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The dynamic coregionalization model with
application to air quality remote sensing

Alessandro Fassò1, Francesco Finazzi1

1 Dept. of IT and Mathematical Methods, University of Bergamo, Via Marconi
5, 24044 Dalmine BG, Italy. alessandro.fasso@unibg.it

Abstract: In this paper, we discuss the dynamic coregionalization model and its
capability for model selection inference and interpretation in relation to spatio-
temporal dynamic calibration and mapping of daily concentration of airborne
particulate matter. To do this, we consider the problem of joint modelling ground
level concentration data and satellite measurements of aerosol optical thickness
(AOT), which are rarely available. The maximum likelihood estimation for the
large data set related to the ”padano-veneto” region, North Italy, with missing
data is covered by the stable EM algorithm and implemented on a small size
computer cluster.

Keywords: EM algorithm; maximum likelihood estimation; multivariate spatio-
temporal missing data; particulate matters; aerosol optical thickness.

1 Introduction

The increasing availability of large datasets on multivariate spatio-temporal
data parallels the need for statistical models which are flexible enough for
covering the underlying complexity and can be estimated by means of well
founded inferential techniques. The dynamic coregionalization model, re-
cently proposed by Fassò et al. (2009), has these advantages as it allows
modelling of complex multivariate spatio-temporal dynamics and perform-
ing maximum likelihood parameter estimation by means of the EM algo-
rithm. Moreover, it naturally covers large amounts of ”structural” missing
data. This is particularly important for remote sensing applications where,
under cloud conditions, the satellite data are missing.

2 Dynamic coregionalization model

We consider multivariate data which are cross-correlated at each point in
geographical space, say D, and discrete time t = 1, 2, ..., T . Each variable
is allowed to have a different spatial correlation and/or serial correlation
over time. This is different to standard application of the coregionalization
model to spatio-temporal data where it is commonly considered continuous
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time, see e.g. De Iaco et al. (2005). In other words, we suppose that at time
t, the observed data follow the equation

Yt = Xtβ + KZt + W̄t + εt (1)

Ignoring for a while missing data, the observed Yt is a N−dimensional
vector containing the maps related to the q observed variables. Namely
Yt = (Y1 (S1, t) , ..., Yq (Sq, t)) = (Yi(si,j , t)))

�

j=1,...,ni,i=1,...,q so that each
variable Yi is observed at sites Si = {si,1, ..., si,ni

} and N = n1 + ... + nq.
The first term of the RHS of equation (1), X, is given by a set of known
covariates. The second term, Z, covers for the time dynamics being a stable
multivariate Markov process in the form Zt = GZt−1 + ηt, ηt ∼ N(0,Ση).
The Gaussian error ε is a white noise process with diagonal variance-
covariance matrix Γ0 whose elements are σ2

ε,i, i = 1, ..., q.
Finally, the third term of RHS of equation (1) is a zero mean q−dimensional
Gaussian process W̄ (s, t) =

�
W̄1, ..., W̄q

�
defined by the so called linear

coregionalization model with c components, namely W̄ (s, t) =
�c

p=1 Wp(s, t)
where Wp(s, t) = (Wp,1, ...,Wp,q) is white noise in time but correlated
over space with a q × q covariance and cross-covariance matrix function
given by Γp(h, θp) = (cov(Wp,i(s), Wp,j(s�)))i,j=1,...,q = Vpρp(h, θp) where
h = �s− s�� is the Euclidean distance. For each p = 1, ..., c, Vp is a positive
semi-definite q×q matrix and ρp(h, θp) is a valid correlation function, char-
acterized by the parameter vector θp. In the sequel, the exponential corre-
lation function is considered, namely ρp(h, θp) = exp(−h/θp). In addition,
the processes Wp and Wp� are uncorrelated so that the multivariate q × q
covariance matrix for W is given by ΓW̄ (h, θ1, ..., θc) =

�c
p=1 Γp(h, θp) =�c

p=1 Vpρp(h, θp).
The model parameters are collected in the vector Ψ, which ignores dupli-
cations, namely Ψ = vec∗(β,Γ0;G,Ση, ;V1, θ1, ..., Vc, θc) = (ΨY ,ΨZ ,ΨW ).

3 Estimation and inference

Due to the Markovian assumption and to the space-time separability pro-
perty of the model, the complete-data log-likelihood function takes the nice
additive form

l(Ψ;Y,Z, W ) = l(ΨY ;Y | Z, W ) + l(ΨZ ;Z) + l(ΨW ;W ) (2)

However, (2) is not easily handled since Z is latent and Y is partially
missing. The problem is overcome by considering the EM algorithm, al-
ready used by Fassò and Cameletti (2010) for univariate spatio-temporal
environmental data and extended by Fassò et al. (2009) for the dynamic
coregionalization model with missing data.
At the E-step of the algorithm, denoting by Y (1) the subset of actual obser-
vations, the expectation of the complete data log-likelihood under the pa-
rameter Ψ(k), conditionally to the observed data Y (1), is computed thanks
to the iterated expectation theorem, that is
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FIGURE 1. AOT standardized data (July 14th 2006) and ground level PM10

monitoring network sites (white circles).

Q
�
Ψ,Ψ(k)

�
= EΨ(k)

�
EΨ(k) [l(Ψ;Y,Z, W ) | Y, Z, W ] | Y (1)

�

At the M-step, Q
�
Ψ,Ψ(k)

�
is maximized with respect to Ψ and Ψ(k+1) is

chosen so that Ψ(k+1) = arg max Q
�
Ψ,Ψ(k)

�
. The solution of the maxi-

mization problem gives rise to quasi closed-form formulas for the update
of Ψ, reported in detail in Fassò et al. (2009).
Since the EM algorithm is only guaranteed to converge to local maxima of
the likelihood function, the whole estimation procedure is based on a set
of EM estimation runs, each one characterized by different initial values
for the parameter vector. Initial values are first evaluated through an esti-
mation procedure based on the method of moments, detailed in Fassò and
Finazzi (2010), and then locally perturbed by means of a random noise.
As the solution of the estimation procedure, the parameter vector Ψ̂ is con-
sidered that gives rise to the maximum marginal log-likelihood lY (1)(Ψ̂).
The role of the marginal log-likelihood, evaluated through the Kalman
filter approach reported in Fassò et al. (2009), is important for comput-
ing likelihood-ratio tests and comparing nested models. Similarly, the esti-
mated parameter vector Ψ̂ is completed with standard deviations obtained
by explicit recursive formulas for the Hessian matrix of the same marginal
likelihood.

4 The case study

We consider ground-level data on concentration of airborne particulate
matters PM10, coming from n2 = 107 monitoring stations. Although each
station provides direct and reliable measures of the PM10 concentration,
they have irregular spatial patterns. For this reason, a second variable is
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model M0 M1 M2 M3

lY (1)(Ψ̂) 11271 21682 22543 22830
Bias −0.0136 −0.0026 −0.0026 −0.0026
MSE 0.5004 0.2218 0.2214 0.2213

TABLE 1. Marginal log-likelihood and cross-validation results for models with
c = 0, ..., 3 coregionalization components.

considered, namely the Aerosol Optical Thickness (AOT), which is known
to be related with the particulate matters concentration and is useful to
improve mapping capability of the PM10 concentration over the area of
interest, see e.g. Koelemeijer et al. (2006).
AOT data are collected by the Terra and Aqua NASA satellites by means of
the MODIS instrument (Moderate Resolution Imaging Spectroradiometer)
and are provided with a spatial resolution of 10×10 km at nadir. The data
set considered here covers the Italian region known as the padano-veneto
area, bounded by a box of coordinates 44◦N-6◦E, 47◦N-14◦E, giving a daily
data vector of 1134=54x21 elements, and the time period between March
2006 and September 2006 (see Figure 1). The daily average missing data
rate for the AOT variable is 73% while it is 3% for the PM10.
In order to improve calibration capability, several covariates are considered,
including mixing height, accumulation of rain precipitation, land elevation,
longitude of the site and percentage of urban area. PM10 concentrations
and AOT measures are first log-transformed and then standardized, giving
all variables with unit variance. Standardization is also applied to each
covariate separately.

4.1 Model estimation and selection

In order to evaluate the role of the latent spatial variable W , models M0,
M1, M2 and M3 are considered, with c = 0, ..., 3 coregionalization compo-
nents respectively. It is worthwhile to note that, without coregionalization
components, the spatial correlation function between sites is not directly
modelled, though lato sensu a quota of the spatial correlation is covered
by the covariates.
Models are estimated by means off the estimation procedure described in
the previous section and compared by implementing likelihood-ratio tests
between nested models. In order to evaluate the spatial prediction capabi-
lity of each model, the leave-one-out crossvalidation method is applied over
the PM10 sites S2. Prediction bias and MSE are evaluated at each site
s2,j ∈ S2. To do this, we estimate the model considering all data except
the PM10 concentrations collected at s2,j . The estimated model is then
used to predict the PM10 concentration at s2,j for each day. Map average
bias and map average MSE are reported in Table 1.
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β̂AOT
const β̂AOT

MH β̂AOT
Ele β̂AOT

Urb β̂AOT
Rain β̂AOT

Long

value −0.360 −0.143 −0.292 0.020 0.115 −0.005
std 0.140 0.009 0.006 0.002 0.010 0.001

β̂PM
const β̂PM

MH β̂PM
Ele β̂PM

Urb β̂PM
Rain β̂PM

Long

value −0.097 −0.065 −0.133 0.106 −0.030 −0.133
std 0.136 0.010 0.006 0.004 0.011 0.005

σ̂2
ε,AOT σ̂2

ε,PM ĝ σ̂2
η

value 0.041 0.192 0.880 0.084
std 0.001 0.002 0.029 0.012

v̂AOT
1 v̂PM

1 v̂AOT,PM
1 θ̂1

value 0.923 0.367 0.177 162.194
std 0.003 0.015 0.015 6.521

TABLE 2. Estimated parameters and standard deviations for model M1

4.2 Model interpretation

The map average MSEs of Table 1 suggest an improvement of the model
predictive performance when the coregionalization variable W̄ is consid-
ered. Indeed, the percentage of explained variance increases from 50 to
78 moving from M0 to M1. On the other hand, the performance is not
significantly different when the number of coregionalization components is
increased from one to either two or three.
If map prediction of the PM10 concentration is of concern, the more par-
simonious M1 model should be preferred, despite the likelihood-ratio test
favouring, in this case, the unrestricted models with a near zero p-value.
Table 2 reports the estimated parameters along with their standard de-
viations. The β̂ coefficients are directly comparable with each other since
each covariate is standardized with respect to each variable. Note the op-
posite signs of β̂Rain, which is negative for PM, as precipitation usually
reduces ground level concentrations, but is positive for AOT, due to the
optical effect of those rare rainy days with non missing AOT data. Note
also the difference in β̂Urb, which is related to the lower spatial resolution
of AOT, so that single AOT pixels can include both urban and rural areas.
Finally, the positive values of β̂ suggest an east-west trend on the average
PM10 concentration. In fact, the eastern side of the region considered is
less urbanized and it is open to the winds from the Adriatic sea, while the
western side is closed in by the Alps and is characterized by deficient air
circulation. This aspect is confirmed by the positive sign of ĝ, related to
the temporal dynamics. Net of the effect of covariates and time dynamics,
the estimated cross-correlation between AOT and PM10, based on matrix
V̂1, is 0.30, which is consistent with marginal correlation of PM and AOT.
The latent variable is also characterized by a persistent spatial correlation,
described by the exponential correlation function with parameter θ̂1

∼= 162



200 Dynamic coregionalization model

km.

5 Conclusions

We discussed the use of the dynamic coregionalization model in the frame-
work of large dataset linear modelling for multivariate air quality data.
Despite the large size of the data, the complex structure of the model and
high rate of missing data, it is seen that this approach can be implemented
with relatively standard computing facilities. Moreover, it covers in a nat-
ural way all inferential tools, including maximum likelihood estimation,
classical likelihood inference, such as likelihood ratio tests, confidence in-
tervals and crossvalidation. Of course, due to the large number of degrees
of freedom, p-values have to be interpreted cum grano salis. Extensions to
spatial nonstationarity and/or nonseparability can be naturally based on
this model using the loess semiparametric approach of Bodnar and Schmid
(2009) or the transformation based approach of Bruno et al. (2008).
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