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Abstract: New classes of cross-covariance functions have been recently pro-
posed, nevertheless the linear coregionalization model (LCM) is still of interest and
widely applied. In this paper, a new fitting procedure of the space-time LCM (ST-
LCM) using the generalized product-sum model is proposed. This procedure is
based on the well known algorithm of matrix simultaneous diagonalization, applied
on the sample matrix variograms computed for multiple spatial-temporal lags.
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1 Introduction

The LCM, firstly introduced by Matheron in 1982 is still one of the most utilized
models for multivariate spatial and spatial-temporal data analysis (Zhang, 2007;
Babak and Deutsch, 2009; Emery, 2010). However, in the space-time context several
theoretical and practical aspects must be considered, such as the fitting process. In
geostatistics, there is a wide literature concerning the LCM fitting stage (Goulard
and Voltz, 1989; Lark and Papritz, 2003). In this paper, a new fitting procedure of
the ST-LCM using the generalized product-sum variogram model is proposed. It
is shown that the simultaneous diagonalization of the sample matrix variograms is
useful to identify the basic components of the coregionalization model.

!Supported by Fondazione Cassa di Risparmio di Puglia.



2 Multivariate space-time random field

Given a second-order stationary vector-valued space-time random function
(STRF) {Z(s,t), (s,t) € D x T C R} with Z(s, t) = [Zi(s,1), ..., Zy(s,1)]T, p >
2, where s = (s1, S9,...,54) € D (generally, d < 3), denotes the spatial coordinates
and t € T is the temporal coordinate, the cross-variogram of two space-time random
functions Z (s, t) and Z(s',t') exists and depends on the space-time separation vector
h = (h,, hy), with hy = (s —s’) and h; = (t—1t'). As in the spatial context, a second-
order stationary multivariate STRF can be modelled as a ST-LCM. Hence, the
variogram matrix can be written as

I'(h) = [(hy, hy) = Z&mmt (1)

where B; = [blaﬂ], l=1,...,L, a,f=1,...,p, are positive definite (p x p) matrices,
commonly known as coregionalization matrices, while g;(hg, h), | = 1,..., L, are
basic space-time variograms associated with the L scales of variability.

In De Taco et al. (2003, 2005), each space-time basic variogram is modelled as a
generalized product-sum model (De laco et al., 2001):

gl(h87ht> :’}/l(hs,O)+’}/l(0, ht) _kl ’}/l(hs,O) ’}/l(O,ht) ) [ = 17"'7L7 (2)

where 7;(hs, 0) and 7;(0, h;) are the spatial and temporal marginal variogram models,

respectively, while parameters k;,l = 1,..., L, are given by:

sill[yi(hs, 0)] + sill[y,(0, hy)] — sill[gi(hg, ht)]
sill[y(hg, 0)] - sill[y,(0, hy)] ’

By substituting (2) in (1), the ST-LCM based on the generalized product-sum var-
iogram models is determined by two marginal LCM’s:

by = I=1,....L. (3

L
L(h,,0) = Z&wmo (0, ) = ) Bi (0, h). (4)
=1

Note that other space-time variogram models (Gneiting, 2002; Ma, 2002; Stein, 2005;
Porcu et al., 2008) can be used to describe the basic components of the ST-LCM.
However, the flexibility of the product-sum variogram, in estimating and modeling
the spatial-temporal variability, is often convenient (De Iaco et al. 2003, 2005).

3 Fitting a ST-LCM

After a brief review of the usual fitting process of the ST-LCM using the generalized
product-sum model, the new, more flexible, fitting procedure is discussed.



The usual fitting procedure

In De Taco et al. (2003) the process of fitting a ST-LCM using a generalized product-
sum variogram model, was developed as follows.

1. Compute the empirical marginal direct variograms, in space and in time, for all
the p variables under study and then fit nested variogram models. At this step, the
diagonal elements of each matrix B;, [ = 1,..., L, are determined as well as the
marginal basic structures v;(hg, 0) and ,(0,h), Il =1,..., L.

2. Determine the marginal cross-variograms and the off-diagonal elements of the
matrices (4), ensuring that each matrix By is positive definite.

3. In order to complete the modeling of g;(hs, k), l = 1,..., L, the k; parameters
must be determined. Hence, the space-time variogram surfaces are computed and
fitted to product-sum nested models.

Using this procedure, different practical problems have to be faced: a) the identi-

fication of the bﬁj,z’,j = 1,...,p, elements of the matrices B;, [ = 1,..., L, since
for a fixed [, these coefficients must be the same for the marginal space and time
variograms; b) the estimation of parameters k;, with [ =1,..., L.

The new fitting procedure

Given the multivariate space-time data set concerning the p variables (with p > 2)
and the p(p + 1)/2 spatio-temporal direct and cross-variograms, computed for a
selection of H spatial-temporal lags, the new fitting algorithm goes on running 4
sub-procedures sequentially, as follows.

Sub-procedure I: identify the basic structures.

A simultaneous diagonalization technique is applied on the set of H square, sym-
metric and real-valued matrices f‘(hs, hi)r,k =1,..., H, of sample direct and cross-
variograms, in order to find a (p x p) orthogonal matrix which diagonalizes or
“nearly” diagonalizes these matrices. At this step, the [-th empirical basic spatial-
temporal component are detected by extracting the [-th diagonal element from all
the diagonal matrices.

Sub-procedure II: fit the basic structures.

Given the space-time surfaces of the basic components, the spatial and temporal
ranges of the basic surfaces are determined so that the scales of space-time vari-
ability are identified. The number L (L < p) of scales depends on the number of
different spatial and temporal ranges the basic components exhibit. Successively,
the product-sum model g;(hg, ;) in (2) is fitted to each empirical basic component,
with [ = 1,..., L. Hence marginal variogram models, v,(h,, 0) and ~,(0, h;) are fit-
ted to the empirical basic marginals.

Sub-procedure III: compute the coregionalization matrices.

Given the direct and cross-variograms surfaces of the variables under study, esti-
mated in step I, the global sill values at the L scales of spatial-temporal variability
are detected. Successively, the elements blaﬁ of matrices B;,l = 1,..., L, are deter-
mined by dividing the contributions of the direct and cross-variogram surfaces at
the [-th scale of variability by sill[g;(hs, h¢)].



Sub-procedure I1V: check the admissibility of the model.

Given the coregionalization matrices B;,l = 1,..., L, the admissibility of the ST-
LCM is checked. If the matrix B;, with [ = 1,..., L, presents some negative eigen-
values, they are replaced by zeros, such that the new coregionalization matrix B;",
at the [-th scale of variability, is positive definite.
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