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Abstract

Systemic default risk -i.e. the risk of simultaneous default of multiple
institutions- has caused great concern in recent past. However, the mea-
sure of systemic risk is not a trivial subject. The aim of this paper is to
estimate the joint probability of default for couples of defaultable enti-
ties, belonging to different rating classes. Both bond and credit derivative
markets convey information on the default probabilities. In particular,
the price of Credit Default Swap (CDS) contracts involves counterparty
risk i.e. the risk that the protection seller will fail to fulfill its obligations
- usually either by failing to pay or by failing to deliver securities. The
counterparty risk is reflected in the CDS price through the joint default
probability of the reference entity and the protection seller.

In this paper, applying a no-arbitrage argument, we extract forward
looking joint default probabilities of institutions operating in the CDS
market. The analysis of the dynamics of the joint default probability
can provide clear signals of an increase in systemic risk and danger of
contagion.
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1 Introduction

As a first approximation, CDS prices reflect the expected loss of the reference
entity given by its default probability and the recovery rate. Additional risk
premia are required to compensate for an unexpected default. See Amadei et al
[2] for a detailed discussion. These factors are actually the same that influence
bond spreads: theoretically bond spreads should be equal to CDS premia for
the same reference entity. Consider two financial agents α and β and let:

• r(t, T ) be the risk-free rate (Libor) in t for the maturity T .

• sα(t, T ) be the spread over the Libor of the issuance cost of α, prevailing
in t for the maturity T .

• wα,β(t, T ) be the annual CDS premium to insure against the default of α
within the period [t, T ] with β as the protection seller.

• Rα(t, T ) be the zero-coupon bond (ZCB) yield in t for the maturity T .

In the equilibrium point, a portfolio composed by a zero coupon bond with
maturity T and a CDS on that same bond with the same maturity, should
replicate a synthetic risk-free asset. Hence the ZCB yield Rα(t, T ) minus the
CDS premium wα,β(t, T ) should be exactly equal to the risk-free rate r(t, T ),
being then able to write the spread sα(t, T ) as the difference Rα(t, T )− r(t, T ).
However, in reality wα,β(t, T ) 6= sα(t, T ) (see Amadei et al [2]). We define as
“basis” the difference wα,β(t, T )− sα(t, T ). The invoked equilibrium is ensured
by the two following arbitrage strategies:

1. Case wα,β(t, T ) < sα(t, T ): the arbitrage strategy in this case consists in
buying the bond, financing at the risk-free rate r(t, T ) and then buying the
CDS by paying the premium wα,β(t, T ). The portfolio return is (sα(t, T )+
r(t, T ))−r(t, T )−wα,β(t, T ) = sα(t, T )−wα,β(t, T ) which is positive since
wα,β(t, T ) < sα(t, T ).

2. Case wα,β(t, T ) > sα(t, T ): the arbitrage strategy in this case consists
in short selling the bond, investing the proceeds at the risk-free rate
of return r(t, T ) and selling protection in the CDS market with pre-
mium wα,β(t, T ). The portfolio return is wα,β(t, T ) + r(t, T )− (sα(t, T ) +
r(t, T )) = wα,β(t, T ) − sα(t, T ) with a positive return since wα,β(t, T ) >
sα(t, T ).

The portfolio payoffs are guaranteed for each strategy if and only if the po-
sitions are kept until bond maturity or until the credit event occurs. Otherwise
the strategy faces a roll over risk in the financing/investing positions linked to
the volatility of r(t, T ). In practice the basis is rarely zero because of market
imperfections, differences in the liquidity of CDS and corporate bond markets
and counterparty risk. In the following we concentrate our attention on this
latter aspect: CDS market is affected by counterparty risk which is not present
in bond market; when it increases the CDS premium decreases.
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From 2007 basis for corporate debt has been mainly negative for reference
entities rated BBB and below and moderately positive for high quality reference
entities. The persistence of negative basis can be motivated by the failure in
implementing the arbitrage strategy 1 due to difficulties in:

1. buying the bond and financing the position at the risk-free rate, due to
liquidity problems and high tensions in the interbank market.

2. buying the CDS, for a lack of protection sellers or for the perception of a
high counterparty risk linked to these contracts.

An additional explanation of a non-zero basis can be a different reactivity
of CDS and bond spread markets to new information on a issuers. A negative
or positive basis can reflect a different degree of adjustment between the two
markets that arbitrage strategies correct only in the long run.

2 A formula for the joint probability of default

In the previous section we have stated that the arbitrage free value of the ba-
sis is zero. This holds when the counterparty risk is not explicitly taken into
consideration. In the following, we relax this assumption: a negative basis,
representing the counterparty cost, can still be consistent with a arbitrage free
valuation. Negative basis is typical of financial crisis periods and we will extract
from it information on the joint default probability.

A formula for measuring the joint probability of default of two financial
institutions is hereby derived. This is first pursued in a one-period framework.

2.1 The one-period case

Consider two risky financial institutions and for illustrative purpose denote them
as α and β. Consider a third party called γ and, for the sake of argument, as-
sume that it can not go bankrupt. Imagine that at time t = 0, the riskless entity
γ builds a portfolio, according to the following uniperiodal strategy:

Strategy 1 (one-period case):

• Buy a 1-year zero coupon bond (ZCB) issued by α,

• buy a 1-year CDS from β, the protection seller, on the reference entity α,

• finance the positions on the market with a 1-year loan.

All the contracts have a face value of $1. Since we assume that γ is risk-free, it
can finance its positions at the 1-year Libor rate. On the contrary the interest
rate offered by α on the bond issue is increased by a spread related to its rating
class. So now let:
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• RRα, RRβ be the recovery rates of α and β, respectively.

• Πt be the value at time t of the portfolio built by γ according to Strategy
1.

The present value of the bond issued by α is e−r(0,1)−sα(0,1) ≈ 1− r(0, 1)−
sα(0, 1) and the amount of money been borrowed by γ is e−r(0,1) ≈ 1− r(0, 1).

In Table 1 we report the value of the portfolio in two different points in time,
t = 0 and t = 1, when all the cash flows are exchanged. The second column sum-
maries, at time t = 0, the present value of the financial instruments constituting
the portfolio held by γ. The portfolio value at time t = 0 is therefore:

Π0 = wα,β(0, 1)− sα(0, 1) (1)

The other columns of Table 1 report the cash flows in the different states of the
world at time t = 1. The dash on the name of a financial institution stands for
the institution being in default.

t = 0 t = 1

α, β α, β α, β α, β

Loan −(1− r(0, 1)) -1 -1 -1 -1
ZCB 1− r(0, 1)− sα(0, 1) 1 RRα 1 RRα

CDS wα,β(0, 1) 0 1−RRα 0 (1−RRα)RRβ

Πt wα,β(0, 1)− sα(0, 1) 0 0 0 −(1−RRα)(1−RRβ)

Table 1: Cash flows of the uniperiodal Strategy 1 at time t = 0 and t = 1.

If α survives, independently from β, γ repays its loan using the money
stemming from the zero coupon bond, while the CDS expires. If α defaults and
β survives, the position of γ is hedged by the CDS and the portfolio value is
null.

A non-zero cash flow is generated only when both α and β default, that is
with a probability equal to the joint default probability of α and β. Under the
hypothesis that 0 < RRα < 1 and 0 < RRβ < 1, this would result in a negative
cash flow. It follows that γ will implement such a strategy whenever the basis
is negative, hence Π0 < 0. Thus within our framework we admittedly exclude
the presence of a positive basis, which typically conveys information linked with
market microstructure noises, here not explicitly modelled.

Hence, the expected value of the portfolio at t = 1 is:

E[Π1] = −Pα,β(0, 1)(1−RRα)(1−RRβ) (2)

where we denote Pα,β(0, 1) as the risk-neutral 1-year joint default probability
of α and β.

Recall that in an arbitrage-free world, for every security with value ft at
time t ≥ 0, it must hold that:

ft = EQ[fT ]e
−r(t,T )(T−t) ∀t < T (3)
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where Q is the risk-neutral probability measure.
That is, excluding arbitrage possibilities, in our case we must have:

Π0 = E[Π1]e
−r(0,1), Π0 < 0 (4)

Combining Eq. 1, 2 and 4, we obtain:

Pα,β(0, 1) =

(

sα(0, 1)− wα,β(0, 1)
)+

(1−RRα)(1−RRβ)
er(0,1) (5)

where (·)+ ≡ max(·, 0).
According to Eq. 5 the joint probability of default is explained by:

• The negative basis. In absence of counterparty risk and arbitrage opportu-
nities, this difference is supposed to be zero1. The presence of counterparty
risk reduces the premium of the CDS and motivates a negative basis . The
wider is this difference, the higher is the counterparty risk and eventually
the higher is the joint probability of default of the bond issuer α and
the protection seller β. If the basis is positive we set the joint default
probability equal to zero.

• A discounting factor, due to the fact that the cash flows considered pertain
different instants in time.

• The recovery rates of the financial institutions considered. The higher the
recoveries, the higher is the probability of joint default, other things being
equal. That is, if increasing expectations on recoveries don’t lead to a
decrease of the spreads, a joint default is more likely to happen.

For further development, it can be useful to give a marginal default proba-
bility formula, which is coherent with our framework. First define Pα and Pβ

as the risk-neutral probabilities of default of α and β accordingly.
Applying the risk-neutral principle stated in Eq. 3 to the case of the CDS

considered we have2:

wα,β(0, 1) =
(

Pα,β(0, 1)(1−RRα) + Pα,β(0, 1)(1−RRα)RRβ

)

e−r(0,1) (6)

from which we get:

Pα,β(0, 1) =
wα,β(0, 1)e

r(0,1)

1−RRα

− Pα,β(0, 1)RRβ (7)

Thus, using the trivial equality Pα(·, ·) = Pα,β(·, ·) + Pα,β(·, ·), together with
Eq. 5 and 7, after some rearranging, we get:

Pα(0, 1) =
sα(0, 1)e

r(0,1)

1−RRα

(8)

1See for instance Hull et al. [16].
2See the fifth row in Table 1.
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With a similar argument we can state:

Pβ(0, 1) =
sβ(0, 1)e

r(0,1)

1−RRβ

(9)

Note how the previous two formulæ are consistent with the literature3.

2.2 Multi-period case

To extend the formula in Eq. 5 over the generic time sequence 0 = t0 < t1 <

. . . < tn, we consider the case in which γ pursues the following multi-period
strategy:

Strategy 2 (Multi-period case): At time ti with i = 0, . . . , n− 1, if both α

and β are alive, then:

• Buy a (ti+1 − ti)-year zero coupon bond issued by α,

• buy a (ti+1 − ti)-year CDS 4 from β on α,

• finance the positions on the market with a (ti+1 − ti)-year loan,

otherwise close the position.

On the basis of the usual no-arbitrage argument, we state that the actual
expected cost of the strategy must equate the present value of its outcomes,
that is:

(

sα(0, t1)− wα,β(0, t1)
)+

t1+

+

n−1
∑

i=1

Pα,β(ti−1, ti)
(

sα(ti, ti+1)− wα,β(ti, ti+1)
)+

(ti+1 − ti)e
−r(0,ti)ti =

= (1−RRα)(1−RRβ)

n
∑

i=1

Pα,β(ti−1, ti)e
−r(0,ti)ti (10)

The left-hand side of the Eq. 10 refers to the expected profit of rolling Strategy
2, while the right-hand side is the expected present value of the flows generated
in the case both α and β go bankrupt. According to Strategy 2, the amount

$
(

sα(ti, ti+1)−wα,β(ti, ti+1)
)

has to be understood as the profit for speculating

against the joint default of α and β in the time interval [ti, ti+1]. As before,
we argue that, as long as the recovered amounts RRα and RRβ are positive, γ

3Ignoring the discount factor we are exactly in line with Hull [15, Chap. 20].
4The quotes wα,β(ti+1, ti) of the CDS involved in Strategy 2 are expressed in annual

terms. Imagine that they are single-premium contracts and let this unique premium to be
paid in ti, at the beginning of the life of the contract. Thus the premium due in ti is given
by wα,β(ti+1, ti)(ti+1 − ti).
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won’t implement such a strategy whenever sα(ti, ti+1) ≤ wα,β(ti, ti+1)
5. This

is the reason why in Eq. 10 we consider negative bases only.
From Eq. 10 we get:

Pα,β(tn−1, tn) = P̃α,β(0, t1)e
r(t1,tn)(tn−t1) +

n−1
∑

i=1

[

Pα,β(ti−1, ti)P̃α,β(ti, ti+1)e
r(ti+1,tn)(tn−ti+1) +

− Pα,β(ti−1, ti)e
r(ti,tn)(tn−ti)

]

(11)

in which we define:

P̃α,β(ti, ti+1) ≡
Ψ(ti, ti+1)

(1−RRα)(1−RRβ)
i = 0, . . . , n− 1 (12)

where:

Ψ(ti, ti+1) ≡
(

sα(ti, ti+1)− wα,β(ti, ti+1)
)+

(ti+1 − ti)e
r(ti,ti+1)(ti+1−ti) (13)

and sα(ti, ti+1) and wα,β(ti, ti+1) might be understood as on forward basis.

Thus, within our framework, P̃α,β(ti, ti+1) corresponds to the joint default prob-
ability seen in t = 0 for the time interval [ti, ti+1], conditionally to the survive
of both α and β up to time ti (compare Eq. 12 with Eq. 5). Henceforth we will
refer to P̃α,β(·, ·) as the conditional risk-neutral probability of joint default.

To grasp a better insight of the formula provided, notice that Eq. 11 leads
to the following recursive relation:

Pα,β(ti, ti+1) =

{

P̃α,β(0, t1) for i = 0

Pα,β(ti−1, ti)P̃α,β(ti, ti+1) for i = 1, . . . , n− 1
(14)

which corresponds to the standard definition of unconditional probability. Thus,
using Eq. 14 we can build a time structure of the risk-neutral probability of
joint default between α and β. Notice that, in order to make Eq. 14 feasible in
practice we need to use the trivial relation:

Pα,β(·, ·) = 1− Pα(·, ·)− Pβ(·, ·) + Pα,β(·, ·) (15)

where:

Pα(ti, ti+1) =

{

P̃α(0, t1) for i = 0

Pα(ti−1, ti)P̃α(ti, ti+1) for i = 1, . . . , n− 1
(16)

with Pα(ti−1, ti) ≡ 1− Pα(ti−1, ti) and in analogy with Eq. 8 we define:

P̃α(ti, ti+1) ≡
sα(ti, ti+1)

1−RRα

(ti+1 − ti)e
r(ti,ti+1)(ti+1−ti) (17)

as the marginal default probability within ti and ti+1, seen in t = 0. The same
holds for the marginal probabilities referred to β.

5This corresponds to the case of positive basis.
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2.3 The impact of the recovery risk

All the variables entering our definition of joint default probability stated in
Eq. 14 are directly observable on the markets, with the only exception of the
recovery rates RRα and RRβ . It would be desirable for our estimates not to be
affected by arbitrary assumptions on them. The only hypothesis we are going
to embrace is a widely accepted one, that is 0 ≤ RRα < 1 and 0 ≤ RRβ < 1.

Notice that in order for Eq. 12 to assume a probability meaning, we need
to ensure that:

Ψ(ti, ti+1) ≤ (1−RRα)(1−RRβ) (18)

being the right-hand side unknown. Thus we seek a logistic transform L(·) of
Ψ(ti, ti+1) of the type:

L
(

Ψ(ti, ti+1)
)

≡
a

1 + exp{−Ψ(ti, ti+1)}
+ b (19)

where a and b are chosen such that:

{

L(0) = 0

lim
Ψ(ti,ti+1)→+∞

L
(

Ψ(ti, ti+1)
)

= (1−RRα)(1−RRβ)

Hence we get a = 2(1−RRα)(1−RRβ) and b = −(1−RRα)(1−RRβ). If we
substitute Ψ(ti, ti+1) with its logistic transform, from Eq. 12 we get:

P̃α,β(ti, ti+1) =
2

1 + exp{−Ψ(ti, ti+1)}
− 1 (20)

as our ultimate formula for the unconditional risk-neutral probability of joint
default within [ti, ti+1].

Recalling Eq. 14, we can state that the these logistic transformations are
sufficient to guarantee the consistency of the unconditional probability of joint
default since 0 ≤ Pα,β(ti, ti+1) ≤ 1.

For the same reasoning as above, we apply the logistic transform even to the
marginal probabilities P̃α(ti, ti+1) and P̃β(ti, ti+1) to get:

P̃α(ti, ti+1) =
2

1 + exp{−Ψα(ti, ti+1)}
− 1 (21)

P̃β(ti, ti+1) =
2

1 + exp{−Ψβ(ti, ti+1)}
− 1 (22)

where
Ψα(ti, ti+1) ≡ sα(ti, ti+1)(ti+1 − ti)e

r(ti,ti+1)(ti+1−ti) (23)

Ψβ(ti, ti+1) ≡ sβ(ti, ti+1)(ti+1 − ti)e
r(ti,ti+1)(ti+1−ti) (24)
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3 Conclusions

A measure of systemic risk is provided by the joint default probability amongst
different financial institutions. A methodology for estimating it has been pro-
posed. It is based on a strong argument under the hypothesis of no-arbitrage.
Furthermore, any dependence from recovery rate assumptions is avoided.
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4 Appendix

A Derivation of forward spreads

In the definition provided in Eq. 12 we introduced sα(ti, ti+1) and wα,β(ti, ti+1).
The former is given by the standard relation:

sα(ti, ti+1) =
ti+1

ti+1 − ti
sα(0, t+ 1)−

ti

ti+1 − ti
sα(0, t) (25)

For the latter, consider for simplicity the case of annual time instants t =
0, 1, . . . , T and CDS contracts in which a premium is paid annually. Thus in a
free arbitrage world the following relation can be stated:

wα,β(0, T )

(

1 +

T−1
∑

t=1

Pα,β(t− 1, t)e−r(0,t)t

)

=

T
∑

t=1

wα,β(t− 1, t)e−r(0,t−1)(t−1)

(26)
that is the expected actual value of the payments in a T -year contract must
equate the expected actual value of T annual forward CDS. From Eq. 26 we
get:

wα,β(t, t+ 1) = wα,β(0, t+ 1)er(0,t)t +
t
∑

τ=1

[

wα,β(0, t+ 1)Pα,β(τ − 1, τ)e−r(τ−1,τ) +

− wα,β(τ − 1, τ)e−r(0,τ−1)(τ−1)
]

(27)

with t = 0, . . . , T − 1.
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