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Abstract: Dioxins and dioxin-like compounds are byproducts of industrial pro-
cesses, commonly regarded as highly toxic persistent organic pollutants. Polycyclic
aromatic hydrocarbons occur in oil, coal, and tar deposits and are produced as
byproducts of fuel burning, coke-making, and metal smelting. We propose an anal-
ysis of the spatial diffusion and temporal evolution of 46 congeners, based on monthly
concentration data for the period October 2008 - December 2010 at three monitor-
ing stations. Given the high dimensionality of the data, a descriptive strategy was
adopted based on the duality diagram approach, a unifying framework including
classical multivariate statistical methods that has become a valuable tool for com-
bining data collected from different sources and using different methods.

Keywords: Air quality, Duality diagram, Multiple factor analysis

1 Introduction

Dioxins, dioxin-like compounds and polycyclic aromatic hydrocarbons are of concern
because some compounds have been identified as carcinogenic, mutagenic, and ter-
atogenic. The urban district of Taranto sits in close proximity to an industrial area
where several large combustion plants are located, including an integrated cycle steel
plant, an oil refinery, three waste incinerators, two power plants, and cement-works.
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2 Materials and Methods

We propose an analysis of the spatial diffusion and the temporal evolution of 46 con-
geners split into five groups (PCDD, PCDF, PCB, LPAH, HPAH), based on monthly
concentration data for the period October 2008 - December 2010 at three monitoring
stations located within the industrial area (MA) and in a traffic/background area
(AA and TA). Given the high dimensionality and multicollinearity of the available
data, a descriptive strategy was adopted to obtain a synthesis of the spatio-temporal
behavior and of the relationships between congeners. The duality diagram approach
is a unifying framework including many classical multivariate statistical methods and
less well-known recently developed tools for combining data collected from different
sources and taking advantage of complex data types (Thiolouse, 2011). Within the
K -table methods class, Multiple Factor Analysis (MFA) studies several groups of
variables defined on the same set of observations and weights each group to achieve
a joint representation of individuals and variables inducing a global representation
of the groups of interest (Escoufier and Pagés, 1994). Weighting of variables groups
is necessary to make the influence of each group comparable in a global analysis.
MFA produces a display in which representations of the set of individuals associ-
ated to each group of variables are superposed. A global representation of groups
of variables is obtained, in which each group is represented by the scalar product
matrix it defines on the set of individuals. MFA search for factors which are com-
mon to several groups of variables is addressed by first setting up general variables,
each one related to all the groups, and then searching for the canonical variable in
each group for each variable. Each group defines a structure on the individuals set
expressed by the shape of a cloud. A superposed representation which sets up the
structure common to the different clouds is obtained in order to compare clouds one
to another. A display in which each group is represented by one point allows to get
a global comparison of groups.

The first step (interstructure) provides the coefficients of a special linear com-
bination of the data tables, leading to an optimal summary called “compromise”.
The second step computes the PCA of this linear combination. The third step
(intrastructure) is a projection of the rows and columns of each table into the multi-
dimensional space of the compromise analysis. Functions implementing the methods
used in this case-study are contained in the library ade4 of the statistical computa-
tion environment R (Dray et al., 2007).

3 Results

MFA is applied to the available data considering 15 groups of variables obtained
crossing the 3 monitoring stations with the 5 groups of congeners. The first two
principal components of the compromise account for 54% of the total inertia. With
such a complex data structure this amount is considered sufficient for exploring the
main features of the data. The behavior of the subsequent principal components
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Figure 1: Left, projection of the principal components of each table on the com-
promise. Right, projection of the 23 observations on the compromise principal
axes. Labels with darker background color for most recent time points are framed
according to the season (red=Summer, orange=Spring, light grey=Autumn, dark
grey=Winter).

(not reported) does not add any relevant information to the results obtained by the
observation of the first two.

In Fig. 1, Left the industrial MA monitoring station appears to be quite separate
from AA and TA (traffic/background). For the latter two, PAH’s behave differently
from all other congeners. A general seasonality can be seen in Fig. 1, Right with
Spring/Summer observations in the top-right corner and Autumn/Winter on the
opposite side.

Some more insights can be gained by looking at the biplots of each table in Fig.
2. For the MA monitoring station we observe a reduction in PCDD/F’s and an
increase od HPAH’s. An overall reduction of the 46 congeners is registered at AA,
while PAH’s show a more evident decrease at TA. A stronger evidence of seasonal
congener concentration decrease is found for PAH’s at AA and TA.

4 Concluding remarks

Evidence of proximity to pollution sources is gained for the MA monitoring station
given both the less pronounced seasonality, compared to AA and TA, and the con-
trasting trend of different pollutant groups, where PCDD/F show a general decrease
while HPAH’s are increasing over time. Industrial sources appear to be a major con-
tributor to PAH pollution for MA compared to civil sources like traffic or domestic
heating. While experiencing the impact of a comparable amount of road traffic, the
MA station, where civil and industrial sources mix, has markedly different congener
relationships compared to AA and TA.
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Figure 2: Biplots of the 15 tables (rows projected on the principal axes, columns
projected on the principal components of the compromise). Dots with darker color
for most recent time points are circled according to the season (red=Summer, or-
ange=Spring, light grey=Autumn, dark grey=Winter).
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