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Abstract: When spatial interpolation is carried out undedeterministic approach
rather than according to the classical model-baggatoach known as kriging, the
statistical properties of the predictor cannot Beeased. The aim of this work is to
achieve these properties under a finite populatiesign-based framework, that treats
spatial locations as the outcome of a probabilsdimple.
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1. Introduction

Given n locations u,,...,u, over a surface, let us consider a fixed but unknow
deterministic function z([)) which generates the data(u,),...,z(u,). The inverse

distance weighted interpolator (IDW, Shepard, 1988) predicting the value in an
unknown location (denoted by a Greek letter) is

Z(u)=z'w, , (1)

where the normalized inverse squared distancebeofibknown location from all the

sampled onesw :Huﬂ—uiH_/Zn:HuA—ujH_2 are contained in the weighting vector
j=1

w; =(W,...,w,...w,) and zis then-dimensional vector of the observed values. The

IDW properties are well known; the predictor comfgr to the Tobler's law of
geography. Here we propose to view this predictoten a design-based perspective.
Let us now consider tha locations as a probabilistic sample from a popotabdf N
(Barabesi, 2008): the unknown values at the unsaainjplcations are the object of the
inference.

2. The Inverse Distance Weighted interpolator in the finite population
framework

Under the design-based framework, the IDW interjpolaan be seen as the result of a
sampling procedure. Since each individual unobskvatue depends only on its unique
specific geographical relationship with the sampledations, the simple random
sampling without replacement is chosen.
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The sampling design can be suitably taken into @acéhrough the use of random
selection matrices (Brune al., 2011), that allow to pass from sample-based tifiesn
to population-based ones. Expression (1) becomes

?(u}) =z'w, = S A;®b; _EK0,
I'A®b, 1Ko,

.(2)

where ® is a NxN symmetric matrix containing the same functionled Euclidean
distance#‘u} —uAH_2 of (1) before normalization with null diagonal, Wehe, is its A-
th column vector E:L...,N). A, is the diagonal matrix containing the random

conditional indicator variablesj( and bj is the randomization of thel -th

A Dsﬁl]s)

canonical basis vectoe; through the random indicator variabI%DS). Using some

matrix algebra and results for conditional randcamiables one can see thit, is the

diagonal matrix of the joint random indicator vities I( . The IDW interpolator

ﬁDs,ADs)
Is written in (2) as a function of ti¢-dimensional vector of population valuésand of

random indicator variables. Through the use of cdele matrices, sampled and
unsampled locations are associated in order to gearexclusion and conditional

inclusion in the sample through random indicatorialdes. The resulting predictor
turns out to be a design-based ratio-type estim{&@mdakt al., 1992).

3. Approximated first two moments of the | DW inter polator

Rewriting the IDW interpolator as in (2) allows tba&culus of its statistical properties.

Since it is a ratio of linear random combinatioits, properties can be analytically
computed only as approximations. For managing tivelved random variables, we
define the “association probabilities”, linking atpntially unsampled location with all
the others. These probabilities represent theirsgamoint for the calculus of the
statistical properties of the predictor: an undatyameasure can, in this way, be
associated to the deterministic IDW interpolator.

Theorem 1: The approximated expected value of (2) is

: : {,9,;
_ | §K;9; E[Q Kﬁ"’ﬂ _a; Ty
E[?(“A)]_EL'KNJD E[l'Km]_ Yo, T ®)

Proof.
It follows directly from the expected value of ttemmdom matrixK , as

N-n n

ElK;1= N N-1

D, . (4)



where D5 is a diagonal matrix of unit values besides thé wvalue at the 4,4)-th
position.L]

Let us define the difference between eathh population value and its interpolation
via the otherN -1 values

8(u;) :Z(uj)—(zc% /Z@J )

as the “structural bias” associated to location. The bias of estimator (2),e.

[?(u } ¢ (u5), is also not null. However, it can be seen thatthe sample size

increases%(uﬁ) tends to its “true” value'l'ﬁ/Tﬂ (3). Predictor (2) may exhibit a high
“structural bias” due not to the sample size buh®nature of the interpolator.

Theorem 2. The approximated variance of (2) is

V[?(u})] 0 V[Q'KA¢A]2 5 COV(C 'K, @, .1 'K3A¢A) . E[Q'Kﬂ)}] V[1'4KA¢A]
E[1'K ¢, | E[1K,¢, ] E1K,4, ]

which, using a notation similar to (3), can be essed as

[?(u )} [ (ToTa — 2T Ty +T5T2)+m(T, T, -2T2+T T2) ],

31 64

wherec, h andm are population constants and quantifigsare similar to those in
(3). For the proof, see Brumbal. (2011).[]

4. A simulation study

We assess the improvement in inference providethbyuse of a weighting system
based only on geographical distances. No modelifgiaion is required and the only
assumption made is that data follow the Toblerw.|&he weighting system we
propose, suggested by the IDW interpolator (1}héessame for the whole population,
but the weights change according to the locatiopradict. When geography is not
important, it might be more useful to predict tileveighted mean of thie-1 population
values, for the unknown location.

A simulation study has been carried out for evahgathe approximate properties of the
IDW interpolator under the design-based framewaArkopulation of fifteen sparse data
points is considered. A map of the population uradedy, the table of the values of the
variable and the “structural bias” associated thgzoint of the population are given in
Brunoet al. (2011). We illustrate two opposite situationstha four panels of Figure 1.
For the first location, where (u,) =5.81, the structural bias is null: the use of the
distances, linked to the IDW predictor, leads tbedter prediction (panel a) than the
consideration of equal weights (panel b), as higtéd by the tendency of the expected
value (3) to the real value. The other locationewey (u ;) = 2.79, presents a structural



bias d(u ;) =-1.97 and (3) fails in properly predicting the true \@l(panel c). The

unweighted version of the structural bias is on ¢batrary J (u,,) =-1.00. For this

point, the use of geography is misleading and wagdn of unweighted estimation in
simple random sampling would be preferable (pahel d
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Figure 1: Prediction with different and equal weights faotlocations ( ag increases).
Location 1: panels a) and b); location 13: pangbnd d).
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