approximately 1% for each 1% increase in 
volumetric soil water content (Cook et al., 1996). 
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Geostatistical methods provide us a valuable tool to study spatial structure of the activity of 
radionuclides. They take into account spatial autocorrelation of data to create mathematical models 
of spatial correlation structures commonly expressed by semivariograms. The interpolation 
technique of the variable at unsampled locations, known as kriging, provides the ‘best’, unbiased, 
linear estimate of a regionalized variable in an unsampled location, where ‘best’ is defined in a 
least-square sense (Webster and Oliver, 2007). 
The main objectives of the study were: (a) to explore and map the activity of three naturally 
occurring radionuclides (232Th, 238U, 40K) in an olive orchard, (b) to investigate the relationship 
between some soil properties and the activity of the three radionuclides. 
 
2. Materials and methods 
 
The experimental area (100 m x 100 m) is an olive orchard located in southern Italy (Calabria). 
Ground measurements of gamma rays were carried out using the portable gamma-ray spectrometer 
GRM-260 of the GF Instruments®. Each measurement included the full spectrum of the natural 
gamma-radiation (counts per 4 minutes) and registered in 256 channels, each of which equal to 12 
keV. The counts were then transformed into activity of the corresponding radioactive elements. The 
conventional approach to the acquisition and processing of gamma-ray data is to monitor four broad 
spectral regions of interest (ROI) corresponding to potassium-40 (ROIK), uranium-238 (ROIU), 
thorium-232 (ROITh) and the total count (ROITC). 
The gamma ray measurements were made at 361 points at the nodes of a regular 5 x 5 m grid. 
Volumetric soil water measurements were made at the same locations with 45-cm long rods of a 
two-probe Trase System TDR (time domain reflectometry) (Topp and Davis, 1985). 
Soil samples were collected at only 100 points at the nodes of a regular 10 x 10 m grid, then they 
were air-dried, ground, passed through a 2 mm sieve and analysed for particle size fractions by the 
pipette method. 
The gamma ray and soil measurements z(xα) at different locations xα (x is the location coordinates 
vector and α the sampling points) were interpreted as a particular realization of a random variable 
Z(xα) and analysed using the theory of random functions (Chilès and Delfiner, 1999; Webster and 
Oliver, 2007; Wackernagel, 2003, among others). As quantitative measure of spatial correlation of 
the observations z(xα), was used the variogram γ(h) which is a two-point statistics used to quantify 
the variability between two random variables separated by a lag vector h. Multi-Gaussian ordinary 
kriging (Verly, 1983) was used to predict and map the gamma rays and soil particle size fractions 
values at unsampled locations. It allows spatial prediction of soil properties regardless of the shape 
of the sample histogram. The multi-Gaussian approach is based on a multiGaussian model and 
requires a prior Gaussian transformation of the initial attribute { }2RZ ∈xx   ),(  into a Gaussian-

shaped variable { }2RY ∈xx   ),(  with zero mean and unit variance. Such a procedure is known as 
Gaussian anamorphosis (Wackernagel, 2003). 

 
3. Results and conclusions 
 
In opposition to what was expected (Bihari and Dezső, 2008, among many others), no significant 
correlation was found between soil particle size and gamma ray measurements. 
Experimental variograms (Fig. 1) were computed along four directions of azimuth (0, 45, 90, and 
135 in degrees clockwise from N-S axis) for gamma-ray data, particle size fractions and soil water 
content. Then, a variogram model was fitted to the experimental values of semivariance. Figure 1 
shows the variograms only for the spectral regions of interest (ROI) corresponding to potassium-40 
(ROIK) and the total count (ROITC), the soil water content and the soil silt content. 
 



 
 
Figure 1: Variograms for the spectral regions of interest (ROI) corresponding to potassium-40 
(ROIK) and the total count (ROITC), the soil water content and the soil silt content. The experimental 
values are the filled points and the solid lines are of the model of variograms. The dashed lines are 
the experimental variances. 

 

For 40K (ROIK) a nested variogram model was used including three basic structures (Fig. 1): (1) a 
nugget effect of 0.6529; (2) a spherical model (Webster and Oliver, 2007) with a range of 26 m and 
a sill of 0.0624; (3) a spherical model with a range of 100 m and a sill of 0.3846. The nugget effect 
is a discontinuity at the origin of the variogram and relates to measurement errors and to spatial 
sources of variations at distances smaller than shortest sampling interval (Journel and Huijbregts, 
1978). The variogram model for the total count (ROITC) included three basic structures (Fig. 1): (1) 
a nugget effect of 0.5387, (2) a spherical model with a range of 18 m and a sill of 0.1363; (3) a 
spherical model with a range of 100 m and a sill of 0.5516.. The variogram model for the soil silt 
content included two basic structures (Fig. 1): a nugget effect of 0.1964 and a spherical model with 
a range of 83 m and a sill of 0.9252. The nested variogram model used for the soil water content 
included three basic structures (Fig. 1): (1) a nugget effect of 0.2619; (2) an exponential model with 
a practical range of 21 m and a sill of 0.5440; (3) a spherical model with a range of 100 m and a sill 
of 0.2226. The goodness of fitting was verified by cross validation and the results were quite 
satisfactory because the statistics used, i.e. mean of the estimation error and variance of the 
standardised error, were quite close to 0 and 1, respectively. 

Finally, using the multi-Gaussian kriging, the spectral regions of interest (ROI) corresponding to 
potassium-40 (ROIK) and the total count (ROITC), the soil water content and the soil silt content, 
were interpolated and mapped (Fig. 2). 



 
 
Figure 2: Maps obtained using multi-Gaussian kriging for the spectral regions of interest (ROI) 
corresponding to the total count (ROITC) and for the soil water content. 

Contrarily to what was expected, there was no clear relation between ROITC and soil water content 
(Fig. 2). Taylor et al. (2002) reported that the attenuation of gamma-rays through the soil varied 
with bulk density and water content and the signal attenuation increased by approximately 1% for 
each 1% increase in volumetric water content (Cook et al., 1996). Probably, the lack of relation was 
due to the rather homogeneous soil water content (mean content = 35%, standard deviation of 
4.7%). A new soil survey with low soil water content will confirm the relation between the activity 
of radioisotopes and water content. 
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Abstract: The purpose of this paper was to identify the phenols in surface water of 

three rivers in Tianjin and assess the ecological risk. Using  technology of retention time 

lock (RTL) and deconvolution reporting software (DRS), a contaminants list including 

all the phenols which were identified in the samples was obtained and all identified 

phenols were quantified. The concentration levels of total phenols in three rivers 

accorded with the patterns that Dagu river>Beitang river>Yongdingxinhe river, and 

June samples>October samples. Risk quotients (RQ) were used to assess the 

environmental risk of identified phenols. As a result, 5, 6 and 2 phenols were 

determined as potential ecological risk stressors in surface water of Beitang river, Dagu 

river and Yongdingxinhe river, respectively. 

 

Keywords: phenols, ecological risk, screening level, DRS 

 

1. Introduction 
 

Phenols exist widely in environment. They can pose many adverse effects to aquatic 

organisms because of their toxicity, persistence and bioaccumulative potential. In the past 

decades, many papers have been devoted to the occurrences of phenols in natural waters 

(House et al. 1997; Staples et al. 2000; Belfroid et al. 2002). However, little 

information is available for their concentration levels in Chinese rivers. Therefore, it is 

necessary to screen broad-spectrum phenols in the environment and assess their full-

scale ecological risk in order to improve risk control. 

Tianjin is the third largest industrial center in China. With intense industrial and 

commercial activities in the coastal area, rivers in the Tianjin are severely polluted with 

high loads of persistent organic pollutants and these bring risks to the water 

environment. Dagu river, Beitang river and Yongdingxinhe river are three main sewage-

received rivers. Industrial, agricultural and domestic wastewaters from Tianjin area are 

directly or indirectly discharged into the three rivers (Song et al. 2006). It is important 

and urgent, therefore, to evaluate the occurrence and ecological risk of phenols in the 

three rivers.  
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The objectives of this study are to: 1) determine the concentration levels of phenols 

in surface water of three rivers, consequently, the ecological risks of the idenfied 

phenols were characterized; 2) select the potential ecological risk stressors as priorities 

for further ecological risk assessment based on the risk quotients. 

 

2. Materials and Methods 

 
2.1.Chemicals and materials 

All the phenolic standards were purchased from Sigma-Aldrich (USA) and the 

detailed information of phenolic standards were listed in the Table 1.  
Compound Abbr. Compound Abbr. Compound Abbr. 

2,4-dinitrophenol 2,4-DNP 4-Nitrophenol 4-NP Dichlorophene  

Phenol - 2,3,5-Trichlorophenol 2,3,5-TCP Hexanoestrol  

2-cresol - 2,4,5-Trichlorophenol 2,4,5-TCP Bithionol  

3-cresol - 2,3,6-Trichlorophenol 2,3,6-TCP Hexachlorophene  

4-cresol - 4-Chlororesorcinol - Pyrocatechol - 

2-chlororphenol 2-CP 4-chloro-2-nitrophenol 4-C-2-NP 2-naphthol - 

2,4- Xylenol - 2-Chlorohydroquinone - 2-Biphenylol - 

4-chlorophenol 4-CP 3,4,5-Trichlorophenol 3,4,5-TCP Resorcinol - 

4-Chloro-3-methylphenol 4-C-3-MP 2-Chloro-4-nitrophenol 2-C-4-NP 2-Nitrophenol 2-NP 

2,5-Dichlorophenol 2,5-DCP 2,3,5,6-Tetrachlorophenol 2,3,5,6-TeCP Hydroquinone - 

2,6-dichlorophenol 2,6-DCP 2,3,4,6-Tetrachlorophenol 2,3,4,6-TeCP 2,6-Xylenol - 

2,3,6-Trimethylphenol 2,3,6-TMP 2,3,4,5-Tetrachlorophenol 2,3,4,5-TeCP 2-Isopropylphenol - 

2,4-dichlorophenol 2,4-DCP 2,4-dichloro-3-ethyl-6-nitrophenol - 2-sec-Butylphenol - 

2,6-Diisopropylphenol - Pentachlorophenol PCP 4,4'-Biphenyldiol - 

p-chloro-m-xylenol PCMX Ortho-benzyl-para-chlorophenol - Biphenol A BPA 

3,5,6-trichloro-2-pyridinol - 2-chloro-4-phenylphenol - 6-chlorothymol - 

2,4,6-Trichlorophenol 2,4,6-TCP Tetrachlorohydroquinone -   

--Abbr.: Abbreviation; “-”：no abbreviation available  

Table 1: The detailed information of 50 phenols 

 

2.2 Sampling and preparation 

39 and 31 surface water samples (2 L) were collected in Tianjin, China with aid of 

a global positioning system (GPS; Fig. 1) in June and October, 2007, respectively. b1-

b7 were sampled in Beitang river, d1-d19 were sampled in Dagu river and y1-y15 were 

sampled in Yongdingxinhe river. The method for sample conservation and preparation 

and analytical procedures could see in literatures published before(Zhong et al. 2010; 

Zhong et al. 2011).  

 
Fig 1:  Sampling sites 

2.3 Approach for screening level ecological risk assessment 
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The quotient method was used to characterize risk. Risk quotient (RQ) was defined 

as the ratio of predict environmental concentration (PEC) and predict no effect 

concentration (PNEC). Chemicals of potential concerns (COPCs) with RQ exceeding 

1.0 were selected as potential stressors. 

Using spectral deconvolution technology, a contaminants list including all the 

phenols which were identified in the samples was obtained. All phenols identified in 

samples were quantified and their concentration levels were used as PEC.  

Chronic Value (Chv) were collected from PBT Profiler (USEPA 2010). As the 

recommendation of OECD, ten was taken as the assessment factor (AF). So tenth of 

Chvs were used as  PNEC (USEPA 1985; OECD 1995).  

 

3. Results 
 

3.1 Identification and quantification of phenols in surface water of three rivers 

The qualitative and quantitative results are listed in Table 2. The concentration 

levels of total phenols in three rivers accorded with the patterns that Dagu river> Beitang 

river> Yongdingxinhe river, and June samples> October samples. 

chemicals 
Beitang river 

 
Dagu river 

 
Yongdingxin river 

 PNEC 
June October 

 
June October 

 
June October 

 
Phenol nd-10.3 nd -10.9 

 
nd -520 nd -15.1 

 
nd -0.1 nd -1.05 

 
19 

2- cresol nd-52.6 nd -15.6 
 

nd -45.3 nd -3.09 
 

nd -1.35 nd -0.2 
 

12 

3- cresol nd-18.7 nd -16.4 
 

nd -386 nd -1.06 
 

nd -0.51 nd -0.11 
 

12 

2,4-xylenol nd-32.8 nd -20.5 
 

nd -90.6 nd -0.33 
 

nd -6.61 nd -3.74 
 

7.8 

4-CP nd-0.44 nd -1.63 
 

 nd -0.11 
  

nd -0.05 
 

13 

2-CP 
       

nd -0.07 
 

13 

2,5-DCP nd-2.43 nd -4.63 
 

nd -1.23 
  

nd -0.29 
  

8.5 

2,6-DCP 
   

nd -0.16 
     

8.5 

2,4,6-TCP 
    

nd -0.16 
 

nd -0.32 nd -0.99 
 

5.3 

4-NP nd-1.77 
   

nd -1.75 
 

nd -0.18 
  

18 

2,3,6-TMP nd-1.92 nd -1.35 
       

5 

PCMX nd-3.7 nd -1.36 
 

nd -157 
     

5.2 

2-naphthol 0.34-16.4 
   

nd -167 
 

nd -4.58 nd -0.15 
 

8.5 

Resorcinol 
 

nd -0.35 
 

nd -0.69 
  

nd -0.17 
  

36 

Pyrocatechol 
   

nd -0.04 
     

36 

2-Biphenylol nd-0.51 nd -0.25 
 

nd 0.95 nd -0.09 
    

5.4 

2-sec-Butylphenol nd-11.1 nd -6.59 
  

nd -1.98 
  

nd -0.04 
 

4 

2,4-dichloro-3-

ethyl-6-

nitrophenol 

nd-0.99 
        

2.8 

--nd: not detected;  

Table 2: The results of identifying and quantifying phenols in three rivers and PNEC (μg/L) 

 

3.2 Ecological risk assessment 

Chv were collected from PBT Profiler (USEPA 2010) (last accessed February, 

2010) and tenth of Chvs were used as PNEC (Table 2).  

Using quotient method, phenols whose RQ exceed 1.0 were picked out.  These 

phenols were considered as  potential stressors to aquatic environment of three rivers. 

Furthermore, the risk levels of each potential stressors were sorted by RQs. Five kinds 

of phenols were selected as priority phenols in Beitang river, and the order of risk level 

was 2-cresol>2-sec-butylphenol>2,4-xylenol>2-naphthol>3-cresol. Six kinds of phenols 

were selected as priority phenols in Dagu river, and the order of risk level was 3-
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cresol>PCMX>phenol>2-naphthol>2,4-xylenol>2-cresol. For Yongdingxinhe river, all 

RQs were less than 1.0. Although only COPCs with RQ exceeding 1.0 present a clear 

risk potential, any COPCs with the quotient greater than 0.3 are subjected to more 

rigorous risk assessment (WERF 1996), because chemical interactions and cumulative 

toxicity must also be considered. So 2-naphthol and 2,4-xylenol with RQ > 0.3 were 

selected as priority phenols for Yongdingxinhe river. 
 

4. Concluding remarks 
 

DRS was used to identify broad-spectrum phenols in three rivers of Tianjin, China. 

The result indicated that phenols exist widely in three rivers. Using quotient method to 

assess ecological risk of identified phenols, 5, 6 and 2 phenols were determined as 

potential ecological risk stressors in surface water of Beitang river, Dagu river and 

Yongdingxinhe river, respectively. 
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Abstract: This article is concerned with a dynamic factor model for spatio-
temporal environmental variables. The model is proposed in a state-space formula-
tion which, through the Kalman recursions, allows a unified approach to prediction
and estimation. Full probabilistic inference for the model parameters is facilitated
by adapting standard Markov chain Monte Carlo (MCMC) algorithms for dynamic
linear models to our model formulation.

Keywords: Dynamic factor models, Spatio-temporal models

1 Introduction

In recent years, spatio-temporal models have received widespread popularity and
have been largely developed through applications in environmental sciences. In
fact, the European Environmental Agency and the US Environmental Protection
Agency have both devoted significant efforts to developing air quality models for
the assessment of air pollution issues and evaluation of feasible solutions. We note
nevertheless that there is no single approach which can be considered uniformly as
being the most appropriate for a specific problem.
In this paper, we propose a latent regression model which is useful for spatial and
temporal predictions of pollutants of interest. The model is developed in a state-
space representation which represents a powerful way to provide full probabilistic
inference for the model parameters, interpolation and forecast of the variable of in-
terest. To account for spatial interpolation, the spatial dependence is incorporated
in the measurement matrix and we describe its construction by discussing a stochas-
tic specification. The possibility of specifying two measurement equations leads to a
significant advantage in terms of spatial interpolation and this makes an important
difference with respect to other spatio-temporal models proposed in literature. A
further important property of the proposed model is that it leads to capture the
temporal variation of the multivariate space-time fields.
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2 The General Model

Consider the multivariate spatio-temporal processes X(s, t) = [X1(s, t), . . . , Xnx(s, t)]
′

and Y(s, t) = [Y1(s, t), . . . , Yny(s, t)]
′, where s ∈ S, with S a some spatial domain

and t ∈ {1, 2, . . .} a discrete index of times. For geostatistical data, S is a given
subset of <d and s is assumed to vary continuously throughout S . For lattice data,
S is assumed to be a given finite or countable collection of points. Lattices may be
either regular, as on a grid, or irregular, such as zip codes, census divisions.
It is explicitly assumed that X is a predictor of Y. Hence, Y denotes the specific
multivariate process of interest to be predicted in time and/or space. Here, the
relationship between the multivariate processes is modelled through the structural
spatial dynamic factor (SSDF) model.
Let us define the multivariate spatial processes as Y(t) = [Y(s1, t)

′, . . . ,Y(sN , t)′]′, a
ñy×1 vector (ñy = nyN) at N locations for ny variables, and X(t) = [X(s1, t)

′, . . . ,X(sN , t)′]′,
a ñx × 1 vector (ñx = nxN) at N locations for nx variables.
The measurement equations of the SSDF model are

X(t) = mx(t) + Hxf(t) + ux(t) (1)

Y(t) = my(t) + Hyg(t) + uy(t) (2)

where my(t) and mx(t) are ñy × 1 and ñx × 1 mean components modelling the
smooth large-scale temporal variability, Hy (ñy×m) and Hx (ñx×l) are measurement
matrices giving information on the spatial structure of the random fields, and ux(t) ∼
N(0,Σux) and uy(t) ∼ N(0,Σuy). Throughout the paper it is assumed that m ¿ ñy

and l ¿ ñx.
The temporal dynamic of the processes is modelled through the following state
equations:

g(t) =

p∑
i=1

Big(t− i) +

q∑
j=1

Cjf(t− j) + ξ(t) (3)

f(t) =
s∑

k=1

Rkf(t− k) + η(t) (4)

where Ci (m × m), Dj (m × l), and Rk (l × l) are coefficient matrices modelling
the temporal evolution of the latent vectors g(t) = [g1(t), . . . , gm(t)]′ and f(t) =
[f1(t), . . . , fl(t)]

′, respectively. Finally, ξ(t) and η(t) are independent Gaussian error
terms for which we assume, ξ(t) ∼ N(0,Σξ) and η(t) ∼ N(0,Ση).
SSDF analysis may be used to identify possible clusters of locations whose temporal
behaviour is primarily described by a potentially small set of common dynamic
latent factors.
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3 The Structural Spatial Dynamic Factor Model

It is customary for dynamic factor models to refer to the unobserved (state) processes
as the common factors and to refer to the coefficients that link the factors with the
observed series as the factor loadings. Because of their spatial nature, the factor
loadings are equivalently defined as spatial patterns (Lopes et al., 2008; Ippoliti
et al, 2010). The latent factors, f(t) and g(t), are able to capture the temporal
variation of the multivariate space-time fields, and the spatial dependence can be
modeled by the columns of the matrices Hy and Hx through multivariate Gaussian
Random Field for geostatistical data, or through multivariate Markov random field
(MRF) for lattice data.

4 The State Space Formulation

Given the SSDF model the temporal dynamic is modelled through state equations
(3) and (4). The specification of equation (4) is necessary to predict in time the latent
process f(t) and thus to obtain k−step ahead forecasts of g(t) through equation (3).
The joint generation process of g(t) and f(t) is a VAR(p) process of the type

d(t) = Φ1d(t− 1) + . . . + Φpd(t− p) + ε(t) (5)

where

d(t) =

[
g(t)
f(t)

]
, Φi =

[
Ci Di

0 Ri

]
, ε(t) =

[
ξ(t)
η(t)

]
and p ≥ max(s, q).

The presence of the measurement and the state variables naturally leads to the
state-space representation of the SSDF model.

5 Nonstationary case

In the case in which the two spatio-temporal processes X(s; t) and Y (s; t) are not
stationary in time, we assume that factors are generated by cointegrated vector au-
toregressive processes. In this case the factors are represented by the error correction
specification of the vector autoregressive process of equation (5):

∆d(t) = Ãd(t− 1) +

p−1∑
i=1

Φ̃i∆d(t− i) + ε(t) (6)

where Ã = −I +
∑p

i=1 Φi, Φ̃i = −∑p
j=i+1 Φl, and ∆ is the difference operator (i.e.

∆d(t) = d(t)− d(t− 1)).
Let Φ(z) denote the characteristic polynomial associated with the process (6). We
assume that latent exogenous variables are cointegrated with cointegrating rank rf
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(Cho, 2010) and also rank(Ã) = r, r = m + l− c > rf with m + l > c and c are the
unit roots of Det(Φ(z)).
Because of the exogeneity of X, the matrices Ã and Φ̃i are upper block triangular

matrices: Ã =

[
Ã1 Ã12

0 Ã2

]
and Φ̃i =

[
Φ̃1i Φ̃12i

0 Φ̃2i

]
.

Then, equation (6) can be rewritten in the following two equations:

∆g(t) = AB′d(t− 1) + A2fB
′
f f(t− 1) +

p−1∑
i=1

Ki∆d(t− i) + ξ(t) (7)

∆f(t) = AfB
′
f f(t− 1) +

p−1∑
i=1

Φ̃2i∆f(t− j) + η(t) (8)

where A is m × rd, B is (m + l) × rd, Af and Bf are l × rf , A2f is m × rf ,
Ki = [Φ̃1i Φ̃12i] and rd ≤ m + l.

6 Inference

Full probabilistic inference for the model parameters is carried out by elicitating
the independent prior distributions. Posterior inference for the proposed class of
spatial dynamic factor models is facilitated by MCMC algorithms. The common
factors are jointly sampled by means of the well known forward filtering backward
sampling (FFBS) algorithm (Carter and Kohn 1994) which exploits the state space
representation of the general model. All other full conditional distributions are
”standard” multivariate normal distributions or gamma distributions. An exception
is for the spatial parameters and the covariance matrices which are sampled using
a Metropolis-Hastings step.
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Abstract: The aim of this work is to analyse the behaviour of forest fires in
Portugal using statistical techniques applied to spatial point processes. We present
a short overview on the most commonly used summary statistics for spatial point
processes under homogeneity and inhomogeneity assumptions. The data set consist
of records of 6295 forest fires larger than 100 hectares, observed in Portugal during
the years 1975 through 2005.
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1 Introduction

Forest fires are a major environmental problem in Portugal. In the past few years
thousands of hectares of forest have been destroyed. The aim of this work is to
analyse the behaviour of forest fires in Portugal using statistical techniques applied
to spatial point processes. With this analysis we intend to investigate whether the
forest fires occur randomly, in clusters or in some regular pattern and we examine
if the marked spatial point pattern depends on forest fires size.

This analyse is conducted in the context of a preliminary analysis of forest fires
in Portugal, which is part of the general objective of modelling the location and the
forest fires sizes by an adequate marked spatio-temporal point processes.

2 Materials and Methods

The point pattern under investigation consists of satellite imagery records of 6295
forest fires larger than 100 hectares, observed in Portugal during the years 1975
through 2005, acquired annually after the end of the summer fire season.

A conventional starting point for the analysis of a spatial point process is to
investigate the hypothesis of complete spatial randomness (CSR). A process is CSR
when we have a homogeneous Poisson point process, i.e. the intensity is constant,

1The research was supported by FCT/OE projects and SFRH/PROTEC/67394/2010 PhD
grant.
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and the events are independents of each other and have the same propensity to be
found at any locations. If the CSR hypothesis is rejected, then must be a tendency
towards clustering (events occur in closely spaced groups) or regularity (events more
spaced than under CSR).

A popular tool to describe departures from CSR is the Ripley’s K-function,
K (r) = λ−1E [number of events within distance r of an arbitrary event], where λ
is the intensity of the point process (the number of events per unit area). Under
CSR, the Ripley’s K-function is simply K (r) = πr2. Comparing the shape of
ours Ripley’s K-function relative to the shape of the Ripley’s K-function in the
case of CSR provides valuable information on the point process distribution. A
Ripley’s K-function that deviates from CSR can indicate that events interact or
have some effect on each other, but it can also indicate that exists a trend in the
pattern (the intensity of the process must not be constant across the region). By
using an inhomogeneous K-function to analyse the data, is removed the assumption
of an underlying homogeneous point process. The inhomogeneous K-function has
the same interpretation as the homogeneous Ripley’s K-function, except that the
intensity of events is no longer constant but depends on the locations of the events.

In general, is common to use the L-function, which is defined as L (r) =
√
K (r)/π.

Under CSR, L (r) = r. So we can use the line through the origin as a reference and it
is simple to detect clustering or regularity by graphing L (r)−r against the distance
r (as in Figure 2).

The fires are characterized not only by their position but also by its size (area
burned), which can be interpreted as a mark. So in addition to detection of clustering
among points, the relationship between marks and between points and marks are
investigated with mark correlation function defined by Stoyan (Illian et al (2008))
and E and V functions defined by Schlather et al (2004). The aim of the mark
correlation function is to find out whether the marks are correlated and the aim of
the E and V functions is to find out whether marks and locations are correlated
(whether marks depend on local point density). If this last hypothesis is not rejected
then the process is simplified greatly because the point pattern and the marks could
be investigated separately.

We used the statistical software R and functions in the spatial point processes
library spatstat to compute the various results.

3 Results

We start the analysis of the forest fires in a purely spatial context, so we drawn a
map of the locations of the forest fires and the corresponding map of the intensity
for the whole period, 1975 to 2005. Figure 1 shows that larger forest fires occur in
the centre and south of Portugal but the majority of the fires are in the north of
Portugal. Almost in whole country the fires are less than 0.05 fires per km2, but in
the north the highest values of the intensity are achieved, 0.2 fires per km2.
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Figure 1: Left : Point plot of the locations of the forest fires (the circles are propor-
tional to the area burned); Right : Kernel estimation of the intensity function

We compute the homogeneous and inhomogeneous L-function for all the period,
1975 to 2005. As we can see in Figure 2, there is a clear departure from CSR
towards clustering. But the homogeneous L-function is overestimating the amount
of clustering present in the point pattern. When we compute the inhomogeneous L-
function−r the distance between the estimated L-function−r and the upper envelope
reduces a lot. However, the inhomogeneous L-function shows evidence of clustering
with a radius approximately of 50 km.

Figure 2: Left : Homogeneous L-function−r; Right : Inhomogeneous L-function−r.
(In all graphics pointwise envelope under CSR and r in meters)

The mark correlation function for the area burned of the forest fires is shown
in Figure 3. The shape of the empirical mark correlation function reveals that the
marks do not appear to be correlated. The E and V functions indicate that the

3



model does not appear to belong to the random field model, i.e., does not appear
to be independent of the unmarked point process.

Figure 3: Left : Mark correlation function; Centre: E function; Right : V function.
(In all graphics pointwise envelope under CSR and r in meters)

4 Concluding remarks

From the modelling point of view, the information about the behaviour of homo-
geneous and inhomogeneous L-function is important because it suggests that trend
should be included in a model for forest fires and show that forest fires events occur
in clusters, indicating spatial dependence or interaction.

The marks, area burned, do not appear to be correlated. The hypothesis of the
marks to be a random field independent of the unmarked point process appears to
be rejected. The point pattern and the marks should not be investigated separately.
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Giovani Loiola da Silva
Dep. Mathematics - IST, Technical University of Lisbon and CEAUL, Portugal

Abstract: In the last decade, forest fires have become one of the worst natural
disasters in Portugal, causing great forest devastation, leading to both economic
and environmental losses and putting at risk populations and the livelihoods of the
forest itself. In this paper we present Bayesian hierarchical models to analyze spatio-
temporal fire data on the proportion of burned area in Portugal, by municipalities
and over three decades. Mixture of distributions was employed to model jointly the
proportion of area burned and the excess of no burned area for early years. For get-
ting estimates of the model parameters, we used Monte Carlo Markov chain methods.

Keywords: Forest fires, spatio-temporal data, Bayesian hierarchical models.

1 Introduction

According to the National Forestry Authority (Direcção Geral dos Recursos Flo-
restais), Portugal has the largest number of fires among five Mediterranean coun-
tries (Portugal, Spain, France, Italy and Greece), being important to look for spatio-
temporal patterns of fires e.g. modeling the proportion of burned area. As the pro-
portion of burned area (Y) is a continuous variable and restricted to the interval (0,
1), we can model it by assuming naturally a beta distribution (Ferrari and Cribari-
Neto, 2004) or Gaussian distribution and a Skew-Normal (Azzalini and Dalla Valle,
1996) distributions after a logit transformation, i.e. log(Y/(1−Y )). In addition,
we can use Bayesian hierarchical models to take into account spatially correlated
random effects (Silva et al., 2008) and excess zeros in the proportion of burnt area
by municipalities and years (Amaral-Turkman et al., 2010). Our aim is to present
a spatio-temporal analysis of forest fires in mainland Portugal, by 278 municipali-
ties between 1980 and 2006, from a Bayesian point-of-view and using Monte Carlo
Markov chain (MCMC) methods to obtain estimates of the parameters of interest.

1This work is partially supported by FCT.
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2 Materials and Methods

Let Yit the proportion of burned area in municipality i and year t, i = 1, . . . , n,
t = 1, . . . , T . Assume Yit or log(Yit/(1−Yit)) has a probability distribution with
mean µit and variance σ2. Silva et al. (2008) suggest that µit can be expressed by
µit = α + S0(t) + Si(t) + φi, where S0(t) can represent a nonlinear temporal effect,
Si(t) is the temporal effect by region i and φi a random effect of the spatial variation
associated with region i. If φi = bi + hi, component hi represents the unstructured
spatial random effect with Gaussian priori distribution (hi ∼ N(0, σ2

h≡ 1
τh

), and bi
the spatially correlated random effect with priori distribution, p(bi|τb = 1

σ2
b
), chosen

in terms of a conditional autoregressive model (CAR) (Besag et al., 1981), i.e.,
bi | b−i, σ

2
b ∼ N(b̄i, σ

2
b/mi), where b̄i is the mean of the random effects related to

the “neighbors” of the region i, mi the number of adjacent regions to region i and
σ2
b the variance component.

Upon the occurrence of zeros, the distribution of the proportion of area burned
(Yit is considered a mixture of distributions with probability function f(yit), denoting
f1(yit) = f(yit|yit 6= 0), i= 1, . . . , n, t= 1, . . . , T . Define Vit as a Bernoulli random
variable such that, Vit = 0, with probability pit0 , and 1, with probability pit1 ≡ 1−pit0 ,
where pit0 represents the probability of non-burned area in the region i in the year
t. Vit indicates the existence of the burnt area in the region i in the year t. Thus,
f(yit) = f1(yit)

Vit (1− pit0)Vit p
1−Vit
it0

. The probability of no burned area in the region
i at time t is modeled as, log(

pit0
1−pit0

) = β0 + β1t + ψi, where ψi is a CAR model.

We use assigned highly dispersed but proper priors. In fact, one typically assumes
independent normal prior for the regression coefficients. For the variance component
hyperparameters, one usually assigns an inverse gamma prior, e.g., σ2 ∼ IG(r1, s1),
σ2
b ∼ (r2, s2), σ

2
h ∼ IG(r3, s3) and σ2

ψ ∼ IG(r4, s4) with kernel density given for

x−(r+1)exp(−s/x), x > 0. Consequently, we can construct the related joint posteriori
distribution and use MCMC methods because the corresponding marginal posteriors
are not easy to get explicitly. Notice that these methods are implemented e.g. in
WinBUGS (Spiegelhalter et al., 2007).

3 Results and Concluding remarks

Based on the models in Section 2, we analyze the proportion Yit of burnt area due to
forest fires in 278 municipalities (mainland Portugal) and over 27 years (1980-2006).
Data were collected by Portuguese National Forestry Authority. Three scenarios
were considered for the data modeling:

A) Gaussian probability model: logit(Y ) ∼ N(µ, σ2);

B) Skew-normal model: logit(Y ) ∼ SN(µ, σ2, λ), where λ is a shape parameter;

C) Beta model: Y ∼ Beta(a, b), with E[Y ]=µ, V ar(Y )= µ(1−µ)
γ+1

and γ = a+b.
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By using MCMC methods via WinBUGS, we used 15,000 iterations for all fitted
models, taking every 10th iteration of the simulated sequence, after 5000 iterations
of burn-in. In Table 1, one can be observed some fitted models and, based on the
Deviance Information Criterion (DIC ), the selected model is model M4. Note that
S0(t) = ηt, in model M4, represents a second order random walk. For selected model

Model pD DIC (×106)
M1(A) µit = β0+β1 t+φi t+bi+hi 521 150.150

logit(pit) = δ0+δ1 t+ai
M2(B) µit = β0+βi t+φi t+bi+hi 509 150.150

logit(pit) = δ0 + δ1 t+ ai
M3(C) logit(µit) = β0+β1 t+φi t+bi+hi 581 149.996

logit(pit) = δ0+δ1 t+ai
M4(C) logit(µit) = β0+ηt+bi 411 149.995

logit(pit) = δ0+δ1 t+ai

Table 1: Model selection based on DIC

(M4), the posteriori mean, standard deviation (s.d.) and 95% higgest posterior
density (HPD) credible Intervals (CI) of some parameters of interest are in Table
2. Based on model M4, the spatio-temporal risks of burned area, defined here by
exp(ηt+bi) for municipality i, were used to produce maps in 1985, 1994 and 2001
(Figure 1), as well as maps for spatial risks exp(bi) and exp(ai) (Figure 2).

parameter mean s.d. 95% CI
δ1 -0.169 0.007 (-0.183, -0.156)
γ 24.82 0.449 (24.02, 25.69)
σ2
b 0.334 0.051 (0.237, 0.437)
σ2
η 3.357 0.508 (2.424, 4.379)
σ2
a 0.194 0.060 (0.098, 0.313)

pit0 0.143 0.003 (0.137, 0.150)

Table 2: Estimates of the model parameters (M4)

The spatio-temporal analysis of the burned area proportion in 278 municipalities
of mainland Portugal between 1980 and 2006 reveals an increasing trend in the pro-
portion of burned area, whereas the number of municipalities without burned area
trend to decrease. The space-time models studied here have smoothed estimates used
in the production of maps that are useful in the interpretation of spatio-temporal
data. This analysis of the Portuguese forest fires may isolate trends in small areas
of administrative knowledge for promoting an appropriate policy interventions to
reduce that national catastrophe.
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Figure 1: Spatio-temporal risks in 1985 (left), 1994 (middle) and 2001 (right)

Figure 2: Spatial risk maps - exp(bi) (left) and exp(ai) (right)
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Besag, J., York, J.C., Mollié, A. (1991). Bayesian image restoration, with two
applications in spatial statistics (with discussion). Annals of the Institute of
Statistical Mathematics 43, 159.

Ferrari, S.L.P., Cribari-Neto, F.(2004). Beta regression for modeling rates and
proportions. Journal of Applied Statistics 31, 799–815.

Silva, G.L., Dean, C.B, Niyonsenga, T. and Vanasse, A. (2008). Hierarchical
Bayesian spatiotemporal analysis of revascularization odds using smoothing
splines. Statistics in Medicine 27, 2381-2401.

Spiegelhalter, D., Thomas, A., Best, N.G., Lunn, D. (2007). Bayesian inference
using Gibbs sampling for Windows (WinBUGS), Version 1.4.3. Cambridge:
MRC Biostatistics Unit (http:\\www.mrc-bsu.cam.ac.uk\bugs\).

4



 

Thursday, September 1, 2011 - Morning - Faculty of Law, University of Foggia 
08:15-09:30 Registration (Aula Magna) 

09:30-10:00 Welcome and introductory remarks (Aula Magna) 

10:00-10:30 Coffee break (Sala Consiglio) 

10:30-11:30 Plenary session  
P1 - Aula Magna - Sampling and Accurate Predictions for Environmental Management 
Chair A. Pollice, University of Bari 
- Variograms to Guide Spatial Sampling for Kriging, M.A. Oliver, R. Kerry  
- Generalised Kriging with Environmental Applications, L. Ippoliti  

11:30-12:30 Specialized sessions  
S1 - Room #2 
Air Quality - Chair L. Malherbe, INERIS  
- Application of a modeling system aimed at studying the impact on air quality of a waste 

storage fire, Giua R., Morabito A., Tanzarella A. 
- Estimation of the areas of air quality limit value exceedances on national and local scales. A 

geostatistical approach, Malherbe L., Beauchamp M., Létinois L., Ung A., de Fouquet C. 
- Modeling pollutant threshold exceedance probabilities in the presence of exogenous variables, 

Ignaccolo R., Sylvan D., Cameletti M. 
- Using the SPDE approach for air quality mapping in Piemonte region, Cameletti M., Lindgren 

F., Simpson D., Rue H. 
S2 - Room #4 
Animal and Plant Ecology - Chair P. Monestiez, INRA  
- A generalization of the Incidence Function Model for metapopulations with fluctuating behaviour: an 

application to Lymantria dispar (L.) in Sardinia, Bodini A., Gilioli G., Cocco A., Lentini A., Luciano P. 
- Geostatistical modelling of regional bird species richness: exploring environmental proxies for 

conservation purpose, Bacaro G., Chiarucci A., Santi E., Rocchini D., Pezzo F., Puglisi L.  
- Spatial Bayesian Modelling of Presence-only Data, Divino F., Golini N., Jona Lasinio G., Penttinen A. 
- The deep-water rose shrimp in the Ionian Sea: a spatio-temporal analysis of zero-inflated 

abundance data, D’Onghia G., Maiorano P., Carlucci R., Tursi A, Pollice A., Ribecco N., 
Calculli C., Arcuti S. 

S3 - Room #5 
Methods and Environmental Modeling - Chair C. Miller, University of Glasgow  
- Applying a new procedure for fitting a multivariate space-time linear coregionalization model, 

De Iaco S., Palma M., Posa D. 
- Decision making for root disease control: a problem in reducing the nugget variance, Correll R. 
- EM estimation of the Dynamic Coregionalization Model with varying coefficients, Finazzi F., Fassò A.  
- Likelihood Inference in Multivariate Model-Based Geostatistics, Ferrari C., Minozzo M. 
S4 - Room #6 
Proximal and Remote Sensing in Precision Agriculture - Chair A. Castrignanò, CRA-SCA of Bari  
- A system for on-line measurement of key soil properties, Mouazen A.M., Kuang B., Quraishi M.Z. 
- Multimodal remote sensing for enhancing detection of spatial variability in agricultural fields, 

Alchanatis V., Cohen A., Cohen Y., Levi O., Naor A. 
- Modified Hot-Spot analysis for spatio-temporal data: a case study of the leaf-roll virus 

expansion in vineyards, Cohen Y., Sharon R., Sokolsky T., Zahavi T.  
- The use of the geoadditive model with interaction in a Precision Agriculture context: a comparison 

of different spatial correlation structures, Cafarelli B., Crocetta C., Castrignanò A. 

12:30-14:00 Transfer from Foggia to Baia delle Zagare 



 

 

 

Thursday, September 1, 2011 - Afternoon - Baia delle Zagare 

14:00-16:30 Lunch and accommodation  

16:30-17:30 Specialized sessions 
S5 - Room #1 
Landscape Ecology and Natural Resource Management  
Chair F. Bruno, University of Bologna  
- Comparison of spatial statistics for identifying underlying process in forest ecology, Brown C., 

Illian J., Burslem D., Law R. 
- Connectivity in a real fragmented landscape: distance vs movement model based approaches, 

Mairota P., Leronni V., Cafarelli B., Baveco J.M. 
- Methodological study on pesticides in Alsatian groundwater, Musci F., Giasi C.I., de Fouquet 

C. 
- The GIS approach to detect the influence of the fresh water inflows on the marine-coastal 

waters: the case of the Apulia Region (Italy) through standard monitoring data, Porfido A., 
Barbone E., La Ghezza V., Costantino G., Perrino V., Ungaro N., Blonda M. 

S6 - Sala Conferenze 
Space-Time Surveillance for Public Health  
Chair A. Biggeri, University of Firenze 
- Modeling malaria incidence in Sucre state, Venezuela, using a Bayesian approach, Villalta D., 

Guenni L., Rubio Y. 
- Prediction of cancer mortality risks in spatio-temporal disease mapping, Goicoa T., Ugarte 

M.D., Militino A.F., Etxeberria J. 
- Predictive assessment of a non-linear random effects model for space-time surveillance data, 

Paul M., Held L. 
- Selective Inference in Disease Mapping, Catelan D., Biggeri A. 

17:30-18:30 Plenary session  
P2 - Sala Conferenze 
Ecology and Water Analysis  
Chair G. Jona Lasinio, Sapienza University of Roma 
- Assessing Temporal and Spatial Change in Nutrients for Large Hydrological Areas, C. Miller, A. 

Magdalina, A.W. Bowman, E.M. Scott, D. Lee, R. Willows, C. Burgess, L. Pope, D. Johnson 
- Definition of type-specific reference conditions in Mediterranean lagoons, A. Basset, E. Barbone, I. 

Rosati 

18:30-19:30 Posters and drinks 

20:00 Dinner 



 

Friday, September 2, 2011 - Morning – Baia delle Zagare 
09:00-10:00 Specialized sessions 

S7 - Room #1 
Environmental Data Analysis  
Chair T. Gneiting, University of Heidelberg 
- A software for optimal information based downsizing/upsizing of existing monitoring 

networks, Barca E., Passarella G., Vurro M., Morea A. 
- Comparing SaTScan and Seg-DBSCAN methods in spatial phenomena, Montrone S., 

Perchinunno P., L'Abbate S., Ligorio C. 
- Fire, earthquake, landslide, volcano, flood: first approach to a natural hazard map of Italy, 

Camporese R., Iandelli N. 
- Spatio-Temporal Analysis of Wildfire Patterns in Galicia (NW Spain), Fuentes-Santos I., 

Gonzalez-Manteiga W., Marey-Pérez. M.F. 
S8 - Sala Conferenze 
Sampling Designs for Natural Studies  
Chair D. Cocchi, University of Bologna 
- On the design-based properties of spatial interpolation, Bruno F., Cocchi D., Vagheggini A. 
- Relations between spatial design criteria, Mueller W.G., Waldl H. 
- Simulation-based optimal design for estimating weed density in agricultural fields, Bel L., 

Parent E., Makowski D.  
- The dramatic effect of preferential sampling of spatial data on variance estimates, Clifford D., 

Kuhnert P., Dobbie M., Baldock J., McKenzie N., Harch B., Wheeler I., McBratney A. 

10:00-11:00 Plenary session 
P3 - Sala Conferenze 
Ensemble Forecasts  
Chair L. Bel, AgroParisTech 
- Ensemble forecasting: status and perspectives, F. Nerozzi, T. Diomede, C. Marsigli, A. Montani, T. 

Paccagnella  
- Statistical postprocessing for ensembles of numerical weather prediction models, T. Gneiting 

11:00-11:30 Coffee break 

11:30-12:30 Specialized sessions 
S9  - Sala Conferenze 
Climatology and Meteorology  
J. Mateu, Universitat Jaume I 
- A few links between the notion of Entropy and Extreme Value Theory in the context of 

analyzing climate extremes, Naveau P., Rietsch T., Guillou A., Merleau J. 
- Geoaddittive modeling for extreme rainfall data, Bocci C., Petrucci A., Caporali E. 
- Spatio-temporal rainfall trends in southwest Western Australia, Liang K., Chandler R., Marra G. 
- Stochastic Downscaling of Precipitation with Conditional Mixture Models, Carreau J, Vrac M. 
S10 – Room #1 
Space-Time Surveillance of Natural Assets  
Chair C. Crocetta, University of Foggia 
- Geostatistical modeling of ice content within the "Glacier Bonnard" (Switzerland), Jeannee N., 

Faucheux C., Bardou E., Ornstein P. 
- Is space-time interaction real or apparent in seismic activity?, Rotondi R., Varini E. 
- Spatio-temporal modelling for avalanche risk assessment in the North of Italy, Nicolis O, Assuncao R. 
- A seismic swarm as a dynamic ergodic stochastic process: a case study of the L’Aquila’s 

earthquake in 2009, Coli M. 

12:30-15:00 Lunch 



 

Friday, September 2, 2011 – Afternoon – Baia delle Zagare 

15:00-16:00 Specialized sessions 

S11 - Sala Conferenze  
Disease Mapping and Environmental Exposure - Chair Ignaccolo R., University of Torino 
- A Bayesian Spatio-Temporal framework to improve exposure measurements combining 

observed and numerical model output, Pirani M., Gulliver J., Blangiardo M. 
- A spatio-temporal model for cancer incidence data with zero-inflation, Musio M., Sauleau E.A. 
- Generalized Estimating Equations for Zero-Inflated Spatial Count Data, Monod A. 
- Poisson M-Quantile Geographically Weighted Regression on Disease mapping, Chambers R., 

Dreassi E., Salvati N. 
S12 - Room #1 
GIS and Soil Sciences  - Chair B. Cafarelli, University of Foggia 
- Imputation strategy in spatial data, Martino L., Palmieri A. 
- Multivariate geostatistical model to map soil properties at a region scale from airborne 

hyperspectral imagery and scattered soil field surveys: dealing with large dimensions, 
Monestiez P., Walker E., Gomez C., Lagacherie P. 

- Optimal location and size for a biomass plant: application of a GIS methodology to the 
“Capitanata” district, Monteleone M., Cammerino A.R.B., lo Storto M.C. 

- Population Density in a City, Abbate C., Salvucci G. 

16:00-17:00 Plenary session  
P4 - Sala Conferenze 
Climatology and Meteorology - Chair P. Naveau, LSCE - CNRS 
- Global temperature analysis with non-stationary random field models, F. Lindgren, H. Rue, P. 

Guttorp 
- Methods for climate change detection and attribution, A. Ribes  

17:00-18:00 Spatial Café with poster discussion - Organizer C. Crocetta 

Table #1 - Agriculture, biodiversity, groundwater pollution and hydrogeology - Facilitators:                       
A. Castrignanò and Y. Cohen  

Table #2 - Air quality and disease mapping - Facilitators: P. Dawid and A. Pollice 

Table #3 - Climatology and meteorology and sampling design - Facilitators: W. Mueller and A. Petrucci 
Table #4 - Ecology, conservation and natural resources management - Facilitators: C. de Fouquet and 

G. Jona Lasinio 
Table #5 - Environmental risk assessment - Facilitators: D. Cocchi and L. Guenni 

18:00-19:00 Plenary Session  
P5 - Sala Conferenze - Spatial Functional Data - Chair A. Fassò, University of Bergamo 
- Spatially correlated functional data, J. Mateu  
- Clustering of environmental functional data, A. Pastore, S. Tonellato, R. Pastres 

19:00-19:30 Concluding remarks 

20:00 Social dinner 

Saturday, September 3, 2011 – Morning – Baia delle Zagare 

9:15 Transfer from Baia delle Zagare to Foggia  
9:00-13:00 INLA Tutorial: “Fast Bayesian inference for Geostatistics and other latent Gaussian 
models”, F. Lindgren 
13:30 ONLY FOR THOSE ATTENDING THE INLA TUTORIAL Transfer  from Baia delle Zagare to 
Foggia  



 Spatial Café - Organizer C. Crocetta  

 

 

 

Table #1 - Agriculture, biodiversity, groundwater pollution and hydrogeology - Facilitators: A. Castrignanò and Y. 

Cohen  

 A data driven model for spatio-temporal estimation of shallow water table depth in soils, Ungaro F., Calzolari C. 

 A Methodology for Evaluating the Temporal Stability of Spatial Patterns of Vineyard Variation, Gambella F., Dau R., Paschino F., 

Castrignanò A., De Benedetto D. 

 Assessment and modelling of spatial variability of the soil factors potentially affecting groundwater nitrate contamination in two 

agricultural areas of Molise Region (Southern Italy), Colombo C., Palumbo G., Sollitto D., Castrignanò A. 

 Assessment of Spatial and Temporal Within-Field Soil Variability by Using Geostatistical Techniques, Castrignanò A., Cucci G., 

Diacono M., De Benedetto D., Lacolla G., Troccoli  A. 

 CYCAS-MED project: analysis at regional and local scale of climate change impacts on cereals yield in Morocco, Bodini A., Entrade 

E., Cesaraccio C., Duce P., Zara P., Dubrovsky M. 

 Geostatistical analysis and mapping of hydrocarbon pollutants in soils, de Fouquet Chantal 

 Geostatistical analysis of groundwater nitrates distribution in the Plaine d’Alsace, Spacagna R.L., De Fouquet C., Russo G. 

 Influence of different olive grove management on spider diversity, Loverre P., Addante R, Calculli C. 

 Landcover classification of agricultural sites using multi-temporal COSMO-Skymed data, Satalino G., Balenzano A., Belmonte A., 

Mattia F., Impedovo D. 

 Multidimensional analysis of data from Bari Harbour: a GIS based tool for the characterization and management of bottom 

sediments, Dellino P., Mele D., Mega M., Pagnotta E., De Giosa F., Taccardi G., Ungaro N., Costantino G. 

 Multivariate statistical analyses for the source apportionment of groundwater pollutants in Apulian agricultural sites, Ielpo P., 

Cassano D., Lopez A., Abbruzzese De Napoli P., Pappagallo G, Uricchio V.F. 

 Structural changes in seismic activity before large earthquakes, Gallucci M., Petrucci A. 

 Using environmental metrics to describe the spatial and temporal evolution of landscape structure and soil hydrology and fertility, 

Pascual Aguilar J. A., Sanz Garcia J., de Bustamante Gutierrez I., Kallache M. 
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Table #2 - Air quality and disease mapping - Facilitators: P. Dawid and A. Pollice 

 A comparison between hierarchical spatio-temporal models in presence of spatial homogeneous groups: the case of Ozone in the 

Emilia-Romagna Region, Bruno F., Paci L. 

 A multilevel multimember model for smoothing a disease map of lung cancer rates, Bartolomeo N., Trerotoli P., Serio G. 

 A spatio-temporal model for air quality mapping using uncertain covariates, Cameletti M., Ghigo S., Ignaccolo R. 

 African dust contribution on the PM10 daily exceedances occurred in Apulia region, Angiuli L., Giua R., Loguercio Polosa S., 

Morabito A. 

 Health impact assessment of pollution from incinerator in Modugno (Bari), Galise I, Serinelli M., Bisceglia L., Assennato G. 

 Local scoring rules for spatial processes, Dawid P., Musio M. 

 Measuring Urban Quality of Life Using Multivariate Geostatistical Models, Michelangeli A., Ferrari C., Minozzo M. 

 Multivariate and Spatial Extremes for the Analysis of Air Quality Data, Padoan S., Fassò A. 

 Pulmonary Tuberculosis and HIV/AIDS in Portugal: joint spatio-temporal clustering under an epidemiological perspective, Nunes 

C., Briz T., Gomes D., Filipe P.A. 

 Spatial diffusion and temporal evolution of PCDD/Fs, PCBs and PAHs congener concentrations in the ambient air of Taranto: an 

analysis based on the duality diagram approach, Pollice A., Esposito V. 

 Spatial disaggregation of pollutant concentration data, Horabik J., Nahorski Z. 

 Spatial representativeness of an air quality monitoring station. Application to NO2 in urban area, Beauchamp  M., Malherbe L., 

Létinois L., de Fouquet C. 

 Statistical investigations on PAH concentrations at industrial sampling site, Amodio M., Andriani E., Dambruso P.R., de Gennaro 

G., Demarinis Loiotile A., Di Gilio A., Trizio L., Assennato G., Colucci C., Esposito V., Giua R., Menegotto M, Spartera M. 

 Tapering spatio temporal models, Fassò A., Finazzi F., Bevilacqua M. 
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Table #3 - Climatology and meteorology and sampling design - Facilitators: W. Mueller and A. Petrucci 

 Alternative approaches for probabilistic precipitation forecasting, Bruno F., Cocchi D., Rigazio A. 

 Comparison of Calibration Techniques for  Limited-Area Ensemble Precipitation Forecast Using Reforecasts, Diomede T., Marsigli 

C., Montani A., Paccagnella T. 

 Functional boxplots for summarizing and  detecting changes in environmental data coming from sensors, Romano  E., Balzanella A., 

Rivoli L. 

 Information, advice, friendship, notes and trust network: evidence on learning from classmate, Zavarrone Emma,  Vitali Agnese 

 Optimal spatial design for air quality measurement surveys: what criteria?, Romary T., de Fouquet C., Malherbe L. 

 Point-process statistical analysis for the ECMWF Ensemble Prediction System, Nerozzi F. 
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Table #4 - Ecology, conservation and natural resources management - Facilitators: C. de Fouquet and G. Jona Lasinio 

 Combining geostatistics and process-based water quality model to improve estimation along a stream network. Example on a stretch 
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 Landscape impacts of photovoltaic plants on the ground: a case-study through the application of rendering techniques, Robles N., 

Primerano R., Perrino V., Blonda M. 

 Marine spatial planning in Apulia (Italy): Reconciling seagrass conservation with the multiple use of coastal areas, Fraschetti S., 

Lembo G., Tursi A., D’Ambrosio P., Terlizzi A., De Leo F., Paes S., Guarnieri G., Bevilacqua S., Boero F. 

 Regional estimation method of rivers low flow from river basin characteristics, Rossi G., Caporali E. 
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Gomes D. P. 
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Pacicco C.L. 

 Statistical calibration of the Carlit index in the Pontine Island of Zannone, Jona Lasinio G., Tullio M.A., Abdelahad N., Scepi E., 

Sirago S., Pollice A. 

 Statistical issues in the assessment of urban sprawl indices, Cocchi D., Altieri L., Scott M., Ventrucci M., Pezzi G. 
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Chéret V., Goulard M., Sheeren D. 
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 Electrical Resistivity Measurements for Spatial Soil Moisture Variability Estimation, Calamita G., Luongo R., Perrone A., Lapenna 
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 Geostatistics and GIS: tools for environmental risk assessment, Maggio S., Cappello C., Pellegrino 

 How to estimate anisotropic attenuation exploiting prior isotropic knowledge, Rotondi R., Zonno G. 

 Natural radioactivity distribution and soil properties: a case study in southern Italy, Guagliardi I., Ricca N., Cipriani M.G., Civitelli 

D., Froio R., Gabriele A.L., Buttafuoco G., De Rosa R. 

 Screening level risk assessment for phenols in surface water of three rivers in Tianjin, China, Zhong W., Wang D., Wang Z., Zhu L. 

 Spatial Dynamic Factor Models with environmental applications, Valentini P., Ippoliti L. , Gamerman D. 

 Spatial Point Processes Applied to the Study of Forest Fires in Portugal, Pereira P.S., Turkman K.F. 
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Preface 


This book collects the proceedings of the International Conference “Spatial Data Methods for 


Environmental and Ecological Processes - 2
nd


 Edition”, the 2011 European Regional Conference of 


The International Environmetrics Society, satellite of the 58
th


 World Statistics Congress of the 


International Statistical Institute (ISI).  


The main scope of the conference is exchanging past results and new ideas among researchers with 


different scientific backgrounds, all working on spatial and spatio-temporal environmental 


problems.  


The conference is structured into five plenary sessions, twelve specialized sessions and a poster 


session, as follows: 


Plenary sessions: 


 Climatology and Meteorology 


 Ecology and Water Analysis 


 Ensemble Forecasts 


 Sampling and Accurate Predictions for Environmental Management 


 Spatial Functional Data 


Specialized sessions: 


 Air Quality  


 Animal and Plant Ecology 


 Climatology and Meteorology 


 Disease mapping and Environmental Exposure 


 Environmental Data Analysis 


 GIS and Soil Sciences 


 Landscape Ecology and Natural Resource Management 


 Methods and Environmental Modelling  


 Proximal and Remote Sensing in Precision Agriculture 


 Sampling Designs for Natural Studies 


 Space-time Surveillance for Public Health 


 Space-time Surveillance of Natural Assets 


Main themes of the poster session 


 Agriculture, Biodiversity, Groundwater Pollution and Hydrogeology  


 Air Quality and Disease Mapping  


 Climatology and Meteorology and Sampling design  


 Ecology, Conservation and Natural Resources Management 


 Environmental Risk Assessment  


The poster discussion was held during a “Spatial Café” 


The Spatial Café was organized in five discussion tables. For each table two facilitators were 


chosen to stimulate and organize the posters discussion. 



http://www.environmetrics.org/

http://www.isi2011.ie/content/

http://isi-web.org/





The Conference's Scientific Committee tailored the program to provide fruitful interactions among 


various research fields, under the common heading of “spatial analysis”. This was very clear during 


the course of the conference, as communication among participants both from Italy and abroad, 


from universities and research centers, and most importantly, among statisticians and researchers 


from other subject areas, was facilitated by a charming, very friendly atmosphere.  


This Volume of Proceedings contains 110 short papers and abstracts that were presented during the 


conference and is articulated in three parts, each corresponding to a session held in the conference. 


All published papers were submitted to a refereeing process. The refereeing process has been 


attended by the Scientific and Organizing Committees.  


The Scientific and Organizing Committees are very grateful to the University of Foggia, the 


University of Bari, the Fondazione Cassa di Risparmio di Puglia, The International Environmetrics 


Society, the International Statistical Institute, the Società Italiana di Statistica, the CRA-CSA of 


Bari, the Agenzia Regionale per la Prevenzione e la Protezione dell’Ambiente - Puglia - and the 


GRASPA research group for supporting  the organization of the conference and allowing us to 


publish this volume. 


In quality of Scientific Committee and Organizing Committee Presidents, we would like to thank 


the members of the Scientific  Committee (Liliane Bel, Annamaria Castrignanò, Corrado Crocetta, 


Alessandro Fassò, Giovanna Jona Lasinio, Alessio Pollice and Marian Scott) and of the Organizing 


Committee (Barbara Angelillis, Francesca Bruno, Rosalba Ignaccolo, Giovanna Jona Lasinio, 


Alessio Pollice and Alessia Spada) for their outstanding work and all the participants to the 


conference for their contributions.  


 


Daniela Cocchi, President of the Scientific Committee 


Barbara Cafarelli, President of the Organizing Committee 
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