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Abstract: When spatial interpolation is carried out under a deterministic approach 
rather than according to the classical model-based approach known as kriging, the 
statistical properties of the predictor cannot be assessed. The aim of this work is to 
achieve these properties under a finite population design-based framework, that treats 
spatial locations as the outcome of a probabilistic sample. 
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1. Introduction 
 
Given n  locations 1, , nu uK  over a surface, let us consider a fixed but unknown 

deterministic function ( )⋅z  which generates the data 1( ), , ( )K nz zu u . The inverse 

distance weighted interpolator (IDW, Shepard, 1968) for predicting the value in an 
unknown location (denoted by a Greek letter) is 
 

� ( ) 'u z wλ λζ =  , (1) 
 

where the normalized inverse squared distances of the unknown location from all the 

sampled ones 
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( )1,..., ,..., 'i nw w wλ =w  and z is the n-dimensional vector of the observed values. The 

IDW properties are well known; the predictor conforms to the Tobler’s law of 
geography. Here we propose to view this predictor under a design-based perspective.  
Let us now consider the n  locations as a probabilistic sample from a population of N  
(Barabesi, 2008): the unknown values at the unsampled locations are the object of the 
inference. 
 
 
2. The Inverse Distance Weighted interpolator in the finite population 
framework 
 
Under the design-based framework, the IDW interpolator can be seen as the result of a 
sampling procedure. Since each individual unobserved value depends only on its unique 
specific geographical relationship with the sampled locations, the simple random 
sampling without replacement is chosen.  
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The sampling design can be suitably taken into account through the use of random 
selection matrices (Bruno et al., 2011), that allow to pass from sample-based quantities 
to population-based ones. Expression (1) becomes 
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where Φ  is a N N×  symmetric matrix containing the same function of the Euclidean 

distances 
2

λλ

−
−u u  of (1) before normalization with null diagonal, while λφ  is its λ -

th column vector ( 1, ,Nλ = K ). λA  is the diagonal matrix containing the random 

conditional indicator variables ( )|s s
I

λ λ∈ ∉
 and λb  is the randomization of the λ -th 

canonical basis vector λe  through the random indicator variable ( )s
I

λ∉
. Using some 

matrix algebra and results for conditional random variables one can see that λK  is the 

diagonal matrix of the joint random indicator variables ( ),s s
I

λ λ∉ ∈
. The IDW interpolator 

is written in (2) as a function of the N-dimensional vector of population values ζ  and of 
random indicator variables. Through the use of selection matrices, sampled and 
unsampled locations are associated in order to manage exclusion and conditional 
inclusion in the sample through random indicator variables. The resulting predictor 
turns out to be a design-based ratio-type estimator (Särndal et al., 1992).  
 
 
3. Approximated first two moments of the IDW interpolator 
 
Rewriting the IDW interpolator as in (2) allows the calculus of its statistical properties.  
Since it is a ratio of linear random combinations, its properties can be analytically 
computed only as approximations. For managing the involved random variables, we 
define the “association probabilities”, linking a potentially unsampled location with all 
the others. These probabilities represent the starting point for the calculus of the 
statistical properties of the predictor: an uncertainty measure can, in this way, be 
associated to the deterministic IDW interpolator.  
 

Theorem 1: The approximated expected value of (2) is  
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Proof. 
It follows directly from the expected value of the random matrix λK  as  
 

E[ ]  ,
1

N n n

N Nλ λ
−=

−
K D (4) 
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where λD  is a diagonal matrix of unit values besides the null value at the ( ,λ λ )-th 

position. �  

Let us define the difference between each λ -th population value and its interpolation 
via the other 1N −  values 
 

( ) ( )  ,λλ λ λ λ λ λ
λ λ λ λ

δ ζ ζ ϕ ϕ
≠ ≠

 = −  
 
∑ ∑u u (5) 

as the “structural bias” associated to location λuur . The bias of estimator (2), i.e. 

�E ( ) ( )λ λζ ζ  −
 

u u , is also not null. However, it can be seen that, as the sample size 

increases, � ( )λζ u  tends to its “true” value 
1 2

T Tλ λ  (3). Predictor (2) may exhibit a high 

“structural bias” due not to the sample size but to the nature of the interpolator. 
 

Theorem 2. The approximated variance of (2) is 
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which, using a notation similar to (3), can be expressed as 
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where c , h  and m  are population constants and quantities λ�T  are similar to those in 

(3). For the proof, see Bruno et al. (2011). �  
 
 
4. A simulation study 
 
We assess the improvement in inference provided by the use of a weighting system 
based only on geographical distances. No model specification is required and the only 
assumption made is that data follow the Tobler’s law. The weighting system we 
propose, suggested by the IDW interpolator (1), is the same for the whole population, 
but the weights change according to the location to predict. When geography is not 
important, it might be more useful to predict the unweighted mean of the N-1 population 
values, for the unknown location. 
A simulation study has been carried out for evaluating the approximate properties of the 
IDW interpolator under the design-based framework. A population of fifteen sparse data 
points is considered. A map of the population under study, the table of the values of the 
variable and the “structural bias” associated to each point of the population are given in 
Bruno et al. (2011). We illustrate two opposite situations, in the four panels of Figure 1. 
For the first location, where 1( ) 5.81 ,ζ =u  the structural bias is null: the use of the 

distances, linked to the IDW predictor, leads to a better prediction (panel a) than the 
consideration of equal weights (panel b), as highlighted by the tendency of the expected 
value (3) to the real value. The other location, where 13( ) 2.79ζ =u , presents a structural 
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bias 13( ) 1.97δ = −u  and (3) fails in properly predicting the true value (panel c). The 

unweighted version of the structural bias is on the contrary *
13( ) 1.00δ = −u . For this 

point, the use of geography is misleading and a situation of unweighted estimation in 
simple random sampling would be preferable (panel d).  

 
 

 
 
 
 
 

 
 
 
 

 
 
 

a)                                      b)                                c)                                d) 
 

Figure 1: Prediction with different and equal weights for two locations ( as n increases). 
Location 1: panels a) and b); location 13: panels c) and d). 
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