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Abstract

Breast cancer is the second leading cause of death in women in the
United States. Mammography is currently the most effective method
for detecting breast cancer early; however, radiological interpretation
of mammogram images remains a challenging task. On the other hand,
many medical images demonstrate a certain degree of self-similarity
over a range of scales which can guide us in their description and
classification.

In this work, we generalize the scale-mixing wavelet transform to
the complex wavelet domain. In this domain, we estimate Hurst pa-
rameter and phase and use them as discriminatory descriptors to clas-
sify mammographic images to benign and malignant. The proposed
methodology is tested on a set of images from the University of South
Florida Digital Database for Screening Mammography (DDSM).

Key words: Scaling; Self-similarity; Complex Wavelets; Image Classifica-
tion
1 Introduction

The National Cancer Institute estimates that 1 in 8 women born today will
be diagnosed with breast cancer during her lifetime (Altekruse et al., 2010).
Breast cancer is one of the most common forms of cancer among women in



the United States, second only to non-melanoma skin cancer. A national ob-
jective has been set by the U.S. Department of Health and Human Services
to reduce the female breast cancer death rate from 22.9 per 100,000 females
in 2007 down to 20.6 by the year 2020 — a 10% improvement (Healthy People
2020, U.S. Department of Health and Human Services). One of the most
important tools toward that goal is advanced precision of screening technolo-
gies. Early detection is the best method for improving prognosis and also
leads to less invasive options for both specific diagnosis and treatment.

Mammography is currently the most efficient and prevalent method for
detecting a breast cancer early, before it is substantial enough to cause symp-
toms. However, the radiological interpretation of mammogram images is a
difficult task since the appearance of even normal tissue is highly variable
and complex, and signs of early disease are often small or indistinct. Sus-
picious findings are commonly clarified by follow-up images, ultrasound, or
MRI. On the other hand, it has been estimated that 10 — 30% of cancers
which could have been detected are missed (Martin et al., 1979). Thus, im-
proving both the specificity and the sensitivity of mammographic diagnoses
is an important goal in improving prognoses while also reducing the number
of unnecessary procedures or surgical operations.

In high frequency and irregular data collected in real-life settings (both
naturally occurring and human-made), a commonly occurring phenomenon
is that of regular scaling. Examples of this have been found in a variety
of systems and processes including economics (stock market, exchange rate
fluctuations), telecommunications (internet data), physics (hydrology, tur-
bulence), geosciences (wind and rainfall patterns), and several applications
in biology and medicine (DNA sequences, heart rate variability, auditory
nerve-spike trains). The irregular behaviors of these complex structures are
difficult or impossible to quantify by standard modeling techniques. But
when observations are inspected at different scales, there is in fact a regu-
lar relationship between the behavior and the scale. This phenomenon has
been demonstrated in many medical images, leading to diagnostic use of tools
capable of quantifying statistical similarity of data patterns at various scales.

The standard measure of regular scaling is the Hurst exponent. This
measure can also be connected to phenomena of long memory and fractality
in signals and images and is viewed as an informative summary. Many tech-
niques for estimating the Hurst exponent exist, and assessing the accuracy
of these estimations can be complicated. Wavelet transforms are powerful
tool in estimating the Hurst exponent and modeling statistical similarity



at different scales. For example, Nicolis et al. (2011) proposed a method
based on the wavelet spectra for extracting the self-similarity measures in an
isotropic and anisotropic spaces. Ramirez-Cobo et al. (2011) demonstrated a
wavelet-based spectra method for estimating Hurst exponent in time-varying
two-dimensional rainfall maps.

For an efficient representation of the image or signal, the wavelet basis is
desirable to be orthogonal, symmetric and to have compact support. (Gao
and Yan, 2010). An orthogonal basis has a variety of theoretical and practical
advantages: it leads to more efficient algorithms, and establishing properties
of a representation is often easier with orthogonal bases. Symmetry guar-
antees an orientation-free representation of features, preventing distortion in
the data induced by its basis representation. Moreover, the computational
cost of performing wavelet transforms depends heavily on the support size of
a basis. Apart from the Haar wavelet, complex wavelets with an odd number
of vanishing moments are only compactly supported wavelets which are sym-
metric (Lawton, 1993). Due to this advantages, complex wavelet has been
used in various areas including motion estimation (Magarey and Kingsbury,
1998), texture image modeling (Portilla and Simoncelli, 2000), image denois-
ing (Achim and Kuruoglu, 2005) and NMR spectra classification (Kim et al.,
2008).

The novelty of this paper is to use the scale-mixing wavelet spectra based
on complex wavelet transforms for estimating the Hurst exponent. We then
focus on the estimated Hurst exponent and show its ability to differentiate
cancerous from normal tissue visible in the backgrounds of mammogram im-
ages, and compare this performance with its counterpart obtained from real-
valued wavelet transform. Moreover complex wavelet transform produces an
additional measure, phase information. We also demonstrate the classifica-
tion power of the phase information and use it as an additional modality in
the discriminatory analysis.

A further novelty of our work is the use of the information contained in
the background tissue of images. Most of the references found in literature
dealing with breast cancer detection methods are based on microcalcifications
(Wang and Karayiannis, 1998; Netsch and Peitgen, 1999; Kestener et al.,
2001; El-Naqga et al., 2002). Only recently the information contained in the
background is taken into consideration (Nicolis et al., 2011; Hamilton et al.,
2011). This classifying measure based on background tissue would be a new
tool to be used in combination with existing clinical diagnostic tools, thus
improving the power of non-invasive diagnostic techniques.
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The paper is organized as follows. In Section 2, we briefly describe the
data set used in the analysis. In Section 3, the complex wavelet based
scale-mixing wavelet spectra is proposed as new tools for estimating the
self-similarity indices. Also the importance of the phase information is dis-
cussed. Section 4 deals with the classification of mammogram images using
the wavelet descriptors obtained from Section 3 as classifiers. Finally Section
5 contains concluding remarks.

2 The Dataset

The collection of digitized mammograms we analyzed was obtained from the
University of South Florida’s Digital Database for Screening Mammography
(DDSM)

http://marathon.csee.usf.edu/Mammography/Database.html.

The DDSM is described in detail in Heath et al. (2000). Images from this
database containing suspicious areas are accompanied by pixel-level “ground
truth” information relating locations of suspicious regions to what was as-
sessed and verified through biopsy. We selected 105 normal (benign) cases
from volumes normal-01, and 98 cancer cases from volumes cancer-01 and
cancer-02. Each case contains four mammograms (two for each breast:
the craniocaudal (CC) and mediolateral oblique (MLO) projections) from
a screening exam. We considered only the CC projections, using the right
breast image for all normal cases, and the cancerous breast (right or left)
image for cancer cases. A sub-image of size 1024 x 1024 was taken from each
case for analysis. An example of sub-image is provided in Fig. 1.

3 Discrete complex wavelets

This section discusses discrete complex wavelet transforms. Unlike the popu-
lar method used in this context (Selesnick et al., 2005), the proposed method
is orthogonal and most parsimonious.



Figure 1: Left panel: right CC mammogram corresponding to a malignant case. Right
panel: sub-image of size 1024 x 1024 considered for the analysis.

3.1 Complex wavelet basis

The construction of the complex wavelet basis associated with multireso-
lution analysis follows the usual approach proposed by Mallat (1998) and
Daubechies (1992). Details on the construction and properties of complex
wavelets can be found in Lawton (1993), Lina and Mayrand (1995), Strang
and Nguyen (1996), and Zhang et al. (1999). In analogy to the real case, the
wavelet function ¢ (x) for the complex wavelet is given by

() IZ 1)¥2h; (20 — k) (1)

where ¢ is the scaling function, h is the low pass filter and the * indicates
the complex conjugate. The representation of wavelets in 2-D can be done
through the tensor product of univariate scaling functions and wavelets as
follows:

¢(x1,x2) ¢ (z1) - ¢ (22)
Up(x1,22) = ¢ (1) -1 (22)
Uy(z1,22) = Y (1) O (22) (2)
Ya(z1,22) = P (1) ¢ (22)



where symbols h,v,d in (2) stand for horizontal, vertical and diagonal direc-
tions, respectively. The atoms capture image features in the corresponding
directions.

3.2 The complex scale-mixing 2-D wavelet transform

The discrete complex wavelet transform (DCWT) can be considered as a
complex-valued extension of the standard discrete wavelet transform (DWT).

It uses complex-valued filtering (analytic filter) for transforming the real /complex
signals. Complex wavelet coefficients can be computed by Mallat’s algorithm
(Mallat, 1998)

1= Y _ i ik (3)
k

and

dis1i =Y gr aCin (4)
k

where h is as in (1) and g is the quadrature mirror filter. The * denotes the
complex conjugate. Conversely, the reconstruction is given by

Cik = Z Cj—11hi—2 + Z dj—1,9k—21- (5)
! ]

The real and imaginary coefficients are used to compute the modulus and
phase information. The wavelet coefficients can be written as

djyk = Re(dj,k) +i . Im(d] k)

with magnitude

Al =/ Re(d;p)? + Im(d; 0)°

Zdj = arctan (W)

and phase

when |Re(d;x)| > 0.



There are many versions of 2-D wavelet transforms which lead to different
tessellations, or tilings (Ramirez-Cobo et al., 2011). We define the complex
wavelet atoms as follows

Ol goyk(X) = 202 20y — kg 2Py — fy) (6)
wév(jl:]é)ak(X) = 2UtR)2 %(lel"l =k, 2j2$2 - kZ)a (7)

where ¢ is one of directions h, v, or d, and (ji,j2), (k1, k2) € Z%. Then, any
function f € £5(R?) can be represented as

f(x) = Z CJorto) ke D(Jo, o) k(X)
k
+ Y dipx Unopxx)

7>Jo k

+ YD Gk Yo x(X)

i>Jo k

+ Z Z d(j17j2)7k wd,(]’th),k(X)’

Ji.j2>Jo k

and a 2-D wavelet transform, which we call the scale-mixing wavelet trans-
form, is obtained. The scale-mixing detail coefficients are defined as

i = / F) G (X115,
Aok = /f(x) ¢:,(j,]0),k<x)dxy
dormn = / F() W5 (), ®)

where 9* is a complex conjugate of ¢. Note that (ji,j2) in (6) and (7) can
be indexed as (j1,j1 + s) with s € Z.

Similarly to the traditional one- and two-dimensional cases, the complex
scale-mixing detail coefficients are linked to the original image (2-D signal)
through a matrix equation. Suppose that a 2" x 2" image (matrix) A is to be
transformed into the wavelet domain. The complex wavelet matrix W is first
composed by the complex scaling and wavelet filter coefficients h; and g as in
Vidakovic (1999). Note that the wavelet filter is given by g, = (—1)*hj y_,
and N is a shift parameter which affects the location of the wavelet. Then
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(a) (b)

Figure 2: Tessellations for 2-D wavelet transforms. (a) Traditional 2-D trans-
form of depth 4; (b) Scale-mixing wavelet transform of depth 4.

the rows of A are transformed by a one-dimensional transform given by the
wavelet matrix W, resulting in W A’. The same is repeated on the rows of
WA’ The result is

B=WWA) = WAW, (9)

the scale-mixing wavelet transform of matrix A, which will be the basis for
defining the scale-mixing spectra. It represents a finite-dimensional imple-
mentation of (8) for signal f(x) sampled in a form of matrix A.

The tessellation induced by transform in (9) is shown in Figure 2 (b).
A more general transform can be obtained as an iterative repetition of the
transform in (9) with depth k, applied only on the “smooth part” of the
previous iterative step.

The scale-mixing 2-D transform is operationally appealing. Constructing
appropriate W is computationally fast and, since W is orthogonal, the inverse
transform is straightforward:

A =W'BW.

By inspecting the tessellation in Figure 2, several hierarchies of detail spaces
can be identified. The diagonal hierarchy interfaces coefficients with the same
component scales and coincides with the diagonal hierarchy in the traditional
2-D spectra. One level above and below the diagonal hierarchy are hierarchies
of detail spaces that interface the scales that differ by 1. For the hierarchy
above the diagonal, the scales along x;-direction are interfaced by the next
coarser scale along xso-direction. For the hierarchy below the diagonal, the
roles of x; and x5 are interchanged.



The orthogonality of W implies
trace(AA’) = trace(BB’)
for B =W AW’ implying the total energy in the image A
E = trace(AA’)

is preserved.

50-
100~

150-

200-

250-

50 100 150 200 250

Figure 3: (a) Three detail-space hierarchies generating the scale-mixing 2-D
transform, where (j1, j2) is indexed as (j, 7+ s), s € Z. Circles correspond to
s = 0, triangles to s = 1, and squares to s = —1. The scales (jo,j), jo =17
(squares), and (J, 7o), jo = 6 (triangles) are shown in the figure.

3.3 The complex scale-mixing wavelet spectra

The scale-mixing spectra is defined in terms of the complex scale-mixing
coefficients in (8)

S(j) = 1ogy E (|d(j g6 xl%) » (10)
where j,s € Z are fixed. Note that s = 0 in (8) corresponds to the diagonal
2-D spectra.

To calibrate the scale-mixing spectra, consider now a 2-D fractional Brow-
nian motion, By (u). For such a process, the scale-mixing detail coefficients
are given by

Qs = / Bar(u) 1.0yl (11)
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where 9} denotes the complex conjugate of 14, the wavelet atom in the
diagonal direction defined in (7). These coefficients are random variables
with zero mean and variance (Heneghan et al., 1996), which leads to

E [|d¢jvspal?] = 277 /w (27u1 — k1, 27wy — ko)
X w* (2j2)1 — kl, 2j+81}2 — kQ) E [BH(U>BH(V)] du dv. (12)
As in Veitch and Abry (1999), we assume that the coefficients within and

across the scales are uncorrelated.
From (12), it can be shown that

E [|dgjraxl’] = 277372 vy (H) (13)

where V,, s(H) is an expression depending on ¢, H, and s, but not on the
scale 7,

Vet =~ [ [oto+a) v Ip.72" dpda. (1)

A proof of (13) is provided in the Appendix.
By taking logarithms in (13), we obtain

log, E Ud(j’ﬁs);klz] = —(2H +2)j + log, Vy s(H) (15)

for j € Z. The Hurst exponent can be estimated from the slope of the
linear equation (15). Finally, the empirical counterpart of (15) is a regression
defined on pairs

. 1 .
<],log2 - Z ‘d(jyﬁs),k}z) . J,s € 7. (16)

Jjts

The slope of the regression would estimate the Hurst exponent, i.e., H =
—(slope + 2)/2. Instead of the sample mean in (16), different location mea-
sures could be used, such as the median.

Although (16) is based on the ordinary least squares (OLS) regression,
the variance of wavelet coefficients is not constant. Therefore we can improve
the estimator by using more robust approach that incorporates heteroscedas-
ticity. Veitch and Abry (1999) used weighted linear regression to improve the

10



estimator. This method weights each level by the inverse of the variance of
that level. Hamilton et al. (2011) proposed estimation methods that are
based on a weighted average of all pairwise slopes s;; between levels ¢ and
j. Given a weight w;;, the estimator of the overall slope in (16) is then
> WijSij/ > ; wij. Different types of weights are proposed, from which we
obtain more robust estimation methods. In this paper we adopted robust
estimators proposed in the literature along with the OLS regression based
estimator to perform more comprehensive comparison.

3.4 The complex phase information

It is known that phase and spectrum are interacting in a nontrivial way to
describe the data. While phases encode most of the coherent (in space and
scale) structure of the image, the spectrum mostly encode the strength of
local information that could be corrupted with noise (Clonda et al., 2004).
For this reason phase information have been used in edge detection and in
the reconstruction of images. A classical illustration is given in Oppenheim
and Lim (1981) where the image reconstruction is more driven by the phase
of the Fourier transform rather than by the magnitude.

Recently, many research studies have focused on using phase information
from the complex wavelet transforms (Anderson et al., 2005; Hua and Or-
chard, 2008; Miller and Kingsbury, 2008; Rakvongthai and Oraintara, 2008).
In the wavelet domain the phase of a coefficient near an isolated feature
varies linearly with its distance from the feature. Despite of the numerous
literatures focused on the usage of phase in detecting edges and the fea-
ture orientations, the discriminatory power of phase in the complex wavelet
domain has not yet been studied and is unknown.

Although the phase of coefficients at each level does not have any scaling
property as the wavelet-based spectra, the summary statistics of the phases
turn out to be discriminatory. In the following section, we demonstrate how
the phase information can be used as a classification modality.

4 Mammogram Classification
In this section we illustrate how the complex wavelet-based spectra and the

phase information can be used to classify digitized mammograms. We demon-
strate that the spectra slope and phase, as descriptors of digitized images,
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have good discriminatory power. We note that it is straightforward to im-
plement the described analysis in various scientific areas in which 2-D data
are instrumental, such as geoscience or industrial applications.

For every sub-image of size 1024 x 1024, we performed discrete real-valued
wavelet transform (DWT) and discrete complex wavelet transform (DCWT)
using Daubechies 6 tap real and complex filters. Both transforms are based
on the scale-mixing 2-D wavelet transform described in Section 3.2. Next,
we estimated the slope of wavelet spectra using traditional ordinary least
squares regression (OLS) along with four robust estimation methods. The
robust approaches include Abry-Veitch weighted regression (AV), modified
level enhanced OLS (MEOLS), harmonic average weighted slopes (HA) and
modified HA (MHA). For more details on these robust estimators, we refer
the reader to Veitch and Abry (1999); Hamilton et al. (2011). Note that the
wavelet spectra slope is used as a predictor instead of the Hurst exponent.
This is because the estimated Hurst exponents H are empirical, and the
slowly decaying spectra could cause H to be negative.

For each classification method, we randomly selected 67% of the data as a
training set to fit the classifier and used the remaining 33% of the data to test
performance. The random selection of training and testing sets was repeated
10,000 times, so the reported prediction errors are averaged over 10,000 runs.
Performance of each model was compared in terms of sensitivity, specificity,
and overall correct classification rate.

The most parsimonious classification approach would be the logistic re-
gression involving only the wavelet spectra slope as a predictor. The result is
summarized in Table 1. The robust estimation methods show superior per-
formance over OLS estimator, with rates ranging from 0.58 to 0.86. Although
the performance of DWT and DCWT is comparable, overall sensitivity and
correct classification rates are higher with complex wavelet transform.

One of the interesting findings is that the phase contains information to
classify normal and malignant images. Since the features and directions of
background tissue is best preserved in the level of finest detail, we focus on the
phase information of finest detail. Figure 4 shows the estimated density of the
phase average and variance at the finest level. While the average of malignant
and normal cases are similar, the variance is quite different; the phase from
normal images have higher variance, which implies more irregularity. This
finding is consistent with universal paradigm in medical signal and image
processing, that increased regularity of signals and images is often associated
with pathologies. In this case, we hypothesize control mammograms have no

12



Table 1: Logistic classification based on the wavelet spectra slope; five different estima-
tion methods were compared, each with real-valued (DWT) and complex (DCWT) wavelet

transforms.
Method Sensitivity Specificity Correct Classification
OLS DWT 0.2472 0.7304 0.4744
DCWT 0.2912 0.7135 0.4892
AV DWT 0.7396 0.7901 0.7634
DCWT 0.7635 0.8064 0.7838
MEOLS DWT 0.5795 0.6768 0.6248
DCWT 0.6175 0.7039 0.6585
HA DWT 0.6168 0.7175 0.6651
DCWT 0.6573 0.7361 0.6958
MHA DWT 0.8599 0.8298 0.8436
DCWT 0.8627 0.8489 0.8545

clusters of consistent features and edges in the detailed wavelet space.

0.2 o.a

a4.05 a.1 a.15

Figure 4: Left panel: Estimated density of phase average at the finest level. Right panel:
Estimated density of phase variance at the finest level. Both are obtained from 105 normal
cases and 98 cancer cases. The solid line corresponds to malignant cases and the dotted

line to normal cases.
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To validate the discriminatory power of the phase information, we as-
sessed the logistic models by using each of the three summary statistics (av-
erage, variance, interquartile range) of the phases at the finest level. As Table
2 shows, the variance as a single predictor best classifies malignant and nor-
mal images with correct classification rate being 67%. Other measures such
as skewness, or quartiles Q1 and Q3 retain classification power in the range
of 50-60%.

Table 2: Logistic classification based on summary statistics of phase information at the
finest level. Q3-Q1 indicates the interquartile range.

Method  Sensitivity Specificity Correct Classification

Phase Average 0.6018 0.5275 0.5533
Variance 0.7004 0.6384 0.6654
Q3-Q1 0.4476 0.6727 0.5520

Next, the classification analysis based on the complex wavelet spectra
slope and the phase variance is conducted. Figure 5 shows a scatter plot of
cases by complex spectra slope versus phase variance, illustrating the differ-
entiation between benign and malignant cases.

We combined complex wavelet spectra obtained from five different es-
timation methods with the phase variance. For each of the five pairs, we
performed logistic, linear, quadratic and support vector machine (SVM)
classification. The result is summarized in Table 3. By comparing Table
3 with Tables 1 and 2, we conclude that the overall performance improved
significantly regardless of the pair combination. The improvement is espe-
cially notable for OLS; from Table 1, the OLS estimator itself had almost
no discriminatory power (correct classification rate below 0.5). However by
combining it with the phase variance, the rates have increased up to 67%.
Several wavelet bases and level combinations have been compared but the
results and the conclusion remain the same.

14
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Figure 5: Scatter plot of Complex spectra slope (obtained by MHA estimation method)
versus Phase variance. The symbols denote: circles for normal mammographies, crosses
for malignant mammographies.

5 Conclusions

In this paper we propose a complex scale-mixing 2-D wavelet transform in
the context of assessing regularities of 2-D objects. The proposed transform
is implemented by matrix multiplication, and it guarantees orthogonality,
directional insights, interplay between scales, and a straightforward inverse
transform. We then explore the spectra and self-similarity measures based
on the proposed complex wavelet transform. Their discriminatory power is
demonstrated in the context of mammogram image classification. The pro-
cedure is based on background tissues of images rather than mammogram
features such as microcalcifications and tumor masses, which is unused di-
agnostic modality in the field. The estimated Hurst exponent and phase
information turn out to be discriminatory summaries in mammogram image
classification. Although phase information has been used mainly for edge
detection and image reconstructions in the literature, we identify that the
summary measures of phase contribute to the correct classification of cancer
and normal images.
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Table 3: Logistic, Linear, Quadratic and SVM classification based on the pair of complex
wavelet spectra slope and the phase variance.

Correct
Method Sensitivity  Specificity Classification
(OLS; phase variance) Logistic 0.6900 0.6338 0.6578

Linear 0.7376 0.6067 0.6701
Quadratic ~ 0.8091 0.5365 0.6687
SVM 0.4568 0.9012 0.6723
(AV; phase variance) Logistic 0.7851 0.8009 0.7919
Linear 0.8171 0.7744 0.7951
Quadratic ~ 0.8390 0.7522 0.7943
SVM 0.7650 0.8127 0.7882
(MEOLS; phase variance) Logistic 0.7095 0.7265 0.7155
Linear 0.7629 0.6548 0.7072
Quadratic ~ 0.8145 0.5630 0.6849
SVM 0.5472 0.8291 0.6839
(HA; phase variance) Logistic 0.7395 0.7589 0.7471
Linear 0.7805 0.7003 0.7392
Quadratic ~ 0.8221 0.6155 0.7157
SVM 0.6372 0.7900 0.7113
(MHA; phase variance) Logistic 0.8561 0.8574 0.8559
Linear 0.8814 0.8320 0.8559
Quadratic ~ 0.8827 0.8297 0.8554
SVM 0.8243 0.8826 0.8525

To obtain the estimates of Hurst exponent, four robust estimation meth-
ods (AV, MEOLS, HA, MHA) along with the ordinary least squares estimator
are used. From the logistic classification model, we found that robust Hurst
exponent estimates and the phase variance at the finest level can differenti-
ate between benign and malignant cases with correct classification rates 63%
and above.

It is well known that for the real wavelets there is no symmetric and
compactly supported scaling function defining an orthogonal MRA except for
the Haar wavelet. Complex wavelets assure symmetry, compact support and
orthogonality of decomposing atoms, which are desirable properties in image

16



representations. This advantage led to the higher sensitivity and correct
classification rate across different representation scenarios.

Another benefit of using the proposed model is that we can combine the
Hurst exponent estimates with the phase variance to identify whether the im-
ages contain the evidence of malignancy. By combining these two measures,
we can improve correct classification rates. Note that the most accurate
classification rate achieves 86% with (MHA; phase variance) pair. However,
MHA and MEOLS employ weights that heavily emphasize the fine detail
levels, which is in accordance with the empirical observation that finer levels
in real wavelet decompositions are critical for correct mammogram image
classification (Hamilton et al., 2011). Therefore complex wavelets provide
more accurate tool in the sense that the under-performing summary in real
wavelets becomes discriminatory when combined with a phase information.

17



Appendix

Derivation of expression (13)

The scale-mixing detail coefficients of a 2-D fBm (11) are
djjts)x = 27+ /BH(U)@Z’ (qul — k1, 2 uy — k2) du.

These coefficients are random variables with zero mean and variance (Heneghan
et al., 1996). Therefore,

E [|dg+9xl*] = 22j+8/¢ (27ur — k1, 270 uy — k)
X 1/)* (2j’U1 — k’l, 2j+s,02 — kg) E [BH(U)BH(V)] du dv. (17)

Since )
o
E [Bu(u)Bu(v)] = 7H (lu™ + v = Ju = v[*7),

and
/w (2ju1 — ]{51, 2j+SU2 — k’g) du = /1/} (ijl — k’l, 2j+SU2 — kg) dv = O,
it can be easily seen that (17) becomes
2 O-?{ 2j+s j i+s
E [|dgjroxl’] = -5 27 //w (27uy — k1, 270 uy — k)
X (2701 — k1, 2700, — ko) [u — v[*7 du dv.

Next, let us define substitutions

P = (pi,p2) = (Qj(ul - U1)72j+s(u2 - Uz)) )

Then, if p, = (p1,27°pa2),

o2 - . . Cdios
E [|dgjoxl?] = ——H 2% //¢(p+Q) V*(q) 279 |p P 27472 dp dq
_ UH 2 J(2H+2)//¢ p+q ) ’p9|2H2—s dp dq
_ 9 ](2H+2) Vi
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where

Vielt) == [ [ oo ) vr(@) o2 dpda, (18)

is an integral depending on ¢, H, and s, but not on the scale j.
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