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Abstract: Notification data collected by national surveillance systems are
typically available as weekly time series of counts of confirmed new cases, stratified
e.g. by geographic areas. This work outlines the statistical modeling framework
in Paul and Held (2011) for the analysis of such data. Inherent (spatio-)temporal
dependencies are incorporated via an observation-driven formulation. Using
region-specific and possibly spatially correlated random effects, we are able to
address heterogeneous incidence levels. Inference is based on penalized likelihood
methodology for mixed models. The predictive performance of models is assessed
using probabilistic one-step-ahead predictions and proper scoring rules.
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1 Introduction

Notification data on infectious diseases typically consist of counts of confirmed new
infections, which are observed in defined geographical areas at regular time intervals.
Retrospective surveillance aims to identify outbreaks and (spatio-)temporal patterns
through statistical modeling. Motivated by a branching process with immigration,
Held et al. (2005) propose to decompose the mean incidence additively into three
components: an autoregressive, a neighbor-driven and an endemic component.
The first two components represent an autoregression on past counts in the same
and in other regions, respectively, and should capture occasional outbreaks and
dependencies across regions. The third component parametrically models regular
trends and seasonal variation, e.g. by a sine-cosine formulation. Overdispersion can
be allowed for by replacing the Poisson with a negative binomial distribution.

In the case of spatially correlated time series, the assumption of equal disease
transmission or incidence levels across all regions is questionable. For instance,
transmission might be influenced by age, vaccination status, or environmental
conditions. Such factors could be incorporated into the model as covariates if
suitable information is available. As an alternative, Paul and Held (2011) suggest
to include regional random effects to allow for heterogeneity across regions. The
predictive quality of the models is then investigated using one-step-ahead predictions
and proper scoring rules (Gneiting and Raftery, 2007).
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2 Methods

2.1 Modeling framework

Let yrt denote the number of cases of a specific disease in region r = 1, . . . , R at
time t = 1, . . . , T . The counts are assumed to be Poisson or negative binomially
distributed with conditional mean

µrt = λryr,t−1 + φr

∑
q 6=r

wqryq,t−1 + ertνrt , (1)

where λr, φr, νrt > 0 are unknown quantities, wqr are suitably chosen known weights
and ert corresponds to an offset (e.g. population numbers). A simple choice for the
weights is wqr = 1 if units q and r are adjacent and 0 otherwise.

The three unknown quantities are further decomposed additively on the log-scale
and specified for example as

log(λrt) = α0 + ar (2)

log(φrt) = β0 + br (3)

log(νrt) = γ0 + cr + γ1 sin(2π/52 t) + γ2 cos(2π/52 t) (4)

where α0, β0, γ0 are intercepts, ar, br, cr are regional random effects, and the terms
in curly brackets in (4) define the model seasonal variation. In applications, each of
the three components may be suitably modified or omitted.

The stacked vector of all random effects is assumed to follow a normal
distribution with mean 0 and covariance matrix Σ. For instance, one may choose
Σ = Ω ⊗ I, where Ω is an unknown 3 × 3 covariance matrix, and I is the R × R
identity matrix. This formulation correlates the random effects (ar, br, and cr)
between components, and leaves the random effects within each component (e.g.,
c = (c1, . . . , cR)>) uncorrelated.

In hierarchical models for spatio-temporal data, it is often reasonable to
assume spatially correlated random effects rather than independent and identically
distributed (iid) ones. Therefore, one might also adopt an intrinsic conditional
autoregressive (ICAR) model (Besag et al., 1991) for the incidence levels c, say.
As the associated precision matrix has a rank deficiency of one, we apply a
transformation c = γ0 + Zc̃ and estimate a reduced set of R − 1 random effects, c̃,
that are iid Gaussians (see Paul and Held, 2011).

The estimation of parameters involves integration of the likelihood with respect
to the random effects which cannot be done analytically. Paul and Held (2011)
suggest a penalized likelihood approach for inference, where variance components
are treated as known when estimating the fixed and random effects. The variance
components themselves are estimated through maximizing the approximated
marginal likelihood obtained via a Laplace approximation.
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2.2 Predictive model assessment

Model choice based on classical information criteria such as AIC is well explored
and understood for models that correspond to fixed-effects likelihoods. However,
their use can be problematic in the presence of random effects (Burnham and
Anderson, 2002, p. 316). For model selection in time series models, the comparison of
successive one-step-ahead predictions with the actually observed data is especially
attractive. The often used mean squared error of several point predictions does
not take prediction uncertainty into account. Instead, Gneiting and Raftery
(2007) recommend the use of strictly proper scoring rules to evaluate probabilistic
predictions in the form of a predictive distribution.

Strictly proper scoring rules simultaneously measure the sharpness and
calibration of a prediction by assigning a numerical score based on a stated predictive
distribution and the later observed actual value. The smaller the score, the better
the predictive quality. Several proper scoring rules for count data are discussed by
Czado et al. (2009). A popular scoring rule is the logarithmic score

logS = − log(P (Y = y)) (5)

which corresponds to the log predictive density at the observed value y. It is highly
sensitive to extreme cases as it strongly penalizes low probability events. A more
robust alternative is the ranked probability score

RPS =
∞∑
k=0

(
P (Y ≤ k) − 1(y ≤ k)

)2
, (6)

where 1 is the indicator function.
Typically, mean scores over a set of predictions are used to rank and compare

different models informally or via tests such as a Monte Carlo permutation test for
paired observations (see Paul and Held, 2011).

3 Case study

In a case study, Paul and Held (2001) applied the model to weekly influenza
surveillance counts in 140 districts of Southern Germany for the years 2001–2008.
Data were obtained from the SurvStat database of the Robert Koch Institute and
analyzed using the functions implemented in the R package surveillance (Höhle,
2007). Exemplary R code to reproduce the analysis is given in the package vignette
available at https://r-forge.r-project.org/projects/surveillance/.

The negative binomial model which yielded the lowest average logarithmic score,
called ‘B2’, was specified by log(λrt) = α0, log(φrt) = β0+br, and log(νrt) = γ0+cr+
γ1t+

∑3
s=1 γ2s sin(2πs/52 t)+γ2s+1 cos(2πs/52 t), where (b>, c>)> ∼ N(0,Ω⊗I) with

Ω =

(
σ2
b ρσbσc

ρσbσc σ2
c

)
. Here we consider a further model ‘S’, where the autoregressive
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Model logS RPS

B2: with seasonal variation in (4) 0.5633 0.4363
S: with seasonal variation in (2) and (4) 0.5571 0.4224

Table 1: Average scores based on 140 · 104 one-step-ahead predictions.

component (2) additionally contains S = 1 seasonal terms. Average scores for
this model, based on one-step-ahead predictions for years 2007–2008, can be found
together with the scores for model B2 in Table 1.

4 Concluding remarks

The analysis showed that the predictive performance improves when the
autoregressive parameter is also allowed to vary over time. In Paul and Held (2011),
the inclusion of spatially correlated random incidence levels instead of iid ones did
not substantially improve the predictive performance of a model which already
incorporated spatio-temporal correlation via the neighbor-driven component.
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Besag J., York J., Mollié A. (1991) Bayesian image restoration with two
applications in spatial statistics, Annals of the Institute of Statistical
Mathematics, 43, 1–20.

Burnham K. P., Anderson D. R. (2002) Model Selection and Multimodel Inference.
A Practical InformationTheoretic Approach, Springer, New York.

Czado C., Gneiting T., Held L. (2009) Predictive model assessment for count data,
Biometrics, 65, 1254–1261.

Gneiting T., Raftery A. E. (2007) Strictly proper scoring rules, prediction, and
estimation, Journal of the American Statistical Association, 102, 359–378.
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