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Aurélien Ribes
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Abstract: Detection and attribution (D&A) have played a central role within
the assessment of the human influence on climate and within IPCC’s reports. De-
tection involves the statistical demonstration that a change has happened within
climatic observations. Attribution consists in assessing the respective contributions
of one or several causes to some observed change. Both require the use of climate
model simulations, and are based on spatial or spatio temporal patterns of change.
This paper provides a very short presentation of the classical ”optimal fingerprint”
method for D&A. Some recent developments, regarding the use of ”error in variable”
are introduced. Some of the challenging aspects of the method will be discussed too,
in particular regarding the very large dimension of the typical datasets used.
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1 Introduction

Detection and attribution (D&A) have played a central role within the assessment of
the human influence on climate and within IPCC’s reports. Detection involves the
statistical demonstration that a change has happened within climatic observations.
Attribution consists in assessing the respective contributions of one or several causes
to some observed change. Both are based on the characterisation of the spatial or
spatio-temporal pattern of change corresponding to each physically plausible cause.
However, specific tools from spatial statistics have been poorly used on that theme.

This paper aims primarily at giving a state of the art picture of some of the
concepts, statistical tools, and current challenges in D&A analysis. The secondary
attempt is to shortly discuss both difficulties and potential benefits of using spatial
statistics tools.

Introduction of D&A first requires to introduce some concepts used in climate
sciences. Climatologists use to first define their subject of study: the climate system.
It includes the atmosphere, the ocean, and several other components (see IPCC,
2007). This system is influenced by several boundary conditions (e.g. the solar
activity, the chemical composition of the atmosphere), usually referred to as external

forcings, that may impact its state or dynamics. However, the variables used for
describing the state of the system show some variability, even under fixed boundary
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conditions. This variability is called internal variability, and corresponds to the kind
of variability expected while the climate is not changing.

Statistical D&A requires to have some knowledge on two parameters: first, the
statistical properties or the distribution of the internal variability, and second, the
expected response of the climate system to a given external forcing. Physically-
based climate models are usually used for evaluating both objects instead of e.g.
parametric models. Indeed, internal variability involves very specific spatial patterns
and a large set of spatial scales that may hardly be accounted for in a parametric
model. Instead, the use of climate model allows the evaluation from our physical
understanding. D&A then requires careful comparison between observed changes
and outputs from climate models.

2 Optimal fingerprint method

The more classical approach for climate change D&A is usually referred to as the
optimal fingerprint method. This method has been gradually introduced at the end
of the 90’s (Hasselmann, 97, Hegerl et al., 97, Allen & Tett, 99). The latter presents
this method as a linear regression of the observed climate time-series on the expected
responses to the external forcings :

Y =
I∑

i=1

βigi + ε, (1)

where Y are the observations, βi are unknown scaling factors, gi is the expected
response of the system to the i-th external forcing (as simulated by one or several
climate model), and ε denotes the internal variability. In Eq. (1), Y is usually
a spatio-temporal vector, Yi typically consisting of the average of the temperature
over a region, and a decade. gi and ε have the same dimension and structure as Y .

Model (1) basically assumes that climate models have some accuracy at simu-
lating the spatio-temporal pattern of the response to each external forcing, whereas
they may fail at simulated the proper amplitude of that response. Within model
(1), detection of a change associated to the forcing i corresponds to the rejection of
the null hypothesis “βi = 0”. Attribution, in addition to the detection, requires to
show that the observed response is consistent with the expected one, or equivalently,
that the null hypothesis “βi = 1” cannot be rejected.

Assuming that C = Cov(ε) is known, for example from climate models simula-
tions, the computation of maximum likelihood estimate (MLE) for β is easy:

β̂ = (G′C−1G)−1G′C−1Y, (2)

where G = [g1, . . . , gI ]. Under the same assumption, the distribution of the MLE is
known, so as hypothesis testing on β is easy to perform.

Some refinement of the method has been introduced by Allen and Stott (2003)
and Huntingford (2006), in order to take into account the uncertainty at simulating
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the spatio temporal patterns gi. In that case, the uncertainty may come from internal
variability (within the climate model simulation), or multi-model uncertainty. The
main statistical model is then slightly changed to

Y =

I∑

i=1

βi(gi + νi) + ε, (3)

where νi represents the uncertainty on gi. Assuming, similarly to ε, that Σ = Cov(ν)
is known, the optimal estimate of β may be derived by using a Total Least Square

(TLS) procedure instead of the Ordinary Least Square technique involved in the
MLE mentioned before.

Such methods have led to one of the important figures of the last IPCC report
that deals with the quantification of the contribution of several external forcing to
the observed warming (Figure 9.6, IPCC, 2007).

3 Estimation of C and high-dimension

The method presented before assumes that C (and Σ) is known, while, in a real-
life problem, it is not. Several difficulties arise from the estimation of C, that is
usually done from a control runs (i.e. climate simulations without any change in the
external forcings). We here will focus in the problem related to the high-dimension
of the typical global temperature datasets.

Current datasets are providing homogenised temperatures on a 5˚x 5˚grid, that
results in 2592 grid-points in space. D&A study typically consider a 50-yr period in
time, decomposed in 5 decades. The dimension of Y is then close to 13000. Note
that missing values will likely decrease this number, but won’t change the typical
size of, say 104. Consequently, C is a 104 x 104 matrix, that has to be estimated
from available control runs, that are typically covering 104 years (when considering
together control runs from various models). Classical covariance matrix estimates
being very poor in such cases, the dimensionality needs to be reduced.

Two approaches have been mainly used in order to reduce this dimension while
focusing on the large spatial scales. First, global temperatures have been projected
onto some first spherical harmonics (e.g. Stott, 2006). Second, particularly at the
regional scale (where the dimension of the dataset is smaller but remains too high),
data have been projected onto the first principal components (e.g. Zwiers, 2003).
In both cases, projection may reduce the accuracy of the β estimates (there are
no results of optimality), and requires to choose the reduced dimension (i.e. the
number of spherical harmonics or principal components), what may be sensitive.

One possible alternative consists in using a regularised estimate of the covariance
matrix C, that is a linear combination of the empirical covariance matrix estimate
Ĉ and the identity (Ribes et al., 2009) :

C̃ = γĈ + ρI. (4)
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Such an estimate has been shown to be more accurate than Ĉ in high-dimension
(Ledoit and Wolf, 2004). To plug (4) into (2) also leads to an improved estimate of
β in the context of high dimension data.

This approach may help the estimation of β, but no result of optimality has been
proved. As a consequence, the problem of efficiently estimating β in the context of
high dimension dataset is still open. One potentially attractive way may be to use
the spatio-temporal structure of Y in order to improve the estimation of C.

4 Concluding remarks

D&A deal with one key-question regarding climate change, that is the quantification
of the human contribution to the current warming. While initially based on a simple
linear model, D&A involve some recent statistical tools and also provide some chal-
lenging questions, in particular related to the high dimension of the corresponding
datasets.
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