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Geostatistical modelling of spatial potentials

Francesco Finazzi�

Abstract

Discrete systems often manifest themselves as spatially continuous phe-

nomena over a region of space. A system is studied by measuring the corre-

sponding spatial phenomenon at some locations over space and by drawing

conclusion from the estimated spatial surface. In many cases, the discrete

nature of the system has to be taken into account as well as the interaction

between the system and the measuring instruments used to collect the data.

As a consequence, neither the classic geostatistical models nor the classic

methods provided by the point process statistics are suitable for estimating

the phenomenon spatial surface. In this paper, the general problem is stud-

ied by introducing a novel paradigm which justi�es the de�nition of a new

class of geostatistical models able to address both the discreteness of the

system and its interaction with the measuring instruments. The proposed

class of models �nd application in many scienti�c �elds including both the

natural and the social sciences. The model estimation problem is solved in

detail and a case study related to a geomarketing application is addressed.

Keywords: spatial statistics, spatial interaction, potential estimation, discrete

systems, geomarketing, missing data.
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1 Introduction

Depending on the data generation mechanism, spatial point data can be analyzed

with the tools provided by geostatistics or point process statistics. Geostatistics

assumes an underline spatially continuous process which is observed at the spatial

locations de�ned by the points. Usually, the aim is to recover the process in terms

of its realization at some locations of interest. On the other hand, point process

statistics focuses on the point locations and it mostly tries to explain their spatial

pattern.

Within the point process approach, the marked point processes (MPPs) are

considered when points are related to scalar or vector values, the marks, that

describe some features of the spatial locations at the points. Although, in principle,

the marks could be modeled by means of spatially continuous processes, the idea is

that the marks are not de�ned "outside" the sampling locations. As a consequence,

it is conceptually wrong to estimate the mark value at some new location. For

this reason, the geostatistical and the point process statistical approaches remain

di¤erent in their purposes. Indeed, the misuse of one approach or the other may

lead to inconsistent results. Nevertheless, in some cases, it is not immediately clear

which approach is best for the available data and an appropriate statistical model

is chosen only after careful analysis.

1.1 Point process models and biological competition

Suppose, for example, that y(si) represents the annual number of items of a given

product sold by a store at the spatial location si 2 D � R2. In the notation of

the MPPs, y(si) � f[si; y(si)]g, where si is the location of the point and y(si) is

the mark value. The spatial support of the variable "sold items" is clearly not

continuous since it is de�ned only at the spatial locations S = fs1; :::; sNg of all
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the stores in D. Moreover, it may be assumed that y(si) = f (si;S�i), namely

the number of items sold at the spatial location si is a function of both si and the

positions S�i of all the other stores. In other words, it is assumed that a "biological

competition" is in force and that the number of items sold at si depends on the

presence of other stores nearby si:

In the �rst instance, the point process statistics provides useful models for

the analysis of the sales data. For example, the geostatistical marking provides

allows to model spatially correlated marks by considering a stationary random

�eld z(s) and by assuming the relationship y(si) = z (si) between the mark values

and the random �eld. As pointed out in [1], however, the geostatistical marking

fails to model point interaction at short distances, which is a key aspect in many

applications.

An alternative approach is represented by the so called statistical mark con-

struction model. Constructed marks are marks deterministically evaluated from

the realization of the point process. For example, y(si) = d (si), with d (si) the dis-

tance between si and its nearest neighbor in S�i. Staying with d (si), the statistical

mark construction model assumes

y(si) = f (d (si)) + " (si) (1)

where f : R+ �! R is a generic function and " (si) is the error term. Although

(1) is able to handle point interaction, it is not enough �exible for modelling the

complexity of real application data since y(si) is described only in terms of the

point pattern.

A more �exible solution is represented by the intensity-weighted log-Gaussian

Cox (ILGC) model which assumes the following local density of the point process

� (s) = exp (w (s)) (2)
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where w (s) is a Gaussian random �eld. The mark model is

y(si) = a+ b� (si) + " (si) (3)

with a; b constants and " (si) a random error. Positive values of b correspond to

higher mark values in high density areas while negative values correspond to lower

mark values in high density areas.

1.2 Towards a new class of geostatistical models

Going back to the sales data example, even the ILGC model appears too rigid.

This is due to the fact that a and b are constant over space, which may not be

realistic. Nevertheless, force a relationship between the marks and a latent random

�eld seems the natural way to proceed.

In the sales data example, though it might be interesting to explain the rela-

tionship between the spatial density of the stores and the sales data, a problem

worth to be solved is how to relate the sales data to a spatially continuous latent

random �eld w (s) representing the spatial market potential, which may be de�ned

as the number of items that could be sold if a store is placed at the spatial location

s. Indeed, in this as in other applications, there might be no simple relationship

between the mark values and the spatial density of the sampling locations S. Thus,

on the contrary of what happens when the ILGC is considered, we do not want

to impose one. Note that, though the actual stores are located at S, the spatial

marked potential (market potential henceforth) is de�ned for each s 2 D.

Now, if q(s) � w (s) is the market potential, we are interested in estimating

q(s) at each point of D. For instance, we may want to locate the maxima of q(s)

to be sure that we have a store near that location. If we want to open a new store,

on the other hand, we may want to evaluate the market potential conditioned on

the presence of the actual stores. Moreover, we may want to do all this even if we
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know a store is located at s but we don�t know y(s) (for instance because the store

is our competitor). With this in mind, it can be noted that, though the observed

data may be considered as the realization of a MPP, the above problems are better

solved by following a geostatistical approach. In particular, a hierarchical spatial

models (see [2]) seems to be appropriate for handling a latent random �eld and

missing data, where the missing data problem should not be confused with the

edge e¤ect problem (see [3]) typical of the point process data. In fact, what might

be missing is a subset of the mark values related to the points rather than the

points themselves.

Although the geostatistical approach seems to be appealing, it is immediately

clear that a classic geostatistical approach cannot be adopted for the sales data as

they are. Due to the interaction between the stores, a small value of y(si) does not

necessarily mean a low market potential at the spatial location si. Thus, it would

make no sense to consider the sales data (the number of items sold at S) and

to evaluate a kriging surface over D. Such a surface, besides being conceptually

wrong, would not represent by no means the spatial market potential. To be more

general, any relationship between the spatial locations S and the mark values, such

as the one induced by a biological competition, will be modeled as an interaction

between the generic "system" which is observed and the measuring instruments.

In particular, the random �eld q (s) will be directly related to the state of the

system one is interested in.

Ultimately, the data we are to consider are so characterized:

� they are a realization of a MPP;

� the marks re�ect both the underlying random �eld q (s) and the interaction

between the observed system and the measuring instruments;

� the spatial pattern of the MPP is independent from q (s);
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� some mark values might be missing;

and we want to make inference on q (s).

2 Interaction modelling

The e¤ects of the interaction between a system to be measured and a measuring

instrument are often neglected since characterized by a low order of magnitude if

compared to that of the variability of what is measured. The role of this section

is to shed some light on the nature of the above mentioned interaction and to lay

the foundations for the analysis of spatial data arising from the interaction. By

the end of the section the reader should be convinced that, for many practical

applications, the interaction cannot be ignored and that the results obtained by

the spatial analysis of such data make sense only if the interaction is properly

modeled.

2.1 Introduction

Let O be a generic system which can be either a physical system or an abstract

system. The system is characterized by an internal state � which is not directly

measurable. The state � is supposed to be the equilibrium state of O at a given

time t and the equilibrium is supposed to be stable, that is, the state � will not

change unless external forces intervene.

Although � is not observable, O manifests itself over the region of space D �

Rd, d � 1 as a spatially continuous variable q(s) : s 2 D. The variable q(s) can be

seen as a model for the equilibrium state � and I call q(s) a potential, though the

term does not refer to any particular property of the variable.

The set M (S)= fm (s1) ; :::;m (sN)g is a �nite collection of N measuring in-

struments located at S and it is called here the measuring system. For simplicity,
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I assume that the measuring instruments are all of the same type, namely they

share the same properties.

If the system O is to be measured, O andM must interact in some way. The

interaction is made possible by what I call mediators. In particular, a mediator

is an entity (for the moment abstract) that can move freely in D, that is, it can

reach any point of D with non-zero probability. The mediators are supposed to

permeate D though their spatial density may di¤er across space. A mediator

has no preference to interact with a particular measuring instrument but it tends

to interact with the nearest ones. This possibly implies the existence of some

kind of attraction betweenM and the mediators. The establishment of such an

attraction, however, is not supposed, in itself, to alter the state � of O. The set

of all mediators is denoted by P and it is assumed to be a �nite set.

To be more formal, the following de�nition are introduced.

De�nition 1 the potential q(s) is the expected observed value when the system O

is measured at the spatial location s 2 D.

De�nition 2 the conditional potential q(s jS) is the expected observed value when

the system O is measured at the spatial location s 2 D given that it is concurrently

measured at the set of locations S = fs1; :::; sNg, si 2 D, N � 1.

In the above de�nitions, nothing is said about the relationship between the

potential q(s) and the conditional potential q(s jS) so that, in general, they may

di¤er. Moreover, the locations S are not constrained to be di¤erent, neither be-

tween each other nor from s.

From a probabilistic point of view, the potential q(s) is modelled by a real-

valued spatial random �eld fq(s)g indexed by s 2 D. Given an equilibrium state �

and a realization q0� of the potential, the aim is to recover q
0
� in terms of its spatial

surface over D. Following the geostatistical approach, the potential is measured
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at S and the measurements y (S) = (y (s1) ; :::; y (sN)) are analyzed in order to

obtain an estimate q̂ of q0�. As stated in the De�nition 2, the N measurements are

supposed to be concurrent and instantaneous. If not, additional considerations are

to be made.

2.2 Opaqueness and transparency

Given a system O and a measuring systemM, I say that O is opaque with respect

to M if, for each S � D, there exists a region D0 � D such that q(s) 6= q(s jS)

for each s 2 D0, that is, the action of measuring O at S alters the measure of

q in a region D0 of non-zero measure. On the other hand, if q(s) = q(s jS) for

each s 2 D and each S � D, then O is said to be transparent with respect toM.

Given a particular choice of D and S, the opaqueness of O with respect toM is

measured by the following quantityZ
D
(q(s)� q(s jS))2 ds

which is equal to zero when O is transparent with respect toM. It is important

to note that a generic O can be transparent with respect toM but opaque with

respect to a di¤erent measuring systemM0. Since the potential q represents what

can be observed about O, then q inherits the property of O so that q can be either

opaque or transparent with respect toM.

Opaque potentials are in contrast with most applications where spatial ran-

dom �elds are considered. As an example, consider the measurement of the air

temperature in a region D through a thermometer m (s) located at s. When the

air temperature is measured at s, it is supposed that the action of measuring the

air temperature does not modify the air temperature at and nearby s. Actually,

if the initial temperature of the measuring instrument is di¤erent from the air

temperature at s, then the instrument alters the air temperature (�rst locally and
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then globally). In fact, what is read by the instrument (after some time) is a sort

of mass-weighted average temperature between the air and the instrument tem-

perature. If a second thermometer m (s0) is placed at s0, then it can be said that

what is read by m (s0) is in�uenced by the presence of m (s). In the same manner,

m (s0) "feels" the presence of m (s). When compared to the air mass, however,

the mass of the measuring instruments is so small that the alteration of the air

temperature is negligible, that is, much smaller than the instrument error. Thus,

for all practical purposes, the random �eld q representing the temperature �eld is

transparent with respect toM.

Depending on the particular case, the interaction between O andM can a¤ect

or not the equilibrium state � of O. In the air temperature example, for instance,

the system reaches a di¤erent equilibrium state �0 after the system is measured.

Since the transformation is irreversible, the realization of q0� related with � is lost

and a new realization q0�0 comes in. Even in the case q
0
� can be recovered from the

measurements y (S), q0� no longer represents the current state of the system. In

general, this kind of interactions are not desired. If measuring O alters its state

in a signi�cant way, either we are dealing with some kind of quantum system or

we are considering an unsuitable measuring system. Instead, in this work, I am

to consider interactions that do not a¤ect the equilibrium state � and hence the

realization q0�.

2.3 The discrete nature of systems

Ultimately, the opaqueness of a potential q is related to the discrete nature of the

system O, which is in contrast with the continuous model represented by q. In the

air temperature example, q is just a model of � in the sense that q does not exist

physically. In fact, the air temperature is related to the kinetic energy of the air

molecules. When the thermometers come into play, the air molecules interact with
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the molecules of the thermometers, bringing O to the new state �0. Indeed, we

can say that the molecules are the mediators of the interaction between O andM.

Again, the number of molecules of O is much higher than the number of molecules

ofM and the interaction is negligible.

In the sales data example of the previous section, on the other hand, the

interaction is more relevant. The market potential q is, by de�nition, continuous

in space but, in a way, it is measured through the people that reach the stores, with

the stores representing the measuring systemM and the people the mediators. In

contrast to the air temperature example, the mediators that interact with M

represent a relevant part of the set P of all the mediators. Indeed, in practice,

the number NP of elements of P may be small. The opaqueness of a system O

is directly related to NP and the smaller the number of mediators the higher the

degree of opaqueness of O with respect toM.

When an interaction between O andM is needed to measure O, depending on

the relationship between NP and N , three important cases can be distinguished:

� NP � N : the interaction between O andM can be neglected.

� NP 
 N : the interaction between O andM has to be taken into account.

� NP < N : the system O cannot be appropriately measured. The measures

collected by M do not re�ect the potential q and hence the state � of the

system O.

The sales data example helps explain in which sense the attraction between the

measuring instruments (the stores) and the mediators (the people) does not change

the state � of the system O (the market potential) and why the condition NP 
 N

should be satis�ed. Clearly, people are attracted by the stores and people move to

them. As a consequence, the market potential seems to arise where the stores are
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and not where the market potential really is (for instance where the people live).

If the same stores are moved at some new locations in space, a di¤erent market

potential is measured so that it may seem that the market potential depends on

M. Actually, the market potential exists beside M and the state � is altered

neither by the presence of M nor by the movement of the mediators. In fact,

the market potential measured at s is also a measure of the willingness of the

mediators to reach the location s, which is inherent in �. Indeed, M can only

a¤ect the estimation of the market potential in the sense that, as in every other

geostatistical application, the way the market potential is appropriately estimated

over D depends on N and the spatial pattern of the measuring instruments. In a

classic geostatistical application, the higher the N the better q is estimated. Since

NP is �nite, however, q is not necessarily better estimated by increasing N , in

particular if the conditionNP < N is reached (more stores than people). Note that,

even ifNP is very small, the market potential is still well de�ned for each s 2 D and

it is still well described by a spatially continuous (maybe discrete value) random

�eld. If the number of measuring instruments increases toward in�nity, however,

the probability that a given measuring instrument m does not interact with any

mediator increases as well. As a consequence, the observed market potential will

be di¤erent from zero only over a �nite set of points of D. This cannot happen, for

example, in the measure of the air temperature where the number of thermometers

can be increased as desired, though, at some point, the measured temperature

will be the temperature of the joint system air-thermometers rather than the air

temperature.

2.4 Interaction types

Although many kind of interaction could be conceived and studied, the following

types of interactions are de�ned:
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� absorption interaction: the potential q (s) is absorbed by the measuring sys-

temM if

8S � D, 9D0 : q (s jS) < q (s) , 8s 2 D0

that is, the measurable potential at the location s is lower if the potential is

already measured at S.

The sales data example falls in this category though many others can be con-

sidered. A common problem in assessing the impact of an airborne pollutant

on the population health is to �nd a relationship between the spatial distrib-

ution of the pollutant concentration and the spatial occurrence of respiratory

diseases (see [4] and [5]). While it is relatively simple to estimate the spatial

distribution of the pollutant concentration ([6]), the same cannot be said

about estimating the spatial incidence of the respiratory diseases. This is

especially true when, for privacy reasons, the available data are aggregated;

for instance, only the monthly/yearly number of patients with respiratory

disease for each family doctor could be available. Note that, in this case,

there is no correlation between the distribution of the pollutant concentra-

tion and the spatial locations where the doctors practice and the use of the

ILGC model de�ned in (2-3) would be inappropriate. Although with some

exceptions, it is common that people have their own family doctor near the

place where they live or work, that is, near the location where they have

been possibly exposed to the pollutant. Of course, the interaction between

the family doctors and their patients is of the absorption type since a pa-

tient has no more than one family doctor. Given the number of patients

with respiratory disease for each doctor, it might be useful to estimate q (s)

in order to compare, one-to-one, the spatial distribution of the pollutant

concentration with the potential q (s), intended as the expected number of

people with a respiratory disease that would be visited by a doctor if the
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doctor was located at s.

� alteration interaction: the potential q (s) is altered by the measuring system

M if

8S � D, 9D0 : q (s jS) 6= q (s) , 8s 2 D0

This is the case of the air temperature example where the temperature al-

teration due to the presence of the thermometers depends on the initial

temperature of the thermometers.

� re�ection interaction: the potential q (s) is re�ected by the measuring system

M if

8S � D, 9D0 : q (s jS) > q (s) , 8s 2 D0

As an example, consider the yearly average income of the pubs of a large city,

Dublin for instance. Fleet street is a famous street of Dublin, the popularity

of which is mainly due to the high number of pubs and restaurants that

are destination for many Dubliners and tourists. The pubs do not act like

absorbers in the sense that the typical tourist visits more than one pub during

the same night. As a consequence, the income of a pub in �eet street is higher

than the income the same pub would experience if it was the only pub in the

street. On the contrary, a pub far from �eet street and far from other pubs

might not experience a high income even if located in a highly populated

area. Indeed, due to the customer behavior, it might be worthwhile to open

a new pub a few meters away from an existing pub rather than far from it.

2.5 Point aggregated data

To all intents, the data of the previous examples can be considered a special type of

aggregate data. When describing the role of the spatial statistics in epidemiological
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studies, [7] identi�es two main types of data: point data representing the exact

locations where people with a particular disease live and aggregated data describing

the number of ill people within each sub-region of a studied area. In the latter

case, the data are related with the sub-regions as a whole rather than to points in

space and any inferential problem should be solved with the statistical methods

for areal data (see [8]).

The epidemiological data considered in the example of the previous paragraph

(number of patients with respiratory diseases for each family doctor), on the other

hand, can be associated with a third type of data that I here call point aggregated

data. Indeed, the locations where the doctors practice correspond to precise points

in space and this information should be retained when the data are analyzed.

Although point aggregated data can be seen as the realization of a MPP, they

are conceptually di¤erent from classic MPP data where the mark corresponds to

a feature measured on a single entity (for instance, the diameter of a tree in a

forest).

That said, the general problem addressed in this paper might be restated as

the spatial modelling of point aggregated data, without invoking the interaction

between the observed system and the measuring system. To pose the problem in

terms of interaction, however, allows to explain the data generation mechanism of

the point aggregated data and it will be useful in de�ning the functional and para-

metric form of the new class of geostatistical models. Without loss of generality,

in order to keep the notation simple, the case d = 2 will be considered.

3 The geostatistical potential model

In this section, the geostatistical potential model (GPM) is introduced as the main

statistical tool for the analysis of spatial data with the characteristic reported in
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the list of paragraph 1.2. In its general form, the GPM is described by the following

equations

y(sjS) = h� (u (s) ;M (S))

u (s) = q(s) + "(s)

q(s) = �+ x(s)� + 
w(s)

(4)

At the �rst stage of (4), h� : R �! R is the interaction function which is para-

metrized by the parameter vector �. The interaction function de�nes how the

measuring systemM (S) interacts with the potential and, depending on its ana-

lytical form, the interaction can be classi�ed as absorption, alteration or re�ection.

At the second stage, "(s) represents an error component which is assumed to be

i:i:d: N(0; �2") and is supposed to capture both the measuring error and the model

error. Finally, at the third stage, the potential q(s) is modelled by three terms,

where � is the mean, x(s) is a vector of covariates, � is the vector of coe¢ cient,

w(s) is a zero-mean latent Gaussian process and 
 is a scale parameter. The

covariance function of w(s) is cov (w(s); w(s0)) = �� (s; s
0), with �� (s; s

0) a valid

correlation function parametrized by the vector �. Note that the potential is al-

lowed to be negative though it can be easily constrained to be positive if necessary.

The model parameter vector is 	 = (�;�0; �2"; 
;�
0; �0).

In order to have a better insight into the role of the interaction function h�,

the following family of interaction functions is adopted

h� (u (s) ;S) = u (s) �
 
1 +

X
s02S

f# (s; s
0)

!�
= u (s) � g�(s j S) (5)

where f# (s; s0) : Rd � Rd �! R+ is a generic non-negative binary function and

� =(#; �)0. The parameter � 2 f�1; 0; 1g de�nes the interaction type and in

particular � = �1 corresponds to an absorption interaction, � = 0 corresponds

to no interaction (the system O is transparent with respect to M) while � = 1

corresponds to a re�ection interaction. In this work, the value of � is not estimated
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since the interaction type is supposed to be known from the particular case the

GPM is applied to.

The function f# (s; s0) can be any continuous function but, for practical appli-

cations, it should be monotonic and such that

lim
ks�s0k!0

f# (s; s
0) = 1

lim
ks�s0k!1

f# (s; s
0) = 0

For instance,

f# (s; s
0) = f# (ks� s0k) = exp

�
�ks� s

0k
�

��
(6)

where k�k is the Euclidean distance, �; � > 0 are the function parameters and # =

(�; �)0 is the parameter vector. In (6), � de�ne the strength of the interaction

while � is a shape parameter.

Note that
y(sjS) = u (s) � g�(s j S)

= [q(s) + "(s)] � g�(s j S)

= q(s jS) + "(s j S)
namely the observed potential is equal to the conditional potential q(s jS) plus a

transformation of the error "(s).

The term g�(s jS) � g�(s) is the key aspect of the interaction function and de-

serves more explanation. If, as an example, the function (6) is considered within

the absorption interaction case (� = �1) and S � ;, namely if there are no mea-

suring instrument, then g�(s) = 1 since the summand in (5) cannot be evaluated

and it is equal to zero by de�nition. When a measuring instrument is added,

S = fs1g, the measured potential at s is a function of the distance between s and

s1. In particular, if s = s1 then g�(s) = 0:5. On the contrary, if ks� s1k = 1

then g�(s) = 1. This re�ects the fact that the action of absorbing the potential at

site s1 in�uences the measure at site s. It is worth noting that s and s1 are ex-

changeable in the sense that absorbing and measuring the potential are equivalent
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actions and the potential cannot be measured without being absorbed. Indeed,

the "virtual" measuring instrument at s is a sort of test charge that can move

freely in D. The moment the measuring instrument is �xed in space, however, it

becomes a measuring instrument belonging to the setM (S). Finally, note that,

if s = si for each si 2 S, namely all the N + 1 measuring instruments are located

at s, then

y(sjS) = 1

1 +N
q(s) +

1

1 +N
"(s)

that is, the potential q(s) is equally absorbed by the N+1 measuring instruments.

The error component "(s) undergoes the same transformation so that the variance

of the error is high at the spatial locations where the observed potential q(s jS) is

expected to be high and it is low where the observed potential is expected to be

low.

In this work, the measuring instruments are supposed to satisfy the two fol-

lowing properties:

1. Property of equi-e¤ectiveness: two measuring instruments m (si) and m (sj)

are said to be equally e¤ective if g (sij fsjg) = g (sjj fsig) 8 ksi � sjk.

2. Property of full e¤ectiveness: the measuring instrument m (si) is fully e¤ec-

tive if there is no upper bound on the number of mediators the instrument

can interact with.

Property 1 is satis�ed if the binary function f# (s; s0) is commutative, which is

the case of (6). In practical applications, the property may not be satis�ed in the

sense that a measuring instrument m (si) might be more e¤ective in absorbing the

potential than a second absorber m (sj) close to it. Property 1, however, simplify

the model and any discrepancy from it is accounted by the error term ". Note that

the measure of e¤ectiveness is strictly related to the the measure of attractiveness

of the spatial behavior of consumers models typical of the geomarketing literature

17



(see [9]). Property 2 assumes that there are no upper bound to y(sjS). Going

back to the sales data example, the latter property can be restated as "the market

fully satis�es the customer demand".

To better understand the notions of potential and conditional potential, the

following examples are considered. As a �rst example, suppose that two measuring

instruments m (s1) and m (s2) are located at s1 = (200; 200) and s2 = (800; 800).

The GPM considered is

y(sjS) = u(s) � g�(s j S) = q(s j S)

u(s) = q(s)

q(s) = w(s)

(7)

namely it is supposed that the conditional potential is observed without error.

Furthermore, suppose that

�� (s; s
0) = �� (ks� s0k) = exp

�
�ks� s

0k
800

�
(8)

f# (s; s
0) = f# (ks� s0k) = exp

�
�ks� s

0k
300

�
(9)

that � = �1 (absorption interaction) and that y(s1jSrs1) = y(s2jSrs2) = 10.

The potential and the conditional potential for this example are reported in the

left and in the right part of Figure 1 respectively. Regarding the potential, its

maximum value is 10:6 > 10. The measuring instrument m (s1) absorbs/measures

a lower potential, 10, since a fraction of it is absorbed by m (s2) and vice-versa.

Indeed, the potential q(s1) = 10:6 would be absorbed by m (s1) if m (s2) were not

present. The conditional potential, as expected, has its maximum value (5:991)

halfway between s1 and s2 and it decreases approaching the measuring instrument

locations. The second example consists of 4 measuring instruments with spatial

locations depicted in Figure 2. The model considered is the same of (7) as well as

the correlation and the interaction functions de�ned in (8) and (9) respectively.

The measured potential is, again, y(sijSrsi) = 10, i = 1; :::; 4. In this case, the

18



Figure 1: (left) potential q(s); (right) conditional potential q(s j S).

maximum value for the potential is equal to 13:66 and it is attained at the centre

of gravity of the measuring instrument locations (left part of Figure 2). Clearly,

y(sijSrsi) being �xed, the higher the number of measuring instruments the higher

the value of the potential q.

4 Model estimation and inference

Let y � y (S) be the N � 1 vector of data collected at the sampling sites S. The

measurement equation for the vector y is

y = G (1�+X� + 
w + ") (10)

where 1 is the N � 1 vector of ones, X � X (S) is the N � b matrix of covariates,

w � w (S) is the latent Gaussian process at S with variance-covariance matrix

�w � �w (S;�) and " � " (S) is the measurement error at S with diagonal

variance-covariance matrix�" = �
2
"IN . Finally,G � G� (S) is the N�N diagonal

matrix whose diagonal vector is

g = (g�(s1jSrs1); :::; g�(sN jSrsN))
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Figure 2: (left) potential q(s); (right) conditional potential q(s j S).

Suppose now that S is partitioned as
�
S(1);S(2)

	
, where S(1) is the set of sites

where the data are available and S(2) is the set of sites where the data are missing.

According to this, the vector y is partitioned in the following way

y� =
�
y(1);y(2)

�0
where y(1) = Ly is the sub-vector of the non-missing data and L is the appropriate

elimination matrix. The vector y� is a permutation of y and y = D � y�, with D

the proper commutation matrix. The partitioned measurement equation become

y(i) = G(i)
�
1(i)�+X(i)� + 
w(i) + "(i)

�
; i = 1; 2

and the variance-covariance matrix of the permuted errors is conformably parti-

tioned as

V ar
h�
"(1); "(2)

�0i
=

0@ R11 R12

R21 R22

1A
In the sequel, given b a generic vector and B a generic matrix, b(1) and B(1) will

stand for Lb and LBL0 respectively, bearing in mind that, in general LB�1L0 6=

(LBL0)
�1.
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Given the data vector y and considering the GPM de�ned in (4), the following

inferential problems are of interest:

1. provide an estimate of the model parameter vector 	;

2. provide con�dence intervals for the elements of 	̂;

3. estimate the potential q (s) over the region D and its uncertainty;

4. estimate the conditional potential q(s jS) over the region D and its uncer-

tainty;

4.1 Model estimation

Problem 1. is tackled here following the maximum likelihood (ML) approach.

Being w (s) a latent process and due to possible missing data, the expectation-

maximization (EM) algorithm is adopted to �nd the ML estimate 	̂ of 	.

The EM algorithm is based on the complete-data likelihood function L	 (y;w)

and it provides an iterative procedure to update the model parameter estimate

from 	̂(k) to 	̂(k+1) until convergence. In particular, for each iteration of the

algorithm, the E-step computes the conditional expectation

Q
�
	; 	̂(k)

�
= E	̂(k)

�
L	 (y;w) j y(1)

�
while, at the M-step, the following maximization is carried out

	̂(k+1) = argmax
	

Q
�
	; 	̂(k)

�
which is equivalent to solve the equation

@Q
�
	; 	̂(k)

�
@	

= 0 (11)
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Closed form updating formulas are provided for �;�; �2" and 
 while the re-

maining model parameters are updated by numerical optimization, namely�
�̂
(k+1)

; �̂
(k+1)

�
= argmax

�;�
Q
�
	;
�
�̂(k+1); �̂

(k+1)
;
�
�̂2"
�(k+1)

; 
̂(k+1); �̂
(k)
; �̂
(k)
��
(12)

Note that, if both the correlation function �� and the interaction function h�

have analytical form of the �rst and second derivative with respect to � and �

respectively, the update de�ned in (12) can be carried out by adapting the updating

algorithm given in [10] (Proposition 4.4).

The closed form updating formulas are

�̂(k+1) =
tr
h�
ê(1) + �(k)1(1)

� �
1(1)
�0i

N �Nm
(13)

�̂
(k+1)

=
h�
X(1)

�0
X(1)

i�1 �
X(1)

�0 � �ê(1) +X(1)�(k)
�

(14)

�
�̂2"
�(k+1)

=
1

N
tr

0@ ê(1) �
�
ê(1)
�0
+
�

(k)
�2
Â(1) 0

0 R22

1A (15)


̂(k+1) =
tr
h�
ê(1) + 
(k)ŵ(1)

� �
ŵ(1)

�0i
tr
h
ŵ(1) (ŵ(1))

0
+ Â(1)

i (16)

where ê(1) =
��
G(1)

��1
y(1)��(k)1(1) �X(1)�(k) � 
(k)ŵ(1)

�
, Nm is the number of

missing data and

ŵ = E	(k)
�
w j y(1)

�
(17)

Â = V ar	(k)
�
w j y(1)

�
(18)

are the estimated latent variable and the estimation variance, respectively. The

proof for the updating formulas (13-16) is reported in Appendix A while the eval-

uation of (17) and (18) is reported in Appendix B.
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4.2 Parameter con�dence intervals

As known, the EM algorithm does not provide information about the uncertainty

of the estimated parameter vector 	̂. In this paragraph, two methods are proposed

to solve problem 2. of the above list, namely to provide con�dence intervals for

the elements of 	̂.

The �rst method is based on the fact that the maximum likelihood estimator

has asymptotically normal distribution N (	0; I�1), with 	0 the "true" value of 	

and I the Fisher information matrix. An approximation of the information matrix

for multivariate normal variables can be evaluated as

~Iij = @i�
0��1� @j�+

1

2
tr
�
��1� @i���

�1
� @j��

�
(19)

+
1

4
tr
�
��1
� @i��

�
tr
�
��1� @j��

�
(see [11]), where @i� and @i�� are short notations for @� (	) =@	i and @�� (	) =@	i

respectively and 1 � i; j � j	j.

In the case of the GPM, the following vector

� = y �G (1�+X�) (20)

is normally distributed with variance-covariance matrix

�� = Var (y �G (1�+X�)) (21)

= Var (
Gw +G")

= G
�

2�w +�"

�
G0 (22)

= gg0 �
�

2�w +�"

�
where � is the Hadamard product operator. The solution for the derivatives @i�

and @i�� is reported in Appendix C. In the presence of missing data, (19) is still

valid but � and �� have to be replaced with �(1) and �
(1)
� respectively.
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With ~I available, approximated con�dence intervals for the elements of 	̂ are

immediately provided by considering N
�
	̂;~I�1

�
. Note, however, that N

�
	̂;~I�1

�
is a good approximation of the distribution [	 j y (S)] only when N is large, which

may not be the case in practical applications. In particular, the marginal distrib-

utions on the elements of 	 are not Normal for small N . To solve this problem, a

second method based on Monte Carlo simulation is considered. Although compu-

tationally more demanding, the method can be adopted even for small values of

N and the accuracy of the result is directly related to the numberM of simulation

runs.

Let 	̂ be the estimated parameter vector. For each simulation run m, the

vector y(m) = D
h
y
(1)
(m) y(2)

i0
is considered, where

y
(1)
(m) = L �G�̂ (S) �

�
1�̂+X�̂ + 
̂ ~w + ~"

�
and ~w and ~" are realizations from the multivariate normal distributionsN

�
0;�"

�
�̂2"
��

and N
�
0;�w

�
�̂
��

respectively. Note that y(m) preserves the missing data pat-

tern of the observed y. The simulated y(m) is used to estimate a new parameter

vector 	̂(m) through the EM algorithm and the set

	̂s =
n
	̂(1); :::; 	̂(M)

o
(23)

is considered as a sample from the distribution [	 j y (S)]. If M is large enough,

then 	̂s can be analyzed to derive approximated con�dence intervals for the el-

ements of 	̂. Note that the latter method requires to run the EM algorithm M

times while the former method only requires to evaluate (19).
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4.3 Potential estimation

The potential q(s) represents one of the main result of the data analysis based on

the GPM. Following a plug-in approach, the estimated potential is obtained as

q	̂(s) = �̂+ x (s) �̂ + 
̂ŵ (s) ; s 2 R2 (24)

where ŵ (s) = E	̂ (w(s) j y) is the kriging estimate of w (s), which is evaluated

analogously to ŵ in().

It is worth noting that q	̂(�) does not involve the matrix G since, as already

mentioned, the potential q	̂(s) represents the potential that would be observed by

an absorber located at s if no other absorber was present in D.

The uncertainty of q	̂(s) is directly related to the uncertainty of 	̂ which is

expressed by [	 j y (S)]. Again, approximated con�dence intervals on q	̂(s) can be

provided by repeatedly estimating q	(s) with 	 extracted either from N
�
	̂;~I�1

�
or from the set 	̂s of (23).

4.4 Conditional potential estimation

The estimated conditional potential is simply given by

q	̂(s j S) = q	̂(s) � g�̂(s jS)

with S, as always, the set of locations of the absorbers. Approximated con�-

dence intervals on q	̂(s j S) are provided following the same approach de�ned in

Paragraph 4.3 for q	̂(s).
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5 Case study

The GPM introduced in Section 3 is applied here to sales data of a daily newspaper

for the city of Bergamo, northern Italy. The data represent the yearly average daily

number of copies sold during the working days by N = 75 newsstands located over

the Bergamo territory. The newsstand spatial locations are showed in Figure 3

along with their code and the average daily number of copies sold. The sales data

of 5 newsstands are unavailable though their location is known.

By considering the theory of Section 2, it can be said that the system O is

represented by the market potential, the measuring systemM by the newsstands

while the mediators by the customers. In particular, the population P of the

mediators is represented by the people, living in or visiting Bergamo, that are

potential buyers of the daily newspaper. The interaction between O and M is

clearly of the absorption type. In fact, once the customer has bought a copy of

the newspaper, it is absorbed in the sense that the same customer will not buy

(during the same day) the same copy of the newspaper, neither at the same nor at a

di¤erent newsstand. Moreover, the interaction between O andM does not change

the state � of O since the measurement (the newsstands selling the newspaper

copies to the customers) does not change, obviously, the customer behavior or the

customer interest toward the newspaper. The market potential O is modelled by

a potential q (s) and in particular by a GPM. The choice of modelling O through

a continuous spatial process makes sense since, for each location in space s, the

market potential, intended as the number of copies that could be sold by placing

a newsstand at s, is well de�ned for each s 2 D.

From the point of view of the data analysis, the aim of the study is twofold: to

estimate the market potential for the newspaper and to identify pro�table spatial

locations where new newsstands could be opened. In particular, the following

questions are to be answered
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Figure 3: Newsstand locations and circle plot of the working day average daily

number of copies sold.

� Which are the areas of the city with the highest market potential?

� Which are the areas of the city where it would be pro�table to open a news-

stand?

� What is the uncertainty of these areas in terms of potential and spatial

location?

In this case, the classic geostatistical approach cannot be adopted since the

sales data, as they are, cannot be considered as observations of a continuous phe-

nomenon. Indeed, it does not make sense to estimate the number of copies sold

outside the 75 newsstands. The point process statistics approach can provide in-

formation about, on the one hand, the spatial pattern of the newsstands, and on

the other, the relationship between the spatial density of the newsstands and the

number of copies sold. This kind of information, however, does not help answer
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the above questions adequately. Moreover, the missing data problem is not easily

solved within this approach.

Instead, the GPM model is adopted as it can provide the needed information

by receiving as input the sales data.

The GPM model considered is the same of (4) but with � � 0. The spatial

correlation function of the latent component w is chosen to be

�� (s; s
0) = exp

�
�ks� s

0k
�

�
(25)

while (5) is considered as interaction function, with � = �1 and

f� (s; s
0) = exp

�
�ks� s0k

�

�
(26)

As it is obviously related to the sold number of copies, the population density for

the city of Bergamo, depicted in Figure 4, is considered as a covariate. The model

parameter vector 	 is estimated by means of the EM algorithm as discussed in 4.1.

The estimation result is reported in Table 1 with the con�dence intervals evaluated

by following the simulation approach discussed in 4.2 and M = 10; 000. Namely,

95% con�dence intervals are obtained by evaluating empirical distributions on

	̂s =
n
	̂(1); :::; 	̂(M)

o
. The empirical variance-covariance matrix of 	̂ is reported

in Table 2 and it can be compared with the approximated Hessian matrix evaluated

by (19). The Hessian matrix underestimate the variances related to the elements

of 	̂ and, in this case, it is unsuitable for deriving con�dence intervals on 	̂.

As expected, the �̂ coe¢ cient related to the population density is positive in

sign and signi�cantly di¤erent from zero. The value of �̂ (' 200m) suggests that

the potential q is spatially correlated at the city-district level. In other words,

net of the covariate e¤ect, newsstands belonging to the same district (the city of

Bergamo consists of 25 districts) experience a similar potential. As supported by

the value of �̂ (' 200m), the competition between nearby newsstands is quite

strong.
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�̂ �̂2" 
̂ �̂ �̂

estimated 20:48 26:38 14:73 198:91 200:37

LCL 13:32 1:60 10:70 48:43 164:49

UCL 48:42 162:16 36:36 471:23 469:30

Table 1: Estimated model parameter and 95% con�dence interval

� �2" 
 � �

� 160:61 245:33 97:42 �78:72 1005:06

�2" 2867:73 138:07 2536:20 1797:01


 82:66 �75:32 800:66

� 13889:89 �682:77

� 8646:81

Table 2: Empirical variance-covariance matrix of 	̂ based on 10,000 Monte Carlo

simulation runs

� �2" 
 � �

� 83:66 �2:35 7:12 �65:10 117:01

�2" 2435:75 �93:25 2880:35 �28:92


 9:12 �110:67 87:79

� 11247:41 �802:59

� 1442:53

Table 3: Approximated Hessian matrix for 	̂
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Figure 4: Scaled population density for the area of Bergamo.

Given 	̂, the potential q	̂(s) is estimated by (24) over the city of Bergamo as de-

picted in Figure 5. The surface of q	̂(s) is characterized by many maxima the most

relevant of which correspond to a potential equal to f69:21; 50:04; 49:97; 43:34g.

This is the daily average newspaper copies that would be sold by a newsstand if

placed at these maxima without other newsstands nearby. The conditional poten-

tial q	̂(s j S) , on the other hand, is depicted in Figure 6 and its surface represents

the number of copies that would be sold by a (new) newsstand if placed at the

generic s. The maxima of q	̂(s j S) represent the locations where it would be

pro�table to open new newsstands. A comparison between the potential and the

conditional potential over a zoomed area is given in Figure 7.The standard devi-

ation of q	̂(s j S), representing its reliability, is depicted in Figure 8 and it has

been evaluated by estimating q	̂(i)(s j S) for each 	̂(i) 2 	̂s.
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Figure 5: Estimated potential q	̂ (s) (average daily number of copies) over the

Bergamo area. Newsstand locations marked by the + symbol.

Figure 6: Estimated conditional potential q	̂ (s j S) (average daily number of

copies) over the Bergamo area. Newsstand locations marked by the + symbol.
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Figure 7: Comparison between the potential (upper) and the conditional potential

(lower) for an enlarged area of Bergamo. Newstand locations marked by the +

symbol (available data) and the � symbol (missing data).
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Figure 8: Standard deviation map for the estimated conditional potential

q	̂ (s j S). Newsstand locations marked by the + symbol.

6 Conclusions

In this paper, the data generation mechanism that characterize the spatial data

collected in many social and scienti�c �elds has been explained in terms of an

interaction occurring between the observed system and the set of measuring in-

struments used to acquire the data. The spatial data are assumed to be related to

an underlying spatially continuous phenomenon which, in turn, is related to the

state of the system. Thus, knowing the realization of the spatial phenomenon, and

in particular its spatial surface, means to know the state of the system.

Depending on the properties of both the system and the measuring instru-

ments, the e¤ects of the interaction might have to be modeled. In such a case,

the phenomenon spatial surface cannot be recovered neither by following a clas-

sic geostatistical approach nor by adopting a point process statistics approach.

The problem has been solved by introducing the geostatistical potential model
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in which the interaction is explicitly taken into account. The estimation of the

model parameters is based on the ML approach and it is carried out by means

of the EM algorithm. The missing data problem and the evaluation of both the

model parameter and the model output uncertainty are solved within the frame-

work developed through the paper. The geostatistical potential model has been

successfully applied in the solution of a geomarketing problem and in particular in

the estimation of the spatial market potential of a product from the sales data of

spatially distributed stores.
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Appendix A

As stated in Section 4, the estimation of the model parameters is based on the

maximum likelihood approach. In this appendix, the closed form estimation for-

mulas for the parameter vector 	 are derived starting from the complete-data

likelihood and by applying the theory of the expectation-maximization algorithm.

The complete-data likelihood function L	 (y;w) can be restated as

L	 (y;w) = L	y (y j w) � L	w (w)

and the following distributions hold

y j w � N (G (1�+X� + 
w) ;G�"G
0)

w � N (0;�w)

The complete-data log-likelihood function �2l (	;y;w) is given by the summands

�2l (	y;y j w) = log jG�"G
0j+ (27)

[y �G (1�+X� + 
w)]0 (G�"G
0)
�1
[y �G (1�+X� + 
w)]

�2l (	w;w) = log j�wj+w0��1w w (28)

The E-step of the algorithm is de�ned by the following conditional expectation

Q
�
	;	(k)

�
= E	(k)

�
�2l (	;y;w) j y(1)

�
= E	(k)

�
E	(k)

�
�2l (	;y;w) j y(1);w

�
j y(1)

�
The inner conditional expectation is

E	(k)
�
�2l (	;y;w) j y(1);w

�
= log jG�"G

0j+ tr
h
(G�"G

0)
�1
(e � e0 +�)

i
+

log j�wj+ tr
�
��1
w (w �w0)

�
where
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e = E
�
y �G (1�+X� + 
w) j y(1);w

�
= D

0@ y(1)�G(1)
�
1(1)�+X(1)� + 
w(1)

�
R21R

�1
11

�
y(1)�G(1)

�
1(1)�+X(1)� + 
w(1)

��
1A

= D

0@ y(1)�G(1)
�
1(1)�+X(1)� + 
w(1)

�
0

1A
and

� = V ar
�
y �G (1�+X� + 
w) j y(1);w

�
= D

0@ 0 0

0 G
�
R22 �R21R

�1
11R12

�
G0

1AD0

= D

0@ 0 0

0 GR22G
0

1AD0

By applying the outer conditional expectation it follows

E	(k)
�
E	(k)

�
�2l (	;y;w) j y(1);w

�
j y(1)

�
= log jG�"G
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and
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The M-step is characterized by the following minimization
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� �(k+1) and that the minimization of Q
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by a numerical iterative algorithm. With regard to Q
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minimization is carried out
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where ê(1) =
�
G(1)

��1
y(1)�1(1)��X(1)� � 
ŵ(1).
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A closed form solution can be obtained for the model parameters f�; �2";�; 
g

by evaluating the following derivatives
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2Â(1))]=@
 = 0)

2

�2"
tr
h
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+ Â(1)

i
+

1
�2"
tr
h
�2
�
G(1)

��1
y(1)

�
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+ 2�ŵ(1)

�
1(1)
�0
+ 2X(1)�

�
ŵ(1)

�0i
= 0)


 =
tr
h�
(G(1))

�1
y(1)��1(1)�X(1)�

�
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Appendix B

The latent variable w is estimated by applying the usual formulas of the multi-

variate normal distribution. In particular

ŵ = E	(k) (w j y)

= �wy�
�1
y [y � E (y)]

= �wy�
�1
y [y �G (1�+X�)] (35)

where

�y = Var [G (1�+X� + 
w + ")]
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w + "]G0

= G
�

2�w +�"

�
G0

and

�wy = E
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�
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�wG

0
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The variance of the estimated ŵ is given by

Â = V ar	(k) (w j y)

= �w ��wy�
�1
y (�wy)

0 (36)

When y is characterized by missing data, (35) and (36) become

ŵ = (�wyL
0) (L�yL

0)
�1
[L (y �G (1�+X�))]

Â = �w � (�wyL
0) (L�yL

0)
�1
(L�wy)

Appendix C

The evaluation of the approximate Fisher information matrix de�ned in (19) re-

quires the computation of the vector derivatives @� (	) =@	i and the matrix deriv-

atives @�� (	) =@	i, 1 � i � j	j, with � and �� de�ned in (20) and (21) respec-

tively.

In the case of the spatial correlation de�ned in (25) and the interaction function

de�ned in (26), the following derivatives hold

@� (	)

@	i
=

8>>><>>>:
�g if 	i = �

�Gxj if 	i = �j ; 1 � j � b

0 otherwise

(37)

@�� (	)

@	i
=

8>>>>>>>>><>>>>>>>>>:

gg0 � IN if 	i = �
2
"

2
gg0 ��w if 	i = 



2gg0 � H
�2
��w if 	i = �

~G� (
2�w +�") if 	i = �

0 otherwise

(38)

where xj is the j� th column of the matrix X and H is the distance matrix based

on S.
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Finally, the (ij)� th element of the matrix ~G is given by @gi � gj+ gi@gj, where

gi is the i� th element of the vector g and

@gi =
@gi
@�

= �

NX
j=1

hij
�2
exp

�
�ksi�sjk

�

�
"
NX
j=1

exp
�
�ksi�sjk

�

�#2 (39)

with hij the (ij)� th element of the matrix H.
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