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Abstract:  Detailed information on soil to manage polluted or agricultural sites is often 
prohibitively expensive to obtain. To sample adequately, the approximate scale of 
spatial variation needs to be known. If soil data are available, variograms can be 
computed and used to determine the kriging errors for several grid intervals and an 
interval selected to meet a specific tolerable error. In the absence of prior knowledge, if 
soil properties appear related to ancillary data such as aerial photographs, elevation or 
apparent electrical conductivity (ECa), individual or multivariate variograms of such 
data may indicate the scale of variation in the soil. If the scale of variation indicates too 
few data to compute a reliable variogram conventionally, it can be estimated by residual 
maximum likelihood or a standardized variogram from ancillary data can be used.  
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1. Introduction 
 
Soil properties can vary at markedly different spatial scales within sites of interest, such 
as fields. The variation comprises that over short distances of a few metres and over 
longer distances of tens or hundreds of metres. For most environmental and agricultural 
management, it is variation over tens or hundreds of metres that managers want to 
resolve and we can regard the short-range variation as ‘noise’ or a sampling effect. 
Many soil attributes have to be determined from samples taken in the field, therefore 
there is a need to predict accurately at places where there are no data. Kriging provides 
a sound basis for prediction leading to accurate digital mapping for managing soil 
attributes (Oliver, 2010). The accuracy of kriged and other interpolated predictions, 
however, depends on the quality of sample information to compute accurate variograms 
and availability of spatially dependent data from which to predict (Webster and Oliver, 
2007). This means that sampling should be at an interval that is well within the 
correlation range of spatial variation. Therefore, it is essential that the spatial scales of 
variation in the properties of most importance for environmental and agricultural 
management are used to guide sampling.  

Sampling on a grid is often used because it provides an even cover of values and 
minimizes the maximum estimation variance (or error) for a given grid interval and it is 
efficient for sample collection in the field. If variograms of soil properties from 
previous surveys exist for an area with a similar soil parent material, they can be used 
with the kriging equations to determine an optimal grid interval. If the scale of variation 
is large, the sampling intervals recommended by this method will also be large and there 
may be too few data from which to compute a reliable variogram by the usual method 
of moments estimator. Webster and Oliver (1992) showed that at least 100 data are 
required to compute a reliable variogram in this way from isotropic data. However, 
Kerry and Oliver (2007) have shown that a variogram estimated by residual maximum 
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likelihood (REML) can provide more accurate predictions with fewer data than one 
estimated conventionally. For some soil properties, the variation might be evident in 
remote and proximally sensed imagery. Variograms computed from such ancillary data 
can be used to determine the approximate scale of spatial variation. A standardized 
variogram based on ancillary data or existing variograms of soil properties can also be 
used to krige spatially dependent (Kerry and Oliver, 2008). We illustrate these methods 
with a case study in England.  

2. Materials and Methods 
 
Matheron’s method of moments (MoM) estimator to compute the variogram is given by 
 
 
 
where z(xi) and z(xi+h) are the actual values of Z at places xi and xi+h, and m(h) is the 
number of paired comparisons at lag h. The parameters of the model fitted to the 
experimental variogram can be used with the data for prediction at points or over 
blocks.  Kriged predictions are a weighted average of the data, z(x1), z(x2), …, z(xn), at 
the unknown point or block, B, 
  
   

 

 where n usually represents the data points within the local neighbourhood and λi are the 
weights. To ensure that the estimate is unbiased the weights are made to sum to one. 
The estimation variance of          is 

where             is the average semivariance between data point xi and the target block B, 
and γ ( , )B B is the average semivariance within B, the within block variance. The kriging 
error is the square root of this.  

McBratney et al. (1981) showed how the variogram and kriging equations could 
be used to determine an optimal sampling interval for prediction by kriging before 
obtaining new data from a survey. The kriging weights, and also the kriging variances 
or errors, depend on the configuration of the sampling points in relation to the target 
point or block and on the variogram and not depend on the observed values at these 
points. Therefore if we have a variogram function from a previous survey we can 
determine the kriging errors for any grid size before sampling.  

The experimental multivariate variogram (Bourgault and Marcotte, 1991) was 
computed from aerial photograph data by the standard formula adapted for the 
multivariate case: 

 

 

where z(xi) and z(xi + h) are the vectors of observations at xi and xi + h, T is the 
transpose and M is a p × p positive-definite symmetric matrix defining the relations 
between the variables.  
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Pardo-Igúzquiza (1998) suggested that a reliable variogram could be computed 
from a ‘few dozen’ data by maximum likelihood or residual maximum likelihood 
(REML). Kerry and Oliver (2007) examined this idea further and suggested that 50 to 
60 data might suffice (this paper also provides the detail on the theory of the method). 

 
3. Results 
 
The model parameters of a variogram computed from loss on ignition (LOI) data of a 
field in Wallingford, Oxfordshire, England were used to determine the kriging errors 
over blocks of various sizes and for a range of grid intervals. The kriging errors are 
plotted against grid spacing Fig. 1a and a suitable sampling interval would be 120 m for 
a tolerable error of 0.5%.  

 
 

 

 

 

 

 

 

 

Figure 1: (a) Graph of kriging error against grid spacing for loss on ignition and (b) 
multivariate variogram of aerial photograph data at Wallingford, Oxfordshire, England. 

 
The multivariate variogram computed from the red, green and blue wavebands 

of an aerial photograph of bare soil at Wallingford was fitted by a stable exponential 
function with an approximate range of 205 m (Fig. 1b). Based on less than half the 
variogram range, this suggested a sampling interval of about 90 m. Figure 2a–c shows  
kriged maps based on the conventional variograms with the original data on a 30-m 
grid, the suggested interval of 90 m and for 50 sites based on a 120-m grid with 
additional samples at 60 m, respectively for LOI at Wallingford. Figure 2d,e  shows the 
kriged maps of LOI based on the 90-m grid with a variogram estimated by REML, and 
based on a 120-m grid with 15 additional targeted samples estimated by the variogram 
in Fig. 1b standardized to a sill of unity. Figure 1c–e  shows that additional samples at a 
shorter interval, a variogram estimated by REML or a standardized variogram improve 
estimates from sparse data.  
 
4. Concluding remarks 
 
The results show the importance of knowing the scale of spatial variation, of having 
data at distances shorter than half the range of correlation and of alternative methods of 
estimating the variogram.  
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Figure 2: Kriged maps of LOI for Wallingford: with variograms estimated by MoM (a) 
30-m grid (296 data), (b) 90-m grid (36 data), (c) 120-m grid + samples at 60-m (50 
data); (e) 90-m grid with variogram estimated by REML and (d) 120-m grid + 15 
targeted samples with standardized variogram.  
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