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Abstract: The main goal of Disease Mapping is to investigate the geographical
distribution of the risk of diseases. Spatially-structured priors were considered in
all the proposed models in the literature to estimate relative risk surfaces. Selective
inference on area-specific relative risks received little attention in the literature. We
refer to selection and estimation of relative risks of areas at unusual (higher and/or
lower) risk. Previous use of cross-validation posterior predictive distributions to de-
tect outlying observation misses to address the selection effect in inference. In this
work we review this issue in the context of hierarchical Bayesian models and we take
advantage of a real example on the distribution of Lung cancer in Tuscany.
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1 Introduction

Disease mapping, i.e. the study of variability of disease occurrence on space, focused
on relative risk surface estimation. Since the seminal paper of Clayton and Kaldor
(1987) spatially-structured priors were considered in almost all the proposed models
in the literature. However, inference on area-specific relative risks received little
attention in the literature despite of the need to select areas (or regions) at unusual
(high or low) risk. Stern and Cressie (2000) used cross-validation posterior pre-
dictive distributions to explore model fitting and identify outlying areas in disease
mapping. The idea of cross-validation is to re-fit the model removing one observa-
tion in turn. The model is thus fitted to a subset of data Y−i from which the i-th
observation is dropped. The posterior predictive distribution P (Y rep

i |Y−i) for a repli-
cate (Y rep

i ) of the i-th observation conditional to the remaining data Y−i is then used
for evaluation purposes. The extremeness is usually measured by some summaries
over P (Y rep

i |Y−i), for example the posterior predicted p-values, P (Y rep
i ≤ yi|Y−i),

or the conditional predictive ordinate, p(Y rep
i = yi|Y−i). Marshall and Spiegelhalter

(2003) noted that “. . .There are essentially two reasons why observations/regions
may be divergent. First, the statistical assumptions underlying the model may be
incorrect. . .[second], these regions could represent genuine ’hot-spots’ of disease re-
quiring further investigation.” Poor model fit is a reasonable explanation when a
relevant number of observations/areas are identified as divergent while the pres-
ence of real hot-spots or outliers is the usual interpretation of few divergent ones.

1



Marshall and Spiegelhalter (2007) proposed a mixed approach to perform cross-
validatory checks in disease mapping.

In this work we review this issue in the context of hierarchical Bayesian models
and we take advantage of a real example on the distribution of Lung cancer in
Tuscany.

2 Methods

Let Yi be the number of observed cases in the i-th area (i = 1, . . . , 287) which follows
a Poisson distribution with mean Eiθi, where Ei is the expected number of cases
under indirect standardization and θi the relative risk.

Besag et al. (1991) specified a random effect log linear model for the relative
risk log(θi) = ui + vi . The heterogeneity random term ui represents an unstruc-
tured spatial variability component assumed a priori distributed as Normal (0, λu)
where λu is the precision parameter modelled as Gamma. The clustering term vi

represents the structured spatial variability component assumed to follow a priori
an intrinsic conditional autoregressive (ICAR) model. In other words, denoting Si

as the set of the areas adjacent to the i-th area, vi|vj∈Si
is assumed distributed as

Normal(v̄i,λvni) where v̄i is the mean of the terms of adjacent areas to the i-th one
(Besag and Kooperberg, 1995) and λvni is the precision, which is dependent on ni,
the cardinality of Si. Through these two random terms the BYM model shrinks the
relative risk estimates both toward the local and the general mean.

The choice of a suitable combination of hyperparameters leads to different de-
grees of prior vagueness on the extent relative risk heterogeneity among areas.

For the Besag et al. (1991) model we took advantage of the proposal of Bernar-
dinelli et al. (1995). The hyperpriors for the precision parameters were parameter-
ized in terms of the ratio between the 95th percentile and the 5th percentile of the
relative risk distribution.

2.1 Cross-validation predicted p-values

Divergence from the hierarchical null models is assessed via posterior predictive
distribution. The posterior predictive distribution is:

P (Y rep|Y ) =

∫
P (Y rep|Y, θ)P (θ|Y )dθ =

∫
P (Y rep|θ)P (θ|Y )dθ

assuming conditional independence of Y rep and Y given the parameters. This is
too confident since the data are used twice, for deriving posteriors and for obtaining
replicates (Plummer 2008). To control for excess in optimism the posterior predictive
distribution is replaced by the cross-validation (leave-one-out) posterior predictive
distributions:
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P (Y rep|Y−i) =

∫
P (Y rep|θ)P (θ|Y−i)dθ

Cross validation posterior predicted distributions are computationally prohibitive.
Several approximations have been proposed. A mixed approach was given by Mar-
shall and Spiegelhalter (2007). At each Montecarlo iteration a replicate value for the
random parameters for the i-th observation is generated and then used to generate
a replicate observation Y rep

i . This approach is called mixed because random effects
are drawn from their predictive distribution and not from the posterior.

A measure of divergence can be the cross validation posterior predicted p values
defined, using mid-p for a discrete response, as:

• if Yi > Ei: Pr(Y rep
i > Y obs

i |Y−i) + 1
2
Pr(Y rep

i = Y obs
i |Y−i)

• if Yi < Ei: Pr(Y rep
i < Y obs

i |Y−i) + 1
2
Pr(Y rep

i = Y obs
i |Y−i)

where Yi is the observed and Ei the expected number of cases in the i-th area.
The need of post-processing of any model-based p-values was discussed by Ohlssen

et al. (2007).

3 Results

Lung cancer death certificates were considered for males resident in the 287 munic-
ipalities of the Tuscany Region (Italy) for the period 1995-1999. Data were made
available by the Regional Mortality Register. A set of reference rates (Tuscany,
1971-1999) have been used to compute the expected number of cases for each mu-
nicipality, following indirect standardization and classifying the population by 18
age classes (0-5, . . ., 85 or more).

We explored several choices of hyperprior parameters for the Besag et al. model.
These choices are expressed as prior 90% centile range of relative risk among areas.
They represent different beliefs about the background variability of disease risk.
Each choice produced a different nested set of divergent observations. The priors
defined by the hyperparameters are very informative. In some sense, we deliberately
specified a series of constrained bad-fitting models, which represents a series of
believes on the role of confounders in modifying the baseline risk among areas. A
vague (non informative) null with leave-one out (leave-a-group out) cross-validation
did not work in our Disease mapping context.

4 Conclusion and Discussion

This approach does not correspond to a Bayesian version of hypothesis testing be-
cause a mixture model is not specified. One consequence is that posterior prob-
abilities may not protect to multiple testing. Post-processing of cross-validation
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posterior predictive p-values was used by Spiegelhalter. Tri-level Bayesian model
was proposed by Catelan et al (2010) in the context of Disease Mapping. Simi-
lar approaches to hierarchical modelling of the null are described in Ohlssen et al.
(2007). The authors argued that fitting null model by leave-one out cross-validation
may be sufficient to detect divergent observations. We disagree with this point, as
we show in the results section. In Disease mapping hierarchical modelling of the
null can be reached by specifying informative null priors. Prior predictive, posterior
predictive and partial predictive distribution can be discussed also in this context.
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