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Abstract: The past fifteen years have witnessed a radical change in the practice
of weather forecasting, in that ensemble prediction systems have been implemented
operationally. An ensemble forecast comprises multiple runs of numerical weather
prediction models, which differ in initial and lateral boundary conditions, and/or
the parameterized representation of physical processes. However, ensemble fore-
casts are subject to biases and dispersion errors, and thus statistical postprocessing
is required, with Bayesian model averaging and ensemble model output statistics
being state of the art approaches. Future work is called for to ensure that the
postprocessed forecast fields show physically realistic and coherent joint dependence
structures across meteorological variables, geographic space and look-ahead times.
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1 Introduction

A major human desire is to make forecasts for an uncertain future. Consequently,
forecasts ought to be probabilistic in nature, taking the form of probability distri-
butions over future quantities or events (Dawid 1984; Gneiting 2008). That said,
weather forecasting has traditionally been viewed as a deterministic exercise, draw-
ing on highly sophisticated numerical models of the atmosphere. The advent of
ensemble prediction systems in the 1990s marks a radical change (Palmer 2002;
Gueiting and Raftery 2005). An ensemble forecast comprises multiple runs of nu-
merical weather prediction models, which differ in initial conditions, lateral bound-
ary conditions, and/or the parameterized representation of the atmosphere being
used. An example from the University of Washington Mesoscale Ensemble (Grimit
and Mass 2002) over Western North America and the Northeast Pacific Ocean is
shown in Figure 1.

2 Statistical postprocessing of ensemble weather
forecasts

Realizing the full potential of an ensemble forecast requires statistical postprocessing
of the model output, to address model biases and dispersion errors.
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Figure 1: 36-hour ahead ensemble forecast valid October 30, 2000 over Western
North America and the Northeast Pacific Ocean, with color representing precipita-
tion amounts. Three members of the University of Washington Mesoscale Ensemble
(Grimit and Mass 2002) are shown.

Popular approaches for doing this include the Bayesian model averaging (BMA)
method developed by Raftery et al. (2005) and the ensemble model output statis-
tics (EMOS), or heterogeneous regression, technique introduced by Gnueiting et
al. (2005). The BMA approach employs a mixture distribution, where each mix-
ture component is a parametric probability density associated with an individual
ensemble member, with the mixture weight reflecting the member’s relative contri-
butions to predictive skill over a training period. In contrast, the EMOS predictive
distribution is a single parametric distribution.

To fix the idea, consider an ensemble of NWP forecasts, fi,..., fi, for temper-
ature, x, at a given time and location. Let ¢(z;u,0?) denote the normal density
with mean p € R and variance 02 > 0 evaluated at € R. The BMA approach of
Raftery et al. (2005) employs Gaussian components with a linearly bias-corrected
mean. The BMA predictive density for temperature then becomes
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with BMA weights, wq, ..., wy, that are nonnegative and sum to 1, bias parameters
ai,...,a; and by, ..., b, and a common variance parameter, o2, all of which being
estimated from training data over a rolling training period that consists of the recent
past. The EMOS approach of Gneiting et al. (2005) employs a single Gaussian
predictive density, in that

p(@| fis. oo fo) = d(@ya+bifi + -+ b fr, ¢+ ds?),

with regression parameters a and by, ..., b, and spread parameters ¢ and d, where
s? is the variance of the ensemble values. The EMOS technique thus is more parsi-
monious, and the BMA method is more flexible.



While the original methodological development of Raftery et al. (2005) and
Gneiting et al. (2005) was addressed at temperature and surface pressure, more
recent work aims at the statistical postprocessing of ensemble forecasts for quan-
titative precipitation (Sloughter et al. 2007), wind speed (Sloughter et al. 2010;
Thorarinsdottir and Gneiting 2010) and wind direction (Bao et al. 2010). For a
fully Bayesian alternative to the BMA approach of Raftery et al. (2005), see Di
Narzio and Cocchi (2010).

3 Challenges for future work

Even though Bayesian model averaging and ensemble model output statistics are
state of the art methods, they treat distinct weather variables at distinct geographic
locations and distinct look-ahead times independently of each other. This conflicts
with key applications such as air traffic control, flood management or winter road
maintenance, where it is critically important that the postprocessed forecast fields
show physically realistic and coherent joint dependence structures across meteoro-
logical variables, geographic space and look-ahead times.

Perhaps the most advanced technique in these directions is the Spatial BMA
approach of Berrocal, Raftery and Gneiting (2007), who merged the traditional
BMA approach of Raftery et al. (2005) with the geostatistical output perturbation
(GOP) technique of Gel, Raftery and Gneiting (2004) to obtain probabilistic tem-
perature field forecasts that honor the spatial structure of observations. Similarly,
the Bernoulli-Gamma BMA approach of Sloughter et al. (2007) could be merged
with the two-stage spatial method of Berrocal, Raftery and Gneiting (2008), which
uses Gaussian copulas, to yield spatially and/or temporally coherent postprocessed
forecast fields for quantitative precipitation. Variants of the Schaake shuffle (Clark
et al. 2004) provide nonparametric alternatives. Work along these lines is a critical
research need in the statistical postprocessing of ensemble weather forecasts, and
there is ample scope for continued methodological development, using nonparametric
tools, methods of spatial and spatio-temporal statistics, and/or copula techniques.
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